Diagnostic Performance of Artificial Intelligence–Based Methods for Tuberculosis Detection: Systematic Review

Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based met...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical Internet research Vol. 27; no. 3; p. e69068
Main Authors Hansun, Seng, Argha, Ahmadreza, Bakhshayeshi, Ivan, Wicaksana, Arya, Alinejad-Rokny, Hamid, Fox, Greg J, Liaw, Siaw-Teng, Celler, Branko G, Marks, Guy B
Format Journal Article
LanguageEnglish
Published Canada Journal of Medical Internet Research 07.03.2025
Gunther Eysenbach MD MPH, Associate Professor
JMIR Publications
Subjects
Online AccessGet full text
ISSN1438-8871
1439-4456
1438-8871
DOI10.2196/69068

Cover

Abstract Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based methods have been developed to address this issue. We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies. Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection. Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection. PROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611.
AbstractList BackgroundTuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)–based methods have been developed to address this issue. ObjectiveWe aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities. MethodsFollowing PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies. ResultsRadiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection. ConclusionsFindings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection. Trial RegistrationPROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611
Background:Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)–based methods have been developed to address this issue.Objective:We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities.Methods:Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies.Results:Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection.Conclusions:Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection.Trial Registration:PROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611
Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)–based methods have been developed to address this issue. We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies. Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection. Trial Registration
Background Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)–based methods have been developed to address this issue. Objective We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities. Methods Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies. Results Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection. Conclusions Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection. Trial Registration PROSPERO CRD42023453611;
Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based methods have been developed to address this issue.BACKGROUNDTuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based methods have been developed to address this issue.We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities.OBJECTIVEWe aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities.Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies.METHODSFollowing PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies.Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection.RESULTSRadiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection.Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection.CONCLUSIONSFindings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection.PROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611.TRIAL REGISTRATIONPROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611.
Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based methods have been developed to address this issue. We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies. Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection. Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection. PROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611.
Audience Academic
Author Argha, Ahmadreza
Celler, Branko G
Wicaksana, Arya
Fox, Greg J
Bakhshayeshi, Ivan
Hansun, Seng
Alinejad-Rokny, Hamid
Marks, Guy B
Liaw, Siaw-Teng
AuthorAffiliation 3 Graduate School of Biomedical Engineering UNSW Sydney Sydney Australia
4 Tyree Institute of Health Engineering UNSW Sydney Sydney Australia
7 Informatics Department Universitas Multimedia Nusantara Tangerang Indonesia
10 Biomedical Systems Research Laboratory School of Electrical Engineering and Telecommunications UNSW Sydney Sydney Australia
8 NHMRC Clinical Trials Centre Faculty of Medicine and Health University of Sydney Sydney Australia
2 Woolcock Vietnam Research Group Woolcock Institute of Medical Research Sydney Australia
6 BioMedical Machine Learning Lab Graduate School of Biomedical Engineering UNSW Sydney Sydney Australia
9 School of Population Health and School of Clinical Medicine UNSW Sydney Sydney Australia
1 School of Clinical Medicine, South West Sydney UNSW Medicine & Health UNSW Sydney Sydney Australia
5 Ageing Future Institute UNSW Sydney Sydney Australia
11 Burnet Institute Melbourne Australia
AuthorAffiliation_xml – name: 11 Burnet Institute Melbourne Australia
– name: 1 School of Clinical Medicine, South West Sydney UNSW Medicine & Health UNSW Sydney Sydney Australia
– name: 2 Woolcock Vietnam Research Group Woolcock Institute of Medical Research Sydney Australia
– name: 10 Biomedical Systems Research Laboratory School of Electrical Engineering and Telecommunications UNSW Sydney Sydney Australia
– name: 5 Ageing Future Institute UNSW Sydney Sydney Australia
– name: 4 Tyree Institute of Health Engineering UNSW Sydney Sydney Australia
– name: 9 School of Population Health and School of Clinical Medicine UNSW Sydney Sydney Australia
– name: 7 Informatics Department Universitas Multimedia Nusantara Tangerang Indonesia
– name: 8 NHMRC Clinical Trials Centre Faculty of Medicine and Health University of Sydney Sydney Australia
– name: 3 Graduate School of Biomedical Engineering UNSW Sydney Sydney Australia
– name: 6 BioMedical Machine Learning Lab Graduate School of Biomedical Engineering UNSW Sydney Sydney Australia
Author_xml – sequence: 1
  givenname: Seng
  orcidid: 0000-0001-6619-9751
  surname: Hansun
  fullname: Hansun, Seng
– sequence: 2
  givenname: Ahmadreza
  orcidid: 0000-0002-8276-9774
  surname: Argha
  fullname: Argha, Ahmadreza
– sequence: 3
  givenname: Ivan
  orcidid: 0000-0001-5797-586X
  surname: Bakhshayeshi
  fullname: Bakhshayeshi, Ivan
– sequence: 4
  givenname: Arya
  orcidid: 0000-0002-0888-036X
  surname: Wicaksana
  fullname: Wicaksana, Arya
– sequence: 5
  givenname: Hamid
  orcidid: 0000-0002-2189-9153
  surname: Alinejad-Rokny
  fullname: Alinejad-Rokny, Hamid
– sequence: 6
  givenname: Greg J
  orcidid: 0000-0002-4085-1411
  surname: Fox
  fullname: Fox, Greg J
– sequence: 7
  givenname: Siaw-Teng
  orcidid: 0000-0001-5989-3614
  surname: Liaw
  fullname: Liaw, Siaw-Teng
– sequence: 8
  givenname: Branko G
  orcidid: 0000-0003-3790-2895
  surname: Celler
  fullname: Celler, Branko G
– sequence: 9
  givenname: Guy B
  orcidid: 0000-0002-8976-8053
  surname: Marks
  fullname: Marks, Guy B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40053773$$D View this record in MEDLINE/PubMed
BookMark eNp1kttuEzEQhleoiB7oK6CVEIibFJ9ie7mpQsshUhEIyrXltcepq1072Lutcsc78IY8CU5TSoNAlmVr5pt_NL9mv9oJMUBVHWJ0RHDDX_IGcfmg2sOMyomUAu_c--9W-zlfIkQQa_CjapchNKVC0L0qnnq9CDEP3tSfILmYeh0M1NHVszR4543XXT0PA3SdX0BJ_fz-47XOYOsPMFxEm-tSU5-PLSQzdjH7XJ_CAGbwMbyqv6zyAL1eq3-GKw_Xj6uHTncZDm_fg-rr2zfnJ-8nZx_fzU9mZxPDZDNMjGTIykZoZ6iREmPRWkSnpEWctK7V3AKb2la3vCSNYMZwx7Hh2GIrNJL0oJpvdG3Ul2qZfK_TSkXt1U0gpoXSZT7TgeJWc5C2XMQYOKSRkZiilmHXEk5d0Xq-0RrDUq-uddfdCWKk1u6rG_cLeLwBl2PbgzUQhqS7re7bmeAv1CJeKYwbIoXgReHFrUKK30bIg-p9NsV7HSCOWVEspkgQzHFBn_6FXsYxhWKqooQQypupYH-ohS6j-uBiaWzWomomKUKUcEQKdfQPqhwLvTdl0Zwv8a2CJ_cnvRvx92IV4NkGMCnmnMD9x7JfHFnbhA
Cites_doi 10.1371/journal.pone.0221339
10.1080/03610926.2019.1568485
10.1109/icobe.2012.6178971
10.1109/iccsea54677.2022.9936426
10.1109/access.2022.3194152
10.3390/ijerph16020250
10.1016/j.aci.2015.06.001
10.1088/1752-7163/aae80e
10.1109/iccecome.2018.8658480
10.1109/iccsce.2011.6190565
10.1109/cvpr.2016.90
10.1109/icaict51780.2020.9333464
10.1007/s11277-020-07075-x
10.3390/app12147092
10.1016/j.compeleceng.2021.107252
10.3390/jlpea13020039
10.1016/j.cmpb.2022.107141
10.1186/s12880-022-00904-4
10.1109/icsec53205.2021.9684617
10.1007/s13246-021-00980-w
10.1111/1348-0421.12983
10.1007/s00521-021-06177-2
10.1109/access.2023.3270774
10.1038/srep25265
10.1155/2020/6287545
10.1038/s41598-019-42557-4
10.1002/ima.22427
10.1007/s00521-022-07258-6
10.21037/qims-21-676
10.3389/frai.2022.827299
10.3390/healthcare10112335
10.1145/3297156.3297251
10.1109/cvpr42600.2020.00272
10.1016/j.patrec.2022.10.026
10.1109/cisp-bmei.2017.8302280
10.1007/s00330-020-07219-4
10.35940/ijeat.a2632.109119
10.1007/s00330-020-07024-z
10.2196/43154
10.3389/fmolb.2022.874475
10.1186/s13040-023-00328-y
10.3978/j.issn.2223-4292.2014.11.20
10.3390/diagnostics11050840
10.1007/s00330-021-08365-z
10.1016/j.asoc.2018.10.005
10.1109/csicc55295.2022.9780523
10.1155/2020/9205082
10.1016/j.ins.2022.01.062
10.32604/cmc.2023.031969
10.5114/pjr.2022.113435
10.1016/j.smhl.2017.04.003
10.1109/icoei53556.2022.9777107
10.1109/ihcsp56702.2023.10127220
10.3389/fmicb.2022.774663
10.1007/s12178-020-09600-8
10.1136/bmj.g7647
10.1016/j.aap.2020.105950
10.1109/ictaacs53298.2021.9715227
10.1016/j.pdpdt.2022.102924
10.1093/cid/ciy967
10.1007/s10916-022-01870-8
10.1155/2020/8889023
10.14445/22315381/ijett-v71i2p236
10.1109/ssci.2018.8628800
10.1109/cvpr52688.2022.01167
10.1016/j.pbiomolbio.2023.03.002
10.1109/icces.2018.8639200
10.1021/acs.jcim.9b00678
10.1016/s2589-7500(22)00172-8
10.1148/radiol.212213
10.21037/jtd.2018.01.91
10.1109/access.2022.3208882
10.3389/fmed.2022.830515
10.1109/hpcc-dss-smartcity-dependsys57074.2022.00133
10.1016/j.tube.2021.102143
10.2196/21790
10.1109/EMBC.2018.8512337
10.1007/978-1-4842-6168-2_10
10.1007/978-981-13-1208-3_11
10.1007/978-3-030-01424-7_27
10.1016/j.acra.2021.12.025
10.1371/journal.pone.0275658
10.1109/iceet56468.2022.10007261
10.1109/iccsai53272.2021.9609717
10.1186/s13643-018-0699-4
10.1109/embc.2017.8037859
10.1155/2021/9437538
10.18280/ria.360216
10.1088/1742-6596/1195/1/012007
10.3390/jpm12050680
10.1109/isitia56226.2022.9855300
10.1016/j.pdpdt.2018.10.014
10.3390/app11199057
10.1016/j.inffus.2023.101805
10.3390/electronics11172634
10.1002/jrsm.1378
10.1186/2046-4053-4-1
10.1007/s11547-022-01580-8
10.1007/s11227-020-03152-x
10.1186/s12879-023-07996-5
10.1016/j.cmpb.2023.107643
10.1088/1742-6596/1372/1/012079
10.1109/cvpr.2017.243
10.1186/s40537-019-0197-0
10.28919/cmbn/7776
10.1109/isbi52829.2022.9761426
10.1109/iccs54944.2021.00045
10.1109/EMBC.2019.8856729
10.1038/s41467-022-31514-x
10.1016/j.compbiomed.2017.08.001
10.1109/transai51903.2021.00017
10.1109/tsp52935.2021.9522634
10.1038/s41598-021-97453-7
10.1109/access.2022.3168680
10.1186/s13244-023-01395-9
10.1109/icmipe47306.2019.9098210
10.1007/s13246-020-00966-0
10.6026/97320630016539
10.3389/fpubh.2017.00307
10.4103/jpi.jpi_75_21
10.1109/icsipa.2017.8120663
10.1109/ict.2019.8798798
10.1109/dasa53625.2021.9682237
10.1109/tcbb.2022.3199572
10.1007/s11042-019-07984-5
10.1109/icot56925.2022.10008144
10.1088/1361-6579/ac2fb8
10.1016/j.bbe.2018.05.007
10.32604/cmc.2023.033429
10.1109/embc40787.2023.10340441
10.1109/access.2022.3199419
10.1186/s12879-022-07694-8
10.1148/radiol.2017162326
10.1016/j.eswa.2021.115519
10.3390/bios13050570
10.1109/stcr51658.2021.9588936
10.1109/icias49414.2021.9642622
10.1007/s11831-023-09952-7
10.1109/access.2023.3267492
10.1007/s11042-023-15212-4
10.1109/icrai54018.2021.9651373
10.3389/fmolb.2022.1086047
10.1007/s10586-022-03664-6
10.14569/IJACSA.2023.0140313
10.1007/s42979-021-00695-5
10.11591/ijai.v8.i4.pp429-435
10.1155/2023/3563696
10.32604/csse.2023.034210
10.1109/access.2020.3041867
10.1007/s12525-021-00475-2
10.24251/hicss.2023.173
10.1109/access.2020.3031384
10.1109/kse56063.2022.9953751
10.1109/tsp52935.2021.9522644
10.1016/j.bbe.2023.06.003
10.1016/j.compbiomed.2022.106156
10.7326/0003-4819-155-8-201110180-00009
10.48550/arxiv.1409.1556
10.11591/ijai.v9.i4.pp713-720
10.32604/csse.2023.025195
10.1007/s10489-020-02149-6
10.3390/ph16010013
10.1109/compsac54236.2022.00223
10.1109/icoco56118.2022.10031813
10.1109/tmi.2014.2350539
10.1186/s13643-021-01626-4
10.1109/calcon56258.2022.10060463
10.1109/icecet55527.2022.9873469
10.1109/fones-aiot54873.2021.00012
10.1016/s2214-109x(18)30520-5
10.1109/access.2021.3102077
10.1016/j.cmpb.2021.106058
10.1007/s11760-019-01509-1
10.1016/j.eswa.2020.113514
10.1093/bjaceaccp/mkn041
10.1016/j.tube.2017.09.006
10.1109/cibec.2018.8641816
10.1109/embc44109.2020.9175862
10.11591/ijeecs.v17.i2.pp1014-1020
10.3390/su12093760
10.32604/csse.2023.035253
10.3390/diagnostics11050775
10.3390/electronics11162514
10.1109/access.2020.2970023
10.1016/j.ebiom.2019.01.023
10.1016/j.csbj.2022.09.031
10.3390/electronics12081860
10.1007/978-3-030-50423-6_42
10.1016/j.smhl.2020.100117
10.1109/trpms.2024.3474708
10.1109/wsai49636.2020.9143283
ContentType Journal Article
Copyright Seng Hansun, Ahmadreza Argha, Ivan Bakhshayeshi, Arya Wicaksana, Hamid Alinejad-Rokny, Greg J Fox, Siaw-Teng Liaw, Branko G Celler, Guy B Marks. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 07.03.2025.
COPYRIGHT 2025 Journal of Medical Internet Research
2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Seng Hansun, Ahmadreza Argha, Ivan Bakhshayeshi, Arya Wicaksana, Hamid Alinejad-Rokny, Greg J Fox, Siaw-Teng Liaw, Branko G Celler, Guy B Marks. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 07.03.2025. 2025
Copyright_xml – notice: Seng Hansun, Ahmadreza Argha, Ivan Bakhshayeshi, Arya Wicaksana, Hamid Alinejad-Rokny, Greg J Fox, Siaw-Teng Liaw, Branko G Celler, Guy B Marks. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 07.03.2025.
– notice: COPYRIGHT 2025 Journal of Medical Internet Research
– notice: 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Seng Hansun, Ahmadreza Argha, Ivan Bakhshayeshi, Arya Wicaksana, Hamid Alinejad-Rokny, Greg J Fox, Siaw-Teng Liaw, Branko G Celler, Guy B Marks. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 07.03.2025. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QJ
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
CNYFK
COVID
DWQXO
E3H
F2A
FYUFA
GHDGH
K9.
KB0
M0S
M1O
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.2196/69068
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Applied Social Sciences Index & Abstracts (ASSIA)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One
Library & Information Science Collection
Coronavirus Research Database
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Library Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Applied Social Sciences Index and Abstracts (ASSIA)
ProQuest Central China
ProQuest Central
ProQuest Library Science
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Library & Information Science Collection
ProQuest Central (New)
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Library & Information Science
EISSN 1438-8871
ExternalDocumentID oai_doaj_org_article_6da6e8d6e8044ef0a0c8130b41fb263f
10.2196/69068
PMC11928776
A830032602
40053773
10_2196_69068
Genre Systematic Review
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
.4I
.DC
29L
2WC
36B
53G
5GY
5VS
77I
77K
7RV
7X7
8FI
8FJ
AAFWJ
AAKPC
AAWTL
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
CNYFK
CS3
DIK
DU5
DWQXO
E3Z
EAP
EBD
EBS
EJD
ELW
EMB
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
ICO
IEA
IHR
INH
ISN
ITC
KQ8
M1O
M48
NAPCQ
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PPXIY
PQQKQ
PRQQA
PUEGO
RNS
RPM
SJN
SV3
TR2
UKHRP
XSB
ACUHS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QJ
7XB
8FK
AZQEC
COVID
E3H
F2A
K9.
PJZUB
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADRAZ
ADTOC
C1A
O5R
O5S
UNPAY
WOQ
ID FETCH-LOGICAL-c489t-c840d897afc3c88117bd0352b062bfba6de45dbab6881c74cc6f61c61d1d7a083
IEDL.DBID DOA
ISSN 1438-8871
1439-4456
IngestDate Tue Oct 14 15:11:04 EDT 2025
Sun Oct 26 05:51:06 EDT 2025
Tue Sep 30 17:04:27 EDT 2025
Wed Oct 01 13:35:16 EDT 2025
Tue Oct 07 06:51:42 EDT 2025
Mon Oct 20 22:43:28 EDT 2025
Mon Oct 20 16:57:36 EDT 2025
Wed Jul 30 01:49:43 EDT 2025
Wed Oct 01 06:52:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
QUADAS-2
Quality Assessment of Diagnostic Accuracy Studies version 2
AI
PRISMA
diagnostic performance
tuberculosis detection
machine learning
Preferred Reporting Items for Systematic Reviews and Meta-Analysis
artificial intelligence
systematic literature review
Language English
License Seng Hansun, Ahmadreza Argha, Ivan Bakhshayeshi, Arya Wicaksana, Hamid Alinejad-Rokny, Greg J Fox, Siaw-Teng Liaw, Branko G Celler, Guy B Marks. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 07.03.2025.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN 1438-8871), is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-c840d897afc3c88117bd0352b062bfba6de45dbab6881c74cc6f61c61d1d7a083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Review-4
content type line 23
ORCID 0000-0002-4085-1411
0000-0002-8276-9774
0000-0001-5797-586X
0000-0001-5989-3614
0000-0002-8976-8053
0000-0002-2189-9153
0000-0001-6619-9751
0000-0002-0888-036X
0000-0003-3790-2895
OpenAccessLink https://doaj.org/article/6da6e8d6e8044ef0a0c8130b41fb263f
PMID 40053773
PQID 3222369574
PQPubID 2033121
ParticipantIDs doaj_primary_oai_doaj_org_article_6da6e8d6e8044ef0a0c8130b41fb263f
unpaywall_primary_10_2196_69068
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11928776
proquest_miscellaneous_3175072161
proquest_journals_3222369574
gale_infotracmisc_A830032602
gale_infotracacademiconefile_A830032602
pubmed_primary_40053773
crossref_primary_10_2196_69068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-07
PublicationDateYYYYMMDD 2025-03-07
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-07
  day: 07
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle Journal of medical Internet research
PublicationTitleAlternate J Med Internet Res
PublicationYear 2025
Publisher Journal of Medical Internet Research
Gunther Eysenbach MD MPH, Associate Professor
JMIR Publications
Publisher_xml – name: Journal of Medical Internet Research
– name: Gunther Eysenbach MD MPH, Associate Professor
– name: JMIR Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref128
ref129
ref97
ref126
ref96
ref127
ref99
ref124
ref98
ref125
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
ref168
ref169
ref170
Tan, C (ref196) 2018
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref172
ref179
ref180
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref149
ref146
ref147
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref159
ref157
ref158
ref166
ref167
ref164
ref165
ref162
ref163
ref160
Raju, M (ref65) 2019
ref161
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
(ref7) 2021
ref2
ref1
ref191
ref192
ref190
ref197
ref198
ref195
ref193
ref194
References_xml – ident: ref18
  doi: 10.1371/journal.pone.0221339
– ident: ref182
  doi: 10.1080/03610926.2019.1568485
– ident: ref33
  doi: 10.1109/icobe.2012.6178971
– ident: ref88
  doi: 10.1109/iccsea54677.2022.9936426
– ident: ref180
  doi: 10.1109/access.2022.3194152
– ident: ref79
  doi: 10.3390/ijerph16020250
– ident: ref156
  doi: 10.1016/j.aci.2015.06.001
– ident: ref146
  doi: 10.1088/1752-7163/aae80e
– ident: ref141
  doi: 10.1109/iccecome.2018.8658480
– ident: ref32
  doi: 10.1109/iccsce.2011.6190565
– ident: ref189
  doi: 10.1109/cvpr.2016.90
– ident: ref40
  doi: 10.1109/icaict51780.2020.9333464
– ident: ref52
  doi: 10.1007/s11277-020-07075-x
– ident: ref177
  doi: 10.3390/app12147092
– ident: ref85
  doi: 10.1016/j.compeleceng.2021.107252
– ident: ref129
  doi: 10.3390/jlpea13020039
– ident: ref118
  doi: 10.1016/j.cmpb.2022.107141
– ident: ref75
  doi: 10.1186/s12880-022-00904-4
– ident: ref130
  doi: 10.1109/icsec53205.2021.9684617
– ident: ref166
  doi: 10.1007/s13246-021-00980-w
– ident: ref163
  doi: 10.1111/1348-0421.12983
– ident: ref37
  doi: 10.1007/s00521-021-06177-2
– ident: ref50
  doi: 10.1109/access.2023.3270774
– ident: ref159
  doi: 10.1038/srep25265
– ident: ref149
  doi: 10.1155/2020/6287545
– ident: ref35
  doi: 10.1038/s41598-019-42557-4
– ident: ref167
  doi: 10.1002/ima.22427
– ident: ref133
  doi: 10.1007/s00521-022-07258-6
– ident: ref84
  doi: 10.21037/qims-21-676
– ident: ref132
  doi: 10.3389/frai.2022.827299
– ident: ref108
  doi: 10.3390/healthcare10112335
– ident: ref67
  doi: 10.1145/3297156.3297251
– ident: ref30
  doi: 10.1109/cvpr42600.2020.00272
– ident: ref39
  doi: 10.1016/j.patrec.2022.10.026
– ident: ref139
  doi: 10.1109/cisp-bmei.2017.8302280
– ident: ref181
  doi: 10.1007/s00330-020-07219-4
– ident: ref99
  doi: 10.35940/ijeat.a2632.109119
– ident: ref168
  doi: 10.1007/s00330-020-07024-z
– ident: ref19
  doi: 10.2196/43154
– ident: ref54
  doi: 10.3389/fmolb.2022.874475
– ident: ref176
  doi: 10.1186/s13040-023-00328-y
– ident: ref28
  doi: 10.3978/j.issn.2223-4292.2014.11.20
– ident: ref68
  doi: 10.3390/diagnostics11050840
– ident: ref92
  doi: 10.1007/s00330-021-08365-z
– ident: ref143
  doi: 10.1016/j.asoc.2018.10.005
– ident: ref46
  doi: 10.1109/csicc55295.2022.9780523
– ident: ref76
  doi: 10.1155/2020/9205082
– ident: ref78
  doi: 10.1016/j.ins.2022.01.062
– ident: ref103
  doi: 10.32604/cmc.2023.031969
– ident: ref83
  doi: 10.5114/pjr.2022.113435
– ident: ref121
  doi: 10.1016/j.smhl.2017.04.003
– ident: ref127
  doi: 10.1109/icoei53556.2022.9777107
– ident: ref98
  doi: 10.1109/ihcsp56702.2023.10127220
– ident: ref152
  doi: 10.3389/fmicb.2022.774663
– ident: ref6
  doi: 10.1007/s12178-020-09600-8
– ident: ref22
  doi: 10.1136/bmj.g7647
– ident: ref185
  doi: 10.1016/j.aap.2020.105950
– ident: ref49
  doi: 10.1109/ictaacs53298.2021.9715227
– ident: ref145
  doi: 10.1016/j.pdpdt.2022.102924
– ident: ref101
  doi: 10.1093/cid/ciy967
– ident: ref13
  doi: 10.1007/s10916-022-01870-8
– ident: ref10
– ident: ref55
  doi: 10.1155/2020/8889023
– ident: ref66
  doi: 10.14445/22315381/ijett-v71i2p236
– ident: ref169
  doi: 10.1109/ssci.2018.8628800
– ident: ref194
  doi: 10.1109/cvpr52688.2022.01167
– ident: ref14
  doi: 10.1016/j.pbiomolbio.2023.03.002
– ident: ref122
  doi: 10.1109/icces.2018.8639200
– ident: ref137
  doi: 10.1021/acs.jcim.9b00678
– ident: ref8
  doi: 10.1016/s2589-7500(22)00172-8
– ident: ref82
  doi: 10.1148/radiol.212213
– ident: ref60
  doi: 10.21037/jtd.2018.01.91
– ident: ref154
  doi: 10.1109/access.2022.3208882
– ident: ref12
  doi: 10.3389/fmed.2022.830515
– ident: ref187
  doi: 10.1109/hpcc-dss-smartcity-dependsys57074.2022.00133
– ident: ref157
  doi: 10.1016/j.tube.2021.102143
– ident: ref73
  doi: 10.2196/21790
– ident: ref173
  doi: 10.1109/EMBC.2018.8512337
– ident: ref192
  doi: 10.1007/978-1-4842-6168-2_10
– start-page: 119
  year: 2019
  ident: ref65
  publication-title: Advances in Analytics and Applications. Springer Proceedings in Business and Economics
  doi: 10.1007/978-981-13-1208-3_11
– start-page: 270
  year: 2018
  ident: ref196
  publication-title: Lecture Notes in Computer Science (Volume 11141)
  doi: 10.1007/978-3-030-01424-7_27
– ident: ref104
  doi: 10.1016/j.acra.2021.12.025
– ident: ref136
  doi: 10.1371/journal.pone.0275658
– ident: ref64
  doi: 10.1109/iceet56468.2022.10007261
– ident: ref9
  doi: 10.1109/iccsai53272.2021.9609717
– ident: ref23
  doi: 10.1186/s13643-018-0699-4
– ident: ref140
  doi: 10.1109/embc.2017.8037859
– ident: ref125
  doi: 10.1155/2021/9437538
– ident: ref144
  doi: 10.18280/ria.360216
– ident: ref71
  doi: 10.1088/1742-6596/1195/1/012007
– ident: ref124
  doi: 10.3390/jpm12050680
– ident: ref97
  doi: 10.1109/isitia56226.2022.9855300
– ident: ref160
  doi: 10.1016/j.pdpdt.2018.10.014
– ident: ref162
  doi: 10.3390/app11199057
– ident: ref195
  doi: 10.1016/j.inffus.2023.101805
– ident: ref17
  doi: 10.3390/electronics11172634
– ident: ref1
– ident: ref25
  doi: 10.1002/jrsm.1378
– ident: ref21
  doi: 10.1186/2046-4053-4-1
– ident: ref100
  doi: 10.1007/s11547-022-01580-8
– ident: ref172
  doi: 10.1007/s11227-020-03152-x
– ident: ref105
  doi: 10.1186/s12879-023-07996-5
– ident: ref45
  doi: 10.1016/j.cmpb.2023.107643
– ident: ref161
  doi: 10.1088/1742-6596/1372/1/012079
– ident: ref24
– ident: ref191
  doi: 10.1109/cvpr.2017.243
– ident: ref186
  doi: 10.1186/s40537-019-0197-0
– ident: ref95
  doi: 10.28919/cmbn/7776
– ident: ref47
  doi: 10.1109/isbi52829.2022.9761426
– ident: ref16
  doi: 10.1109/iccs54944.2021.00045
– ident: ref86
  doi: 10.1109/EMBC.2019.8856729
– ident: ref131
  doi: 10.1038/s41467-022-31514-x
– ident: ref36
  doi: 10.1016/j.compbiomed.2017.08.001
– ident: ref112
  doi: 10.1109/transai51903.2021.00017
– ident: ref72
  doi: 10.1109/tsp52935.2021.9522634
– ident: ref174
  doi: 10.1038/s41598-021-97453-7
– ident: ref126
  doi: 10.1109/access.2022.3168680
– ident: ref81
  doi: 10.1186/s13244-023-01395-9
– ident: ref62
  doi: 10.1109/icmipe47306.2019.9098210
– ident: ref107
  doi: 10.1007/s13246-020-00966-0
– ident: ref158
  doi: 10.6026/97320630016539
– ident: ref183
  doi: 10.3389/fpubh.2017.00307
– ident: ref151
  doi: 10.4103/jpi.jpi_75_21
– ident: ref89
  doi: 10.1109/icsipa.2017.8120663
– ident: ref87
  doi: 10.1109/ict.2019.8798798
– ident: ref170
  doi: 10.1109/dasa53625.2021.9682237
– ident: ref171
  doi: 10.1109/tcbb.2022.3199572
– ident: ref58
  doi: 10.1007/s11042-019-07984-5
– ident: ref134
  doi: 10.1109/icot56925.2022.10008144
– ident: ref175
  doi: 10.1088/1361-6579/ac2fb8
– ident: ref61
  doi: 10.1016/j.bbe.2018.05.007
– ident: ref94
  doi: 10.32604/cmc.2023.033429
– ident: ref27
  doi: 10.1109/embc40787.2023.10340441
– ident: ref77
  doi: 10.1109/access.2022.3199419
– ident: ref142
  doi: 10.1186/s12879-022-07694-8
– ident: ref34
  doi: 10.1148/radiol.2017162326
– ident: ref96
  doi: 10.1016/j.eswa.2021.115519
– ident: ref150
  doi: 10.3390/bios13050570
– ident: ref179
  doi: 10.1109/stcr51658.2021.9588936
– ident: ref41
  doi: 10.1109/icias49414.2021.9642622
– ident: ref198
– ident: ref70
  doi: 10.1007/s11831-023-09952-7
– ident: ref42
  doi: 10.1109/access.2023.3267492
– ident: ref91
  doi: 10.1007/s11042-023-15212-4
– ident: ref120
  doi: 10.1109/icrai54018.2021.9651373
– ident: ref80
  doi: 10.3389/fmolb.2022.1086047
– ident: ref114
  doi: 10.1007/s10586-022-03664-6
– ident: ref51
  doi: 10.14569/IJACSA.2023.0140313
– ident: ref69
  doi: 10.1007/s42979-021-00695-5
– ident: ref110
  doi: 10.11591/ijai.v8.i4.pp429-435
– ident: ref123
  doi: 10.1155/2023/3563696
– ident: ref193
– ident: ref43
  doi: 10.32604/csse.2023.034210
– ident: ref119
  doi: 10.1109/access.2020.3041867
– ident: ref4
  doi: 10.1007/s12525-021-00475-2
– ident: ref15
  doi: 10.24251/hicss.2023.173
– ident: ref29
  doi: 10.1109/access.2020.3031384
– ident: ref102
  doi: 10.1109/kse56063.2022.9953751
– ident: ref56
  doi: 10.1109/tsp52935.2021.9522644
– ident: ref178
  doi: 10.1016/j.bbe.2023.06.003
– ident: ref115
  doi: 10.1016/j.compbiomed.2022.106156
– ident: ref26
  doi: 10.7326/0003-4819-155-8-201110180-00009
– ident: ref188
  doi: 10.48550/arxiv.1409.1556
– ident: ref135
  doi: 10.11591/ijai.v9.i4.pp713-720
– ident: ref116
  doi: 10.32604/csse.2023.025195
– ident: ref93
  doi: 10.1007/s10489-020-02149-6
– ident: ref106
  doi: 10.3390/ph16010013
– ident: ref155
  doi: 10.1109/compsac54236.2022.00223
– ident: ref11
  doi: 10.1109/icoco56118.2022.10031813
– ident: ref31
  doi: 10.1109/tmi.2014.2350539
– ident: ref20
  doi: 10.1186/s13643-021-01626-4
– ident: ref48
  doi: 10.1109/calcon56258.2022.10060463
– ident: ref63
  doi: 10.1109/icecet55527.2022.9873469
– ident: ref113
  doi: 10.1109/fones-aiot54873.2021.00012
– ident: ref2
  doi: 10.1016/s2214-109x(18)30520-5
– ident: ref164
  doi: 10.1109/access.2021.3102077
– ident: ref147
  doi: 10.1016/j.cmpb.2021.106058
– ident: ref57
  doi: 10.1007/s11760-019-01509-1
– ident: ref138
  doi: 10.1016/j.eswa.2020.113514
– ident: ref184
  doi: 10.1093/bjaceaccp/mkn041
– year: 2021
  ident: ref7
  publication-title: WHO Operational Handbook on Tuberculosis. Module 2: Screening - Systematic Screening for Tuberculosis Disease
– ident: ref3
  doi: 10.1016/j.tube.2017.09.006
– ident: ref117
  doi: 10.1109/cibec.2018.8641816
– ident: ref44
  doi: 10.1109/embc44109.2020.9175862
– ident: ref109
  doi: 10.11591/ijeecs.v17.i2.pp1014-1020
– ident: ref5
  doi: 10.3390/su12093760
– ident: ref59
– ident: ref74
  doi: 10.32604/csse.2023.035253
– ident: ref128
  doi: 10.3390/diagnostics11050775
– ident: ref53
  doi: 10.3390/electronics11162514
– ident: ref38
  doi: 10.1109/access.2020.2970023
– ident: ref148
  doi: 10.1016/j.ebiom.2019.01.023
– ident: ref165
  doi: 10.1016/j.csbj.2022.09.031
– ident: ref90
  doi: 10.3390/electronics12081860
– ident: ref190
  doi: 10.1007/978-3-030-50423-6_42
– ident: ref111
  doi: 10.1016/j.smhl.2020.100117
– ident: ref197
  doi: 10.1109/trpms.2024.3474708
– ident: ref153
  doi: 10.1109/wsai49636.2020.9143283
SSID ssj0020491
Score 2.4431725
SecondaryResourceType review_article
Snippet Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various...
Background Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of...
Background:Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of...
BackgroundTuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e69068
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Biological markers
Biomarkers
Deep Learning
Diagnosis
Digital libraries
Geometry
Humans
Infectious diseases
Learning
Machine learning
Machinery
Medical research
Medicine, Experimental
Multimedia
Neural networks
Neural Networks, Computer
Performance evaluation
Physiological aspects
Popularity
Quality assessment
Review
Risk assessment
Systematic review
Tuberculosis
Tuberculosis - diagnosis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1tb9MwED6NThqTEILxssA2jITgU7U6cW0XCaGVbRpIrSbYpH2LHDuGSVVS-iLEN_4D_5Bfwl3iZg0gvvbiNsk95zv37p4DeCEMIsXEvIu-jdKMGMNpJwVVAiTeW87r3qrRWJ5dig9X_asNGK96YaiscrUnVhu1Ky39R35IGYFEDvpKvJ1-7dLUKMqurkZomDBawb2pKMZuwWZMzFgd2ByejM8_NkcwjIf5FtyhAmiE3iGx9OqWR6qI-__entf805-1k7eXxdR8_2YmkzXHdHoP7oaIkh3VELgPG3mxA_uhH4G9ZKHhiBTAgiXvwNYo5NQfQHlcV9vhcnZ-00bASl99Z80wwd6vUXf--vFziM7PsVE1fnrOcA27WGb5zC4n5fx6zo7zRVXiVbxmnxqqaFbnIR7C5enJxbuzbhjD0LVCDxZdi2dApwfKeJtYTY2pmSMW1awn48xnRrpc9F1mMolCq4S10ktuJXfcKYMh3iPoFGWR7wJzidCWEouuJ0Titekr1dM2UZrnfedlBAcrVaTTmm0jxVMK6SqtdBXBkBTUCIkcu_qgnH1Og62l0hmZI-Jyjb-S-57pWY2uOhPcZ7FMfASvSL0pmTDq0JrQiYD3SGRY6ZFOcK_Dg14cwV7rSjQ92xavAJIG05-nN0CN4HkjppVUzlbk5RKvwaCNiOkkj-BxjafmkURFsaOSCHQLaa1nbkuK6y8VMTjHcF0rha_xWQPKf7_HJ_-_86ewHdOcY6q1U3vQWcyW-T4GX4vsIFjUb2atMQ4
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3bbhMxEB2VVCpIiEu5LTTFSAieUuKs13Z4SylVQUpViUYqTytfRUW0qbpZIXjiH_hDvoSxd7NkC4i3KGNn1_YZzzgzcwzwnClEihrRAdq2EGZEH05azkImQOq9obSurZoe86MZe3-WnW1Af1ULsxa_R13irwKPrrwGmzxDV7sHm7Pjk8nHWDGEiooKQuvP-Bj0BLbgZqdfx9ZESv4_N941y3M1K_J6VVyor1_UfL5mcg5v1_8OlpGpMGSafN6rlnrPfLvC4_jP0dyBW42zSSY1Ou7Chiu2od-UKpAXpKlFCmtDGiXfhq1pE26_B4uDOhEPu5OT3xUGZOHjb9bkE-TdGqvnz-8_9tEuWjKNN1OXBPuQ00q7S1PNF-V5SQ7cMmZ_Fa_Jh5ZFmtQhivswO3x7-uZo0NzQMDBMjpcDg8dDK8dCeZMaGWpWtQ0Eq3rIR9prxa1jmdVKcxQawYzhnlPDqaVWKPT-HkCvWBTuERCbMmlCzNEOGUu9VJkQQ2lSIanLrOcJ7K7WMr-oiThyPMCEac3jtCawH1a4FQbe7PgFLkDeqGHOreIOwegkPsX5oRoaiVZcM-r1iKc-gZcBH3nQbgSBUU2RAr5j4MnKJzLFbRDPgKMEdjotUStNV7xCWN7sCmUeolopH2eCJfCsFYeeIdOtcIsK26A_FzjrOE3gYQ3Idkgssu-INAHZgWpnzF1Jcf4pcoZT9OSlEDiNT1tU_30eH_-3xRO4MQq3IIdMPLEDveVl5fromi31bqOgvwDVpTTR
  priority: 102
  providerName: Unpaywall
Title Diagnostic Performance of Artificial Intelligence–Based Methods for Tuberculosis Detection: Systematic Review
URI https://www.ncbi.nlm.nih.gov/pubmed/40053773
https://www.proquest.com/docview/3222369574
https://www.proquest.com/docview/3175072161
https://pubmed.ncbi.nlm.nih.gov/PMC11928776
https://doi.org/10.2196/69068
https://doaj.org/article/6da6e8d6e8044ef0a0c8130b41fb263f
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: DOA
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: ABDBF
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: DIK
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: RPM
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: M1O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1439-4456
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BkQpShaA8amjDIiE4RfXG690Nt4S2KkgJETRSOFnrfYhKkVM1sRA3_gP_kF_CjO2EGJC4cPHB47XseezMaGa-BXghDGqK6fEu-jYqM2IMp50U1AmQhGA5r2erRmN5PhXvZuls66gv6gmr4YFrxh1LZ6TH5V7HQvgQm9hq3HdzwUPek0mg3TfW_XUy1aRaGPfyXdijRmdUsWNC49Utz1MB9P-5DW_5od97JG-XxZX5-sXM51sO6Owe3G0iRzaov_g-3PDFPhw1cwfsJWsGi4jRrLHYfdgdNbXzB7A4qbvqcDmb_BoXYItQvbNGkmBvtyA6f3z7PkQn59ioOmZ6yXANuyhzf23L-WJ5uWQnflW1chWv2ccNJDSr6w0PYXp2evHmvNsct9C1QvdXXYu5ntN9ZYJNrKYB1NwRWmoey14eciOdF6nLTS6RaJWwVgbJreSOO2UwlHsEO8Wi8AfAXCK0pQKiQ6ElQZtUqVjbRGnuUxdkBJ21KLKrGlUjw2yEZJVVsopgSALaEAkEu7qBqpE1qpH9SzUieEXizchUUYbWNBMH-I0EepUNdIJ7GiZ0vQgOW0-iidk2ea0gWWPiy4xKVInsp0pE8HxDppXUtlb4RYnPYHBGAHSSR_C41qfNL4kKSkclEeiWprX-uU0pLj9XAOAcw3KtFLLx2UYp_87HJ_-Dj0_hTo9OPabOO3UIO6vr0h9hKLbKO3BTzVQHbg1Px5MPncoG8Tri7_HedDwZfPoJwY44jg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVmqREIJyGXosEsdT1NjerDdIFWpIq4Q2UQWp1Dd3vbuGSpEdcqjqG_-B_8OP4ZcwY2_cBBBvffV4fc3sHJ6ZbwBecYWSogK_hraN0ozow0kjOFUChGmqfb_srer1ReeMfzxvnK_Az3kvDJVVznVioahNrukf-R5lBELRbET8_ehbjaZGUXZ1PkJDudEKZr-AGHONHcf2-gpDuMl-t438fh0ER4eDD52amzJQ01w2pzWNIY6RzUilOtSS-i4TQyChSV0ESZooYSxvmEQlAok64lqLVPha-MY3kUIPBq97B9Z4yJsY_K21Dvunn6qQD_1vfx3uUcE1ivoeoQLLJQtYDAr42xws2MM_azU3ZtlIXV-p4XDBEB49gPvOg2UHpcg9hBWbbcK2639gb5hrcCKGM6c5NmG953L4jyBvl9V9uJyd3rQtsDwtrlkiWrDuAlTor-8_WmhsDesV464nDNewwSyxYz0b5pPLCWvbaVFSlr1jnytoalbmPR7D2a0w5AmsZnlmnwEzIZeaEpmmznmYStWIorrUYSR92zCp8GBnzop4VKJ7xBgVEa_iglcetIhBFZHAuIsD-fhL7PZ2LIwSFiXcSryLTeuqriW6Bgn30yQQYerBW2JvTCoDeaiV63zAZyTwrfhAhqhbMbAMPNhaOhO3ul4mzwUkdqpmEt9sDA9eVmRaSeVzmc1neA46iQSEJ3wPnpbyVL0SLyB9otADuSRpS--8TMkuvxZA5D6GBzKK8DPuVkL57-_4_P9PvgsbnUHvJD7p9o9fwN2AZixTnV-0BavT8cxuo-M3TXbc7mJwcdsb-jcMPm7q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIgUkhKBchh6LxPEUJbY3uxskhFpC1FBSVaKV8uau94BKkR1yqOob_4F_w8_hlzBjOxcg3vrq9fqa2zPzDcALrpFTdBTW0bZRmhF9OGUFp0qA2HsThmVvVf9YHJ7xj4PWYAN-znthqKxyrhMLRW1zQ__IG5QRiEW7JXnDV2URJ53uu9G3Ok2QokzrfJxGySJH7uoSw7fJ214Haf0yirofTt8f1qsJA3XDVXtaNxjeWNWW2pvYKOq5TC0BhKZNEaU-1cI63rKpTgUuGsmNEV6ERoQ2tFKj94LXvQE3ZRy3qZxQDpbBHnreYQ3uUKk1MnmD8IDVmu0rRgT8bQhWLOGfVZq3ZtlIX13q4XDFBHbvwd3Kd2X7JbPdhw2XbcFO1fnAXrGqtYlIzSqdsQW1fpW9fwB5p6zrw-3sZNmwwHJfXLPEsmC9FZDQX99_HKCZtaxfDLqeMNzDTmepG5vZMJ9cTFjHTYtisuwN-7wApWZlxuMhnF0LOR7BZpZn7gkwG3NlKIVpm5zHXumWlE1lYqlC17JeBLA7J0UyKnE9EoyHiFZJQasADohAi0WC4S4O5OMvSSXVibBaOORtp_Auzjd10yh0ClIe-jQSsQ_gNZE3IWWBNDS66nnAZyTYrWRfxahVMaSMAtheOxOF3KwvzxkkqZTMJFmKRADPF8u0kwrnMpfP8Bx0DwkCT4QBPC75afFKvADzkXEAao3T1t55fSW7-FpAkIcYGCgp8TPuLZjy39_x6f-ffA9qKMbJp97x0TO4HdFwZSrwk9uwOR3P3A56fNN0txAtBufXLcu_AReGbIQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3bbhMxEB2VVCpIiEu5LTTFSAieUuKs13Z4SylVQUpViUYqTytfRUW0qbpZIXjiH_hDvoSxd7NkC4i3KGNn1_YZzzgzcwzwnClEihrRAdq2EGZEH05azkImQOq9obSurZoe86MZe3-WnW1Af1ULsxa_R13irwKPrrwGmzxDV7sHm7Pjk8nHWDGEiooKQuvP-Bj0BLbgZqdfx9ZESv4_N941y3M1K_J6VVyor1_UfL5mcg5v1_8OlpGpMGSafN6rlnrPfLvC4_jP0dyBW42zSSY1Ou7Chiu2od-UKpAXpKlFCmtDGiXfhq1pE26_B4uDOhEPu5OT3xUGZOHjb9bkE-TdGqvnz-8_9tEuWjKNN1OXBPuQ00q7S1PNF-V5SQ7cMmZ_Fa_Jh5ZFmtQhivswO3x7-uZo0NzQMDBMjpcDg8dDK8dCeZMaGWpWtQ0Eq3rIR9prxa1jmdVKcxQawYzhnlPDqaVWKPT-HkCvWBTuERCbMmlCzNEOGUu9VJkQQ2lSIanLrOcJ7K7WMr-oiThyPMCEac3jtCawH1a4FQbe7PgFLkDeqGHOreIOwegkPsX5oRoaiVZcM-r1iKc-gZcBH3nQbgSBUU2RAr5j4MnKJzLFbRDPgKMEdjotUStNV7xCWN7sCmUeolopH2eCJfCsFYeeIdOtcIsK26A_FzjrOE3gYQ3Idkgssu-INAHZgWpnzF1Jcf4pcoZT9OSlEDiNT1tU_30eH_-3xRO4MQq3IIdMPLEDveVl5fromi31bqOgvwDVpTTR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+Performance+of+Artificial+Intelligence%E2%80%93Based+Methods+for+Tuberculosis+Detection%3A+Systematic+Review&rft.jtitle=Journal+of+medical+Internet+research&rft.au=Hansun%2C+Seng&rft.au=Argha%2C+Ahmadreza&rft.au=Bakhshayeshi%2C+Ivan&rft.au=Wicaksana%2C+Arya&rft.date=2025-03-07&rft.issn=1438-8871&rft.eissn=1438-8871&rft.volume=27&rft.spage=e69068&rft_id=info:doi/10.2196%2F69068&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_69068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-8871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-8871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-8871&client=summon