AI-Based Glioma Grading for a Trustworthy Diagnosis: An Analytical Pipeline for Improved Reliability

Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for r...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 15; no. 13; p. 3369
Main Authors Pitarch, Carla, Ribas, Vicent, Vellido, Alfredo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.06.2023
MDPI
Subjects
Online AccessGet full text
ISSN2072-6694
2072-6694
DOI10.3390/cancers15133369

Cover

Abstract Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model’s output is, thus assessing the model’s certainty and robustness.
AbstractList Simple SummaryAccurately grading gliomas, which are the most common and aggressive malignant brain tumors in adults, poses a significant challenge for radiologists. This study explores the application of Deep Learning techniques in assisting tumor grading using Magnetic Resonance Images (MRIs). By analyzing a glioma database sourced from multiple public datasets and comparing different settings, the aim of this study is to develop a robust and reliable grading system. The study demonstrates that by focusing on the tumor region of interest and augmenting the available data, there is a significant improvement in both the accuracy and confidence of tumor grade classifications. While successful in differentiating low-grade gliomas from high-grade gliomas, the accurate classification of grades 2, 3, and 4 remains challenging. The research findings have significant implications for advancing the development of a non-invasive, robust, and trustworthy data-driven system to support clinicians in the diagnosis and therapy planning of glioma patients.AbstractGlioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model’s output is, thus assessing the model’s certainty and robustness.
Accurately grading gliomas, which are the most common and aggressive malignant brain tumors in adults, poses a significant challenge for radiologists. This study explores the application of Deep Learning techniques in assisting tumor grading using Magnetic Resonance Images (MRIs). By analyzing a glioma database sourced from multiple public datasets and comparing different settings, the aim of this study is to develop a robust and reliable grading system. The study demonstrates that by focusing on the tumor region of interest and augmenting the available data, there is a significant improvement in both the accuracy and confidence of tumor grade classifications. While successful in differentiating low-grade gliomas from high-grade gliomas, the accurate classification of grades 2, 3, and 4 remains challenging. The research findings have significant implications for advancing the development of a non-invasive, robust, and trustworthy data-driven system to support clinicians in the diagnosis and therapy planning of glioma patients.
Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model's output is, thus assessing the model's certainty and robustness.Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model's output is, thus assessing the model's certainty and robustness.
Accurately grading gliomas, which are the most common and aggressive malignant brain tumors in adults, poses a significant challenge for radiologists. This study explores the application of Deep Learning techniques in assisting tumor grading using Magnetic Resonance Images (MRIs). By analyzing a glioma database sourced from multiple public datasets and comparing different settings, the aim of this study is to develop a robust and reliable grading system. The study demonstrates that by focusing on the tumor region of interest and augmenting the available data, there is a significant improvement in both the accuracy and confidence of tumor grade classifications. While successful in differentiating low-grade gliomas from high-grade gliomas, the accurate classification of grades 2, 3, and 4 remains challenging. The research findings have significant implications for advancing the development of a non-invasive, robust, and trustworthy data-driven system to support clinicians in the diagnosis and therapy planning of glioma patients. Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model's output is, thus assessing the model's certainty and robustness.
Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model’s output is, thus assessing the model’s certainty and robustness.
Audience Academic
Author Pitarch, Carla
Ribas, Vicent
Vellido, Alfredo
AuthorAffiliation 1 Computer Science Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain; vicent.ribas@eurecat.org (V.R.); avellido@cs.upc.edu (A.V.)
2 Eurecat, Technology Centre of Catalonia, Digital Health Unit, 08005 Barcelona, Spain
4 Intelligent Data Science and Artificial Intelligence Research Center (IDEAI-UPC), 08034 Barcelona, Spain
3 Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
AuthorAffiliation_xml – name: 2 Eurecat, Technology Centre of Catalonia, Digital Health Unit, 08005 Barcelona, Spain
– name: 3 Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
– name: 1 Computer Science Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain; vicent.ribas@eurecat.org (V.R.); avellido@cs.upc.edu (A.V.)
– name: 4 Intelligent Data Science and Artificial Intelligence Research Center (IDEAI-UPC), 08034 Barcelona, Spain
Author_xml – sequence: 1
  givenname: Carla
  orcidid: 0000-0002-6015-244X
  surname: Pitarch
  fullname: Pitarch, Carla
– sequence: 2
  givenname: Vicent
  orcidid: 0000-0002-7266-6106
  surname: Ribas
  fullname: Ribas, Vicent
– sequence: 3
  givenname: Alfredo
  orcidid: 0000-0002-9843-1911
  surname: Vellido
  fullname: Vellido, Alfredo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37444479$$D View this record in MEDLINE/PubMed
BookMark eNqFUsFu1DAUjFARLaVnbigSFy5p7diJYy5oW9plpUogVM7Wi2NvXTl2sJNW-Xu83ULbFYJnS7aeZ8aa0Xud7TnvVJa9xeiYEI5OJDipQsQVJoTU_EV2UCJWFnXN6d6T-352FOMNSkUIZjV7le0TRlMxfpB1i1VxClF1-dIa30O-DNAZt861DznkV2GK450P4_Wcfzawdj6a-DFfuLTBzqORYPNvZlDWOHXPWfVD8LdJ73vqQWusGec32UsNNqqjh_Mw-3FxfnX2pbj8ulydLS4LSRs-FrzB0ABCLeVI84ZJpTRHuGWEYV2TmmlCFaEtbrBuMK0Q0ZJRKKWqO9aVjBxmaKs7uQHmO7BWDMH0EGaBkdhkJnYyS5RPW8owtb3qpHJjgEeaByOevzhzLdb-NgkSinFVJ4UPDwrB_5xUHEVvolTWglN-iqJsSFNSWnKcoO93oDd-CinIe1RNKEKMPKLWYJUwTvv0sdyIigWrGCsJqjZax39BpdWp3sg0KNqk_jPCu6dO_1j8PQsJUG0BMvgYg9JCmhFG4zfGjf1HhCc7vP-F_gv6tthv
CitedBy_id crossref_primary_10_7759_cureus_72646
crossref_primary_10_1016_j_compeleceng_2024_109745
crossref_primary_10_1007_s10278_024_01009_w
crossref_primary_10_1186_s43055_025_01443_y
crossref_primary_10_3390_cancers16020300
crossref_primary_10_1016_j_eswa_2023_122672
Cites_doi 10.1007/s11063-020-10398-2
10.1007/s10278-013-9622-7
10.1158/1541-7786.MCR-08-0435
10.1007/s00401-016-1545-1
10.1109/CVPR.2016.90
10.3389/fnins.2018.00804
10.1016/j.dib.2021.107191
10.1002/mp.14168
10.1016/j.cmpb.2018.01.025
10.1109/ICCV.2015.123
10.1093/neuonc/noab106
10.1007/978-3-030-11723-8_17
10.1109/TMI.2010.2046908
10.1016/j.bbe.2018.10.004
10.3390/jimaging7020019
10.3390/cancers14051349
10.1016/j.compbiomed.2020.103804
10.1093/neuonc/noac166
10.3389/fonc.2019.00768
10.1109/5.726791
10.1109/TMI.2014.2377694
10.1145/3065386
10.1016/j.neuroimage.2016.01.024
10.1016/j.neuroimage.2020.117081
10.21037/qims-21-722
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/cancers15133369
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Biological Science Collection
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID 10.3390/cancers15133369
PMC10341156
A757723051
37444479
10_3390_cancers15133369
Genre Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: Eurecat’s “Vicente López” PhD grant program
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
TUS
3V.
GROUPED_DOAJ
NPM
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c489t-981a8a00b490f987ceef901b7371f6367f34e34b181f814503fc74a2ce6d7d273
IEDL.DBID M48
ISSN 2072-6694
IngestDate Sun Oct 26 04:14:50 EDT 2025
Tue Sep 30 17:12:56 EDT 2025
Fri Sep 05 14:00:43 EDT 2025
Sun Jul 13 04:58:36 EDT 2025
Mon Oct 20 21:53:50 EDT 2025
Mon Oct 20 16:39:51 EDT 2025
Thu Jan 02 22:51:39 EST 2025
Thu Apr 24 22:54:53 EDT 2025
Thu Oct 16 04:36:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords trustworthiness
model certainty
model robustness
tumor grading
neuro-oncology
radiology
reliability
glioma
decision support
machine learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-981a8a00b490f987ceef901b7371f6367f34e34b181f814503fc74a2ce6d7d273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7266-6106
0000-0002-6015-244X
0000-0002-9843-1911
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers15133369
PMID 37444479
PQID 2836340073
PQPubID 2032421
ParticipantIDs unpaywall_primary_10_3390_cancers15133369
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10341156
proquest_miscellaneous_2838244291
proquest_journals_2836340073
gale_infotracmisc_A757723051
gale_infotracacademiconefile_A757723051
pubmed_primary_37444479
crossref_citationtrail_10_3390_cancers15133369
crossref_primary_10_3390_cancers15133369
PublicationCentury 2000
PublicationDate 20230627
PublicationDateYYYYMMDD 2023-06-27
PublicationDate_xml – month: 6
  year: 2023
  text: 20230627
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cancers
PublicationTitleAlternate Cancers (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Salehiniya (ref_1) 2019; 6
Incekara (ref_18) 2023; 25
Krizhevsky (ref_33) 2017; 60
Madhavan (ref_23) 2009; 7
ref_36
Thakur (ref_30) 2020; 220
ref_35
ref_34
ref_11
ref_10
ref_32
Menze (ref_19) 2015; 34
Kleesiek (ref_29) 2016; 129
Sotoudeh (ref_7) 2019; 9
Gibson (ref_15) 2018; 158
Lecun (ref_31) 1998; 86
Yang (ref_9) 2018; 12
Louis (ref_6) 2021; 23
Tustison (ref_28) 2010; 29
Ding (ref_17) 2022; 12
Sayah (ref_24) 2022; 9
Ayadi (ref_16) 2021; 53
Incekara (ref_21) 2021; 37
ref_25
Clark (ref_22) 2013; 26
ref_20
Louis (ref_5) 2016; 131
ref_3
Tandel (ref_13) 2020; 122
ref_2
Anaraki (ref_12) 2019; 39
ref_27
ref_26
ref_8
ref_4
Zhuge (ref_14) 2020; 47
References_xml – volume: 53
  start-page: 671
  year: 2021
  ident: ref_16
  article-title: Deep CNN for brain tumor classification
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-020-10398-2
– ident: ref_3
– volume: 26
  start-page: 1045
  year: 2013
  ident: ref_22
  article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 7
  start-page: 157
  year: 2009
  ident: ref_23
  article-title: Rembrandt: Helping personalized medicine become a reality through integrative translational research
  publication-title: Mol. Cancer Res. MCR
  doi: 10.1158/1541-7786.MCR-08-0435
– ident: ref_26
– ident: ref_34
– volume: 131
  start-page: 803
  year: 2016
  ident: ref_5
  article-title: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-016-1545-1
– ident: ref_32
  doi: 10.1109/CVPR.2016.90
– volume: 12
  start-page: 804
  year: 2018
  ident: ref_9
  article-title: Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00804
– volume: 37
  start-page: 107191
  year: 2021
  ident: ref_21
  article-title: The Erasmus Glioma Database (EGD): Structural MRI scans, WHO 2016 subtypes, and segmentations of 774 patients with glioma
  publication-title: Data Brief
  doi: 10.1016/j.dib.2021.107191
– volume: 47
  start-page: 3044
  year: 2020
  ident: ref_14
  article-title: Automated glioma grading on conventional MRI images using deep convolutional neural networks
  publication-title: Med. Phys.
  doi: 10.1002/mp.14168
– ident: ref_35
– volume: 9
  start-page: 1
  year: 2022
  ident: ref_24
  article-title: Enhancing the REMBRANDT MRI collection with expert segmentation labels and quantitative radiomic features
  publication-title: Sci. Data
– volume: 158
  start-page: 113
  year: 2018
  ident: ref_15
  article-title: NiftyNet: A deep-learning platform for medical imaging
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.01.025
– ident: ref_36
  doi: 10.1109/ICCV.2015.123
– volume: 6
  start-page: e1356
  year: 2019
  ident: ref_1
  article-title: Brain cancer in the world: An epidemiological review
  publication-title: World Cancer Res. J.
– volume: 23
  start-page: 1231
  year: 2021
  ident: ref_6
  article-title: The 2021 WHO classification of tumors of the central nervous system: A summary
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noab106
– ident: ref_11
  doi: 10.1007/978-3-030-11723-8_17
– ident: ref_25
– ident: ref_4
– volume: 29
  start-page: 1310
  year: 2010
  ident: ref_28
  article-title: N4ITK: Improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– ident: ref_2
– volume: 39
  start-page: 63
  year: 2019
  ident: ref_12
  article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.10.004
– ident: ref_27
  doi: 10.3390/jimaging7020019
– ident: ref_10
– ident: ref_8
  doi: 10.3390/cancers14051349
– volume: 122
  start-page: 103804
  year: 2020
  ident: ref_13
  article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103804
– volume: 25
  start-page: 279
  year: 2023
  ident: ref_18
  article-title: Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noac166
– volume: 9
  start-page: 768
  year: 2019
  ident: ref_7
  article-title: Artificial intelligence in the management of glioma: Era of personalized medicine
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.00768
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_31
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 34
  start-page: 1993
  year: 2015
  ident: ref_19
  article-title: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_33
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 129
  start-page: 460
  year: 2016
  ident: ref_29
  article-title: Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.024
– volume: 220
  start-page: 117081
  year: 2020
  ident: ref_30
  article-title: Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117081
– ident: ref_20
– volume: 12
  start-page: 1517
  year: 2022
  ident: ref_17
  article-title: Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: A robust, multi-institutional study
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims-21-722
SSID ssj0000331767
Score 2.3849757
Snippet Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage...
Accurately grading gliomas, which are the most common and aggressive malignant brain tumors in adults, poses a significant challenge for radiologists. This...
Simple SummaryAccurately grading gliomas, which are the most common and aggressive malignant brain tumors in adults, poses a significant challenge for...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3369
SubjectTerms Automation
Brain cancer
Brain tumors
Cancer therapies
Classification
Deep learning
Diagnosis
Diagnostic imaging
Glioma
Gliomas
Learning algorithms
Machine learning
Magnetic resonance imaging
Mutation
Radiomics
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bi9QwFD6ss6C-iHerq0QQ1Ie6bZM2qSAyq3tR2GGRXdi3kiYpDoydcS7I_HvPSS_ODKh9zYU0556cfAfglTQqi3IrQmXTMhSptCGGYDHKldWo_ErDfTGY81F2diW-XqfXezDq3sJQWmWnE72itlNDZ-SHaAYzTkW8-cfZz5CqRtHtaldCQ7elFewHDzF2A_YTQsYawP7R8ejiW3_qEnG0l5lsMH44xvuHhjZ3voipzgmntOcN87SrpDes1G4G5a1VPdPrX3oy2TBPJ3fhTutXsmHDCPdgz9X34eZ5e3P-AOzwS3iEFsuy08l4-kOz07nPnmfotDLNLunphU8XXLPPTfbdePGeDWvmUUv8gTe7GM_o9brzY5rTCJyPkpobsO_1Q7g6Ob78dBa2FRZCI1S-DHMVa6WjqBR5VOVKosWs0EEoJZdxlfFMVlw4Lkp0AyoVizTilZFCJ8ZlVlr0fB7BoJ7W7gkwxU0q8zRxSG9hnFVK6DiTLknKuLJcB_Cu29jCtPDjVAVjUmAYQpQodigRwJt-wKxB3vh719dEqYJkEuc0un1agCsjdKtiKFMMIlCzxQEcbPVEWTLbzR2ti1aWF8UfzgvgZd9MIyk_rXbTle-j0FFKcpziccMa_aK5FPhJXKXaYpq-AyF8b7fU4-8e6TuO0MnACDuAtz1__W8znv77H57B7QT9NMp2S-QBDJbzlXuOftWyfNEKy29P3SJs
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-yB-qL356rp0QQ1IdumyZNUl-kftydwh33cAvnU0mTFItrd9kPZf3rnWm7ZXdBROxrJiFtJjO_SX-ZIeSFslpGqROBdkkRiES5AEIwBvvKGTB-heVNMZizc3k6Fp-vkqutW_xIq4RQvGqMdBypOJAyFSFLQsZDzmUazlz59kd3lsSkVjoBgAhB-4FMAI0PyMH4_CL7gjXlNr3bjD4covvQ4qecLxhWNeFIct5yRvsmecsn7fMlb6zqmVn_NJPJljM6vk3M5jVaDsq30WpZjOyvvQyP__Oed8itDqnSrFWtu-Sar--R62fdv_j7xGWfgnfgAx09mVTT74aezBs-PgUYTA29xMscDQFxTT-0fL5q8YZmNW3yoDRH6PSimuF9eN_0ac83YDykSbfpw9cPyPj44-X706Cr2RBYodNlkGpmtImiQqRRmWoFPrgEyFEorlgpuVQlF56LAoBFqZlIIl5aJUxsvXTKAZZ6SAb1tPaPCNXcJipNYg8aJKx3WgvDpPJxXLDScTMko83i5bZLaI51NSY5BDa42vneag_Jq77DrM3l8WfRl6gNOe5yGNOa7rICzAzzZeWZwtUAW8mG5GhHEnan3W3e6FPeWYdFDpBOcixIz4fked-MPZHxVvvpqpHRAL3iFIY4bNWvnzRXAh4Fs9Q7itkLYM7w3Za6-trkDmcRwBaI2Yfkda_Df_sYj_9B9gm5GQMMRDJdrI7IYDlf-acA25bFs25n_gb74Dwl
  priority: 102
  providerName: Unpaywall
Title AI-Based Glioma Grading for a Trustworthy Diagnosis: An Analytical Pipeline for Improved Reliability
URI https://www.ncbi.nlm.nih.gov/pubmed/37444479
https://www.proquest.com/docview/2836340073
https://www.proquest.com/docview/2838244291
https://pubmed.ncbi.nlm.nih.gov/PMC10341156
https://www.mdpi.com/2072-6694/15/13/3369/pdf?version=1687857720
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: ABDBF
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M48
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba9swFD6sLXR9GbvPXRc0GGx7cGtZsiUPxnC3Nt0gIYwGsicjyzYLeE6aC1v-_Y5kx0tCy_xoXRDSuXzHPjofwBuhZehFGXdlFqQuD0TmYghGUa8yhcYv1cySwfT64dWQfxsFo390QM0Gzm8N7Qyf1HBWnv65WX1Chf9oIk4M2c-02Z_ZnBqqEhZGe3CAbioyPA69Butbs8zQVVpGWd8TvhuGEa9L_dw2xxEcMsHxMSleGw5r12xv-K3dnMr7y2qqVr9VWW44rMuH8KBBmiSuReMR3Murx3DYa_6lP4Es_uqeow_LSLccT34p0p3ZfHqCMJYocm0uY9gEwhX5UufjjecfSFwRW8fEfgIng_HU3GfP7Zj6-wTOZ9Kc6_Lfq6cwvLy4_nzlNpwLruYyWriRpEoqz0t55BWRFOhDC4QMqWCCFiELRcF4zniKwKCQlAceK7Tgytd5mIkMsdAz2K8mVf4CiGQ6EFHg5ygBXOeZlFzRUOS-n9IiY8qB0_XGJropSG54McoEAxNzKMnOoTjwrh0wrWtx3N31rTmpxMgNzqlVc9kAV2bqXSWxCDCsQFtHHTjZ6onapbeb12edrIUzQUgWMkMozxx43TabkSZjrconS9tHInTyI5zieS0a7aLXouWA3BKatoOp-b3dUo1_2trf1EPYgTG3A-9b-frfZhzfuYCXcOQjaDOpb744gf3FbJm_QpC1SDtwcH7RH3zvwF53RDtWlfDdsD-If_wF9rwlzw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am8R4QdwJDDASCHjIlsRO7CBNqGOXlq3VhDppb8GxHa1Sl5ZeNPXP8ds4zo22EvC0vPoix-f4fOfY5wLwjisRebFmrtBh6rKQaxdNMB_PlZYo_FJFi2Iw3V7UvmDfLsPLDfhVx8JYt8paJhaCWo-UvSPfQxiMqC3iTb-Mf7q2apR9Xa1LaMiqtILeL1KMVYEdp2ZxgybcdL9ziPR-HwTHR_2vbbeqMuAqJuKZGwtfCul5KYu9DC1wRI0MQTLllPtZRCOeUWYoSxEKM-Gz0KOZ4kwGykSaa0R_nPcObDHKYjT-tg6Oeuffm1sejyI-R7zMKURp7O0pS8zJ1Ld1Vah1s16Cw3VQWELFdY_N7Xk-losbORwuweHxA7hf6bGkVTLeQ9gw-SO4261e6h-DbnXcA0RITU6Gg9G1JCeTwlufoJJMJOnbUI_CPXFBDktvv8H0M2nlpMiSUlywk_PB2EbLm2JMefuB81kn6jK5-OIJXNzKXj-FzXyUm-dABFUhj8PAIH8xZbQQTPoRN0GQ-pmm0oHdemMTVaU7t1U3hgmaPZYSyRolHPjYDBiXmT7-3vWDpVRiZQDOqWQVyoArs9m0khYP0WhBSeo7sLPSE8-uWm2uaZ1UsmOa_OF0B942zXak9YfLzWhe9BGomAUxTvGsZI1m0ZQz_DiuUqwwTdPBZhRfbckHV0Vmcd9DpQYtegc-Nfz1v8148e9_eAPb7X73LDnr9E5fwr0AdUTraRfwHdicTebmFep0s_R1dXAI_Ljts_obFLFeOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJo29IO4EBhgJBDyEJrETO0gT6ui6lbGqQpu0t-DYjlappKUXTf2L_CrOyY22EvC0vPoix-f4fOfY50LIa6Fl5MWGu9KEqctDYVwwwXw4V0aB8Es1K4rBnPWjkwv-5TK83CK_6lgYdKusZWIhqM1Y4x15C2AwYljEm7Wyyi1i0Ol-mvx0sYIUvrTW5TRUVWbBHBTpxqogj1O7vAZzbnbQ6wDt3wRB9-j884lbVRxwNZfx3I2lr6TyvJTHXgbWOCBIBoCZCib8LGKRyBi3jKcAi5n0eeixTAuuAm0jIwxoAjDvLbKDj18gJHYOj_qDb82Nj8cAqyNR5hdiLPZaGgk7nflYY4Why_UKNG4CxApCbnpv3l7kE7W8VqPRCjR275I7lU5L2yUT3iNbNr9Pds-qV_sHxLR77iGgpaHHo-H4h6LH08Jzn4LCTBU9x7CPwlVxSTul599w9pG2c1pkTCku2-lgOMHIeVuMKW9CYD50qC4TjS8fkosb2etHZDsf5_YJoZLpUMRhYIHXuLZGSq78SNggSP3MMOWQD_XGJrpKfY4VOEYJmEBIiWSDEg551wyYlFk__t71LVIqQXkAc2pVhTXAyjCzVtIWIRgwIFV9h-yv9YRzrNeba1onlRyZJX-43iGvmmYcib5xuR0vij4SlLQghikel6zRLJoJDp-AVco1pmk6YHbx9ZZ8eFVkGfc9UHDAunfI-4a__rcZT__9Dy_JLpzZ5Guvf_qM7AWgLqLTXSD2yfZ8urDPQb2bpy-qc0PJ95s-qr8BVxtiZw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-yB-qL356rp0QQ1IdumyZNUl-kftydwh33cAvnU0mTFItrd9kPZf3rnWm7ZXdBROxrJiFtJjO_SX-ZIeSFslpGqROBdkkRiES5AEIwBvvKGTB-heVNMZizc3k6Fp-vkqutW_xIq4RQvGqMdBypOJAyFSFLQsZDzmUazlz59kd3lsSkVjoBgAhB-4FMAI0PyMH4_CL7gjXlNr3bjD4covvQ4qecLxhWNeFIct5yRvsmecsn7fMlb6zqmVn_NJPJljM6vk3M5jVaDsq30WpZjOyvvQyP__Oed8itDqnSrFWtu-Sar--R62fdv_j7xGWfgnfgAx09mVTT74aezBs-PgUYTA29xMscDQFxTT-0fL5q8YZmNW3yoDRH6PSimuF9eN_0ac83YDykSbfpw9cPyPj44-X706Cr2RBYodNlkGpmtImiQqRRmWoFPrgEyFEorlgpuVQlF56LAoBFqZlIIl5aJUxsvXTKAZZ6SAb1tPaPCNXcJipNYg8aJKx3WgvDpPJxXLDScTMko83i5bZLaI51NSY5BDa42vneag_Jq77DrM3l8WfRl6gNOe5yGNOa7rICzAzzZeWZwtUAW8mG5GhHEnan3W3e6FPeWYdFDpBOcixIz4fked-MPZHxVvvpqpHRAL3iFIY4bNWvnzRXAh4Fs9Q7itkLYM7w3Za6-trkDmcRwBaI2Yfkda_Df_sYj_9B9gm5GQMMRDJdrI7IYDlf-acA25bFs25n_gb74Dwl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Based+Glioma+Grading+for+a+Trustworthy+Diagnosis%3A+An+Analytical+Pipeline+for+Improved+Reliability&rft.jtitle=Cancers&rft.au=Pitarch%2C+Carla&rft.au=Ribas%2C+Vicent&rft.au=Vellido%2C+Alfredo&rft.date=2023-06-27&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=15&rft.issue=13&rft_id=info:doi/10.3390%2Fcancers15133369&rft_id=info%3Apmid%2F37444479&rft.externalDocID=37444479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon