Rapid prediction of possible inhibitors for SARS-CoV-2 main protease using docking and FPL simulations
Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using...
Saved in:
Published in | RSC advances Vol. 1; no. 53; pp. 31991 - 31996 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
28.08.2020
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
ISSN | 2046-2069 2046-2069 |
DOI | 10.1039/d0ra06212j |
Cover
Abstract | Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of
R
Dock
= 0.72 ± 0.14 and
R
W
= −0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are
periandrin V
,
penimocycline
,
cis-p-Coumaroylcorosolic acid
,
glycyrrhizin
, and
uralsaponin B
. The obtained results could probably lead to enhance the COVID-19 therapy.
A combination of Autodock Vina and FPL calculations suggested that
periandrin V
,
penimocycline
,
cis-p-Coumaroylcorosolic acid
,
glycyrrhizin
, and
uralsaponin B
are able to bind well to SARS-CoV-2 Mpro. |
---|---|
AbstractList | Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of
R
Dock
= 0.72 ± 0.14 and
R
W
= −0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are
periandrin V
,
penimocycline
,
cis-p-Coumaroylcorosolic acid
,
glycyrrhizin
, and
uralsaponin B
. The obtained results could probably lead to enhance the COVID-19 therapy.
A combination of Autodock Vina and FPL calculations suggested that
periandrin V
,
penimocycline
,
cis-p-Coumaroylcorosolic acid
,
glycyrrhizin
, and
uralsaponin B
are able to bind well to SARS-CoV-2 Mpro. Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of = 0.72 ± 0.14 and = -0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are , , , , and . The obtained results could probably lead to enhance the COVID-19 therapy. Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of R Dock = 0.72 ± 0.14 and R W = −0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V , penimocycline , cis-p-Coumaroylcorosolic acid , glycyrrhizin , and uralsaponin B . The obtained results could probably lead to enhance the COVID-19 therapy. Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of RDock = 0.72 ± 0.14 and RW = −0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V, penimocycline, cis-p-Coumaroylcorosolic acid, glycyrrhizin, and uralsaponin B. The obtained results could probably lead to enhance the COVID-19 therapy. Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of RDₒcₖ = 0.72 ± 0.14 and RW = −0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V, penimocycline, cis-p-Coumaroylcorosolic acid, glycyrrhizin, and uralsaponin B. The obtained results could probably lead to enhance the COVID-19 therapy. Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of R Dock = 0.72 ± 0.14 and R W = -0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V, penimocycline, cis-p-Coumaroylcorosolic acid, glycyrrhizin, and uralsaponin B. The obtained results could probably lead to enhance the COVID-19 therapy.Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of R Dock = 0.72 ± 0.14 and R W = -0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V, penimocycline, cis-p-Coumaroylcorosolic acid, glycyrrhizin, and uralsaponin B. The obtained results could probably lead to enhance the COVID-19 therapy. |
Author | Han Pham, T. Ngoc Nguyen, Trung Hai Pham, Minh Quan Ngo, Son Tung Tung, Nguyen Thanh Thuy Huong, Le Thi Vu, Van V Tran, Linh Hoang Vu, Khanh B |
AuthorAffiliation | Institute of Natural Products Chemistry International University Graduate University of Science and Technology Vietnam Academy of Science and Technology School of Biotechnology Faculty of Applied Sciences Faculty of Pharmacy NTT Hi-Tech Institute Faculty of Civil Energeering Nguyen Tat Thanh University Institute of Materials Science Ton Duc Thang University Vietnam National University Ho Chi Minh University of Technology (HCMUT) Laboratory of Theoretical and Computational Biophysics |
AuthorAffiliation_xml | – name: International University – name: Ho Chi Minh University of Technology (HCMUT) – name: Vietnam National University – name: Faculty of Civil Energeering – name: Laboratory of Theoretical and Computational Biophysics – name: Faculty of Pharmacy – name: Faculty of Applied Sciences – name: Nguyen Tat Thanh University – name: NTT Hi-Tech Institute – name: Vietnam Academy of Science and Technology – name: Institute of Natural Products Chemistry – name: Ton Duc Thang University – name: Graduate University of Science and Technology – name: Institute of Materials Science – name: School of Biotechnology |
Author_xml | – sequence: 1 givenname: Minh Quan surname: Pham fullname: Pham, Minh Quan – sequence: 2 givenname: Khanh B surname: Vu fullname: Vu, Khanh B – sequence: 3 givenname: T. Ngoc surname: Han Pham fullname: Han Pham, T. Ngoc – sequence: 4 givenname: Le Thi surname: Thuy Huong fullname: Thuy Huong, Le Thi – sequence: 5 givenname: Linh Hoang surname: Tran fullname: Tran, Linh Hoang – sequence: 6 givenname: Nguyen Thanh surname: Tung fullname: Tung, Nguyen Thanh – sequence: 7 givenname: Van V surname: Vu fullname: Vu, Van V – sequence: 8 givenname: Trung Hai surname: Nguyen fullname: Nguyen, Trung Hai – sequence: 9 givenname: Son Tung surname: Ngo fullname: Ngo, Son Tung |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35518150$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkttrFDEUxoNU7MW--K4EfBFh9CQzyUxeCstqvbCgbNXXkEkybdbZZExmCv73Zrp1rUXwvJxAfufjO5djdOCDtwg9IfCKQCleG4gKOCV08wAdUah4QYGLgzvvQ3Sa0gZycEYoJ4_QYckYaQiDI9St1eAMHqI1To8ueBw6PISUXNtb7PyVa90YYsJdiPhisb4oluFbQfFWOZ-rwmhVsnhKzl9iE_T3OStv8PnnFU5uO_VqFk2P0cNO9cme3uYT9PX87Zfl-2L16d2H5WJV6KoRY0E1V5pXvKGNUbyrylpUtpudU9FpYi2tczDdNFCxUnMLQrcN0wDCtGBMeYLOdrrD1G6t0daPUfVyiG6r4k8ZlJN__3h3JS_DtRTAOKtpFnhxKxDDj8mmUW5d0rbvlbdhSpJyTiCPrmr-jzJCiKhB8Iw-v4duwhR9noSkVSloUwuYBZ_dNb93_XtbGXi5A3TMG4q22yME5HwN8g2sFzfX8DHDcA_WbrzZRm7c9f8ueboriUnvpf8cWPkLvNa_IQ |
CitedBy_id | crossref_primary_10_1098_rsos_211480 crossref_primary_10_1021_acsomega_0c04808 crossref_primary_10_1016_j_compbiolchem_2022_107636 crossref_primary_10_1142_S2737416523500242 crossref_primary_10_1016_j_cplett_2025_141899 crossref_primary_10_1039_D2CP04476E crossref_primary_10_1039_D1RA02529E crossref_primary_10_1016_j_jmgm_2023_108535 crossref_primary_10_1039_D1RA08752E crossref_primary_10_1016_j_chemphys_2022_111709 crossref_primary_10_1039_D0RA07352K crossref_primary_10_1039_D2RA01969H crossref_primary_10_1039_D1RA06534C crossref_primary_10_1080_07391102_2022_2118830 crossref_primary_10_1021_acs_jcim_3c01552 crossref_primary_10_1016_j_jmgm_2022_108230 crossref_primary_10_1002_bab_2369 crossref_primary_10_1080_07391102_2023_2222827 crossref_primary_10_1002_slct_202203865 crossref_primary_10_3390_biom11060855 crossref_primary_10_3390_molecules27207092 crossref_primary_10_1039_D1RA03852D crossref_primary_10_4103_2221_1691_331271 crossref_primary_10_1039_D0RA09858B crossref_primary_10_1016_j_jmgm_2024_108906 crossref_primary_10_1039_D1RA01855H crossref_primary_10_3390_molecules26030674 |
Cites_doi | 10.1021/acs.jcim.9b00778 10.1021/acs.jcim.6b00290 10.1021/acs.jcim.6b00029 10.1214/aos/1176344552 10.1039/C9RA05763C 10.1021/acs.jcim.0c00283 10.1021/acs.jcim.0c00491 10.1126/science.abb3405 10.1038/s41586-020-2223-y 10.1021/acs.jcim.8b00493 10.1126/science.abb4489 10.1186/1756-0500-5-367 10.1002/jcc.20035 10.1021/acs.jcim.5b00559 10.1002/prot.24350 10.1016/S0140-6736(20)30154-9 10.1016/j.cplett.2018.04.024 10.1021/acs.jcim.0c00179 10.1186/1743-422X-2-64 10.1038/s41586-020-2012-7 10.1021/acs.jcim.8b00026 10.2210/pdb6XBG/pdb 10.1021/ct5000296 10.1016/j.jmgm.2020.107648 10.1016/S0140-6736(20)30183-5 10.1016/S0140-6736(20)30185-9 10.1002/jcc.24502 10.1002/jcc.21334 10.1186/s12985-019-1182-0 10.1021/acs.jpclett.0c01579 10.1038/s41594-020-0440-6 10.1063/1.445869 10.1021/ci200227u 10.1093/nar/gkv951 10.1146/annurev.pa.27.040187.001205 10.1016/j.cplett.2017.03.034 10.1056/NEJMc2004973 10.1007/978-1-4939-6634-9_5 10.1016/j.jmgm.2005.12.005 10.1016/j.softx.2015.06.001 10.12688/f1000research.22457.2 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/d0ra06212j |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 31996 |
ExternalDocumentID | PMC9056572 35518150 10_1039_D0RA06212J d0ra06212j |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 104.99-2019.57 |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7E R7G RCNCU ROYLF RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ M~E PGMZT RPM NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c489t-2c6ac646828da6f43794ef000629fc1ee277775c880453c6e09cb85c009db0dd3 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 18:20:57 EDT 2025 Fri Sep 05 09:33:37 EDT 2025 Fri Sep 05 09:28:28 EDT 2025 Mon Jun 30 03:24:41 EDT 2025 Thu Apr 03 07:03:40 EDT 2025 Tue Jul 01 04:05:28 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Sat Jan 08 03:51:45 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 53 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c489t-2c6ac646828da6f43794ef000629fc1ee277775c880453c6e09cb85c009db0dd3 |
Notes | 10.1039/d0ra06212j Electronic supplementary information (ESI) available: The SARS-CoV-2 Mpro + ligand docking interaction maps, the results of docking and FPL simulations, and the pulling forces over 8 independent trajectories. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6922-1627 0000-0003-1034-1768 0000-0003-0009-6703 0000-0003-0232-7261 |
OpenAccessLink | http://dx.doi.org/10.1039/d0ra06212j |
PMID | 35518150 |
PQID | 2439287908 |
PQPubID | 2047525 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9056572 crossref_primary_10_1039_D0RA06212J rsc_primary_d0ra06212j proquest_miscellaneous_2511197096 crossref_citationtrail_10_1039_D0RA06212J proquest_journals_2439287908 proquest_miscellaneous_2661081548 pubmed_primary_35518150 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-28 |
PublicationDateYYYYMMDD | 2020-08-28 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Abd Al-Aziz A (D0RA06212J-(cit16)/*[position()=1]) 2020 Sousa da Silva (D0RA06212J-(cit35)/*[position()=1]) 2012; 5 Subramanian (D0RA06212J-(cit47)/*[position()=1]) 2016; 56 Jorgensen (D0RA06212J-(cit32)/*[position()=1]) 1983; 79 Zhang (D0RA06212J-(cit11)/*[position()=1]) 2020; 368 Zhang (D0RA06212J-(cit38)/*[position()=1]) 2018; 58 Tran (D0RA06212J-(cit22)/*[position()=1]) 2019; 9 Wang (D0RA06212J-(cit33)/*[position()=1]) 2006; 25 Ngo (D0RA06212J-(cit45)/*[position()=1]) 2016; 56 Fauquet (D0RA06212J-(cit10)/*[position()=1]) 2005; 2 Laskowski (D0RA06212J-(cit42)/*[position()=1]) 2011; 51 WHO (D0RA06212J-(cit6)/*[position()=1]) 2019 Ngo (D0RA06212J-(cit15)/*[position()=1]) 2020 Muhammet (D0RA06212J-(cit17)/*[position()=1]) 2020 Gao (D0RA06212J-(cit18)/*[position()=1]) 2020; 11 Marshall (D0RA06212J-(cit19)/*[position()=1]) 1987; 27 Yu (D0RA06212J-(cit23)/*[position()=1]) 2017 Kim (D0RA06212J-(cit27)/*[position()=1]) 2016; 44 Sterling (D0RA06212J-(cit24)/*[position()=1]) 2015; 55 Trott (D0RA06212J-(cit28)/*[position()=1]) 2010; 31 Zhou (D0RA06212J-(cit8)/*[position()=1]) 2020; 579 Wang (D0RA06212J-(cit36)/*[position()=1]) 2004; 25 Zhang (D0RA06212J-(cit37)/*[position()=1]) 2018; 58 Jin (D0RA06212J-(cit12)/*[position()=1]) 2020; 27 van Doremalen (D0RA06212J-(cit5)/*[position()=1]) 2020; 382 Ma (D0RA06212J-(cit43)/*[position()=1]) 2020 Chan (D0RA06212J-(cit4)/*[position()=1]) 2020; 395 Aliev (D0RA06212J-(cit31)/*[position()=1]) 2014; 82 Wang (D0RA06212J-(cit2)/*[position()=1]) 2020; 395 Yu Wai (D0RA06212J-(cit3)/*[position()=1]) 2020; 9 Mai (D0RA06212J-(cit21)/*[position()=1]) 2020 Schoeman (D0RA06212J-(cit9)/*[position()=1]) 2019; 16 Efron (D0RA06212J-(cit41)/*[position()=1]) 1979; 7 D0RA06212J-(cit7)/*[position()=1] Jin (D0RA06212J-(cit14)/*[position()=1]) 2020; 582 Ngo (D0RA06212J-(cit40)/*[position()=1]) 2017; 676 Son Tung (D0RA06212J-(cit44)/*[position()=1]) 2020 Tam (D0RA06212J-(cit46)/*[position()=1]) 2018; 701 Abraham (D0RA06212J-(cit30)/*[position()=1]) 2015; 1–2 Ngo (D0RA06212J-(cit39)/*[position()=1]) 2016; 37 Hatada (D0RA06212J-(cit25)/*[position()=1]) 2020; 60 Wang (D0RA06212J-(cit26)/*[position()=1]) 2020; 60 Homeyer (D0RA06212J-(cit20)/*[position()=1]) 2014; 10 Huang (D0RA06212J-(cit1)/*[position()=1]) 2020; 395 Nguyen (D0RA06212J-(cit29)/*[position()=1]) 2020; 60 Dai (D0RA06212J-(cit13)/*[position()=1]) 2020 36545115 - RSC Adv. 2022 Dec 15;12(55):35778 |
References_xml | – issn: 2020 doi: Ma Sacco Chen Wang – issn: 2018 publication-title: AMBER 18 doi: Case Ben-Shalom Brozell Cerutti Cheatham II Cruzeiro Darden Duke Ghoreishi Gilson Gohlke Goetz Greene Harris Homeyer Huang Izadi Kovalenko Kurtzman Lee LeGrand Li Lin Liu Luchko Luo Mermelstein Merz Miao Monard Nguyen Nguyen Omelyan Onufriev Pan Qi Roe Roitberg Sagui Schott-Verdugo Shen Simmerling Smith SalomonFerrer Swails Walker Wang Wei Wolf Wu Xiao York Kollman – issn: 2019 publication-title: Coronavirus disease (COVID-19) Situation Report - 52) doi: WHO – issn: 2020 publication-title: Computational Design of Potent Inhibitors for SARS-CoV-2's Main Protease doi: Abd Al-Aziz A Ibrahim Arpita Raymond – issn: 2020 publication-title: Assessing Potential Inhibitors for SARS-CoV-2 Main Protease from Available Drugs using Free Energy Perturbation Simulations doi: Son Tung Hung Minh Le Thi Thuy Pham Minh Vi Khanh Nguyen Thanh Van – publication-title: Worldometrics, COVID-19 Coronavirus Pandemic – issn: 2020 publication-title: Pharmacophore Analyses of SARS-CoV-2 Active Main Protease Inhibitors Using Pharmacophore Query and Docking Study doi: Muhammet – issn: 2017 end-page: p 85-106 publication-title: Antibiotics: Methods and Protocols doi: Yu MacKerell – volume: 60 start-page: 204 year: 2020 ident: D0RA06212J-(cit29)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00778 – volume: 56 start-page: 1936 year: 2016 ident: D0RA06212J-(cit47)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00290 – volume-title: Worldometrics, COVID-19 Coronavirus Pandemic ident: D0RA06212J-(cit7)/*[position()=1] – volume: 56 start-page: 1344 year: 2016 ident: D0RA06212J-(cit45)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00029 – volume: 7 start-page: 1 year: 1979 ident: D0RA06212J-(cit41)/*[position()=1] publication-title: Ann. Stat. doi: 10.1214/aos/1176344552 – volume: 9 start-page: 29619 year: 2019 ident: D0RA06212J-(cit22)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C9RA05763C – volume: 60 start-page: 3593 year: 2020 ident: D0RA06212J-(cit25)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00283 – year: 2020 ident: D0RA06212J-(cit15)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00491 – volume: 368 start-page: 409 year: 2020 ident: D0RA06212J-(cit11)/*[position()=1] publication-title: Science doi: 10.1126/science.abb3405 – volume: 582 start-page: 289 year: 2020 ident: D0RA06212J-(cit14)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-020-2223-y – volume: 58 start-page: 1669 year: 2018 ident: D0RA06212J-(cit38)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00493 – start-page: eabb4489 year: 2020 ident: D0RA06212J-(cit13)/*[position()=1] publication-title: Science doi: 10.1126/science.abb4489 – volume: 5 start-page: 1 year: 2012 ident: D0RA06212J-(cit35)/*[position()=1] publication-title: BMC Res. Notes doi: 10.1186/1756-0500-5-367 – volume: 25 start-page: 1157 year: 2004 ident: D0RA06212J-(cit36)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 – volume-title: Coronavirus disease (COVID-19) Situation Report – 52) year: 2019 ident: D0RA06212J-(cit6)/*[position()=1] – volume: 55 start-page: 2324 year: 2015 ident: D0RA06212J-(cit24)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00559 – volume: 82 start-page: 195 year: 2014 ident: D0RA06212J-(cit31)/*[position()=1] publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.24350 – volume: 395 start-page: 514 year: 2020 ident: D0RA06212J-(cit4)/*[position()=1] publication-title: Lancet doi: 10.1016/S0140-6736(20)30154-9 – volume: 701 start-page: 65 year: 2018 ident: D0RA06212J-(cit46)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.04.024 – volume: 60 start-page: 3277 year: 2020 ident: D0RA06212J-(cit26)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00179 – volume: 2 start-page: 64 year: 2005 ident: D0RA06212J-(cit10)/*[position()=1] publication-title: Virology doi: 10.1186/1743-422X-2-64 – volume: 579 start-page: 270 year: 2020 ident: D0RA06212J-(cit8)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 58 start-page: 1037 year: 2018 ident: D0RA06212J-(cit37)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00026 – year: 2020 ident: D0RA06212J-(cit43)/*[position()=1] doi: 10.2210/pdb6XBG/pdb – volume: 10 start-page: 3331 year: 2014 ident: D0RA06212J-(cit20)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5000296 – start-page: 107648 year: 2020 ident: D0RA06212J-(cit21)/*[position()=1] publication-title: J. Mol. Graphics Modell. doi: 10.1016/j.jmgm.2020.107648 – volume-title: Computational Design of Potent Inhibitors for SARS-CoV-2’s Main Protease year: 2020 ident: D0RA06212J-(cit16)/*[position()=1] – volume: 395 start-page: 497 year: 2020 ident: D0RA06212J-(cit1)/*[position()=1] publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 395 start-page: 470 year: 2020 ident: D0RA06212J-(cit2)/*[position()=1] publication-title: Lancet doi: 10.1016/S0140-6736(20)30185-9 – volume: 37 start-page: 2734 year: 2016 ident: D0RA06212J-(cit39)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.24502 – volume: 31 start-page: 455 year: 2010 ident: D0RA06212J-(cit28)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.21334 – volume: 16 start-page: 69 year: 2019 ident: D0RA06212J-(cit9)/*[position()=1] publication-title: Virology doi: 10.1186/s12985-019-1182-0 – volume: 11 start-page: 5373 year: 2020 ident: D0RA06212J-(cit18)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01579 – volume-title: Assessing Potential Inhibitors for SARS-CoV-2 Main Protease from Available Drugs using Free Energy Perturbation Simulations year: 2020 ident: D0RA06212J-(cit44)/*[position()=1] – volume: 27 start-page: 529 year: 2020 ident: D0RA06212J-(cit12)/*[position()=1] publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0440-6 – volume: 79 start-page: 926 year: 1983 ident: D0RA06212J-(cit32)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 51 start-page: 2778 year: 2011 ident: D0RA06212J-(cit42)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/ci200227u – volume: 44 start-page: D1202 year: 2016 ident: D0RA06212J-(cit27)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv951 – volume: 27 start-page: 193 year: 1987 ident: D0RA06212J-(cit19)/*[position()=1] publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pa.27.040187.001205 – volume: 676 start-page: 12 year: 2017 ident: D0RA06212J-(cit40)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2017.03.034 – volume: 382 start-page: 1564 year: 2020 ident: D0RA06212J-(cit5)/*[position()=1] publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2004973 – volume-title: Antibiotics: Methods and Protocols year: 2017 ident: D0RA06212J-(cit23)/*[position()=1] doi: 10.1007/978-1-4939-6634-9_5 – volume: 25 start-page: 247 year: 2006 ident: D0RA06212J-(cit33)/*[position()=1] publication-title: J. Mol. Graphics Modell. doi: 10.1016/j.jmgm.2005.12.005 – volume-title: Pharmacophore Analyses of SARS-CoV-2 Active Main Protease Inhibitors Using Pharmacophore Query and Docking Study year: 2020 ident: D0RA06212J-(cit17)/*[position()=1] – volume: 1–2 start-page: 19 year: 2015 ident: D0RA06212J-(cit30)/*[position()=1] publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 9 start-page: 129 year: 2020 ident: D0RA06212J-(cit3)/*[position()=1] publication-title: F1000Research doi: 10.12688/f1000research.22457.2 – reference: 36545115 - RSC Adv. 2022 Dec 15;12(55):35778 |
SSID | ssj0000651261 |
Score | 2.4563956 |
Snippet | Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 31991 |
SubjectTerms | Chemistry China computer simulation Coronavirus infections correlation Correlation coefficients glycyrrhizin lead Ligands Molecular docking prediction Protease Protease inhibitors proteinases Severe acute respiratory syndrome coronavirus 2 Simulation therapeutics |
Title | Rapid prediction of possible inhibitors for SARS-CoV-2 main protease using docking and FPL simulations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35518150 https://www.proquest.com/docview/2439287908 https://www.proquest.com/docview/2511197096 https://www.proquest.com/docview/2661081548 https://pubmed.ncbi.nlm.nih.gov/PMC9056572 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY5QAXxGshsCAjuKAq4MRJmhxL2apadQvqY9Vb5NgODdo2Vdsc4NczduIk1VYroFKjNh6ljefLPOx5IPQBNFyqKo3ZIgV31RMssRNfpLYjWEg5CcDEV9nIV-NgOPcuF_6iWdPV2SX75BP_fTSv5H-4CueArypL9h84W18UTsBn4C8cgcNw_CseT9gm02n-IuPG8tvkCuU3qhbIMksy3UxHhRJOe5Op3c-vbbezYpkOzNqrrZlOoVcLBMhFk684-D7q7LJV1dhr17ZfJ9O-CRuojfEr-CUVHArSdMlW5ux1oWXIksHgl0bOlUQaJZ3xj5ybkZFULUThXfzqDIu80qfVcoSrg-Gq9O4yjkktepiIUx1RUvWtKxWOlmwuOOXAyLJHSy2GSQtuPm0JVarCs1oaWn0Pjop_QlX1VEG2jASgk382Ss5s7I-_xYP5aBTPLhazE3Tf7YLF1XLES_0NRlDgmFq2NPrcXPDQernlktyOrD3ZmkYy2mCZPUaPKk8D90rYPEH35PopelBP1DOUavjgBj44T7GBD27ggwE-uIEPVvDBBj5YwwdX8MEAHwzwwS34PEfzwcWsP7Srths298Job7s8YDzwAvDFBQtSVbDSk6maFzdKuSOl24WXz0Hyez7lgSQRT0Kfg7UuEiIEPUOn63wtXyJMUxpwR3DHEWA5ShKKiIOfRLkfMU_6xEIfzXTGvKpJr1qj3MQ6NoJG8Vcy6empv7TQ-5p2U1ZiOUp1brgSV0_qLnbB6nbDbkRCC72rh2G21eYYW8u8ABrwPJyoCx79HTRgzIIJDU6-hV6UjK7_ClWlDR11S90DCNQEqo774cg6W-p67hFRsQeuhc4ALDV9A7pXd9_Ta_SweRDP0el-W8g3YCnvk7ca2H8AbafCqA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+prediction+of+possible+inhibitors+for+SARS-CoV-2+main+protease+using+docking+and+FPL+simulations&rft.jtitle=RSC+advances&rft.au=Minh+Quan+Pham&rft.au=Vu%2C+Khanh+B&rft.au=Han+Pham%2C+T+Ngoc&rft.au=Le+Thi+Thuy+Huong&rft.date=2020-08-28&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=10&rft.issue=53&rft.spage=31991&rft.epage=31996&rft_id=info:doi/10.1039%2Fd0ra06212j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |