Rapid prediction of possible inhibitors for SARS-CoV-2 main protease using docking and FPL simulations

Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 1; no. 53; pp. 31991 - 31996
Main Authors Pham, Minh Quan, Vu, Khanh B, Han Pham, T. Ngoc, Thuy Huong, Le Thi, Tran, Linh Hoang, Tung, Nguyen Thanh, Vu, Van V, Nguyen, Trung Hai, Ngo, Son Tung
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.08.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN2046-2069
2046-2069
DOI10.1039/d0ra06212j

Cover

Abstract Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of R Dock = 0.72 ± 0.14 and R W = −0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V , penimocycline , cis-p-Coumaroylcorosolic acid , glycyrrhizin , and uralsaponin B . The obtained results could probably lead to enhance the COVID-19 therapy. A combination of Autodock Vina and FPL calculations suggested that periandrin V , penimocycline , cis-p-Coumaroylcorosolic acid , glycyrrhizin , and uralsaponin B are able to bind well to SARS-CoV-2 Mpro.
AbstractList Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of R Dock = 0.72 ± 0.14 and R W = −0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V , penimocycline , cis-p-Coumaroylcorosolic acid , glycyrrhizin , and uralsaponin B . The obtained results could probably lead to enhance the COVID-19 therapy. A combination of Autodock Vina and FPL calculations suggested that periandrin V , penimocycline , cis-p-Coumaroylcorosolic acid , glycyrrhizin , and uralsaponin B are able to bind well to SARS-CoV-2 Mpro.
Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of = 0.72 ± 0.14 and = -0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are , , , , and . The obtained results could probably lead to enhance the COVID-19 therapy.
Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of R Dock = 0.72 ± 0.14 and R W = −0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V , penimocycline , cis-p-Coumaroylcorosolic acid , glycyrrhizin , and uralsaponin B . The obtained results could probably lead to enhance the COVID-19 therapy.
Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of RDock = 0.72 ± 0.14 and RW = −0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V, penimocycline, cis-p-Coumaroylcorosolic acid, glycyrrhizin, and uralsaponin B. The obtained results could probably lead to enhance the COVID-19 therapy.
Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of RDₒcₖ = 0.72 ± 0.14 and RW = −0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V, penimocycline, cis-p-Coumaroylcorosolic acid, glycyrrhizin, and uralsaponin B. The obtained results could probably lead to enhance the COVID-19 therapy.
Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of R Dock = 0.72 ± 0.14 and R W = -0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V, penimocycline, cis-p-Coumaroylcorosolic acid, glycyrrhizin, and uralsaponin B. The obtained results could probably lead to enhance the COVID-19 therapy.Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is still unavailable. Therefore, in this study, we have tried to predict a list of potential inhibitors for SARS-CoV-2 main protease (Mpro) using a combination of molecular docking and fast pulling of ligand (FPL) simulations. The approaches were initially validated over a set of eleven available inhibitors. Both Autodock Vina and FPL calculations produced consistent results with the experiments with correlation coefficients of R Dock = 0.72 ± 0.14 and R W = -0.76 ± 0.10, respectively. The combined approaches were then utilized to predict possible inhibitors that were selected from a ZINC15 sub-database for SARS-CoV-2 Mpro. Twenty compounds were suggested to be able to bind well to SARS-CoV-2 Mpro. Among them, five top-leads are periandrin V, penimocycline, cis-p-Coumaroylcorosolic acid, glycyrrhizin, and uralsaponin B. The obtained results could probably lead to enhance the COVID-19 therapy.
Author Han Pham, T. Ngoc
Nguyen, Trung Hai
Pham, Minh Quan
Ngo, Son Tung
Tung, Nguyen Thanh
Thuy Huong, Le Thi
Vu, Van V
Tran, Linh Hoang
Vu, Khanh B
AuthorAffiliation Institute of Natural Products Chemistry
International University
Graduate University of Science and Technology
Vietnam Academy of Science and Technology
School of Biotechnology
Faculty of Applied Sciences
Faculty of Pharmacy
NTT Hi-Tech Institute
Faculty of Civil Energeering
Nguyen Tat Thanh University
Institute of Materials Science
Ton Duc Thang University
Vietnam National University
Ho Chi Minh University of Technology (HCMUT)
Laboratory of Theoretical and Computational Biophysics
AuthorAffiliation_xml – name: International University
– name: Ho Chi Minh University of Technology (HCMUT)
– name: Vietnam National University
– name: Faculty of Civil Energeering
– name: Laboratory of Theoretical and Computational Biophysics
– name: Faculty of Pharmacy
– name: Faculty of Applied Sciences
– name: Nguyen Tat Thanh University
– name: NTT Hi-Tech Institute
– name: Vietnam Academy of Science and Technology
– name: Institute of Natural Products Chemistry
– name: Ton Duc Thang University
– name: Graduate University of Science and Technology
– name: Institute of Materials Science
– name: School of Biotechnology
Author_xml – sequence: 1
  givenname: Minh Quan
  surname: Pham
  fullname: Pham, Minh Quan
– sequence: 2
  givenname: Khanh B
  surname: Vu
  fullname: Vu, Khanh B
– sequence: 3
  givenname: T. Ngoc
  surname: Han Pham
  fullname: Han Pham, T. Ngoc
– sequence: 4
  givenname: Le Thi
  surname: Thuy Huong
  fullname: Thuy Huong, Le Thi
– sequence: 5
  givenname: Linh Hoang
  surname: Tran
  fullname: Tran, Linh Hoang
– sequence: 6
  givenname: Nguyen Thanh
  surname: Tung
  fullname: Tung, Nguyen Thanh
– sequence: 7
  givenname: Van V
  surname: Vu
  fullname: Vu, Van V
– sequence: 8
  givenname: Trung Hai
  surname: Nguyen
  fullname: Nguyen, Trung Hai
– sequence: 9
  givenname: Son Tung
  surname: Ngo
  fullname: Ngo, Son Tung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35518150$$D View this record in MEDLINE/PubMed
BookMark eNqFkttrFDEUxoNU7MW--K4EfBFh9CQzyUxeCstqvbCgbNXXkEkybdbZZExmCv73Zrp1rUXwvJxAfufjO5djdOCDtwg9IfCKQCleG4gKOCV08wAdUah4QYGLgzvvQ3Sa0gZycEYoJ4_QYckYaQiDI9St1eAMHqI1To8ueBw6PISUXNtb7PyVa90YYsJdiPhisb4oluFbQfFWOZ-rwmhVsnhKzl9iE_T3OStv8PnnFU5uO_VqFk2P0cNO9cme3uYT9PX87Zfl-2L16d2H5WJV6KoRY0E1V5pXvKGNUbyrylpUtpudU9FpYi2tczDdNFCxUnMLQrcN0wDCtGBMeYLOdrrD1G6t0daPUfVyiG6r4k8ZlJN__3h3JS_DtRTAOKtpFnhxKxDDj8mmUW5d0rbvlbdhSpJyTiCPrmr-jzJCiKhB8Iw-v4duwhR9noSkVSloUwuYBZ_dNb93_XtbGXi5A3TMG4q22yME5HwN8g2sFzfX8DHDcA_WbrzZRm7c9f8ueboriUnvpf8cWPkLvNa_IQ
CitedBy_id crossref_primary_10_1098_rsos_211480
crossref_primary_10_1021_acsomega_0c04808
crossref_primary_10_1016_j_compbiolchem_2022_107636
crossref_primary_10_1142_S2737416523500242
crossref_primary_10_1016_j_cplett_2025_141899
crossref_primary_10_1039_D2CP04476E
crossref_primary_10_1039_D1RA02529E
crossref_primary_10_1016_j_jmgm_2023_108535
crossref_primary_10_1039_D1RA08752E
crossref_primary_10_1016_j_chemphys_2022_111709
crossref_primary_10_1039_D0RA07352K
crossref_primary_10_1039_D2RA01969H
crossref_primary_10_1039_D1RA06534C
crossref_primary_10_1080_07391102_2022_2118830
crossref_primary_10_1021_acs_jcim_3c01552
crossref_primary_10_1016_j_jmgm_2022_108230
crossref_primary_10_1002_bab_2369
crossref_primary_10_1080_07391102_2023_2222827
crossref_primary_10_1002_slct_202203865
crossref_primary_10_3390_biom11060855
crossref_primary_10_3390_molecules27207092
crossref_primary_10_1039_D1RA03852D
crossref_primary_10_4103_2221_1691_331271
crossref_primary_10_1039_D0RA09858B
crossref_primary_10_1016_j_jmgm_2024_108906
crossref_primary_10_1039_D1RA01855H
crossref_primary_10_3390_molecules26030674
Cites_doi 10.1021/acs.jcim.9b00778
10.1021/acs.jcim.6b00290
10.1021/acs.jcim.6b00029
10.1214/aos/1176344552
10.1039/C9RA05763C
10.1021/acs.jcim.0c00283
10.1021/acs.jcim.0c00491
10.1126/science.abb3405
10.1038/s41586-020-2223-y
10.1021/acs.jcim.8b00493
10.1126/science.abb4489
10.1186/1756-0500-5-367
10.1002/jcc.20035
10.1021/acs.jcim.5b00559
10.1002/prot.24350
10.1016/S0140-6736(20)30154-9
10.1016/j.cplett.2018.04.024
10.1021/acs.jcim.0c00179
10.1186/1743-422X-2-64
10.1038/s41586-020-2012-7
10.1021/acs.jcim.8b00026
10.2210/pdb6XBG/pdb
10.1021/ct5000296
10.1016/j.jmgm.2020.107648
10.1016/S0140-6736(20)30183-5
10.1016/S0140-6736(20)30185-9
10.1002/jcc.24502
10.1002/jcc.21334
10.1186/s12985-019-1182-0
10.1021/acs.jpclett.0c01579
10.1038/s41594-020-0440-6
10.1063/1.445869
10.1021/ci200227u
10.1093/nar/gkv951
10.1146/annurev.pa.27.040187.001205
10.1016/j.cplett.2017.03.034
10.1056/NEJMc2004973
10.1007/978-1-4939-6634-9_5
10.1016/j.jmgm.2005.12.005
10.1016/j.softx.2015.06.001
10.12688/f1000research.22457.2
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/d0ra06212j
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

PubMed
CrossRef
Materials Research Database
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 31996
ExternalDocumentID PMC9056572
35518150
10_1039_D0RA06212J
d0ra06212j
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 104.99-2019.57
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7E
R7G
RCNCU
ROYLF
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c489t-2c6ac646828da6f43794ef000629fc1ee277775c880453c6e09cb85c009db0dd3
ISSN 2046-2069
IngestDate Thu Aug 21 18:20:57 EDT 2025
Fri Sep 05 09:33:37 EDT 2025
Fri Sep 05 09:28:28 EDT 2025
Mon Jun 30 03:24:41 EDT 2025
Thu Apr 03 07:03:40 EDT 2025
Tue Jul 01 04:05:28 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Sat Jan 08 03:51:45 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 53
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c489t-2c6ac646828da6f43794ef000629fc1ee277775c880453c6e09cb85c009db0dd3
Notes 10.1039/d0ra06212j
Electronic supplementary information (ESI) available: The SARS-CoV-2 Mpro + ligand docking interaction maps, the results of docking and FPL simulations, and the pulling forces over 8 independent trajectories. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6922-1627
0000-0003-1034-1768
0000-0003-0009-6703
0000-0003-0232-7261
OpenAccessLink http://dx.doi.org/10.1039/d0ra06212j
PMID 35518150
PQID 2439287908
PQPubID 2047525
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9056572
crossref_primary_10_1039_D0RA06212J
rsc_primary_d0ra06212j
proquest_miscellaneous_2511197096
crossref_citationtrail_10_1039_D0RA06212J
proquest_journals_2439287908
proquest_miscellaneous_2661081548
pubmed_primary_35518150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-28
PublicationDateYYYYMMDD 2020-08-28
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Abd Al-Aziz A (D0RA06212J-(cit16)/*[position()=1]) 2020
Sousa da Silva (D0RA06212J-(cit35)/*[position()=1]) 2012; 5
Subramanian (D0RA06212J-(cit47)/*[position()=1]) 2016; 56
Jorgensen (D0RA06212J-(cit32)/*[position()=1]) 1983; 79
Zhang (D0RA06212J-(cit11)/*[position()=1]) 2020; 368
Zhang (D0RA06212J-(cit38)/*[position()=1]) 2018; 58
Tran (D0RA06212J-(cit22)/*[position()=1]) 2019; 9
Wang (D0RA06212J-(cit33)/*[position()=1]) 2006; 25
Ngo (D0RA06212J-(cit45)/*[position()=1]) 2016; 56
Fauquet (D0RA06212J-(cit10)/*[position()=1]) 2005; 2
Laskowski (D0RA06212J-(cit42)/*[position()=1]) 2011; 51
WHO (D0RA06212J-(cit6)/*[position()=1]) 2019
Ngo (D0RA06212J-(cit15)/*[position()=1]) 2020
Muhammet (D0RA06212J-(cit17)/*[position()=1]) 2020
Gao (D0RA06212J-(cit18)/*[position()=1]) 2020; 11
Marshall (D0RA06212J-(cit19)/*[position()=1]) 1987; 27
Yu (D0RA06212J-(cit23)/*[position()=1]) 2017
Kim (D0RA06212J-(cit27)/*[position()=1]) 2016; 44
Sterling (D0RA06212J-(cit24)/*[position()=1]) 2015; 55
Trott (D0RA06212J-(cit28)/*[position()=1]) 2010; 31
Zhou (D0RA06212J-(cit8)/*[position()=1]) 2020; 579
Wang (D0RA06212J-(cit36)/*[position()=1]) 2004; 25
Zhang (D0RA06212J-(cit37)/*[position()=1]) 2018; 58
Jin (D0RA06212J-(cit12)/*[position()=1]) 2020; 27
van Doremalen (D0RA06212J-(cit5)/*[position()=1]) 2020; 382
Ma (D0RA06212J-(cit43)/*[position()=1]) 2020
Chan (D0RA06212J-(cit4)/*[position()=1]) 2020; 395
Aliev (D0RA06212J-(cit31)/*[position()=1]) 2014; 82
Wang (D0RA06212J-(cit2)/*[position()=1]) 2020; 395
Yu Wai (D0RA06212J-(cit3)/*[position()=1]) 2020; 9
Mai (D0RA06212J-(cit21)/*[position()=1]) 2020
Schoeman (D0RA06212J-(cit9)/*[position()=1]) 2019; 16
Efron (D0RA06212J-(cit41)/*[position()=1]) 1979; 7
D0RA06212J-(cit7)/*[position()=1]
Jin (D0RA06212J-(cit14)/*[position()=1]) 2020; 582
Ngo (D0RA06212J-(cit40)/*[position()=1]) 2017; 676
Son Tung (D0RA06212J-(cit44)/*[position()=1]) 2020
Tam (D0RA06212J-(cit46)/*[position()=1]) 2018; 701
Abraham (D0RA06212J-(cit30)/*[position()=1]) 2015; 1–2
Ngo (D0RA06212J-(cit39)/*[position()=1]) 2016; 37
Hatada (D0RA06212J-(cit25)/*[position()=1]) 2020; 60
Wang (D0RA06212J-(cit26)/*[position()=1]) 2020; 60
Homeyer (D0RA06212J-(cit20)/*[position()=1]) 2014; 10
Huang (D0RA06212J-(cit1)/*[position()=1]) 2020; 395
Nguyen (D0RA06212J-(cit29)/*[position()=1]) 2020; 60
Dai (D0RA06212J-(cit13)/*[position()=1]) 2020
36545115 - RSC Adv. 2022 Dec 15;12(55):35778
References_xml – issn: 2020
  doi: Ma Sacco Chen Wang
– issn: 2018
  publication-title: AMBER 18
  doi: Case Ben-Shalom Brozell Cerutti Cheatham II Cruzeiro Darden Duke Ghoreishi Gilson Gohlke Goetz Greene Harris Homeyer Huang Izadi Kovalenko Kurtzman Lee LeGrand Li Lin Liu Luchko Luo Mermelstein Merz Miao Monard Nguyen Nguyen Omelyan Onufriev Pan Qi Roe Roitberg Sagui Schott-Verdugo Shen Simmerling Smith SalomonFerrer Swails Walker Wang Wei Wolf Wu Xiao York Kollman
– issn: 2019
  publication-title: Coronavirus disease (COVID-19) Situation Report - 52)
  doi: WHO
– issn: 2020
  publication-title: Computational Design of Potent Inhibitors for SARS-CoV-2's Main Protease
  doi: Abd Al-Aziz A Ibrahim Arpita Raymond
– issn: 2020
  publication-title: Assessing Potential Inhibitors for SARS-CoV-2 Main Protease from Available Drugs using Free Energy Perturbation Simulations
  doi: Son Tung Hung Minh Le Thi Thuy Pham Minh Vi Khanh Nguyen Thanh Van
– publication-title: Worldometrics, COVID-19 Coronavirus Pandemic
– issn: 2020
  publication-title: Pharmacophore Analyses of SARS-CoV-2 Active Main Protease Inhibitors Using Pharmacophore Query and Docking Study
  doi: Muhammet
– issn: 2017
  end-page: p 85-106
  publication-title: Antibiotics: Methods and Protocols
  doi: Yu MacKerell
– volume: 60
  start-page: 204
  year: 2020
  ident: D0RA06212J-(cit29)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00778
– volume: 56
  start-page: 1936
  year: 2016
  ident: D0RA06212J-(cit47)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00290
– volume-title: Worldometrics, COVID-19 Coronavirus Pandemic
  ident: D0RA06212J-(cit7)/*[position()=1]
– volume: 56
  start-page: 1344
  year: 2016
  ident: D0RA06212J-(cit45)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00029
– volume: 7
  start-page: 1
  year: 1979
  ident: D0RA06212J-(cit41)/*[position()=1]
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344552
– volume: 9
  start-page: 29619
  year: 2019
  ident: D0RA06212J-(cit22)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C9RA05763C
– volume: 60
  start-page: 3593
  year: 2020
  ident: D0RA06212J-(cit25)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00283
– year: 2020
  ident: D0RA06212J-(cit15)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00491
– volume: 368
  start-page: 409
  year: 2020
  ident: D0RA06212J-(cit11)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.abb3405
– volume: 582
  start-page: 289
  year: 2020
  ident: D0RA06212J-(cit14)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-020-2223-y
– volume: 58
  start-page: 1669
  year: 2018
  ident: D0RA06212J-(cit38)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00493
– start-page: eabb4489
  year: 2020
  ident: D0RA06212J-(cit13)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.abb4489
– volume: 5
  start-page: 1
  year: 2012
  ident: D0RA06212J-(cit35)/*[position()=1]
  publication-title: BMC Res. Notes
  doi: 10.1186/1756-0500-5-367
– volume: 25
  start-page: 1157
  year: 2004
  ident: D0RA06212J-(cit36)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume-title: Coronavirus disease (COVID-19) Situation Report – 52)
  year: 2019
  ident: D0RA06212J-(cit6)/*[position()=1]
– volume: 55
  start-page: 2324
  year: 2015
  ident: D0RA06212J-(cit24)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.5b00559
– volume: 82
  start-page: 195
  year: 2014
  ident: D0RA06212J-(cit31)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.24350
– volume: 395
  start-page: 514
  year: 2020
  ident: D0RA06212J-(cit4)/*[position()=1]
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30154-9
– volume: 701
  start-page: 65
  year: 2018
  ident: D0RA06212J-(cit46)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2018.04.024
– volume: 60
  start-page: 3277
  year: 2020
  ident: D0RA06212J-(cit26)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00179
– volume: 2
  start-page: 64
  year: 2005
  ident: D0RA06212J-(cit10)/*[position()=1]
  publication-title: Virology
  doi: 10.1186/1743-422X-2-64
– volume: 579
  start-page: 270
  year: 2020
  ident: D0RA06212J-(cit8)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 58
  start-page: 1037
  year: 2018
  ident: D0RA06212J-(cit37)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00026
– year: 2020
  ident: D0RA06212J-(cit43)/*[position()=1]
  doi: 10.2210/pdb6XBG/pdb
– volume: 10
  start-page: 3331
  year: 2014
  ident: D0RA06212J-(cit20)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5000296
– start-page: 107648
  year: 2020
  ident: D0RA06212J-(cit21)/*[position()=1]
  publication-title: J. Mol. Graphics Modell.
  doi: 10.1016/j.jmgm.2020.107648
– volume-title: Computational Design of Potent Inhibitors for SARS-CoV-2’s Main Protease
  year: 2020
  ident: D0RA06212J-(cit16)/*[position()=1]
– volume: 395
  start-page: 497
  year: 2020
  ident: D0RA06212J-(cit1)/*[position()=1]
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 395
  start-page: 470
  year: 2020
  ident: D0RA06212J-(cit2)/*[position()=1]
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30185-9
– volume: 37
  start-page: 2734
  year: 2016
  ident: D0RA06212J-(cit39)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24502
– volume: 31
  start-page: 455
  year: 2010
  ident: D0RA06212J-(cit28)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21334
– volume: 16
  start-page: 69
  year: 2019
  ident: D0RA06212J-(cit9)/*[position()=1]
  publication-title: Virology
  doi: 10.1186/s12985-019-1182-0
– volume: 11
  start-page: 5373
  year: 2020
  ident: D0RA06212J-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01579
– volume-title: Assessing Potential Inhibitors for SARS-CoV-2 Main Protease from Available Drugs using Free Energy Perturbation Simulations
  year: 2020
  ident: D0RA06212J-(cit44)/*[position()=1]
– volume: 27
  start-page: 529
  year: 2020
  ident: D0RA06212J-(cit12)/*[position()=1]
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0440-6
– volume: 79
  start-page: 926
  year: 1983
  ident: D0RA06212J-(cit32)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 51
  start-page: 2778
  year: 2011
  ident: D0RA06212J-(cit42)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200227u
– volume: 44
  start-page: D1202
  year: 2016
  ident: D0RA06212J-(cit27)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv951
– volume: 27
  start-page: 193
  year: 1987
  ident: D0RA06212J-(cit19)/*[position()=1]
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pa.27.040187.001205
– volume: 676
  start-page: 12
  year: 2017
  ident: D0RA06212J-(cit40)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2017.03.034
– volume: 382
  start-page: 1564
  year: 2020
  ident: D0RA06212J-(cit5)/*[position()=1]
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2004973
– volume-title: Antibiotics: Methods and Protocols
  year: 2017
  ident: D0RA06212J-(cit23)/*[position()=1]
  doi: 10.1007/978-1-4939-6634-9_5
– volume: 25
  start-page: 247
  year: 2006
  ident: D0RA06212J-(cit33)/*[position()=1]
  publication-title: J. Mol. Graphics Modell.
  doi: 10.1016/j.jmgm.2005.12.005
– volume-title: Pharmacophore Analyses of SARS-CoV-2 Active Main Protease Inhibitors Using Pharmacophore Query and Docking Study
  year: 2020
  ident: D0RA06212J-(cit17)/*[position()=1]
– volume: 1–2
  start-page: 19
  year: 2015
  ident: D0RA06212J-(cit30)/*[position()=1]
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 9
  start-page: 129
  year: 2020
  ident: D0RA06212J-(cit3)/*[position()=1]
  publication-title: F1000Research
  doi: 10.12688/f1000research.22457.2
– reference: 36545115 - RSC Adv. 2022 Dec 15;12(55):35778
SSID ssj0000651261
Score 2.4563956
Snippet Originating for the first time in Wuhan, China, the outbreak of SARS-CoV-2 has caused a serious global health issue. An effective treatment for SARS-CoV-2 is...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31991
SubjectTerms Chemistry
China
computer simulation
Coronavirus infections
correlation
Correlation coefficients
glycyrrhizin
lead
Ligands
Molecular docking
prediction
Protease
Protease inhibitors
proteinases
Severe acute respiratory syndrome coronavirus 2
Simulation
therapeutics
Title Rapid prediction of possible inhibitors for SARS-CoV-2 main protease using docking and FPL simulations
URI https://www.ncbi.nlm.nih.gov/pubmed/35518150
https://www.proquest.com/docview/2439287908
https://www.proquest.com/docview/2511197096
https://www.proquest.com/docview/2661081548
https://pubmed.ncbi.nlm.nih.gov/PMC9056572
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY5QAXxGshsCAjuKAq4MRJmhxL2apadQvqY9Vb5NgODdo2Vdsc4NczduIk1VYroFKjNh6ljefLPOx5IPQBNFyqKo3ZIgV31RMssRNfpLYjWEg5CcDEV9nIV-NgOPcuF_6iWdPV2SX75BP_fTSv5H-4CueArypL9h84W18UTsBn4C8cgcNw_CseT9gm02n-IuPG8tvkCuU3qhbIMksy3UxHhRJOe5Op3c-vbbezYpkOzNqrrZlOoVcLBMhFk684-D7q7LJV1dhr17ZfJ9O-CRuojfEr-CUVHArSdMlW5ux1oWXIksHgl0bOlUQaJZ3xj5ybkZFULUThXfzqDIu80qfVcoSrg-Gq9O4yjkktepiIUx1RUvWtKxWOlmwuOOXAyLJHSy2GSQtuPm0JVarCs1oaWn0Pjop_QlX1VEG2jASgk382Ss5s7I-_xYP5aBTPLhazE3Tf7YLF1XLES_0NRlDgmFq2NPrcXPDQernlktyOrD3ZmkYy2mCZPUaPKk8D90rYPEH35PopelBP1DOUavjgBj44T7GBD27ggwE-uIEPVvDBBj5YwwdX8MEAHwzwwS34PEfzwcWsP7Srths298Job7s8YDzwAvDFBQtSVbDSk6maFzdKuSOl24WXz0Hyez7lgSQRT0Kfg7UuEiIEPUOn63wtXyJMUxpwR3DHEWA5ShKKiIOfRLkfMU_6xEIfzXTGvKpJr1qj3MQ6NoJG8Vcy6empv7TQ-5p2U1ZiOUp1brgSV0_qLnbB6nbDbkRCC72rh2G21eYYW8u8ABrwPJyoCx79HTRgzIIJDU6-hV6UjK7_ClWlDR11S90DCNQEqo774cg6W-p67hFRsQeuhc4ALDV9A7pXd9_Ta_SweRDP0el-W8g3YCnvk7ca2H8AbafCqA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+prediction+of+possible+inhibitors+for+SARS-CoV-2+main+protease+using+docking+and+FPL+simulations&rft.jtitle=RSC+advances&rft.au=Minh+Quan+Pham&rft.au=Vu%2C+Khanh+B&rft.au=Han+Pham%2C+T+Ngoc&rft.au=Le+Thi+Thuy+Huong&rft.date=2020-08-28&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=10&rft.issue=53&rft.spage=31991&rft.epage=31996&rft_id=info:doi/10.1039%2Fd0ra06212j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon