Diagnostic Performance of Artificial Intelligence–Based Methods for Tuberculosis Detection: Systematic Review
Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based met...
Saved in:
| Published in | Journal of medical Internet research Vol. 27; no. 3; p. e69068 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Canada
Journal of Medical Internet Research
07.03.2025
Gunther Eysenbach MD MPH, Associate Professor JMIR Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1438-8871 1439-4456 1438-8871 |
| DOI | 10.2196/69068 |
Cover
| Abstract | Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based methods have been developed to address this issue.
We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities.
Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies.
Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection.
Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection.
PROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611. |
|---|---|
| AbstractList | BackgroundTuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)–based methods have been developed to address this issue. ObjectiveWe aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities. MethodsFollowing PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies. ResultsRadiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection. ConclusionsFindings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection. Trial RegistrationPROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611 Background:Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)–based methods have been developed to address this issue.Objective:We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities.Methods:Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies.Results:Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection.Conclusions:Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection.Trial Registration:PROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611 Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)–based methods have been developed to address this issue. We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies. Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection. Trial Registration Background Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)–based methods have been developed to address this issue. Objective We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities. Methods Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies. Results Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection. Conclusions Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection. Trial Registration PROSPERO CRD42023453611; Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based methods have been developed to address this issue.BACKGROUNDTuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based methods have been developed to address this issue.We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities.OBJECTIVEWe aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities.Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies.METHODSFollowing PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies.Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection.RESULTSRadiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection.Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection.CONCLUSIONSFindings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection.PROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611.TRIAL REGISTRATIONPROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611. Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)-based methods have been developed to address this issue. We aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies. Radiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection. Findings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection. PROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611. |
| Audience | Academic |
| Author | Argha, Ahmadreza Celler, Branko G Wicaksana, Arya Fox, Greg J Bakhshayeshi, Ivan Hansun, Seng Alinejad-Rokny, Hamid Marks, Guy B Liaw, Siaw-Teng |
| AuthorAffiliation | 3 Graduate School of Biomedical Engineering UNSW Sydney Sydney Australia 4 Tyree Institute of Health Engineering UNSW Sydney Sydney Australia 7 Informatics Department Universitas Multimedia Nusantara Tangerang Indonesia 10 Biomedical Systems Research Laboratory School of Electrical Engineering and Telecommunications UNSW Sydney Sydney Australia 8 NHMRC Clinical Trials Centre Faculty of Medicine and Health University of Sydney Sydney Australia 2 Woolcock Vietnam Research Group Woolcock Institute of Medical Research Sydney Australia 6 BioMedical Machine Learning Lab Graduate School of Biomedical Engineering UNSW Sydney Sydney Australia 9 School of Population Health and School of Clinical Medicine UNSW Sydney Sydney Australia 1 School of Clinical Medicine, South West Sydney UNSW Medicine & Health UNSW Sydney Sydney Australia 5 Ageing Future Institute UNSW Sydney Sydney Australia 11 Burnet Institute Melbourne Australia |
| AuthorAffiliation_xml | – name: 11 Burnet Institute Melbourne Australia – name: 1 School of Clinical Medicine, South West Sydney UNSW Medicine & Health UNSW Sydney Sydney Australia – name: 2 Woolcock Vietnam Research Group Woolcock Institute of Medical Research Sydney Australia – name: 10 Biomedical Systems Research Laboratory School of Electrical Engineering and Telecommunications UNSW Sydney Sydney Australia – name: 5 Ageing Future Institute UNSW Sydney Sydney Australia – name: 4 Tyree Institute of Health Engineering UNSW Sydney Sydney Australia – name: 9 School of Population Health and School of Clinical Medicine UNSW Sydney Sydney Australia – name: 7 Informatics Department Universitas Multimedia Nusantara Tangerang Indonesia – name: 8 NHMRC Clinical Trials Centre Faculty of Medicine and Health University of Sydney Sydney Australia – name: 3 Graduate School of Biomedical Engineering UNSW Sydney Sydney Australia – name: 6 BioMedical Machine Learning Lab Graduate School of Biomedical Engineering UNSW Sydney Sydney Australia |
| Author_xml | – sequence: 1 givenname: Seng orcidid: 0000-0001-6619-9751 surname: Hansun fullname: Hansun, Seng – sequence: 2 givenname: Ahmadreza orcidid: 0000-0002-8276-9774 surname: Argha fullname: Argha, Ahmadreza – sequence: 3 givenname: Ivan orcidid: 0000-0001-5797-586X surname: Bakhshayeshi fullname: Bakhshayeshi, Ivan – sequence: 4 givenname: Arya orcidid: 0000-0002-0888-036X surname: Wicaksana fullname: Wicaksana, Arya – sequence: 5 givenname: Hamid orcidid: 0000-0002-2189-9153 surname: Alinejad-Rokny fullname: Alinejad-Rokny, Hamid – sequence: 6 givenname: Greg J orcidid: 0000-0002-4085-1411 surname: Fox fullname: Fox, Greg J – sequence: 7 givenname: Siaw-Teng orcidid: 0000-0001-5989-3614 surname: Liaw fullname: Liaw, Siaw-Teng – sequence: 8 givenname: Branko G orcidid: 0000-0003-3790-2895 surname: Celler fullname: Celler, Branko G – sequence: 9 givenname: Guy B orcidid: 0000-0002-8976-8053 surname: Marks fullname: Marks, Guy B |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40053773$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kttuEzEQhleoiB7oK6CVEIibFJ9ie7mpQsshUhEIyrXltcepq1072Lutcsc78IY8CU5TSoNAlmVr5pt_NL9mv9oJMUBVHWJ0RHDDX_IGcfmg2sOMyomUAu_c--9W-zlfIkQQa_CjapchNKVC0L0qnnq9CDEP3tSfILmYeh0M1NHVszR4543XXT0PA3SdX0BJ_fz-47XOYOsPMFxEm-tSU5-PLSQzdjH7XJ_CAGbwMbyqv6zyAL1eq3-GKw_Xj6uHTncZDm_fg-rr2zfnJ-8nZx_fzU9mZxPDZDNMjGTIykZoZ6iREmPRWkSnpEWctK7V3AKb2la3vCSNYMZwx7Hh2GIrNJL0oJpvdG3Ul2qZfK_TSkXt1U0gpoXSZT7TgeJWc5C2XMQYOKSRkZiilmHXEk5d0Xq-0RrDUq-uddfdCWKk1u6rG_cLeLwBl2PbgzUQhqS7re7bmeAv1CJeKYwbIoXgReHFrUKK30bIg-p9NsV7HSCOWVEspkgQzHFBn_6FXsYxhWKqooQQypupYH-ohS6j-uBiaWzWomomKUKUcEQKdfQPqhwLvTdl0Zwv8a2CJ_cnvRvx92IV4NkGMCnmnMD9x7JfHFnbhA |
| Cites_doi | 10.1371/journal.pone.0221339 10.1080/03610926.2019.1568485 10.1109/icobe.2012.6178971 10.1109/iccsea54677.2022.9936426 10.1109/access.2022.3194152 10.3390/ijerph16020250 10.1016/j.aci.2015.06.001 10.1088/1752-7163/aae80e 10.1109/iccecome.2018.8658480 10.1109/iccsce.2011.6190565 10.1109/cvpr.2016.90 10.1109/icaict51780.2020.9333464 10.1007/s11277-020-07075-x 10.3390/app12147092 10.1016/j.compeleceng.2021.107252 10.3390/jlpea13020039 10.1016/j.cmpb.2022.107141 10.1186/s12880-022-00904-4 10.1109/icsec53205.2021.9684617 10.1007/s13246-021-00980-w 10.1111/1348-0421.12983 10.1007/s00521-021-06177-2 10.1109/access.2023.3270774 10.1038/srep25265 10.1155/2020/6287545 10.1038/s41598-019-42557-4 10.1002/ima.22427 10.1007/s00521-022-07258-6 10.21037/qims-21-676 10.3389/frai.2022.827299 10.3390/healthcare10112335 10.1145/3297156.3297251 10.1109/cvpr42600.2020.00272 10.1016/j.patrec.2022.10.026 10.1109/cisp-bmei.2017.8302280 10.1007/s00330-020-07219-4 10.35940/ijeat.a2632.109119 10.1007/s00330-020-07024-z 10.2196/43154 10.3389/fmolb.2022.874475 10.1186/s13040-023-00328-y 10.3978/j.issn.2223-4292.2014.11.20 10.3390/diagnostics11050840 10.1007/s00330-021-08365-z 10.1016/j.asoc.2018.10.005 10.1109/csicc55295.2022.9780523 10.1155/2020/9205082 10.1016/j.ins.2022.01.062 10.32604/cmc.2023.031969 10.5114/pjr.2022.113435 10.1016/j.smhl.2017.04.003 10.1109/icoei53556.2022.9777107 10.1109/ihcsp56702.2023.10127220 10.3389/fmicb.2022.774663 10.1007/s12178-020-09600-8 10.1136/bmj.g7647 10.1016/j.aap.2020.105950 10.1109/ictaacs53298.2021.9715227 10.1016/j.pdpdt.2022.102924 10.1093/cid/ciy967 10.1007/s10916-022-01870-8 10.1155/2020/8889023 10.14445/22315381/ijett-v71i2p236 10.1109/ssci.2018.8628800 10.1109/cvpr52688.2022.01167 10.1016/j.pbiomolbio.2023.03.002 10.1109/icces.2018.8639200 10.1021/acs.jcim.9b00678 10.1016/s2589-7500(22)00172-8 10.1148/radiol.212213 10.21037/jtd.2018.01.91 10.1109/access.2022.3208882 10.3389/fmed.2022.830515 10.1109/hpcc-dss-smartcity-dependsys57074.2022.00133 10.1016/j.tube.2021.102143 10.2196/21790 10.1109/EMBC.2018.8512337 10.1007/978-1-4842-6168-2_10 10.1007/978-981-13-1208-3_11 10.1007/978-3-030-01424-7_27 10.1016/j.acra.2021.12.025 10.1371/journal.pone.0275658 10.1109/iceet56468.2022.10007261 10.1109/iccsai53272.2021.9609717 10.1186/s13643-018-0699-4 10.1109/embc.2017.8037859 10.1155/2021/9437538 10.18280/ria.360216 10.1088/1742-6596/1195/1/012007 10.3390/jpm12050680 10.1109/isitia56226.2022.9855300 10.1016/j.pdpdt.2018.10.014 10.3390/app11199057 10.1016/j.inffus.2023.101805 10.3390/electronics11172634 10.1002/jrsm.1378 10.1186/2046-4053-4-1 10.1007/s11547-022-01580-8 10.1007/s11227-020-03152-x 10.1186/s12879-023-07996-5 10.1016/j.cmpb.2023.107643 10.1088/1742-6596/1372/1/012079 10.1109/cvpr.2017.243 10.1186/s40537-019-0197-0 10.28919/cmbn/7776 10.1109/isbi52829.2022.9761426 10.1109/iccs54944.2021.00045 10.1109/EMBC.2019.8856729 10.1038/s41467-022-31514-x 10.1016/j.compbiomed.2017.08.001 10.1109/transai51903.2021.00017 10.1109/tsp52935.2021.9522634 10.1038/s41598-021-97453-7 10.1109/access.2022.3168680 10.1186/s13244-023-01395-9 10.1109/icmipe47306.2019.9098210 10.1007/s13246-020-00966-0 10.6026/97320630016539 10.3389/fpubh.2017.00307 10.4103/jpi.jpi_75_21 10.1109/icsipa.2017.8120663 10.1109/ict.2019.8798798 10.1109/dasa53625.2021.9682237 10.1109/tcbb.2022.3199572 10.1007/s11042-019-07984-5 10.1109/icot56925.2022.10008144 10.1088/1361-6579/ac2fb8 10.1016/j.bbe.2018.05.007 10.32604/cmc.2023.033429 10.1109/embc40787.2023.10340441 10.1109/access.2022.3199419 10.1186/s12879-022-07694-8 10.1148/radiol.2017162326 10.1016/j.eswa.2021.115519 10.3390/bios13050570 10.1109/stcr51658.2021.9588936 10.1109/icias49414.2021.9642622 10.1007/s11831-023-09952-7 10.1109/access.2023.3267492 10.1007/s11042-023-15212-4 10.1109/icrai54018.2021.9651373 10.3389/fmolb.2022.1086047 10.1007/s10586-022-03664-6 10.14569/IJACSA.2023.0140313 10.1007/s42979-021-00695-5 10.11591/ijai.v8.i4.pp429-435 10.1155/2023/3563696 10.32604/csse.2023.034210 10.1109/access.2020.3041867 10.1007/s12525-021-00475-2 10.24251/hicss.2023.173 10.1109/access.2020.3031384 10.1109/kse56063.2022.9953751 10.1109/tsp52935.2021.9522644 10.1016/j.bbe.2023.06.003 10.1016/j.compbiomed.2022.106156 10.7326/0003-4819-155-8-201110180-00009 10.48550/arxiv.1409.1556 10.11591/ijai.v9.i4.pp713-720 10.32604/csse.2023.025195 10.1007/s10489-020-02149-6 10.3390/ph16010013 10.1109/compsac54236.2022.00223 10.1109/icoco56118.2022.10031813 10.1109/tmi.2014.2350539 10.1186/s13643-021-01626-4 10.1109/calcon56258.2022.10060463 10.1109/icecet55527.2022.9873469 10.1109/fones-aiot54873.2021.00012 10.1016/s2214-109x(18)30520-5 10.1109/access.2021.3102077 10.1016/j.cmpb.2021.106058 10.1007/s11760-019-01509-1 10.1016/j.eswa.2020.113514 10.1093/bjaceaccp/mkn041 10.1016/j.tube.2017.09.006 10.1109/cibec.2018.8641816 10.1109/embc44109.2020.9175862 10.11591/ijeecs.v17.i2.pp1014-1020 10.3390/su12093760 10.32604/csse.2023.035253 10.3390/diagnostics11050775 10.3390/electronics11162514 10.1109/access.2020.2970023 10.1016/j.ebiom.2019.01.023 10.1016/j.csbj.2022.09.031 10.3390/electronics12081860 10.1007/978-3-030-50423-6_42 10.1016/j.smhl.2020.100117 10.1109/trpms.2024.3474708 10.1109/wsai49636.2020.9143283 |
| ContentType | Journal Article |
| Copyright | Seng Hansun, Ahmadreza Argha, Ivan Bakhshayeshi, Arya Wicaksana, Hamid Alinejad-Rokny, Greg J Fox, Siaw-Teng Liaw, Branko G Celler, Guy B Marks. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 07.03.2025. COPYRIGHT 2025 Journal of Medical Internet Research 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Seng Hansun, Ahmadreza Argha, Ivan Bakhshayeshi, Arya Wicaksana, Hamid Alinejad-Rokny, Greg J Fox, Siaw-Teng Liaw, Branko G Celler, Guy B Marks. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 07.03.2025. 2025 |
| Copyright_xml | – notice: Seng Hansun, Ahmadreza Argha, Ivan Bakhshayeshi, Arya Wicaksana, Hamid Alinejad-Rokny, Greg J Fox, Siaw-Teng Liaw, Branko G Celler, Guy B Marks. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 07.03.2025. – notice: COPYRIGHT 2025 Journal of Medical Internet Research – notice: 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Seng Hansun, Ahmadreza Argha, Ivan Bakhshayeshi, Arya Wicaksana, Hamid Alinejad-Rokny, Greg J Fox, Siaw-Teng Liaw, Branko G Celler, Guy B Marks. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 07.03.2025. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QJ 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU CNYFK COVID DWQXO E3H F2A FYUFA GHDGH K9. KB0 M0S M1O NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PRQQA 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.2196/69068 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Applied Social Sciences Index & Abstracts (ASSIA) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One Library & Information Science Collection Coronavirus Research Database ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Library Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) Library and Information Science Abstracts (LISA) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Applied Social Sciences Index and Abstracts (ASSIA) ProQuest Central China ProQuest Central ProQuest Library Science ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Library & Information Science Collection ProQuest Central (New) Social Science Premium Collection ProQuest One Social Sciences ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Library & Information Science |
| EISSN | 1438-8871 |
| ExternalDocumentID | oai_doaj_org_article_6da6e8d6e8044ef0a0c8130b41fb263f 10.2196/69068 PMC11928776 A830032602 40053773 10_2196_69068 |
| Genre | Systematic Review Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- .4I .DC 29L 2WC 36B 53G 5GY 5VS 77I 77K 7RV 7X7 8FI 8FJ AAFWJ AAKPC AAWTL AAYXX ABDBF ABIVO ABUWG ACGFO ADBBV AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS ALSLI AOIJS BAWUL BCNDV BENPR CCPQU CITATION CNYFK CS3 DIK DU5 DWQXO E3Z EAP EBD EBS EJD ELW EMB EMOBN ESX F5P FRP FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO ICO IEA IHR INH ISN ITC KQ8 M1O M48 NAPCQ OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PPXIY PQQKQ PRQQA PUEGO RNS RPM SJN SV3 TR2 UKHRP XSB ACUHS ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QJ 7XB 8FK AZQEC COVID E3H F2A K9. PJZUB PKEHL PQEST PQUKI PRINS 7X8 5PM ADRAZ ADTOC C1A O5R O5S UNPAY WOQ |
| ID | FETCH-LOGICAL-c489t-c840d897afc3c88117bd0352b062bfba6de45dbab6881c74cc6f61c61d1d7a083 |
| IEDL.DBID | DOA |
| ISSN | 1438-8871 1439-4456 |
| IngestDate | Tue Oct 14 15:11:04 EDT 2025 Sun Oct 26 05:51:06 EDT 2025 Tue Sep 30 17:04:27 EDT 2025 Wed Oct 01 13:35:16 EDT 2025 Tue Oct 07 06:51:42 EDT 2025 Mon Oct 20 22:43:28 EDT 2025 Mon Oct 20 16:57:36 EDT 2025 Wed Jul 30 01:49:43 EDT 2025 Wed Oct 01 06:52:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | deep learning QUADAS-2 Quality Assessment of Diagnostic Accuracy Studies version 2 AI PRISMA diagnostic performance tuberculosis detection machine learning Preferred Reporting Items for Systematic Reviews and Meta-Analysis artificial intelligence systematic literature review |
| Language | English |
| License | Seng Hansun, Ahmadreza Argha, Ivan Bakhshayeshi, Arya Wicaksana, Hamid Alinejad-Rokny, Greg J Fox, Siaw-Teng Liaw, Branko G Celler, Guy B Marks. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 07.03.2025. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN 1438-8871), is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c489t-c840d897afc3c88117bd0352b062bfba6de45dbab6881c74cc6f61c61d1d7a083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Review-4 content type line 23 |
| ORCID | 0000-0002-4085-1411 0000-0002-8276-9774 0000-0001-5797-586X 0000-0001-5989-3614 0000-0002-8976-8053 0000-0002-2189-9153 0000-0001-6619-9751 0000-0002-0888-036X 0000-0003-3790-2895 |
| OpenAccessLink | https://doaj.org/article/6da6e8d6e8044ef0a0c8130b41fb263f |
| PMID | 40053773 |
| PQID | 3222369574 |
| PQPubID | 2033121 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6da6e8d6e8044ef0a0c8130b41fb263f unpaywall_primary_10_2196_69068 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11928776 proquest_miscellaneous_3175072161 proquest_journals_3222369574 gale_infotracmisc_A830032602 gale_infotracacademiconefile_A830032602 pubmed_primary_40053773 crossref_primary_10_2196_69068 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-07 |
| PublicationDateYYYYMMDD | 2025-03-07 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Canada |
| PublicationPlace_xml | – name: Canada – name: Toronto – name: Toronto, Canada |
| PublicationTitle | Journal of medical Internet research |
| PublicationTitleAlternate | J Med Internet Res |
| PublicationYear | 2025 |
| Publisher | Journal of Medical Internet Research Gunther Eysenbach MD MPH, Associate Professor JMIR Publications |
| Publisher_xml | – name: Journal of Medical Internet Research – name: Gunther Eysenbach MD MPH, Associate Professor – name: JMIR Publications |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref128 ref129 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 ref168 ref169 ref170 Tan, C (ref196) 2018 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 ref179 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 ref157 ref158 ref166 ref167 ref164 ref165 ref162 ref163 ref160 Raju, M (ref65) 2019 ref161 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 (ref7) 2021 ref2 ref1 ref191 ref192 ref190 ref197 ref198 ref195 ref193 ref194 |
| References_xml | – ident: ref18 doi: 10.1371/journal.pone.0221339 – ident: ref182 doi: 10.1080/03610926.2019.1568485 – ident: ref33 doi: 10.1109/icobe.2012.6178971 – ident: ref88 doi: 10.1109/iccsea54677.2022.9936426 – ident: ref180 doi: 10.1109/access.2022.3194152 – ident: ref79 doi: 10.3390/ijerph16020250 – ident: ref156 doi: 10.1016/j.aci.2015.06.001 – ident: ref146 doi: 10.1088/1752-7163/aae80e – ident: ref141 doi: 10.1109/iccecome.2018.8658480 – ident: ref32 doi: 10.1109/iccsce.2011.6190565 – ident: ref189 doi: 10.1109/cvpr.2016.90 – ident: ref40 doi: 10.1109/icaict51780.2020.9333464 – ident: ref52 doi: 10.1007/s11277-020-07075-x – ident: ref177 doi: 10.3390/app12147092 – ident: ref85 doi: 10.1016/j.compeleceng.2021.107252 – ident: ref129 doi: 10.3390/jlpea13020039 – ident: ref118 doi: 10.1016/j.cmpb.2022.107141 – ident: ref75 doi: 10.1186/s12880-022-00904-4 – ident: ref130 doi: 10.1109/icsec53205.2021.9684617 – ident: ref166 doi: 10.1007/s13246-021-00980-w – ident: ref163 doi: 10.1111/1348-0421.12983 – ident: ref37 doi: 10.1007/s00521-021-06177-2 – ident: ref50 doi: 10.1109/access.2023.3270774 – ident: ref159 doi: 10.1038/srep25265 – ident: ref149 doi: 10.1155/2020/6287545 – ident: ref35 doi: 10.1038/s41598-019-42557-4 – ident: ref167 doi: 10.1002/ima.22427 – ident: ref133 doi: 10.1007/s00521-022-07258-6 – ident: ref84 doi: 10.21037/qims-21-676 – ident: ref132 doi: 10.3389/frai.2022.827299 – ident: ref108 doi: 10.3390/healthcare10112335 – ident: ref67 doi: 10.1145/3297156.3297251 – ident: ref30 doi: 10.1109/cvpr42600.2020.00272 – ident: ref39 doi: 10.1016/j.patrec.2022.10.026 – ident: ref139 doi: 10.1109/cisp-bmei.2017.8302280 – ident: ref181 doi: 10.1007/s00330-020-07219-4 – ident: ref99 doi: 10.35940/ijeat.a2632.109119 – ident: ref168 doi: 10.1007/s00330-020-07024-z – ident: ref19 doi: 10.2196/43154 – ident: ref54 doi: 10.3389/fmolb.2022.874475 – ident: ref176 doi: 10.1186/s13040-023-00328-y – ident: ref28 doi: 10.3978/j.issn.2223-4292.2014.11.20 – ident: ref68 doi: 10.3390/diagnostics11050840 – ident: ref92 doi: 10.1007/s00330-021-08365-z – ident: ref143 doi: 10.1016/j.asoc.2018.10.005 – ident: ref46 doi: 10.1109/csicc55295.2022.9780523 – ident: ref76 doi: 10.1155/2020/9205082 – ident: ref78 doi: 10.1016/j.ins.2022.01.062 – ident: ref103 doi: 10.32604/cmc.2023.031969 – ident: ref83 doi: 10.5114/pjr.2022.113435 – ident: ref121 doi: 10.1016/j.smhl.2017.04.003 – ident: ref127 doi: 10.1109/icoei53556.2022.9777107 – ident: ref98 doi: 10.1109/ihcsp56702.2023.10127220 – ident: ref152 doi: 10.3389/fmicb.2022.774663 – ident: ref6 doi: 10.1007/s12178-020-09600-8 – ident: ref22 doi: 10.1136/bmj.g7647 – ident: ref185 doi: 10.1016/j.aap.2020.105950 – ident: ref49 doi: 10.1109/ictaacs53298.2021.9715227 – ident: ref145 doi: 10.1016/j.pdpdt.2022.102924 – ident: ref101 doi: 10.1093/cid/ciy967 – ident: ref13 doi: 10.1007/s10916-022-01870-8 – ident: ref10 – ident: ref55 doi: 10.1155/2020/8889023 – ident: ref66 doi: 10.14445/22315381/ijett-v71i2p236 – ident: ref169 doi: 10.1109/ssci.2018.8628800 – ident: ref194 doi: 10.1109/cvpr52688.2022.01167 – ident: ref14 doi: 10.1016/j.pbiomolbio.2023.03.002 – ident: ref122 doi: 10.1109/icces.2018.8639200 – ident: ref137 doi: 10.1021/acs.jcim.9b00678 – ident: ref8 doi: 10.1016/s2589-7500(22)00172-8 – ident: ref82 doi: 10.1148/radiol.212213 – ident: ref60 doi: 10.21037/jtd.2018.01.91 – ident: ref154 doi: 10.1109/access.2022.3208882 – ident: ref12 doi: 10.3389/fmed.2022.830515 – ident: ref187 doi: 10.1109/hpcc-dss-smartcity-dependsys57074.2022.00133 – ident: ref157 doi: 10.1016/j.tube.2021.102143 – ident: ref73 doi: 10.2196/21790 – ident: ref173 doi: 10.1109/EMBC.2018.8512337 – ident: ref192 doi: 10.1007/978-1-4842-6168-2_10 – start-page: 119 year: 2019 ident: ref65 publication-title: Advances in Analytics and Applications. Springer Proceedings in Business and Economics doi: 10.1007/978-981-13-1208-3_11 – start-page: 270 year: 2018 ident: ref196 publication-title: Lecture Notes in Computer Science (Volume 11141) doi: 10.1007/978-3-030-01424-7_27 – ident: ref104 doi: 10.1016/j.acra.2021.12.025 – ident: ref136 doi: 10.1371/journal.pone.0275658 – ident: ref64 doi: 10.1109/iceet56468.2022.10007261 – ident: ref9 doi: 10.1109/iccsai53272.2021.9609717 – ident: ref23 doi: 10.1186/s13643-018-0699-4 – ident: ref140 doi: 10.1109/embc.2017.8037859 – ident: ref125 doi: 10.1155/2021/9437538 – ident: ref144 doi: 10.18280/ria.360216 – ident: ref71 doi: 10.1088/1742-6596/1195/1/012007 – ident: ref124 doi: 10.3390/jpm12050680 – ident: ref97 doi: 10.1109/isitia56226.2022.9855300 – ident: ref160 doi: 10.1016/j.pdpdt.2018.10.014 – ident: ref162 doi: 10.3390/app11199057 – ident: ref195 doi: 10.1016/j.inffus.2023.101805 – ident: ref17 doi: 10.3390/electronics11172634 – ident: ref1 – ident: ref25 doi: 10.1002/jrsm.1378 – ident: ref21 doi: 10.1186/2046-4053-4-1 – ident: ref100 doi: 10.1007/s11547-022-01580-8 – ident: ref172 doi: 10.1007/s11227-020-03152-x – ident: ref105 doi: 10.1186/s12879-023-07996-5 – ident: ref45 doi: 10.1016/j.cmpb.2023.107643 – ident: ref161 doi: 10.1088/1742-6596/1372/1/012079 – ident: ref24 – ident: ref191 doi: 10.1109/cvpr.2017.243 – ident: ref186 doi: 10.1186/s40537-019-0197-0 – ident: ref95 doi: 10.28919/cmbn/7776 – ident: ref47 doi: 10.1109/isbi52829.2022.9761426 – ident: ref16 doi: 10.1109/iccs54944.2021.00045 – ident: ref86 doi: 10.1109/EMBC.2019.8856729 – ident: ref131 doi: 10.1038/s41467-022-31514-x – ident: ref36 doi: 10.1016/j.compbiomed.2017.08.001 – ident: ref112 doi: 10.1109/transai51903.2021.00017 – ident: ref72 doi: 10.1109/tsp52935.2021.9522634 – ident: ref174 doi: 10.1038/s41598-021-97453-7 – ident: ref126 doi: 10.1109/access.2022.3168680 – ident: ref81 doi: 10.1186/s13244-023-01395-9 – ident: ref62 doi: 10.1109/icmipe47306.2019.9098210 – ident: ref107 doi: 10.1007/s13246-020-00966-0 – ident: ref158 doi: 10.6026/97320630016539 – ident: ref183 doi: 10.3389/fpubh.2017.00307 – ident: ref151 doi: 10.4103/jpi.jpi_75_21 – ident: ref89 doi: 10.1109/icsipa.2017.8120663 – ident: ref87 doi: 10.1109/ict.2019.8798798 – ident: ref170 doi: 10.1109/dasa53625.2021.9682237 – ident: ref171 doi: 10.1109/tcbb.2022.3199572 – ident: ref58 doi: 10.1007/s11042-019-07984-5 – ident: ref134 doi: 10.1109/icot56925.2022.10008144 – ident: ref175 doi: 10.1088/1361-6579/ac2fb8 – ident: ref61 doi: 10.1016/j.bbe.2018.05.007 – ident: ref94 doi: 10.32604/cmc.2023.033429 – ident: ref27 doi: 10.1109/embc40787.2023.10340441 – ident: ref77 doi: 10.1109/access.2022.3199419 – ident: ref142 doi: 10.1186/s12879-022-07694-8 – ident: ref34 doi: 10.1148/radiol.2017162326 – ident: ref96 doi: 10.1016/j.eswa.2021.115519 – ident: ref150 doi: 10.3390/bios13050570 – ident: ref179 doi: 10.1109/stcr51658.2021.9588936 – ident: ref41 doi: 10.1109/icias49414.2021.9642622 – ident: ref198 – ident: ref70 doi: 10.1007/s11831-023-09952-7 – ident: ref42 doi: 10.1109/access.2023.3267492 – ident: ref91 doi: 10.1007/s11042-023-15212-4 – ident: ref120 doi: 10.1109/icrai54018.2021.9651373 – ident: ref80 doi: 10.3389/fmolb.2022.1086047 – ident: ref114 doi: 10.1007/s10586-022-03664-6 – ident: ref51 doi: 10.14569/IJACSA.2023.0140313 – ident: ref69 doi: 10.1007/s42979-021-00695-5 – ident: ref110 doi: 10.11591/ijai.v8.i4.pp429-435 – ident: ref123 doi: 10.1155/2023/3563696 – ident: ref193 – ident: ref43 doi: 10.32604/csse.2023.034210 – ident: ref119 doi: 10.1109/access.2020.3041867 – ident: ref4 doi: 10.1007/s12525-021-00475-2 – ident: ref15 doi: 10.24251/hicss.2023.173 – ident: ref29 doi: 10.1109/access.2020.3031384 – ident: ref102 doi: 10.1109/kse56063.2022.9953751 – ident: ref56 doi: 10.1109/tsp52935.2021.9522644 – ident: ref178 doi: 10.1016/j.bbe.2023.06.003 – ident: ref115 doi: 10.1016/j.compbiomed.2022.106156 – ident: ref26 doi: 10.7326/0003-4819-155-8-201110180-00009 – ident: ref188 doi: 10.48550/arxiv.1409.1556 – ident: ref135 doi: 10.11591/ijai.v9.i4.pp713-720 – ident: ref116 doi: 10.32604/csse.2023.025195 – ident: ref93 doi: 10.1007/s10489-020-02149-6 – ident: ref106 doi: 10.3390/ph16010013 – ident: ref155 doi: 10.1109/compsac54236.2022.00223 – ident: ref11 doi: 10.1109/icoco56118.2022.10031813 – ident: ref31 doi: 10.1109/tmi.2014.2350539 – ident: ref20 doi: 10.1186/s13643-021-01626-4 – ident: ref48 doi: 10.1109/calcon56258.2022.10060463 – ident: ref63 doi: 10.1109/icecet55527.2022.9873469 – ident: ref113 doi: 10.1109/fones-aiot54873.2021.00012 – ident: ref2 doi: 10.1016/s2214-109x(18)30520-5 – ident: ref164 doi: 10.1109/access.2021.3102077 – ident: ref147 doi: 10.1016/j.cmpb.2021.106058 – ident: ref57 doi: 10.1007/s11760-019-01509-1 – ident: ref138 doi: 10.1016/j.eswa.2020.113514 – ident: ref184 doi: 10.1093/bjaceaccp/mkn041 – year: 2021 ident: ref7 publication-title: WHO Operational Handbook on Tuberculosis. Module 2: Screening - Systematic Screening for Tuberculosis Disease – ident: ref3 doi: 10.1016/j.tube.2017.09.006 – ident: ref117 doi: 10.1109/cibec.2018.8641816 – ident: ref44 doi: 10.1109/embc44109.2020.9175862 – ident: ref109 doi: 10.11591/ijeecs.v17.i2.pp1014-1020 – ident: ref5 doi: 10.3390/su12093760 – ident: ref59 – ident: ref74 doi: 10.32604/csse.2023.035253 – ident: ref128 doi: 10.3390/diagnostics11050775 – ident: ref53 doi: 10.3390/electronics11162514 – ident: ref38 doi: 10.1109/access.2020.2970023 – ident: ref148 doi: 10.1016/j.ebiom.2019.01.023 – ident: ref165 doi: 10.1016/j.csbj.2022.09.031 – ident: ref90 doi: 10.3390/electronics12081860 – ident: ref190 doi: 10.1007/978-3-030-50423-6_42 – ident: ref111 doi: 10.1016/j.smhl.2020.100117 – ident: ref197 doi: 10.1109/trpms.2024.3474708 – ident: ref153 doi: 10.1109/wsai49636.2020.9143283 |
| SSID | ssj0020491 |
| Score | 2.4431725 |
| SecondaryResourceType | review_article |
| Snippet | Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various... Background Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of... Background:Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of... BackgroundTuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e69068 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Biological markers Biomarkers Deep Learning Diagnosis Digital libraries Geometry Humans Infectious diseases Learning Machine learning Machinery Medical research Medicine, Experimental Multimedia Neural networks Neural Networks, Computer Performance evaluation Physiological aspects Popularity Quality assessment Review Risk assessment Systematic review Tuberculosis Tuberculosis - diagnosis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1tb9MwED6NThqTEILxssA2jITgU7U6cW0XCaGVbRpIrSbYpH2LHDuGSVVS-iLEN_4D_5Bfwl3iZg0gvvbiNsk95zv37p4DeCEMIsXEvIu-jdKMGMNpJwVVAiTeW87r3qrRWJ5dig9X_asNGK96YaiscrUnVhu1Ky39R35IGYFEDvpKvJ1-7dLUKMqurkZomDBawb2pKMZuwWZMzFgd2ByejM8_NkcwjIf5FtyhAmiE3iGx9OqWR6qI-__entf805-1k7eXxdR8_2YmkzXHdHoP7oaIkh3VELgPG3mxA_uhH4G9ZKHhiBTAgiXvwNYo5NQfQHlcV9vhcnZ-00bASl99Z80wwd6vUXf--vFziM7PsVE1fnrOcA27WGb5zC4n5fx6zo7zRVXiVbxmnxqqaFbnIR7C5enJxbuzbhjD0LVCDxZdi2dApwfKeJtYTY2pmSMW1awn48xnRrpc9F1mMolCq4S10ktuJXfcKYMh3iPoFGWR7wJzidCWEouuJ0Titekr1dM2UZrnfedlBAcrVaTTmm0jxVMK6SqtdBXBkBTUCIkcu_qgnH1Og62l0hmZI-Jyjb-S-57pWY2uOhPcZ7FMfASvSL0pmTDq0JrQiYD3SGRY6ZFOcK_Dg14cwV7rSjQ92xavAJIG05-nN0CN4HkjppVUzlbk5RKvwaCNiOkkj-BxjafmkURFsaOSCHQLaa1nbkuK6y8VMTjHcF0rha_xWQPKf7_HJ_-_86ewHdOcY6q1U3vQWcyW-T4GX4vsIFjUb2atMQ4 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3bbhMxEB2VVCpIiEu5LTTFSAieUuKs13Z4SylVQUpViUYqTytfRUW0qbpZIXjiH_hDvoSxd7NkC4i3KGNn1_YZzzgzcwzwnClEihrRAdq2EGZEH05azkImQOq9obSurZoe86MZe3-WnW1Af1ULsxa_R13irwKPrrwGmzxDV7sHm7Pjk8nHWDGEiooKQuvP-Bj0BLbgZqdfx9ZESv4_N941y3M1K_J6VVyor1_UfL5mcg5v1_8OlpGpMGSafN6rlnrPfLvC4_jP0dyBW42zSSY1Ou7Chiu2od-UKpAXpKlFCmtDGiXfhq1pE26_B4uDOhEPu5OT3xUGZOHjb9bkE-TdGqvnz-8_9tEuWjKNN1OXBPuQ00q7S1PNF-V5SQ7cMmZ_Fa_Jh5ZFmtQhivswO3x7-uZo0NzQMDBMjpcDg8dDK8dCeZMaGWpWtQ0Eq3rIR9prxa1jmdVKcxQawYzhnlPDqaVWKPT-HkCvWBTuERCbMmlCzNEOGUu9VJkQQ2lSIanLrOcJ7K7WMr-oiThyPMCEac3jtCawH1a4FQbe7PgFLkDeqGHOreIOwegkPsX5oRoaiVZcM-r1iKc-gZcBH3nQbgSBUU2RAr5j4MnKJzLFbRDPgKMEdjotUStNV7xCWN7sCmUeolopH2eCJfCsFYeeIdOtcIsK26A_FzjrOE3gYQ3Idkgssu-INAHZgWpnzF1Jcf4pcoZT9OSlEDiNT1tU_30eH_-3xRO4MQq3IIdMPLEDveVl5fromi31bqOgvwDVpTTR priority: 102 providerName: Unpaywall |
| Title | Diagnostic Performance of Artificial Intelligence–Based Methods for Tuberculosis Detection: Systematic Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40053773 https://www.proquest.com/docview/3222369574 https://www.proquest.com/docview/3175072161 https://pubmed.ncbi.nlm.nih.gov/PMC11928776 https://doi.org/10.2196/69068 https://doaj.org/article/6da6e8d6e8044ef0a0c8130b41fb263f |
| UnpaywallVersion | publishedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020491 issn: 1439-4456 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020491 issn: 1439-4456 databaseCode: DOA dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1438-8871 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020491 issn: 1439-4456 databaseCode: ABDBF dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020491 issn: 1439-4456 databaseCode: DIK dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020491 issn: 1439-4456 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020491 issn: 1439-4456 databaseCode: RPM dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020491 issn: 1439-4456 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 1438-8871 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020491 issn: 1439-4456 databaseCode: M1O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1438-8871 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020491 issn: 1439-4456 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BkQpShaA8amjDIiE4RfXG690Nt4S2KkgJETRSOFnrfYhKkVM1sRA3_gP_kF_CjO2EGJC4cPHB47XseezMaGa-BXghDGqK6fEu-jYqM2IMp50U1AmQhGA5r2erRmN5PhXvZuls66gv6gmr4YFrxh1LZ6TH5V7HQvgQm9hq3HdzwUPek0mg3TfW_XUy1aRaGPfyXdijRmdUsWNC49Utz1MB9P-5DW_5od97JG-XxZX5-sXM51sO6Owe3G0iRzaov_g-3PDFPhw1cwfsJWsGi4jRrLHYfdgdNbXzB7A4qbvqcDmb_BoXYItQvbNGkmBvtyA6f3z7PkQn59ioOmZ6yXANuyhzf23L-WJ5uWQnflW1chWv2ccNJDSr6w0PYXp2evHmvNsct9C1QvdXXYu5ntN9ZYJNrKYB1NwRWmoey14eciOdF6nLTS6RaJWwVgbJreSOO2UwlHsEO8Wi8AfAXCK0pQKiQ6ElQZtUqVjbRGnuUxdkBJ21KLKrGlUjw2yEZJVVsopgSALaEAkEu7qBqpE1qpH9SzUieEXizchUUYbWNBMH-I0EepUNdIJ7GiZ0vQgOW0-iidk2ea0gWWPiy4xKVInsp0pE8HxDppXUtlb4RYnPYHBGAHSSR_C41qfNL4kKSkclEeiWprX-uU0pLj9XAOAcw3KtFLLx2UYp_87HJ_-Dj0_hTo9OPabOO3UIO6vr0h9hKLbKO3BTzVQHbg1Px5MPncoG8Tri7_HedDwZfPoJwY44jg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVmqREIJyGXosEsdT1NjerDdIFWpIq4Q2UQWp1Dd3vbuGSpEdcqjqG_-B_8OP4ZcwY2_cBBBvffV4fc3sHJ6ZbwBecYWSogK_hraN0ozow0kjOFUChGmqfb_srer1ReeMfzxvnK_Az3kvDJVVznVioahNrukf-R5lBELRbET8_ehbjaZGUXZ1PkJDudEKZr-AGHONHcf2-gpDuMl-t438fh0ER4eDD52amzJQ01w2pzWNIY6RzUilOtSS-i4TQyChSV0ESZooYSxvmEQlAok64lqLVPha-MY3kUIPBq97B9Z4yJsY_K21Dvunn6qQD_1vfx3uUcE1ivoeoQLLJQtYDAr42xws2MM_azU3ZtlIXV-p4XDBEB49gPvOg2UHpcg9hBWbbcK2639gb5hrcCKGM6c5NmG953L4jyBvl9V9uJyd3rQtsDwtrlkiWrDuAlTor-8_WmhsDesV464nDNewwSyxYz0b5pPLCWvbaVFSlr1jnytoalbmPR7D2a0w5AmsZnlmnwEzIZeaEpmmznmYStWIorrUYSR92zCp8GBnzop4VKJ7xBgVEa_iglcetIhBFZHAuIsD-fhL7PZ2LIwSFiXcSryLTeuqriW6Bgn30yQQYerBW2JvTCoDeaiV63zAZyTwrfhAhqhbMbAMPNhaOhO3ul4mzwUkdqpmEt9sDA9eVmRaSeVzmc1neA46iQSEJ3wPnpbyVL0SLyB9otADuSRpS--8TMkuvxZA5D6GBzKK8DPuVkL57-_4_P9PvgsbnUHvJD7p9o9fwN2AZixTnV-0BavT8cxuo-M3TXbc7mJwcdsb-jcMPm7q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIgUkhKBchh6LxPEUJbY3uxskhFpC1FBSVaKV8uau94BKkR1yqOob_4F_w8_hlzBjOxcg3vrq9fqa2zPzDcALrpFTdBTW0bZRmhF9OGUFp0qA2HsThmVvVf9YHJ7xj4PWYAN-znthqKxyrhMLRW1zQ__IG5QRiEW7JXnDV2URJ53uu9G3Ok2QokzrfJxGySJH7uoSw7fJ214Haf0yirofTt8f1qsJA3XDVXtaNxjeWNWW2pvYKOq5TC0BhKZNEaU-1cI63rKpTgUuGsmNEV6ERoQ2tFKj94LXvQE3ZRy3qZxQDpbBHnreYQ3uUKk1MnmD8IDVmu0rRgT8bQhWLOGfVZq3ZtlIX13q4XDFBHbvwd3Kd2X7JbPdhw2XbcFO1fnAXrGqtYlIzSqdsQW1fpW9fwB5p6zrw-3sZNmwwHJfXLPEsmC9FZDQX99_HKCZtaxfDLqeMNzDTmepG5vZMJ9cTFjHTYtisuwN-7wApWZlxuMhnF0LOR7BZpZn7gkwG3NlKIVpm5zHXumWlE1lYqlC17JeBLA7J0UyKnE9EoyHiFZJQasADohAi0WC4S4O5OMvSSXVibBaOORtp_Auzjd10yh0ClIe-jQSsQ_gNZE3IWWBNDS66nnAZyTYrWRfxahVMaSMAtheOxOF3KwvzxkkqZTMJFmKRADPF8u0kwrnMpfP8Bx0DwkCT4QBPC75afFKvADzkXEAao3T1t55fSW7-FpAkIcYGCgp8TPuLZjy39_x6f-ffA9qKMbJp97x0TO4HdFwZSrwk9uwOR3P3A56fNN0txAtBufXLcu_AReGbIQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3bbhMxEB2VVCpIiEu5LTTFSAieUuKs13Z4SylVQUpViUYqTytfRUW0qbpZIXjiH_hDvoSxd7NkC4i3KGNn1_YZzzgzcwzwnClEihrRAdq2EGZEH05azkImQOq9obSurZoe86MZe3-WnW1Af1ULsxa_R13irwKPrrwGmzxDV7sHm7Pjk8nHWDGEiooKQuvP-Bj0BLbgZqdfx9ZESv4_N941y3M1K_J6VVyor1_UfL5mcg5v1_8OlpGpMGSafN6rlnrPfLvC4_jP0dyBW42zSSY1Ou7Chiu2od-UKpAXpKlFCmtDGiXfhq1pE26_B4uDOhEPu5OT3xUGZOHjb9bkE-TdGqvnz-8_9tEuWjKNN1OXBPuQ00q7S1PNF-V5SQ7cMmZ_Fa_Jh5ZFmtQhivswO3x7-uZo0NzQMDBMjpcDg8dDK8dCeZMaGWpWtQ0Eq3rIR9prxa1jmdVKcxQawYzhnlPDqaVWKPT-HkCvWBTuERCbMmlCzNEOGUu9VJkQQ2lSIanLrOcJ7K7WMr-oiThyPMCEac3jtCawH1a4FQbe7PgFLkDeqGHOreIOwegkPsX5oRoaiVZcM-r1iKc-gZcBH3nQbgSBUU2RAr5j4MnKJzLFbRDPgKMEdjotUStNV7xCWN7sCmUeolopH2eCJfCsFYeeIdOtcIsK26A_FzjrOE3gYQ3Idkgssu-INAHZgWpnzF1Jcf4pcoZT9OSlEDiNT1tU_30eH_-3xRO4MQq3IIdMPLEDveVl5fromi31bqOgvwDVpTTR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+Performance+of+Artificial+Intelligence%E2%80%93Based+Methods+for+Tuberculosis+Detection%3A+Systematic+Review&rft.jtitle=Journal+of+medical+Internet+research&rft.au=Hansun%2C+Seng&rft.au=Argha%2C+Ahmadreza&rft.au=Bakhshayeshi%2C+Ivan&rft.au=Wicaksana%2C+Arya&rft.date=2025-03-07&rft.issn=1438-8871&rft.eissn=1438-8871&rft.volume=27&rft.spage=e69068&rft_id=info:doi/10.2196%2F69068&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_69068 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-8871&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-8871&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-8871&client=summon |