White matter lesion extension to automatic brain tissue segmentation on MRI

A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This cla...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 45; no. 4; pp. 1151 - 1161
Main Authors de Boer, Renske, Vrooman, Henri A., van der Lijn, Fedde, Vernooij, Meike W., Ikram, M. Arfan, van der Lugt, Aad, Breteler, Monique M.B., Niessen, Wiro J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2009
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2009.01.011

Cover

Abstract A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.
AbstractList A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.
A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.
A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-basedk-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.
A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.
Author Vrooman, Henri A.
de Boer, Renske
Vernooij, Meike W.
Breteler, Monique M.B.
van der Lugt, Aad
van der Lijn, Fedde
Ikram, M. Arfan
Niessen, Wiro J.
Author_xml – sequence: 1
  givenname: Renske
  surname: de Boer
  fullname: de Boer, Renske
  email: renske.deboer@erasmusmc.nl
  organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
– sequence: 2
  givenname: Henri A.
  surname: Vrooman
  fullname: Vrooman, Henri A.
  organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
– sequence: 3
  givenname: Fedde
  surname: van der Lijn
  fullname: van der Lijn, Fedde
  organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
– sequence: 4
  givenname: Meike W.
  surname: Vernooij
  fullname: Vernooij, Meike W.
  organization: Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
– sequence: 5
  givenname: M. Arfan
  surname: Ikram
  fullname: Ikram, M. Arfan
  organization: Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
– sequence: 6
  givenname: Aad
  surname: van der Lugt
  fullname: van der Lugt, Aad
  organization: Department of Radiology, Erasmus MC, Rotterdam, the Netherlands
– sequence: 7
  givenname: Monique M.B.
  surname: Breteler
  fullname: Breteler, Monique M.B.
  organization: Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
– sequence: 8
  givenname: Wiro J.
  surname: Niessen
  fullname: Niessen, Wiro J.
  organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19344687$$D View this record in MEDLINE/PubMed
BookMark eNqNkVuLFDEQhYOsuBf9C9Ig6FOPqU46Sb-IunhZXBFE8TFk0pU1Y3eym6TF_fdmnFVhHnShIEXqqxNyzjE5CDEgIQ3QFVAQTzergEuKfjYXuOooHVYUasEdcgR06Nuhl93Btu9ZqwCGQ3Kc84ZWELi6Rw5hYJwLJY_Iuy9ffcFmNqVgaibMPoYGfxQMv7oSG7OUWMfeNutkfL3yOS_YZLyYMZQ6qFit9x_P7pO7zkwZH9ycJ-Tz61efTt-25x_enJ2-OG8tV0NpwbqRrUVn0Qpj1TjKjjnGnVt3EkZqlLASjLEGnAPFAIRxFTeMoxqVs-yEPNnpXqZ4tWAuevbZ4jSZgHHJWnJB5dArVcnH_ySFhI5Rxir4aA_cxCWF-gsNPRVScSl4pR7eUMt6xlFfpppAuta_7azAsx1gU8w5odPW7ywq1btJA9Xb_PRG_81Pb_PTFGpBFVB7An_e-P_qy90qVuu_e0w6W4_B4ugT2qLH6G8j8nxPxE4-eGumb3h9O4mfB7PSJw
CitedBy_id crossref_primary_10_1093_brain_awr139
crossref_primary_10_1007_s10654_011_9624_z
crossref_primary_10_1016_j_compmedimag_2018_10_002
crossref_primary_10_1038_nrneurol_2011_21
crossref_primary_10_1016_j_jacc_2020_03_043
crossref_primary_10_48084_etasr_9080
crossref_primary_10_1161_STROKEAHA_111_623090
crossref_primary_10_3389_fneur_2019_00238
crossref_primary_10_1016_j_ynirp_2021_100044
crossref_primary_10_1109_TMI_2015_2419072
crossref_primary_10_1007_s12021_015_9260_y
crossref_primary_10_1016_j_neuroimage_2018_08_037
crossref_primary_10_1016_j_jneumeth_2012_12_014
crossref_primary_10_1093_sleep_zsz140
crossref_primary_10_3389_fnagi_2022_788846
crossref_primary_10_1016_j_neurobiolaging_2017_09_018
crossref_primary_10_1002_mrm_23286
crossref_primary_10_3233_JAD_160116
crossref_primary_10_1016_j_neurobiolaging_2018_07_001
crossref_primary_10_1148_radiol_2015150103
crossref_primary_10_1016_j_nicl_2018_08_004
crossref_primary_10_1016_j_neurobiolaging_2017_09_014
crossref_primary_10_1016_j_nicl_2018_08_005
crossref_primary_10_1515_revneuro_2016_0029
crossref_primary_10_1016_j_media_2020_101791
crossref_primary_10_1186_s13195_024_01480_1
crossref_primary_10_1016_j_neurobiolaging_2016_12_004
crossref_primary_10_1212_WNL_0000000000003032
crossref_primary_10_1007_s00234_014_1322_6
crossref_primary_10_1038_s41598_022_14983_4
crossref_primary_10_1016_j_nicl_2021_102769
crossref_primary_10_1016_j_ijdevneu_2015_08_004
crossref_primary_10_1161_JAHA_118_011565
crossref_primary_10_1111_ene_15281
crossref_primary_10_1200_JCO_2014_56_8345
crossref_primary_10_3389_fnagi_2019_00379
crossref_primary_10_1016_j_jneumeth_2014_08_024
crossref_primary_10_1161_CIRCULATIONAHA_115_016261
crossref_primary_10_1016_j_neuroimage_2017_06_009
crossref_primary_10_1161_STROKEAHA_111_642264
crossref_primary_10_1159_000362590
crossref_primary_10_1097_HJH_0000000000002444
crossref_primary_10_1016_j_neuroimage_2010_12_012
crossref_primary_10_1212_WNL_0000000000010231
crossref_primary_10_2337_dc18_1132
crossref_primary_10_1016_j_nicl_2019_101870
crossref_primary_10_1093_braincomms_fcae171
crossref_primary_10_3233_JAD_200264
crossref_primary_10_3389_fnagi_2021_720636
crossref_primary_10_1097_WAD_0000000000000235
crossref_primary_10_1016_j_jneumeth_2010_01_029
crossref_primary_10_3174_ajnr_A5288
crossref_primary_10_1002_alz_13496
crossref_primary_10_1016_j_neuroimage_2016_07_018
crossref_primary_10_1016_j_media_2015_05_005
crossref_primary_10_1093_brain_awr145
crossref_primary_10_1007_s10654_021_00818_5
crossref_primary_10_1016_j_media_2016_08_014
crossref_primary_10_1016_j_neurobiolaging_2021_04_005
crossref_primary_10_1186_s13195_023_01333_3
crossref_primary_10_1016_j_media_2021_102215
crossref_primary_10_1109_TMI_2017_2693978
crossref_primary_10_1016_j_jpsychires_2019_02_002
crossref_primary_10_1161_HYPERTENSIONAHA_122_20434
crossref_primary_10_1016_j_amjmed_2014_06_037
crossref_primary_10_1161_ATVBAHA_111_232728
crossref_primary_10_1177_0271678X17715861
crossref_primary_10_1177_1352458516682104
crossref_primary_10_1002_mrm_28547
crossref_primary_10_1177_13872877251315044
crossref_primary_10_1016_j_procs_2016_07_003
crossref_primary_10_1016_j_nicl_2017_10_007
crossref_primary_10_3233_JAD_210360
crossref_primary_10_1109_TBME_2011_2181167
crossref_primary_10_1002_mrm_29753
crossref_primary_10_1038_s41398_025_03290_x
crossref_primary_10_1186_s12883_016_0588_1
crossref_primary_10_1016_j_cccb_2022_100143
crossref_primary_10_3174_ajnr_A2782
crossref_primary_10_1016_j_neucom_2020_05_070
crossref_primary_10_1177_0271678X221077339
crossref_primary_10_2174_1567205018666210820125543
crossref_primary_10_1038_s41598_019_52966_0
crossref_primary_10_1002_hbm_22472
crossref_primary_10_1016_j_ijcard_2024_132603
crossref_primary_10_1212_WNL_0000000000011783
crossref_primary_10_3390_biomedicines10020432
crossref_primary_10_1016_j_ejrad_2013_05_029
crossref_primary_10_1016_j_parkreldis_2015_09_019
crossref_primary_10_1016_j_neuroimage_2010_03_012
crossref_primary_10_1007_s00702_015_1470_9
crossref_primary_10_1016_j_cmpb_2014_04_006
crossref_primary_10_1038_s41398_020_0798_6
crossref_primary_10_1002_jmri_26920
crossref_primary_10_1016_j_envint_2024_109048
crossref_primary_10_4329_wjr_v8_i3_240
crossref_primary_10_1111_ene_12648
crossref_primary_10_1017_S0033291721000222
crossref_primary_10_1212_WNL_0000000000201349
crossref_primary_10_1016_j_jalz_2014_06_011
crossref_primary_10_1002_mp_12328
crossref_primary_10_1038_s41598_017_05300_5
crossref_primary_10_1148_radiol_2016160548
crossref_primary_10_3174_ajnr_A5474
crossref_primary_10_1038_s41598_022_07843_8
crossref_primary_10_1161_STROKEAHA_110_607184
crossref_primary_10_54294_c31lhj
crossref_primary_10_1002_dad2_12459
crossref_primary_10_1016_j_jad_2021_05_096
crossref_primary_10_1007_s11357_021_00399_x
crossref_primary_10_1161_HYPERTENSIONAHA_111_00430
crossref_primary_10_1212_WNL_0000000000209864
crossref_primary_10_1016_j_neurobiolaging_2016_04_005
crossref_primary_10_1002_hbm_22370
crossref_primary_10_1111_ene_12775
crossref_primary_10_1136_bmjopen_2020_042660
crossref_primary_10_1212_WNL_0000000000007263
crossref_primary_10_1093_aje_kwaa023
crossref_primary_10_1186_2194_3990_1_3
crossref_primary_10_1177_03331024241266951
crossref_primary_10_1002_alz_12758
crossref_primary_10_1007_s11357_023_00876_5
crossref_primary_10_1161_STROKEAHA_114_004990
crossref_primary_10_1016_j_nbscr_2016_04_001
crossref_primary_10_1002_nbm_3931
crossref_primary_10_1016_j_mri_2021_10_007
crossref_primary_10_1016_j_neurobiolaging_2024_10_003
crossref_primary_10_1007_s00330_017_4768_1
crossref_primary_10_1016_j_jad_2022_09_145
crossref_primary_10_1212_WNL_0000000000003227
crossref_primary_10_1049_iet_cvi_2014_0121
crossref_primary_10_1016_j_nicl_2020_102542
crossref_primary_10_1118_1_4901270
crossref_primary_10_1097_MAO_0000000000002739
crossref_primary_10_1016_j_neurobiolaging_2012_02_012
crossref_primary_10_1016_j_acra_2014_07_001
crossref_primary_10_1016_j_jmir_2013_03_007
crossref_primary_10_1016_j_nicl_2012_11_005
crossref_primary_10_2337_dc19_0762
crossref_primary_10_1016_j_cmpb_2011_07_015
crossref_primary_10_1109_TITB_2010_2081996
crossref_primary_10_1002_jmri_24517
crossref_primary_10_1016_j_bpsgos_2022_08_009
crossref_primary_10_3390_app12157385
crossref_primary_10_1212_01_wnl_0000436609_20587_65
crossref_primary_10_1161_STROKEAHA_112_680223
crossref_primary_10_1016_j_cccb_2023_100192
crossref_primary_10_1016_j_mri_2012_01_007
crossref_primary_10_1161_CIRCULATIONAHA_121_056892
crossref_primary_10_1002_hbm_26109
crossref_primary_10_1088_0031_9155_60_3_995
crossref_primary_10_1148_radiol_2021202634
crossref_primary_10_1016_j_jneumeth_2016_06_017
crossref_primary_10_1186_s40478_023_01627_5
crossref_primary_10_1259_img_20120015
crossref_primary_10_1007_s10654_015_0105_7
crossref_primary_10_1016_j_nicl_2017_01_017
crossref_primary_10_1093_neuonc_noab021
crossref_primary_10_1161_STROKEAHA_124_047593
crossref_primary_10_1007_s00415_017_8550_8
crossref_primary_10_1212_WNL_0000000000003556
crossref_primary_10_3389_fneur_2019_01268
crossref_primary_10_1007_s11357_021_00493_0
crossref_primary_10_1159_000363286
crossref_primary_10_1016_j_mri_2023_04_004
crossref_primary_10_1016_j_mri_2017_03_002
crossref_primary_10_1007_s11682_018_9855_7
crossref_primary_10_1109_TMI_2013_2269317
crossref_primary_10_1159_000346606
crossref_primary_10_1161_STROKEAHA_116_015084
crossref_primary_10_3174_ajnr_A3108
crossref_primary_10_1007_s11357_020_00276_z
crossref_primary_10_1161_ATVBAHA_118_311082
crossref_primary_10_1371_journal_pone_0048953
crossref_primary_10_1016_j_nicl_2020_102466
crossref_primary_10_1080_00207454_2021_1901696
crossref_primary_10_1002_ima_22335
crossref_primary_10_1177_2396987319883445
crossref_primary_10_1017_S0033291714002499
crossref_primary_10_1016_S2666_7568_21_00028_3
crossref_primary_10_1118_1_4966029
crossref_primary_10_1016_j_mri_2012_12_004
crossref_primary_10_1016_j_media_2023_103029
crossref_primary_10_1161_STROKEAHA_110_595181
crossref_primary_10_3389_fnagi_2014_00259
crossref_primary_10_1016_j_neuroimage_2009_05_084
crossref_primary_10_1016_j_neuroimage_2018_05_041
crossref_primary_10_1016_j_jalz_2018_01_005
crossref_primary_10_1088_0031_9155_58_23_8323
crossref_primary_10_1136_jnnp_2017_317548
crossref_primary_10_1016_j_wneu_2020_12_148
crossref_primary_10_1161_STROKEAHA_116_014651
crossref_primary_10_1111_jne_12366
crossref_primary_10_1016_j_nicl_2013_10_003
crossref_primary_10_1212_WNL_0000000000003080
crossref_primary_10_1111_ijs_12465
crossref_primary_10_1016_j_jalz_2012_01_008
crossref_primary_10_1109_LSP_2010_2082527
crossref_primary_10_1016_j_compmedimag_2021_101991
crossref_primary_10_1007_s00330_011_2284_2
crossref_primary_10_1016_j_neurobiolaging_2021_06_006
crossref_primary_10_1016_j_media_2021_102184
crossref_primary_10_1038_mp_2016_101
crossref_primary_10_1109_TMI_2018_2859478
crossref_primary_10_1016_j_neurobiolaging_2015_11_021
crossref_primary_10_1038_jcbfm_2015_157
crossref_primary_10_1016_j_mri_2018_06_009
crossref_primary_10_1016_j_media_2016_06_029
crossref_primary_10_1007_s12021_019_09439_6
crossref_primary_10_1080_10255842_2012_666794
crossref_primary_10_1371_journal_pone_0193152
crossref_primary_10_1016_j_cmpb_2018_04_011
crossref_primary_10_18632_aging_101844
crossref_primary_10_1109_TBME_2010_2055865
crossref_primary_10_1016_j_socscimed_2024_117111
crossref_primary_10_1590_2446_4740_02017
crossref_primary_10_1007_s10654_025_01220_1
crossref_primary_10_1016_j_neuroimage_2019_116056
crossref_primary_10_1016_j_compmedimag_2018_08_004
crossref_primary_10_1186_s12916_021_01962_1
crossref_primary_10_1017_S003329172200112X
crossref_primary_10_3390_brainsci14010062
crossref_primary_10_1016_j_jns_2024_123026
crossref_primary_10_1177_0271678X221149937
crossref_primary_10_1016_j_nic_2011_11_007
crossref_primary_10_3174_ajnr_A5517
crossref_primary_10_1007_s11357_024_01235_8
crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_02_035
crossref_primary_10_1080_03772063_2017_1284619
crossref_primary_10_3174_ajnr_A4556
crossref_primary_10_1212_WNL_0000000000012572
Cites_doi 10.1016/j.media.2004.06.019
10.1016/j.neuroimage.2006.02.024
10.1002/(SICI)1522-2586(200003)11:3<267::AID-JMRI5>3.0.CO;2-8
10.1016/j.compbiomed.2007.12.005
10.1001/archneur.61.10.1531
10.1007/s00234-007-0312-3
10.1016/j.neuroimage.2005.06.061
10.1016/j.media.2006.07.002
10.1002/ana.10294
10.1136/jnnp.70.1.9
10.1016/j.neuroimage.2005.05.046
10.1016/S0165-0270(03)00237-1
10.1097/00004728-199901000-00030
10.1109/TIP.2007.909412
10.1109/42.796284
10.1016/S1361-8415(03)00037-9
10.1161/01.STR.0000068408.82115.D2
10.1016/j.neuroimage.2007.05.018
10.1006/nimg.2002.1221
10.1016/j.neuroimage.2005.02.018
10.1002/jmri.10011
10.1016/j.neurobiolaging.2006.12.012
10.1109/42.668698
10.1007/s10654-007-9199-x
10.1007/BFb0056229
10.1109/42.897810
10.1109/42.938237
10.1109/42.906424
10.1002/mrm.10436
10.1002/1522-2586(200012)12:6<799::AID-JMRI2>3.0.CO;2-#
10.1016/j.neuroimage.2007.09.058
10.1016/j.neurobiolaging.2004.05.004
10.1109/42.811270
ContentType Journal Article
Copyright 2009 Elsevier Inc.
Copyright Elsevier Limited May 1, 2009
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: Copyright Elsevier Limited May 1, 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2009.01.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic


ProQuest One Psychology
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1161
ExternalDocumentID 3244659161
19344687
10_1016_j_neuroimage_2009_01_011
S1053811909000561
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
7QO
ID FETCH-LOGICAL-c489t-1cfd3b62cec6ac8dd723f34ffb271d0a86c71aaca1ff183116afb62a34e8d8fc3
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Tue Oct 07 09:25:31 EDT 2025
Wed Oct 01 08:47:53 EDT 2025
Tue Oct 07 06:48:23 EDT 2025
Thu Apr 03 07:03:15 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
Sat Oct 25 06:00:03 EDT 2025
Fri Feb 23 02:30:10 EST 2024
Tue Oct 14 19:25:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords White matter lesions
Brain tissue segmentation
White matter hyperintensities
MRI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-1cfd3b62cec6ac8dd723f34ffb271d0a86c71aaca1ff183116afb62a34e8d8fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 19344687
PQID 1506784764
PQPubID 2031077
PageCount 11
ParticipantIDs proquest_miscellaneous_746079588
proquest_miscellaneous_67123033
proquest_journals_1506784764
pubmed_primary_19344687
crossref_citationtrail_10_1016_j_neuroimage_2009_01_011
crossref_primary_10_1016_j_neuroimage_2009_01_011
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_01_011
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_01_011
PublicationCentury 2000
PublicationDate 2009-05-01
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2009
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Cocosco, Zijdenbos, Evans (bib9) 2003; 7
Zijdenbos, A., Forghani, R., Evans, A., 1998. Automatic quantification of MS lesions in 3D MRI brain data sets: validation of INSECT. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI'98. pp. 439–448.
Klein, Staring, Pluim (bib18) 2007; 16
Ruf, Greenspan, Goldberger (bib26) 2005; 8
Awate, Tasdizen, Foster, Whitaker (bib7) 2006; 10
Alfano, Brunetti, Larobina, Quarantelli, Tedeschi, Ciarmiello, Covelli, Salvatore (bib2) 2000; 12
Song, Tustison, Avants, Gee (bib29) 2006; 9
Jack, O'Brien, Rettman, Shiung, Xu, Muthupillai, Manduca, Avula, Erickson (bib16) 2001; 14
Barra, Boire (bib8) 2000; 11
Ikram, Vrooman, Vernooij, van der Lijn, Hofman, van der Lugt, Niessen, Breteler (bib15) 2008; 29
Khayati, Vafadust, Towhidkhah, Nabavi (bib17) 2008
Lemieux, Hammers, Mackinnon, Liu (bib21) 2003; 49
Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bib25) 1999; 18
Anbeek, Vincken, van Osch, Bisschops, van der Grond (bib4) 2004; 8
Hofman, Breteler, van Duijn, Krestin, Pols, Stricker, Tiemeier, Uitterlinden, Vingerling, Witteman (bib14) 2007; 22
Maillard, Delcroix, Crivello, Dufouil, Gicquel, Joliot, Tzourio-Mazoyer, Alpérovitch, Tzourio, Mazoyer (bib22) 2008; 50
DeCarli, Massaro, Harvey, Hald, Tullberg, Au, Beiser, D'Agostino, Wolf (bib12) 2005; 26
Vrooman, Cocosco, van der Lijn, Stokking, Ikram, Vernooij, Breteler, Niessen (bib33) 2007; 37
Anbeek, Vincken, van Bochove, van Osch, van der Grond (bib5) 2005; 27
Sled, Zijdenbos, Evans (bib27) 1998; 17
Kovacevic, Lobaugh, Bronskill, Levine, Feinstein, Black (bib19) 2002; 17
Ruan, Jaggi, Xue, Fadili, Bloyet (bib24) 2000; 19
Prins, van Dijk, den Heijer, Vermeer, Koudstaal, Oudkerk, Hofman, Breteler (bib23) 2004; 61
Van Leemput, Maes, Vandermeulen, Colchester, Suetens (bib31) 2001; 20
Ashburner, Friston (bib6) 2005; 26
de Groot, de Leeuw, Oudkerk, van Gijn, Hofman, Jolles, Breteler (bib10) 2002; 52
Admiraal-Behloul, van den Heuvel, Olofsen, van Osch, van der Grond, van Buchem, Reiber (bib1) 2005; 28
Kruggel, Paul, Gertz (bib20) 2008; 39
Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, Watkins, Ciccarelli, Cader, Matthews, Behrens (bib28) 2006; 31
Van Leemput, Maes, Vandermeulen, Suetens (bib30) 1999; 18
de Leeuw, de Groot, Achten, Oudkerk, Ramos, Heijboer, Hofman, Jolles, van Gijn, Breteler (bib11) 2001; 70
Harris, Andreasen, Cizadlo, Bailey, Bockholt, Magnotta, Arndt (bib13) 1999; 23
Amato, Larobina, Antoniadis, Alfano (bib3) 2003; 131
Vermeer, Hollander, van Dijk, Hofman, Koudstaal, Breteler, Study (bib32) 2003; 34
Zhang, Brady, Smith (bib34) 2001; 20
Klein (10.1016/j.neuroimage.2009.01.011_bib18) 2007; 16
Ruf (10.1016/j.neuroimage.2009.01.011_bib26) 2005; 8
Smith (10.1016/j.neuroimage.2009.01.011_bib28) 2006; 31
Hofman (10.1016/j.neuroimage.2009.01.011_bib14) 2007; 22
Van Leemput (10.1016/j.neuroimage.2009.01.011_bib30) 1999; 18
Sled (10.1016/j.neuroimage.2009.01.011_bib27) 1998; 17
de Groot (10.1016/j.neuroimage.2009.01.011_bib10) 2002; 52
Awate (10.1016/j.neuroimage.2009.01.011_bib7) 2006; 10
Zhang (10.1016/j.neuroimage.2009.01.011_bib34) 2001; 20
Kruggel (10.1016/j.neuroimage.2009.01.011_bib20) 2008; 39
Anbeek (10.1016/j.neuroimage.2009.01.011_bib5) 2005; 27
10.1016/j.neuroimage.2009.01.011_bib35
Rueckert (10.1016/j.neuroimage.2009.01.011_bib25) 1999; 18
Alfano (10.1016/j.neuroimage.2009.01.011_bib2) 2000; 12
Cocosco (10.1016/j.neuroimage.2009.01.011_bib9) 2003; 7
Amato (10.1016/j.neuroimage.2009.01.011_bib3) 2003; 131
Khayati (10.1016/j.neuroimage.2009.01.011_bib17) 2008
Van Leemput (10.1016/j.neuroimage.2009.01.011_bib31) 2001; 20
Jack (10.1016/j.neuroimage.2009.01.011_bib16) 2001; 14
Barra (10.1016/j.neuroimage.2009.01.011_bib8) 2000; 11
Harris (10.1016/j.neuroimage.2009.01.011_bib13) 1999; 23
Kovacevic (10.1016/j.neuroimage.2009.01.011_bib19) 2002; 17
Song (10.1016/j.neuroimage.2009.01.011_bib29) 2006; 9
Vermeer (10.1016/j.neuroimage.2009.01.011_bib32) 2003; 34
Anbeek (10.1016/j.neuroimage.2009.01.011_bib4) 2004; 8
Prins (10.1016/j.neuroimage.2009.01.011_bib23) 2004; 61
Ashburner (10.1016/j.neuroimage.2009.01.011_bib6) 2005; 26
Ruan (10.1016/j.neuroimage.2009.01.011_bib24) 2000; 19
de Leeuw (10.1016/j.neuroimage.2009.01.011_bib11) 2001; 70
DeCarli (10.1016/j.neuroimage.2009.01.011_bib12) 2005; 26
Vrooman (10.1016/j.neuroimage.2009.01.011_bib33) 2007; 37
Maillard (10.1016/j.neuroimage.2009.01.011_bib22) 2008; 50
Lemieux (10.1016/j.neuroimage.2009.01.011_bib21) 2003; 49
Ikram (10.1016/j.neuroimage.2009.01.011_bib15) 2008; 29
Admiraal-Behloul (10.1016/j.neuroimage.2009.01.011_bib1) 2005; 28
References_xml – volume: 31
  start-page: 1487
  year: 2006
  end-page: 1505
  ident: bib28
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: Neuroimage
– volume: 22
  start-page: 819
  year: 2007
  end-page: 829
  ident: bib14
  article-title: The Rotterdam Study: objectives and design update
  publication-title: Eur J Epidemiol
– volume: 27
  start-page: 795
  year: 2005
  end-page: 804
  ident: bib5
  article-title: Probabilistic segmentation of brain tissue in MR imaging
  publication-title: Neuroimage
– volume: 28
  start-page: 607
  year: 2005
  end-page: 617
  ident: bib1
  article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly
  publication-title: Neuroimage
– volume: 12
  start-page: 799
  year: 2000
  end-page: 807
  ident: bib2
  article-title: Automated segmentation and measurement of global white matter lesion volume in patients with multiple sclerosis
  publication-title: J. Magn. Reson. Imaging
– volume: 29
  start-page: 882
  year: 2008
  end-page: 890
  ident: bib15
  article-title: Brain tissue volumes in the general elderly population. The Rotterdam Scan Study
  publication-title: Neurobiol. Aging
– volume: 61
  start-page: 1531
  year: 2004
  end-page: 1534
  ident: bib23
  article-title: Cerebral white matter lesions and the risk of dementia
  publication-title: Arch. Neurol.
– volume: 70
  start-page: 9
  year: 2001
  end-page: 14
  ident: bib11
  article-title: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 34
  start-page: 1126
  year: 2003
  end-page: 1129
  ident: bib32
  article-title: Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study
  publication-title: Stroke
– volume: 10
  start-page: 726
  year: 2006
  end-page: 739
  ident: bib7
  article-title: Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification
  publication-title: Med. Image Anal.
– volume: 11
  start-page: 267
  year: 2000
  end-page: 278
  ident: bib8
  article-title: Tissue segmentation on MR images of the brain by possibilistic clustering on a 3D wavelet representation
  publication-title: J. Magn. Reson. Imaging
– volume: 20
  start-page: 677
  year: 2001
  end-page: 688
  ident: bib31
  article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection
  publication-title: IEEE Trans Med Imaging
– volume: 52
  start-page: 335
  year: 2002
  end-page: 341
  ident: bib10
  article-title: Periventricular cerebral white matter lesions predict rate of cognitive decline
  publication-title: Ann. Neurol.
– volume: 18
  start-page: 897
  year: 1999
  end-page: 908
  ident: bib30
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans Med Imaging
– year: 2008
  ident: bib17
  article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model
  publication-title: Comput. Biol. Med.
– volume: 49
  start-page: 872
  year: 2003
  end-page: 884
  ident: bib21
  article-title: Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry
  publication-title: Magn. Reson. Med
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib34
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 18
  start-page: 712
  year: 1999
  end-page: 721
  ident: bib25
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bib6
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 23
  start-page: 144
  year: 1999
  end-page: 154
  ident: bib13
  article-title: Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection
  publication-title: J. Comput. Assist. Tomogr.
– volume: 8
  start-page: 790
  year: 2005
  end-page: 797
  ident: bib26
  article-title: Tissue classification of noisy MR brain images using constrained GMM
  publication-title: Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv.
– volume: 8
  start-page: 205
  year: 2004
  end-page: 215
  ident: bib4
  article-title: Automatic segmentation of different-sized white matter lesions by voxel probability estimation
  publication-title: Med. Image Anal.
– volume: 9
  start-page: 831
  year: 2006
  end-page: 838
  ident: bib29
  article-title: Integrated graph cuts for brain MRI segmentation
  publication-title: Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv.
– volume: 7
  start-page: 513
  year: 2003
  end-page: 527
  ident: bib9
  article-title: A fully automatic and robust brain MRI tissue classification method
  publication-title: Med. Image Anal.
– volume: 16
  start-page: 2879
  year: 2007
  end-page: 2890
  ident: bib18
  article-title: Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines
  publication-title: IEEE Trans. Image Process
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: bib27
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
– volume: 14
  start-page: 668
  year: 2001
  end-page: 676
  ident: bib16
  article-title: Flair histogram segmentation for measurement of leukoaraiosis volume
  publication-title: J. Magn. Reson. Imaging
– volume: 26
  start-page: 491
  year: 2005
  end-page: 510
  ident: bib12
  article-title: Measures of brain morphology and infarction in the Framingham Heart Study: establishing what is normal
  publication-title: Neurobiol. Aging
– volume: 37
  start-page: 71
  year: 2007
  end-page: 81
  ident: bib33
  article-title: Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification
  publication-title: Neuroimage
– volume: 17
  start-page: 1087
  year: 2002
  end-page: 1100
  ident: bib19
  article-title: A robust method for extraction and automatic segmentation of brain images
  publication-title: Neuroimage
– reference: Zijdenbos, A., Forghani, R., Evans, A., 1998. Automatic quantification of MS lesions in 3D MRI brain data sets: validation of INSECT. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI'98. pp. 439–448.
– volume: 131
  start-page: 65
  year: 2003
  end-page: 74
  ident: bib3
  article-title: Segmentation of magnetic resonance brain images through discriminant analysis
  publication-title: J. Neurosci. Methods
– volume: 19
  start-page: 1179
  year: 2000
  end-page: 1187
  ident: bib24
  article-title: Brain tissue classification of magnetic resonance images using partial volume modeling
  publication-title: IEEE Trans. Med. Imaging
– volume: 39
  start-page: 987
  year: 2008
  end-page: 996
  ident: bib20
  article-title: Texture-based segmentation of diffuse lesions of the brain's white matter
  publication-title: Neuroimage
– volume: 50
  start-page: 31
  year: 2008
  end-page: 42
  ident: bib22
  article-title: An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases
  publication-title: Neuroradiology
– volume: 8
  start-page: 205
  issue: 3
  year: 2004
  ident: 10.1016/j.neuroimage.2009.01.011_bib4
  article-title: Automatic segmentation of different-sized white matter lesions by voxel probability estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.06.019
– volume: 31
  start-page: 1487
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2009.01.011_bib28
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.024
– volume: 11
  start-page: 267
  issue: 3
  year: 2000
  ident: 10.1016/j.neuroimage.2009.01.011_bib8
  article-title: Tissue segmentation on MR images of the brain by possibilistic clustering on a 3D wavelet representation
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/(SICI)1522-2586(200003)11:3<267::AID-JMRI5>3.0.CO;2-8
– year: 2008
  ident: 10.1016/j.neuroimage.2009.01.011_bib17
  article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.12.005
– volume: 61
  start-page: 1531
  issue: 10
  year: 2004
  ident: 10.1016/j.neuroimage.2009.01.011_bib23
  article-title: Cerebral white matter lesions and the risk of dementia
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.61.10.1531
– volume: 50
  start-page: 31
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2009.01.011_bib22
  article-title: An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases
  publication-title: Neuroradiology
  doi: 10.1007/s00234-007-0312-3
– volume: 28
  start-page: 607
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2009.01.011_bib1
  article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.061
– volume: 10
  start-page: 726
  issue: 5
  year: 2006
  ident: 10.1016/j.neuroimage.2009.01.011_bib7
  article-title: Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2006.07.002
– volume: 52
  start-page: 335
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2009.01.011_bib10
  article-title: Periventricular cerebral white matter lesions predict rate of cognitive decline
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.10294
– volume: 70
  start-page: 9
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2009.01.011_bib11
  article-title: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.70.1.9
– volume: 27
  start-page: 795
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2009.01.011_bib5
  article-title: Probabilistic segmentation of brain tissue in MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.046
– volume: 131
  start-page: 65
  issue: 1–2
  year: 2003
  ident: 10.1016/j.neuroimage.2009.01.011_bib3
  article-title: Segmentation of magnetic resonance brain images through discriminant analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(03)00237-1
– volume: 23
  start-page: 144
  issue: 1
  year: 1999
  ident: 10.1016/j.neuroimage.2009.01.011_bib13
  article-title: Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199901000-00030
– volume: 16
  start-page: 2879
  issue: 12
  year: 2007
  ident: 10.1016/j.neuroimage.2009.01.011_bib18
  article-title: Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2007.909412
– volume: 18
  start-page: 712
  issue: 8
  year: 1999
  ident: 10.1016/j.neuroimage.2009.01.011_bib25
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.796284
– volume: 7
  start-page: 513
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2009.01.011_bib9
  article-title: A fully automatic and robust brain MRI tissue classification method
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(03)00037-9
– volume: 34
  start-page: 1126
  issue: 5
  year: 2003
  ident: 10.1016/j.neuroimage.2009.01.011_bib32
  article-title: Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study
  publication-title: Stroke
  doi: 10.1161/01.STR.0000068408.82115.D2
– volume: 37
  start-page: 71
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2009.01.011_bib33
  article-title: Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.05.018
– volume: 17
  start-page: 1087
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2009.01.011_bib19
  article-title: A robust method for extraction and automatic segmentation of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1221
– volume: 26
  start-page: 839
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2009.01.011_bib6
  article-title: Unified segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 14
  start-page: 668
  issue: 6
  year: 2001
  ident: 10.1016/j.neuroimage.2009.01.011_bib16
  article-title: Flair histogram segmentation for measurement of leukoaraiosis volume
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.10011
– volume: 29
  start-page: 882
  issue: 6
  year: 2008
  ident: 10.1016/j.neuroimage.2009.01.011_bib15
  article-title: Brain tissue volumes in the general elderly population. The Rotterdam Scan Study
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.12.012
– volume: 9
  start-page: 831
  issue: Pt 2
  year: 2006
  ident: 10.1016/j.neuroimage.2009.01.011_bib29
  article-title: Integrated graph cuts for brain MRI segmentation
  publication-title: Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv.
– volume: 17
  start-page: 87
  issue: 1
  year: 1998
  ident: 10.1016/j.neuroimage.2009.01.011_bib27
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.668698
– volume: 22
  start-page: 819
  issue: 11
  year: 2007
  ident: 10.1016/j.neuroimage.2009.01.011_bib14
  article-title: The Rotterdam Study: objectives and design update
  publication-title: Eur J Epidemiol
  doi: 10.1007/s10654-007-9199-x
– ident: 10.1016/j.neuroimage.2009.01.011_bib35
  doi: 10.1007/BFb0056229
– volume: 8
  start-page: 790
  issue: Pt 2
  year: 2005
  ident: 10.1016/j.neuroimage.2009.01.011_bib26
  article-title: Tissue classification of noisy MR brain images using constrained GMM
  publication-title: Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv.
– volume: 19
  start-page: 1179
  issue: 12
  year: 2000
  ident: 10.1016/j.neuroimage.2009.01.011_bib24
  article-title: Brain tissue classification of magnetic resonance images using partial volume modeling
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.897810
– volume: 20
  start-page: 677
  issue: 8
  year: 2001
  ident: 10.1016/j.neuroimage.2009.01.011_bib31
  article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.938237
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2009.01.011_bib34
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.906424
– volume: 49
  start-page: 872
  issue: 5
  year: 2003
  ident: 10.1016/j.neuroimage.2009.01.011_bib21
  article-title: Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry
  publication-title: Magn. Reson. Med
  doi: 10.1002/mrm.10436
– volume: 12
  start-page: 799
  issue: 6
  year: 2000
  ident: 10.1016/j.neuroimage.2009.01.011_bib2
  article-title: Automated segmentation and measurement of global white matter lesion volume in patients with multiple sclerosis
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/1522-2586(200012)12:6<799::AID-JMRI2>3.0.CO;2-#
– volume: 39
  start-page: 987
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2009.01.011_bib20
  article-title: Texture-based segmentation of diffuse lesions of the brain's white matter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.058
– volume: 26
  start-page: 491
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2009.01.011_bib12
  article-title: Measures of brain morphology and infarction in the Framingham Heart Study: establishing what is normal
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2004.05.004
– volume: 18
  start-page: 897
  issue: 10
  year: 1999
  ident: 10.1016/j.neuroimage.2009.01.011_bib30
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.811270
SSID ssj0009148
Score 2.4388335
Snippet A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1151
SubjectTerms Age
Aged
Aged, 80 and over
Algorithms
Automation
Brain
Brain - pathology
Brain tissue segmentation
Confidence intervals
Data imaging
Demyelinating Diseases - pathology
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Medical imaging
Medical research
Methods
MRI
Nerve Fibers, Myelinated - pathology
NMR
Nuclear magnetic resonance
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Studies
White matter hyperintensities
White matter lesions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEB7OPRBfxN-unpoHX4tNkzYJIqJyx6nsIocH9xaSNDmU2_Z0u_-_kzTdfVpZyEOhGQqTzORrZuYbgLdVzRSz1BbUylAgvrWFrD2ae6vKytjK1SmJZrFszi_5t6v66giWUy1MTKucfGJy1G3v4h35u8iEJ9CVNvzj7Z8ido2K0dWphYbJrRXaD4li7A4cV5EZawbHn0-XPy52NLyUj8VxNSskpSrn9owZX4lB8tcK7TjzWFIcdN-BtQ-QpoPp7AHcz4iSfBq3wEM48t0juLvIMfPH8D31wCOrRKRJbny8HiPp7js9DT0xm6FPzK3ExoYRZEiLQdb-epUrkzqCY3Hx9Qlcnp3-_HJe5BYKheNSDQV1oWW2qZx3jXGybUXFAuMh2ErQtjSycYIa4wwNAY2b0sYEnG4Y97KVwbGnMOv6zj8HwkplhDRKOud5aZ0MlgtTCoMQz6MG5yAmPWmX-cVjm4sbPSWS_dY7Dcf2l0qXFAdK0q3k7cixcYCMmpZCTzWk6PU0HgQHyL7fymacMeKHA6VPppXX2d7Xerc75_Bm-xotNYZfTOf7zVo3AlFCydgcyJ4ZgjelULWUc3g2bqmdPhTDH3cpXvz_6y_h3hjuihmZJzAb_m78K0RNg32dTeEfrkkYaw
  priority: 102
  providerName: ProQuest
Title White matter lesion extension to automatic brain tissue segmentation on MRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811909000561
https://dx.doi.org/10.1016/j.neuroimage.2009.01.011
https://www.ncbi.nlm.nih.gov/pubmed/19344687
https://www.proquest.com/docview/1506784764
https://www.proquest.com/docview/67123033
https://www.proquest.com/docview/746079588
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBddCmOXse9l6zIddvViWbIlsVMbWtJ2CSVbITcjyVLJaJyyONf97XuS5YQeAoGCsI3tB-JJ70PSe7-H0Lcsp5JqohOihUvAv9WJyC2IeyXTTOnM5CGIZjItxrfsap7Pj9Coy4XxYZVR97c6PWjr-GYYuTl8WCyGv8AzAHMDBi3UvfRLoGOwP0L00PHp5fV4usPeJazNiMtp4gliQE8b5hVgIxdLEN4IXkmgkX1Wap8XGqzRxSv0MrqR-LTt6Wt0ZOs36PkkHpS_Rdeh8B1eBvRMfG_9nhgOG97hqVlhtWlWAa4Va18lAjdhBPDa3i1jOlKNoU1ml-_Q7cX579E4iXUTEsOEbBJiXEV1kRlrCmVEVfGMOsqc0xknVapEYThRyijiHEg0IYVy8LuizIpKOEPfo169qu1HhGkqFRdKCmMsS7URTjOuUq7Ar7PAwT7iHZ9KE0HFfW2L-7KLHvtT7jjsa17KMiXQgJJsKR9aYI0DaGQ3FGWXOAqqrgTtfwDtjy3towl2IPVJN_JlFPJ16cEZOVj3gvXR1-1nEE9_5qJqu9qsy4KDa5BS2kd4zx-cFSmXuRB99KGdUjt-SAqrdcE_Panvn9GL9gjMR2meoF7zd2O_gCfV6AF69v0fgSuf8wFIzWj282YQpQfuZ-fTm9l_Aqsjmg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgEviM9RGMwP8BgRx05sC02Ij00tXSs0bdLejO3YCLQ2g6ZC_HP8bZwdp30q6sskP0SKL5HufOez7-53CL0qSiqpISYjRvgM_FuTidKButcyL7QpbBmTaCbTanjBPl-Wlzvob18LE9Iqe5sYDXXd2HBH_iYg4XEwpRV7d_0zC12jQnS1b6GhU2uF-ihCjKXCjrH78xuOcIuj0SeQ9-uiODk-_zjMUpeBzDIh24xYX1NTFdbZSltR17ygnjLvTcFJnWtRWU60tpp4D-ufkEp7mK4pc6IW3lL47i20xyiTcPjb-3A8_XK2hv0lrCvGK2kmCJEpl6jLMIuIld9nYDcSbiaBQTZtkJsc4LgRntxH95IHi993S-4B2nHzh-j2JMXoH6Fx7LmHZxG4E1-5cB2H4117fGobrJdtE5FisQkNKnAbhY8X7tssVULNMYzJ2egxurgRZj5Bu_Nm7p4iTHOpudBSWOtYbqzwhnGdcw0upQMODhDv-aRswjMPbTWuVJ-49kOtORzabUqVExhASVaU1x2mxxY0sheF6mtWwcoq2Hi2oH27ok1-TeevbEl90EteJfuyUGttGKDD1WuwDCHco-euWS5UxcErySkdILxhBmdVzmUpxADtd0tqzQ9JGasEf_b_vx-iO8Pzyak6HU3Hz9HdLtQWskEP0G77a-legMfWmpdJLTD6etOa-A90LVgT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeJr4pDOYHeIwWx05sCyGEGNVK6YQQk_pmbMdGoDXZaCrEv8Zfx9lx2qeivkzyQ6TkEum-fPH97g6hl0VJJTXEZMQIn0F8azJROjD3WuaFNoUtI4hmdl6dXbCP83K-h_4OtTABVjn4xOio69aGM_KT0AmPgyut2IlPsIjPp-O3V9dZmCAVMq3DOI1eRabuz2_4fVu-mZyCrF8VxfjD1_dnWZowkFkmZJcR62tqqsI6W2kr6poX1FPmvSk4qXMtKsuJ1lYT70H3Cam0h8c1ZU7UwlsK772FbnNKZYAT8jnfNPwlrC_DK2kmCJEJRdRjy2Kvyh8L8BipYyaBRbZtjdtC37gFju-iwxS74ne9st1De665jw5mKTv_AE3jtD28iC078aULB3E4nrLHq67FetW1sUcsNmE0Be6i2PHSfV-kGqgGw5p9mTxEFzfCykdov2kb9wRhmkvNhZbCWsdyY4U3jOucawgmHXBwhPjAJ2VTJ_MwUONSDZC1n2rD4TBoU6qcwAJKsqa86rt57EAjB1GooVoV_KuCLWcH2tdr2hTR9JHKjtRHg-RV8ixLtbGDETpe3wafEBI9unHtaqkqDvFITukI4S1PcFblXJZCjNDjXqU2_JCUsUrwp___-jE6APtTnybn02foTp9jCzDQI7Tf_Vq55xCqdeZFtAmMvt20Ef4DH15VrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+matter+lesion+extension+to+automatic+brain+tissue+segmentation+on+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=de+Boer%2C+Renske&rft.au=Vrooman%2C+Henri+A&rft.au=van+der+Lijn%2C+Fedde&rft.au=Vernooij%2C+Meike+W&rft.date=2009-05-01&rft.eissn=1095-9572&rft.volume=45&rft.issue=4&rft.spage=1151&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.01.011&rft_id=info%3Apmid%2F19344687&rft.externalDocID=19344687
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon