AI-Based Glioma Grading for a Trustworthy Diagnosis: An Analytical Pipeline for Improved Reliability
Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for r...
Saved in:
| Published in | Cancers Vol. 15; no. 13; p. 3369 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
27.06.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-6694 2072-6694 |
| DOI | 10.3390/cancers15133369 |
Cover
| Abstract | Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model’s output is, thus assessing the model’s certainty and robustness. |
|---|---|
| AbstractList | Simple SummaryAccurately grading gliomas, which are the most common and aggressive malignant brain tumors in adults, poses a significant challenge for radiologists. This study explores the application of Deep Learning techniques in assisting tumor grading using Magnetic Resonance Images (MRIs). By analyzing a glioma database sourced from multiple public datasets and comparing different settings, the aim of this study is to develop a robust and reliable grading system. The study demonstrates that by focusing on the tumor region of interest and augmenting the available data, there is a significant improvement in both the accuracy and confidence of tumor grade classifications. While successful in differentiating low-grade gliomas from high-grade gliomas, the accurate classification of grades 2, 3, and 4 remains challenging. The research findings have significant implications for advancing the development of a non-invasive, robust, and trustworthy data-driven system to support clinicians in the diagnosis and therapy planning of glioma patients.AbstractGlioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model’s output is, thus assessing the model’s certainty and robustness. Accurately grading gliomas, which are the most common and aggressive malignant brain tumors in adults, poses a significant challenge for radiologists. This study explores the application of Deep Learning techniques in assisting tumor grading using Magnetic Resonance Images (MRIs). By analyzing a glioma database sourced from multiple public datasets and comparing different settings, the aim of this study is to develop a robust and reliable grading system. The study demonstrates that by focusing on the tumor region of interest and augmenting the available data, there is a significant improvement in both the accuracy and confidence of tumor grade classifications. While successful in differentiating low-grade gliomas from high-grade gliomas, the accurate classification of grades 2, 3, and 4 remains challenging. The research findings have significant implications for advancing the development of a non-invasive, robust, and trustworthy data-driven system to support clinicians in the diagnosis and therapy planning of glioma patients. Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model's output is, thus assessing the model's certainty and robustness.Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model's output is, thus assessing the model's certainty and robustness. Accurately grading gliomas, which are the most common and aggressive malignant brain tumors in adults, poses a significant challenge for radiologists. This study explores the application of Deep Learning techniques in assisting tumor grading using Magnetic Resonance Images (MRIs). By analyzing a glioma database sourced from multiple public datasets and comparing different settings, the aim of this study is to develop a robust and reliable grading system. The study demonstrates that by focusing on the tumor region of interest and augmenting the available data, there is a significant improvement in both the accuracy and confidence of tumor grade classifications. While successful in differentiating low-grade gliomas from high-grade gliomas, the accurate classification of grades 2, 3, and 4 remains challenging. The research findings have significant implications for advancing the development of a non-invasive, robust, and trustworthy data-driven system to support clinicians in the diagnosis and therapy planning of glioma patients. Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model's output is, thus assessing the model's certainty and robustness. Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage scale, ranging from the most benign to the most malignant. The grading of these tumors from image information is a far from trivial task for radiologists and one in which they could be assisted by machine-learning-based decision support. However, the machine learning analytical pipeline is also fraught with perils stemming from different sources, such as inadvertent data leakage, adequacy of 2D image sampling, or classifier assessment biases. In this paper, we analyze a glioma database sourced from multiple datasets using a simple classifier, aiming to obtain a reliable tumor grading and, on the way, we provide a few guidelines to ensure such reliability. Our results reveal that by focusing on the tumor region of interest and using data augmentation techniques we significantly enhanced the accuracy and confidence in tumor classifications. Evaluation on an independent test set resulted in an AUC-ROC of 0.932 in the discrimination of low-grade gliomas from high-grade gliomas, and an AUC-ROC of 0.893 in the classification of grades 2, 3, and 4. The study also highlights the importance of providing, beyond generic classification performance, measures of how reliable and trustworthy the model’s output is, thus assessing the model’s certainty and robustness. |
| Audience | Academic |
| Author | Pitarch, Carla Ribas, Vicent Vellido, Alfredo |
| AuthorAffiliation | 1 Computer Science Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain; vicent.ribas@eurecat.org (V.R.); avellido@cs.upc.edu (A.V.) 2 Eurecat, Technology Centre of Catalonia, Digital Health Unit, 08005 Barcelona, Spain 4 Intelligent Data Science and Artificial Intelligence Research Center (IDEAI-UPC), 08034 Barcelona, Spain 3 Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain |
| AuthorAffiliation_xml | – name: 2 Eurecat, Technology Centre of Catalonia, Digital Health Unit, 08005 Barcelona, Spain – name: 3 Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain – name: 1 Computer Science Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain; vicent.ribas@eurecat.org (V.R.); avellido@cs.upc.edu (A.V.) – name: 4 Intelligent Data Science and Artificial Intelligence Research Center (IDEAI-UPC), 08034 Barcelona, Spain |
| Author_xml | – sequence: 1 givenname: Carla orcidid: 0000-0002-6015-244X surname: Pitarch fullname: Pitarch, Carla – sequence: 2 givenname: Vicent orcidid: 0000-0002-7266-6106 surname: Ribas fullname: Ribas, Vicent – sequence: 3 givenname: Alfredo orcidid: 0000-0002-9843-1911 surname: Vellido fullname: Vellido, Alfredo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37444479$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUsFu1DAUjFARLaVnbigSFy5p7diJYy5oW9plpUogVM7Wi2NvXTl2sJNW-Xu83ULbFYJnS7aeZ8aa0Xud7TnvVJa9xeiYEI5OJDipQsQVJoTU_EV2UCJWFnXN6d6T-352FOMNSkUIZjV7le0TRlMxfpB1i1VxClF1-dIa30O-DNAZt861DznkV2GK450P4_Wcfzawdj6a-DFfuLTBzqORYPNvZlDWOHXPWfVD8LdJ73vqQWusGec32UsNNqqjh_Mw-3FxfnX2pbj8ulydLS4LSRs-FrzB0ABCLeVI84ZJpTRHuGWEYV2TmmlCFaEtbrBuMK0Q0ZJRKKWqO9aVjBxmaKs7uQHmO7BWDMH0EGaBkdhkJnYyS5RPW8owtb3qpHJjgEeaByOevzhzLdb-NgkSinFVJ4UPDwrB_5xUHEVvolTWglN-iqJsSFNSWnKcoO93oDd-CinIe1RNKEKMPKLWYJUwTvv0sdyIigWrGCsJqjZax39BpdWp3sg0KNqk_jPCu6dO_1j8PQsJUG0BMvgYg9JCmhFG4zfGjf1HhCc7vP-F_gv6tthv |
| CitedBy_id | crossref_primary_10_7759_cureus_72646 crossref_primary_10_1016_j_compeleceng_2024_109745 crossref_primary_10_1007_s10278_024_01009_w crossref_primary_10_1186_s43055_025_01443_y crossref_primary_10_3390_cancers16020300 crossref_primary_10_1016_j_eswa_2023_122672 |
| Cites_doi | 10.1007/s11063-020-10398-2 10.1007/s10278-013-9622-7 10.1158/1541-7786.MCR-08-0435 10.1007/s00401-016-1545-1 10.1109/CVPR.2016.90 10.3389/fnins.2018.00804 10.1016/j.dib.2021.107191 10.1002/mp.14168 10.1016/j.cmpb.2018.01.025 10.1109/ICCV.2015.123 10.1093/neuonc/noab106 10.1007/978-3-030-11723-8_17 10.1109/TMI.2010.2046908 10.1016/j.bbe.2018.10.004 10.3390/jimaging7020019 10.3390/cancers14051349 10.1016/j.compbiomed.2020.103804 10.1093/neuonc/noac166 10.3389/fonc.2019.00768 10.1109/5.726791 10.1109/TMI.2014.2377694 10.1145/3065386 10.1016/j.neuroimage.2016.01.024 10.1016/j.neuroimage.2020.117081 10.21037/qims-21-722 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.3390/cancers15133369 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Biological Science Collection Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2072-6694 |
| ExternalDocumentID | 10.3390/cancers15133369 PMC10341156 A757723051 37444479 10_3390_cancers15133369 |
| Genre | Journal Article |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GrantInformation_xml | – fundername: Eurecat’s “Vicente López” PhD grant program |
| GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM TUS 3V. GROUPED_DOAJ NPM 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c489t-981a8a00b490f987ceef901b7371f6367f34e34b181f814503fc74a2ce6d7d273 |
| IEDL.DBID | M48 |
| ISSN | 2072-6694 |
| IngestDate | Sun Oct 26 04:14:50 EDT 2025 Tue Sep 30 17:12:56 EDT 2025 Fri Sep 05 14:00:43 EDT 2025 Sun Jul 13 04:58:36 EDT 2025 Mon Oct 20 21:53:50 EDT 2025 Mon Oct 20 16:39:51 EDT 2025 Thu Jan 02 22:51:39 EST 2025 Thu Apr 24 22:54:53 EDT 2025 Thu Oct 16 04:36:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | trustworthiness model certainty model robustness tumor grading neuro-oncology radiology reliability glioma decision support machine learning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c489t-981a8a00b490f987ceef901b7371f6367f34e34b181f814503fc74a2ce6d7d273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7266-6106 0000-0002-6015-244X 0000-0002-9843-1911 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers15133369 |
| PMID | 37444479 |
| PQID | 2836340073 |
| PQPubID | 2032421 |
| ParticipantIDs | unpaywall_primary_10_3390_cancers15133369 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10341156 proquest_miscellaneous_2838244291 proquest_journals_2836340073 gale_infotracmisc_A757723051 gale_infotracacademiconefile_A757723051 pubmed_primary_37444479 crossref_citationtrail_10_3390_cancers15133369 crossref_primary_10_3390_cancers15133369 |
| PublicationCentury | 2000 |
| PublicationDate | 20230627 |
| PublicationDateYYYYMMDD | 2023-06-27 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230627 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Cancers |
| PublicationTitleAlternate | Cancers (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Salehiniya (ref_1) 2019; 6 Incekara (ref_18) 2023; 25 Krizhevsky (ref_33) 2017; 60 Madhavan (ref_23) 2009; 7 ref_36 Thakur (ref_30) 2020; 220 ref_35 ref_34 ref_11 ref_10 ref_32 Menze (ref_19) 2015; 34 Kleesiek (ref_29) 2016; 129 Sotoudeh (ref_7) 2019; 9 Gibson (ref_15) 2018; 158 Lecun (ref_31) 1998; 86 Yang (ref_9) 2018; 12 Louis (ref_6) 2021; 23 Tustison (ref_28) 2010; 29 Ding (ref_17) 2022; 12 Sayah (ref_24) 2022; 9 Ayadi (ref_16) 2021; 53 Incekara (ref_21) 2021; 37 ref_25 Clark (ref_22) 2013; 26 ref_20 Louis (ref_5) 2016; 131 ref_3 Tandel (ref_13) 2020; 122 ref_2 Anaraki (ref_12) 2019; 39 ref_27 ref_26 ref_8 ref_4 Zhuge (ref_14) 2020; 47 |
| References_xml | – volume: 53 start-page: 671 year: 2021 ident: ref_16 article-title: Deep CNN for brain tumor classification publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10398-2 – ident: ref_3 – volume: 26 start-page: 1045 year: 2013 ident: ref_22 article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9622-7 – volume: 7 start-page: 157 year: 2009 ident: ref_23 article-title: Rembrandt: Helping personalized medicine become a reality through integrative translational research publication-title: Mol. Cancer Res. MCR doi: 10.1158/1541-7786.MCR-08-0435 – ident: ref_26 – ident: ref_34 – volume: 131 start-page: 803 year: 2016 ident: ref_5 article-title: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary publication-title: Acta Neuropathol. doi: 10.1007/s00401-016-1545-1 – ident: ref_32 doi: 10.1109/CVPR.2016.90 – volume: 12 start-page: 804 year: 2018 ident: ref_9 article-title: Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00804 – volume: 37 start-page: 107191 year: 2021 ident: ref_21 article-title: The Erasmus Glioma Database (EGD): Structural MRI scans, WHO 2016 subtypes, and segmentations of 774 patients with glioma publication-title: Data Brief doi: 10.1016/j.dib.2021.107191 – volume: 47 start-page: 3044 year: 2020 ident: ref_14 article-title: Automated glioma grading on conventional MRI images using deep convolutional neural networks publication-title: Med. Phys. doi: 10.1002/mp.14168 – ident: ref_35 – volume: 9 start-page: 1 year: 2022 ident: ref_24 article-title: Enhancing the REMBRANDT MRI collection with expert segmentation labels and quantitative radiomic features publication-title: Sci. Data – volume: 158 start-page: 113 year: 2018 ident: ref_15 article-title: NiftyNet: A deep-learning platform for medical imaging publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.01.025 – ident: ref_36 doi: 10.1109/ICCV.2015.123 – volume: 6 start-page: e1356 year: 2019 ident: ref_1 article-title: Brain cancer in the world: An epidemiological review publication-title: World Cancer Res. J. – volume: 23 start-page: 1231 year: 2021 ident: ref_6 article-title: The 2021 WHO classification of tumors of the central nervous system: A summary publication-title: Neuro-Oncology doi: 10.1093/neuonc/noab106 – ident: ref_11 doi: 10.1007/978-3-030-11723-8_17 – ident: ref_25 – ident: ref_4 – volume: 29 start-page: 1310 year: 2010 ident: ref_28 article-title: N4ITK: Improved N3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – ident: ref_2 – volume: 39 start-page: 63 year: 2019 ident: ref_12 article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.10.004 – ident: ref_27 doi: 10.3390/jimaging7020019 – ident: ref_10 – ident: ref_8 doi: 10.3390/cancers14051349 – volume: 122 start-page: 103804 year: 2020 ident: ref_13 article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103804 – volume: 25 start-page: 279 year: 2023 ident: ref_18 article-title: Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning publication-title: Neuro-Oncology doi: 10.1093/neuonc/noac166 – volume: 9 start-page: 768 year: 2019 ident: ref_7 article-title: Artificial intelligence in the management of glioma: Era of personalized medicine publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00768 – volume: 86 start-page: 2278 year: 1998 ident: ref_31 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 34 start-page: 1993 year: 2015 ident: ref_19 article-title: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – volume: 60 start-page: 84 year: 2017 ident: ref_33 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 129 start-page: 460 year: 2016 ident: ref_29 article-title: Deep MRI brain extraction: A 3D convolutional neural network for skull stripping publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.01.024 – volume: 220 start-page: 117081 year: 2020 ident: ref_30 article-title: Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117081 – ident: ref_20 – volume: 12 start-page: 1517 year: 2022 ident: ref_17 article-title: Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: A robust, multi-institutional study publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims-21-722 |
| SSID | ssj0000331767 |
| Score | 2.3849757 |
| Snippet | Glioma is the most common type of tumor in humans originating in the brain. According to the World Health Organization, gliomas can be graded on a four-stage... Accurately grading gliomas, which are the most common and aggressive malignant brain tumors in adults, poses a significant challenge for radiologists. This... Simple SummaryAccurately grading gliomas, which are the most common and aggressive malignant brain tumors in adults, poses a significant challenge for... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3369 |
| SubjectTerms | Automation Brain cancer Brain tumors Cancer therapies Classification Deep learning Diagnosis Diagnostic imaging Glioma Gliomas Learning algorithms Machine learning Magnetic resonance imaging Mutation Radiomics Tumors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bi9QwFD6ss6C-iHerq0QQ1Ie6bZM2qSAyq3tR2GGRXdi3kiYpDoydcS7I_HvPSS_ODKh9zYU0556cfAfglTQqi3IrQmXTMhSptCGGYDHKldWo_ErDfTGY81F2diW-XqfXezDq3sJQWmWnE72itlNDZ-SHaAYzTkW8-cfZz5CqRtHtaldCQ7elFewHDzF2A_YTQsYawP7R8ejiW3_qEnG0l5lsMH44xvuHhjZ3voipzgmntOcN87SrpDes1G4G5a1VPdPrX3oy2TBPJ3fhTutXsmHDCPdgz9X34eZ5e3P-AOzwS3iEFsuy08l4-kOz07nPnmfotDLNLunphU8XXLPPTfbdePGeDWvmUUv8gTe7GM_o9brzY5rTCJyPkpobsO_1Q7g6Ob78dBa2FRZCI1S-DHMVa6WjqBR5VOVKosWs0EEoJZdxlfFMVlw4Lkp0AyoVizTilZFCJ8ZlVlr0fB7BoJ7W7gkwxU0q8zRxSG9hnFVK6DiTLknKuLJcB_Cu29jCtPDjVAVjUmAYQpQodigRwJt-wKxB3vh719dEqYJkEuc0un1agCsjdKtiKFMMIlCzxQEcbPVEWTLbzR2ti1aWF8UfzgvgZd9MIyk_rXbTle-j0FFKcpziccMa_aK5FPhJXKXaYpq-AyF8b7fU4-8e6TuO0MnACDuAtz1__W8znv77H57B7QT9NMp2S-QBDJbzlXuOftWyfNEKy29P3SJs priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-yB-qL356rp0QQ1IdumyZNUl-kftydwh33cAvnU0mTFItrd9kPZf3rnWm7ZXdBROxrJiFtJjO_SX-ZIeSFslpGqROBdkkRiES5AEIwBvvKGTB-heVNMZizc3k6Fp-vkqutW_xIq4RQvGqMdBypOJAyFSFLQsZDzmUazlz59kd3lsSkVjoBgAhB-4FMAI0PyMH4_CL7gjXlNr3bjD4covvQ4qecLxhWNeFIct5yRvsmecsn7fMlb6zqmVn_NJPJljM6vk3M5jVaDsq30WpZjOyvvQyP__Oed8itDqnSrFWtu-Sar--R62fdv_j7xGWfgnfgAx09mVTT74aezBs-PgUYTA29xMscDQFxTT-0fL5q8YZmNW3yoDRH6PSimuF9eN_0ac83YDykSbfpw9cPyPj44-X706Cr2RBYodNlkGpmtImiQqRRmWoFPrgEyFEorlgpuVQlF56LAoBFqZlIIl5aJUxsvXTKAZZ6SAb1tPaPCNXcJipNYg8aJKx3WgvDpPJxXLDScTMko83i5bZLaI51NSY5BDa42vneag_Jq77DrM3l8WfRl6gNOe5yGNOa7rICzAzzZeWZwtUAW8mG5GhHEnan3W3e6FPeWYdFDpBOcixIz4fked-MPZHxVvvpqpHRAL3iFIY4bNWvnzRXAh4Fs9Q7itkLYM7w3Za6-trkDmcRwBaI2Yfkda_Df_sYj_9B9gm5GQMMRDJdrI7IYDlf-acA25bFs25n_gb74Dwl priority: 102 providerName: Unpaywall |
| Title | AI-Based Glioma Grading for a Trustworthy Diagnosis: An Analytical Pipeline for Improved Reliability |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37444479 https://www.proquest.com/docview/2836340073 https://www.proquest.com/docview/2838244291 https://pubmed.ncbi.nlm.nih.gov/PMC10341156 https://www.mdpi.com/2072-6694/15/13/3369/pdf?version=1687857720 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: ABDBF dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2072-6694 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: M48 dateStart: 20091201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba9swFD6sLXR9GbvPXRc0GGx7cGtZsiUPxnC3Nt0gIYwGsicjyzYLeE6aC1v-_Y5kx0tCy_xoXRDSuXzHPjofwBuhZehFGXdlFqQuD0TmYghGUa8yhcYv1cySwfT64dWQfxsFo390QM0Gzm8N7Qyf1HBWnv65WX1Chf9oIk4M2c-02Z_ZnBqqEhZGe3CAbioyPA69Butbs8zQVVpGWd8TvhuGEa9L_dw2xxEcMsHxMSleGw5r12xv-K3dnMr7y2qqVr9VWW44rMuH8KBBmiSuReMR3Murx3DYa_6lP4Es_uqeow_LSLccT34p0p3ZfHqCMJYocm0uY9gEwhX5UufjjecfSFwRW8fEfgIng_HU3GfP7Zj6-wTOZ9Kc6_Lfq6cwvLy4_nzlNpwLruYyWriRpEoqz0t55BWRFOhDC4QMqWCCFiELRcF4zniKwKCQlAceK7Tgytd5mIkMsdAz2K8mVf4CiGQ6EFHg5ygBXOeZlFzRUOS-n9IiY8qB0_XGJropSG54McoEAxNzKMnOoTjwrh0wrWtx3N31rTmpxMgNzqlVc9kAV2bqXSWxCDCsQFtHHTjZ6onapbeb12edrIUzQUgWMkMozxx43TabkSZjrconS9tHInTyI5zieS0a7aLXouWA3BKatoOp-b3dUo1_2trf1EPYgTG3A-9b-frfZhzfuYCXcOQjaDOpb744gf3FbJm_QpC1SDtwcH7RH3zvwF53RDtWlfDdsD-If_wF9rwlzw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am8R4QdwJDDASCHjIlsRO7CBNqGOXlq3VhDppb8GxHa1Sl5ZeNPXP8ds4zo22EvC0vPoix-f4fOfY5wLwjisRebFmrtBh6rKQaxdNMB_PlZYo_FJFi2Iw3V7UvmDfLsPLDfhVx8JYt8paJhaCWo-UvSPfQxiMqC3iTb-Mf7q2apR9Xa1LaMiqtILeL1KMVYEdp2ZxgybcdL9ziPR-HwTHR_2vbbeqMuAqJuKZGwtfCul5KYu9DC1wRI0MQTLllPtZRCOeUWYoSxEKM-Gz0KOZ4kwGykSaa0R_nPcObDHKYjT-tg6Oeuffm1sejyI-R7zMKURp7O0pS8zJ1Ld1Vah1s16Cw3VQWELFdY_N7Xk-losbORwuweHxA7hf6bGkVTLeQ9gw-SO4261e6h-DbnXcA0RITU6Gg9G1JCeTwlufoJJMJOnbUI_CPXFBDktvv8H0M2nlpMiSUlywk_PB2EbLm2JMefuB81kn6jK5-OIJXNzKXj-FzXyUm-dABFUhj8PAIH8xZbQQTPoRN0GQ-pmm0oHdemMTVaU7t1U3hgmaPZYSyRolHPjYDBiXmT7-3vWDpVRiZQDOqWQVyoArs9m0khYP0WhBSeo7sLPSE8-uWm2uaZ1UsmOa_OF0B942zXak9YfLzWhe9BGomAUxTvGsZI1m0ZQz_DiuUqwwTdPBZhRfbckHV0Vmcd9DpQYtegc-Nfz1v8148e9_eAPb7X73LDnr9E5fwr0AdUTraRfwHdicTebmFep0s_R1dXAI_Ljts_obFLFeOA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJo29IO4EBhgJBDyEJrETO0gT6ui6lbGqQpu0t-DYjlappKUXTf2L_CrOyY22EvC0vPoix-f4fOfY50LIa6Fl5MWGu9KEqctDYVwwwXw4V0aB8Es1K4rBnPWjkwv-5TK83CK_6lgYdKusZWIhqM1Y4x15C2AwYljEm7Wyyi1i0Ol-mvx0sYIUvrTW5TRUVWbBHBTpxqogj1O7vAZzbnbQ6wDt3wRB9-j884lbVRxwNZfx3I2lr6TyvJTHXgbWOCBIBoCZCib8LGKRyBi3jKcAi5n0eeixTAuuAm0jIwxoAjDvLbKDj18gJHYOj_qDb82Nj8cAqyNR5hdiLPZaGgk7nflYY4Why_UKNG4CxApCbnpv3l7kE7W8VqPRCjR275I7lU5L2yUT3iNbNr9Pds-qV_sHxLR77iGgpaHHo-H4h6LH08Jzn4LCTBU9x7CPwlVxSTul599w9pG2c1pkTCku2-lgOMHIeVuMKW9CYD50qC4TjS8fkosb2etHZDsf5_YJoZLpUMRhYIHXuLZGSq78SNggSP3MMOWQD_XGJrpKfY4VOEYJmEBIiWSDEg551wyYlFk__t71LVIqQXkAc2pVhTXAyjCzVtIWIRgwIFV9h-yv9YRzrNeba1onlRyZJX-43iGvmmYcib5xuR0vij4SlLQghikel6zRLJoJDp-AVco1pmk6YHbx9ZZ8eFVkGfc9UHDAunfI-4a__rcZT__9Dy_JLpzZ5Guvf_qM7AWgLqLTXSD2yfZ8urDPQb2bpy-qc0PJ95s-qr8BVxtiZw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-yB-qL356rp0QQ1IdumyZNUl-kftydwh33cAvnU0mTFItrd9kPZf3rnWm7ZXdBROxrJiFtJjO_SX-ZIeSFslpGqROBdkkRiES5AEIwBvvKGTB-heVNMZizc3k6Fp-vkqutW_xIq4RQvGqMdBypOJAyFSFLQsZDzmUazlz59kd3lsSkVjoBgAhB-4FMAI0PyMH4_CL7gjXlNr3bjD4covvQ4qecLxhWNeFIct5yRvsmecsn7fMlb6zqmVn_NJPJljM6vk3M5jVaDsq30WpZjOyvvQyP__Oed8itDqnSrFWtu-Sar--R62fdv_j7xGWfgnfgAx09mVTT74aezBs-PgUYTA29xMscDQFxTT-0fL5q8YZmNW3yoDRH6PSimuF9eN_0ac83YDykSbfpw9cPyPj44-X706Cr2RBYodNlkGpmtImiQqRRmWoFPrgEyFEorlgpuVQlF56LAoBFqZlIIl5aJUxsvXTKAZZ6SAb1tPaPCNXcJipNYg8aJKx3WgvDpPJxXLDScTMko83i5bZLaI51NSY5BDa42vneag_Jq77DrM3l8WfRl6gNOe5yGNOa7rICzAzzZeWZwtUAW8mG5GhHEnan3W3e6FPeWYdFDpBOcixIz4fked-MPZHxVvvpqpHRAL3iFIY4bNWvnzRXAh4Fs9Q7itkLYM7w3Za6-trkDmcRwBaI2Yfkda_Df_sYj_9B9gm5GQMMRDJdrI7IYDlf-acA25bFs25n_gb74Dwl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Based+Glioma+Grading+for+a+Trustworthy+Diagnosis%3A+An+Analytical+Pipeline+for+Improved+Reliability&rft.jtitle=Cancers&rft.au=Pitarch%2C+Carla&rft.au=Ribas%2C+Vicent&rft.au=Vellido%2C+Alfredo&rft.date=2023-06-27&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=15&rft.issue=13&rft_id=info:doi/10.3390%2Fcancers15133369&rft_id=info%3Apmid%2F37444479&rft.externalDocID=37444479 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |