White matter lesion extension to automatic brain tissue segmentation on MRI
A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This cla...
        Saved in:
      
    
          | Published in | NeuroImage (Orlando, Fla.) Vol. 45; no. 4; pp. 1151 - 1161 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        01.05.2009
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-8119 1095-9572 1095-9572  | 
| DOI | 10.1016/j.neuroimage.2009.01.011 | 
Cover
| Abstract | A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based
k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations. | 
    
|---|---|
| AbstractList | A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations. A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations. A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-basedk-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations. A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.  | 
    
| Author | Vrooman, Henri A. de Boer, Renske Vernooij, Meike W. Breteler, Monique M.B. van der Lugt, Aad van der Lijn, Fedde Ikram, M. Arfan Niessen, Wiro J.  | 
    
| Author_xml | – sequence: 1 givenname: Renske surname: de Boer fullname: de Boer, Renske email: renske.deboer@erasmusmc.nl organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, the Netherlands – sequence: 2 givenname: Henri A. surname: Vrooman fullname: Vrooman, Henri A. organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, the Netherlands – sequence: 3 givenname: Fedde surname: van der Lijn fullname: van der Lijn, Fedde organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, the Netherlands – sequence: 4 givenname: Meike W. surname: Vernooij fullname: Vernooij, Meike W. organization: Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands – sequence: 5 givenname: M. Arfan surname: Ikram fullname: Ikram, M. Arfan organization: Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands – sequence: 6 givenname: Aad surname: van der Lugt fullname: van der Lugt, Aad organization: Department of Radiology, Erasmus MC, Rotterdam, the Netherlands – sequence: 7 givenname: Monique M.B. surname: Breteler fullname: Breteler, Monique M.B. organization: Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands – sequence: 8 givenname: Wiro J. surname: Niessen fullname: Niessen, Wiro J. organization: Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, the Netherlands  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19344687$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkVuLFDEQhYOsuBf9C9Ig6FOPqU46Sb-IunhZXBFE8TFk0pU1Y3eym6TF_fdmnFVhHnShIEXqqxNyzjE5CDEgIQ3QFVAQTzergEuKfjYXuOooHVYUasEdcgR06Nuhl93Btu9ZqwCGQ3Kc84ZWELi6Rw5hYJwLJY_Iuy9ffcFmNqVgaibMPoYGfxQMv7oSG7OUWMfeNutkfL3yOS_YZLyYMZQ6qFit9x_P7pO7zkwZH9ycJ-Tz61efTt-25x_enJ2-OG8tV0NpwbqRrUVn0Qpj1TjKjjnGnVt3EkZqlLASjLEGnAPFAIRxFTeMoxqVs-yEPNnpXqZ4tWAuevbZ4jSZgHHJWnJB5dArVcnH_ySFhI5Rxir4aA_cxCWF-gsNPRVScSl4pR7eUMt6xlFfpppAuta_7azAsx1gU8w5odPW7ywq1btJA9Xb_PRG_81Pb_PTFGpBFVB7An_e-P_qy90qVuu_e0w6W4_B4ugT2qLH6G8j8nxPxE4-eGumb3h9O4mfB7PSJw | 
    
| CitedBy_id | crossref_primary_10_1093_brain_awr139 crossref_primary_10_1007_s10654_011_9624_z crossref_primary_10_1016_j_compmedimag_2018_10_002 crossref_primary_10_1038_nrneurol_2011_21 crossref_primary_10_1016_j_jacc_2020_03_043 crossref_primary_10_48084_etasr_9080 crossref_primary_10_1161_STROKEAHA_111_623090 crossref_primary_10_3389_fneur_2019_00238 crossref_primary_10_1016_j_ynirp_2021_100044 crossref_primary_10_1109_TMI_2015_2419072 crossref_primary_10_1007_s12021_015_9260_y crossref_primary_10_1016_j_neuroimage_2018_08_037 crossref_primary_10_1016_j_jneumeth_2012_12_014 crossref_primary_10_1093_sleep_zsz140 crossref_primary_10_3389_fnagi_2022_788846 crossref_primary_10_1016_j_neurobiolaging_2017_09_018 crossref_primary_10_1002_mrm_23286 crossref_primary_10_3233_JAD_160116 crossref_primary_10_1016_j_neurobiolaging_2018_07_001 crossref_primary_10_1148_radiol_2015150103 crossref_primary_10_1016_j_nicl_2018_08_004 crossref_primary_10_1016_j_neurobiolaging_2017_09_014 crossref_primary_10_1016_j_nicl_2018_08_005 crossref_primary_10_1515_revneuro_2016_0029 crossref_primary_10_1016_j_media_2020_101791 crossref_primary_10_1186_s13195_024_01480_1 crossref_primary_10_1016_j_neurobiolaging_2016_12_004 crossref_primary_10_1212_WNL_0000000000003032 crossref_primary_10_1007_s00234_014_1322_6 crossref_primary_10_1038_s41598_022_14983_4 crossref_primary_10_1016_j_nicl_2021_102769 crossref_primary_10_1016_j_ijdevneu_2015_08_004 crossref_primary_10_1161_JAHA_118_011565 crossref_primary_10_1111_ene_15281 crossref_primary_10_1200_JCO_2014_56_8345 crossref_primary_10_3389_fnagi_2019_00379 crossref_primary_10_1016_j_jneumeth_2014_08_024 crossref_primary_10_1161_CIRCULATIONAHA_115_016261 crossref_primary_10_1016_j_neuroimage_2017_06_009 crossref_primary_10_1161_STROKEAHA_111_642264 crossref_primary_10_1159_000362590 crossref_primary_10_1097_HJH_0000000000002444 crossref_primary_10_1016_j_neuroimage_2010_12_012 crossref_primary_10_1212_WNL_0000000000010231 crossref_primary_10_2337_dc18_1132 crossref_primary_10_1016_j_nicl_2019_101870 crossref_primary_10_1093_braincomms_fcae171 crossref_primary_10_3233_JAD_200264 crossref_primary_10_3389_fnagi_2021_720636 crossref_primary_10_1097_WAD_0000000000000235 crossref_primary_10_1016_j_jneumeth_2010_01_029 crossref_primary_10_3174_ajnr_A5288 crossref_primary_10_1002_alz_13496 crossref_primary_10_1016_j_neuroimage_2016_07_018 crossref_primary_10_1016_j_media_2015_05_005 crossref_primary_10_1093_brain_awr145 crossref_primary_10_1007_s10654_021_00818_5 crossref_primary_10_1016_j_media_2016_08_014 crossref_primary_10_1016_j_neurobiolaging_2021_04_005 crossref_primary_10_1186_s13195_023_01333_3 crossref_primary_10_1016_j_media_2021_102215 crossref_primary_10_1109_TMI_2017_2693978 crossref_primary_10_1016_j_jpsychires_2019_02_002 crossref_primary_10_1161_HYPERTENSIONAHA_122_20434 crossref_primary_10_1016_j_amjmed_2014_06_037 crossref_primary_10_1161_ATVBAHA_111_232728 crossref_primary_10_1177_0271678X17715861 crossref_primary_10_1177_1352458516682104 crossref_primary_10_1002_mrm_28547 crossref_primary_10_1177_13872877251315044 crossref_primary_10_1016_j_procs_2016_07_003 crossref_primary_10_1016_j_nicl_2017_10_007 crossref_primary_10_3233_JAD_210360 crossref_primary_10_1109_TBME_2011_2181167 crossref_primary_10_1002_mrm_29753 crossref_primary_10_1038_s41398_025_03290_x crossref_primary_10_1186_s12883_016_0588_1 crossref_primary_10_1016_j_cccb_2022_100143 crossref_primary_10_3174_ajnr_A2782 crossref_primary_10_1016_j_neucom_2020_05_070 crossref_primary_10_1177_0271678X221077339 crossref_primary_10_2174_1567205018666210820125543 crossref_primary_10_1038_s41598_019_52966_0 crossref_primary_10_1002_hbm_22472 crossref_primary_10_1016_j_ijcard_2024_132603 crossref_primary_10_1212_WNL_0000000000011783 crossref_primary_10_3390_biomedicines10020432 crossref_primary_10_1016_j_ejrad_2013_05_029 crossref_primary_10_1016_j_parkreldis_2015_09_019 crossref_primary_10_1016_j_neuroimage_2010_03_012 crossref_primary_10_1007_s00702_015_1470_9 crossref_primary_10_1016_j_cmpb_2014_04_006 crossref_primary_10_1038_s41398_020_0798_6 crossref_primary_10_1002_jmri_26920 crossref_primary_10_1016_j_envint_2024_109048 crossref_primary_10_4329_wjr_v8_i3_240 crossref_primary_10_1111_ene_12648 crossref_primary_10_1017_S0033291721000222 crossref_primary_10_1212_WNL_0000000000201349 crossref_primary_10_1016_j_jalz_2014_06_011 crossref_primary_10_1002_mp_12328 crossref_primary_10_1038_s41598_017_05300_5 crossref_primary_10_1148_radiol_2016160548 crossref_primary_10_3174_ajnr_A5474 crossref_primary_10_1038_s41598_022_07843_8 crossref_primary_10_1161_STROKEAHA_110_607184 crossref_primary_10_54294_c31lhj crossref_primary_10_1002_dad2_12459 crossref_primary_10_1016_j_jad_2021_05_096 crossref_primary_10_1007_s11357_021_00399_x crossref_primary_10_1161_HYPERTENSIONAHA_111_00430 crossref_primary_10_1212_WNL_0000000000209864 crossref_primary_10_1016_j_neurobiolaging_2016_04_005 crossref_primary_10_1002_hbm_22370 crossref_primary_10_1111_ene_12775 crossref_primary_10_1136_bmjopen_2020_042660 crossref_primary_10_1212_WNL_0000000000007263 crossref_primary_10_1093_aje_kwaa023 crossref_primary_10_1186_2194_3990_1_3 crossref_primary_10_1177_03331024241266951 crossref_primary_10_1002_alz_12758 crossref_primary_10_1007_s11357_023_00876_5 crossref_primary_10_1161_STROKEAHA_114_004990 crossref_primary_10_1016_j_nbscr_2016_04_001 crossref_primary_10_1002_nbm_3931 crossref_primary_10_1016_j_mri_2021_10_007 crossref_primary_10_1016_j_neurobiolaging_2024_10_003 crossref_primary_10_1007_s00330_017_4768_1 crossref_primary_10_1016_j_jad_2022_09_145 crossref_primary_10_1212_WNL_0000000000003227 crossref_primary_10_1049_iet_cvi_2014_0121 crossref_primary_10_1016_j_nicl_2020_102542 crossref_primary_10_1118_1_4901270 crossref_primary_10_1097_MAO_0000000000002739 crossref_primary_10_1016_j_neurobiolaging_2012_02_012 crossref_primary_10_1016_j_acra_2014_07_001 crossref_primary_10_1016_j_jmir_2013_03_007 crossref_primary_10_1016_j_nicl_2012_11_005 crossref_primary_10_2337_dc19_0762 crossref_primary_10_1016_j_cmpb_2011_07_015 crossref_primary_10_1109_TITB_2010_2081996 crossref_primary_10_1002_jmri_24517 crossref_primary_10_1016_j_bpsgos_2022_08_009 crossref_primary_10_3390_app12157385 crossref_primary_10_1212_01_wnl_0000436609_20587_65 crossref_primary_10_1161_STROKEAHA_112_680223 crossref_primary_10_1016_j_cccb_2023_100192 crossref_primary_10_1016_j_mri_2012_01_007 crossref_primary_10_1161_CIRCULATIONAHA_121_056892 crossref_primary_10_1002_hbm_26109 crossref_primary_10_1088_0031_9155_60_3_995 crossref_primary_10_1148_radiol_2021202634 crossref_primary_10_1016_j_jneumeth_2016_06_017 crossref_primary_10_1186_s40478_023_01627_5 crossref_primary_10_1259_img_20120015 crossref_primary_10_1007_s10654_015_0105_7 crossref_primary_10_1016_j_nicl_2017_01_017 crossref_primary_10_1093_neuonc_noab021 crossref_primary_10_1161_STROKEAHA_124_047593 crossref_primary_10_1007_s00415_017_8550_8 crossref_primary_10_1212_WNL_0000000000003556 crossref_primary_10_3389_fneur_2019_01268 crossref_primary_10_1007_s11357_021_00493_0 crossref_primary_10_1159_000363286 crossref_primary_10_1016_j_mri_2023_04_004 crossref_primary_10_1016_j_mri_2017_03_002 crossref_primary_10_1007_s11682_018_9855_7 crossref_primary_10_1109_TMI_2013_2269317 crossref_primary_10_1159_000346606 crossref_primary_10_1161_STROKEAHA_116_015084 crossref_primary_10_3174_ajnr_A3108 crossref_primary_10_1007_s11357_020_00276_z crossref_primary_10_1161_ATVBAHA_118_311082 crossref_primary_10_1371_journal_pone_0048953 crossref_primary_10_1016_j_nicl_2020_102466 crossref_primary_10_1080_00207454_2021_1901696 crossref_primary_10_1002_ima_22335 crossref_primary_10_1177_2396987319883445 crossref_primary_10_1017_S0033291714002499 crossref_primary_10_1016_S2666_7568_21_00028_3 crossref_primary_10_1118_1_4966029 crossref_primary_10_1016_j_mri_2012_12_004 crossref_primary_10_1016_j_media_2023_103029 crossref_primary_10_1161_STROKEAHA_110_595181 crossref_primary_10_3389_fnagi_2014_00259 crossref_primary_10_1016_j_neuroimage_2009_05_084 crossref_primary_10_1016_j_neuroimage_2018_05_041 crossref_primary_10_1016_j_jalz_2018_01_005 crossref_primary_10_1088_0031_9155_58_23_8323 crossref_primary_10_1136_jnnp_2017_317548 crossref_primary_10_1016_j_wneu_2020_12_148 crossref_primary_10_1161_STROKEAHA_116_014651 crossref_primary_10_1111_jne_12366 crossref_primary_10_1016_j_nicl_2013_10_003 crossref_primary_10_1212_WNL_0000000000003080 crossref_primary_10_1111_ijs_12465 crossref_primary_10_1016_j_jalz_2012_01_008 crossref_primary_10_1109_LSP_2010_2082527 crossref_primary_10_1016_j_compmedimag_2021_101991 crossref_primary_10_1007_s00330_011_2284_2 crossref_primary_10_1016_j_neurobiolaging_2021_06_006 crossref_primary_10_1016_j_media_2021_102184 crossref_primary_10_1038_mp_2016_101 crossref_primary_10_1109_TMI_2018_2859478 crossref_primary_10_1016_j_neurobiolaging_2015_11_021 crossref_primary_10_1038_jcbfm_2015_157 crossref_primary_10_1016_j_mri_2018_06_009 crossref_primary_10_1016_j_media_2016_06_029 crossref_primary_10_1007_s12021_019_09439_6 crossref_primary_10_1080_10255842_2012_666794 crossref_primary_10_1371_journal_pone_0193152 crossref_primary_10_1016_j_cmpb_2018_04_011 crossref_primary_10_18632_aging_101844 crossref_primary_10_1109_TBME_2010_2055865 crossref_primary_10_1016_j_socscimed_2024_117111 crossref_primary_10_1590_2446_4740_02017 crossref_primary_10_1007_s10654_025_01220_1 crossref_primary_10_1016_j_neuroimage_2019_116056 crossref_primary_10_1016_j_compmedimag_2018_08_004 crossref_primary_10_1186_s12916_021_01962_1 crossref_primary_10_1017_S003329172200112X crossref_primary_10_3390_brainsci14010062 crossref_primary_10_1016_j_jns_2024_123026 crossref_primary_10_1177_0271678X221149937 crossref_primary_10_1016_j_nic_2011_11_007 crossref_primary_10_3174_ajnr_A5517 crossref_primary_10_1007_s11357_024_01235_8 crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_02_035 crossref_primary_10_1080_03772063_2017_1284619 crossref_primary_10_3174_ajnr_A4556 crossref_primary_10_1212_WNL_0000000000012572  | 
    
| Cites_doi | 10.1016/j.media.2004.06.019 10.1016/j.neuroimage.2006.02.024 10.1002/(SICI)1522-2586(200003)11:3<267::AID-JMRI5>3.0.CO;2-8 10.1016/j.compbiomed.2007.12.005 10.1001/archneur.61.10.1531 10.1007/s00234-007-0312-3 10.1016/j.neuroimage.2005.06.061 10.1016/j.media.2006.07.002 10.1002/ana.10294 10.1136/jnnp.70.1.9 10.1016/j.neuroimage.2005.05.046 10.1016/S0165-0270(03)00237-1 10.1097/00004728-199901000-00030 10.1109/TIP.2007.909412 10.1109/42.796284 10.1016/S1361-8415(03)00037-9 10.1161/01.STR.0000068408.82115.D2 10.1016/j.neuroimage.2007.05.018 10.1006/nimg.2002.1221 10.1016/j.neuroimage.2005.02.018 10.1002/jmri.10011 10.1016/j.neurobiolaging.2006.12.012 10.1109/42.668698 10.1007/s10654-007-9199-x 10.1007/BFb0056229 10.1109/42.897810 10.1109/42.938237 10.1109/42.906424 10.1002/mrm.10436 10.1002/1522-2586(200012)12:6<799::AID-JMRI2>3.0.CO;2-# 10.1016/j.neuroimage.2007.09.058 10.1016/j.neurobiolaging.2004.05.004 10.1109/42.811270  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2009 Elsevier Inc. Copyright Elsevier Limited May 1, 2009  | 
    
| Copyright_xml | – notice: 2009 Elsevier Inc. – notice: Copyright Elsevier Limited May 1, 2009  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO  | 
    
| DOI | 10.1016/j.neuroimage.2009.01.011 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts  | 
    
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology Engineering Research Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1095-9572 | 
    
| EndPage | 1161 | 
    
| ExternalDocumentID | 3244659161 19344687 10_1016_j_neuroimage_2009_01_011 S1053811909000561  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 7QO  | 
    
| ID | FETCH-LOGICAL-c489t-1cfd3b62cec6ac8dd723f34ffb271d0a86c71aaca1ff183116afb62a34e8d8fc3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 1053-8119 1095-9572  | 
    
| IngestDate | Tue Oct 07 09:25:31 EDT 2025 Wed Oct 01 08:47:53 EDT 2025 Tue Oct 07 06:48:23 EDT 2025 Thu Apr 03 07:03:15 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Sat Oct 25 06:00:03 EDT 2025 Fri Feb 23 02:30:10 EST 2024 Tue Oct 14 19:25:21 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | White matter lesions Brain tissue segmentation White matter hyperintensities MRI  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c489t-1cfd3b62cec6ac8dd723f34ffb271d0a86c71aaca1ff183116afb62a34e8d8fc3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 19344687 | 
    
| PQID | 1506784764 | 
    
| PQPubID | 2031077 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_746079588 proquest_miscellaneous_67123033 proquest_journals_1506784764 pubmed_primary_19344687 crossref_citationtrail_10_1016_j_neuroimage_2009_01_011 crossref_primary_10_1016_j_neuroimage_2009_01_011 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_01_011 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_01_011  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-05-01 | 
    
| PublicationDateYYYYMMDD | 2009-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Amsterdam  | 
    
| PublicationTitle | NeuroImage (Orlando, Fla.) | 
    
| PublicationTitleAlternate | Neuroimage | 
    
| PublicationYear | 2009 | 
    
| Publisher | Elsevier Inc Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited  | 
    
| References | Cocosco, Zijdenbos, Evans (bib9) 2003; 7 Zijdenbos, A., Forghani, R., Evans, A., 1998. Automatic quantification of MS lesions in 3D MRI brain data sets: validation of INSECT. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI'98. pp. 439–448. Klein, Staring, Pluim (bib18) 2007; 16 Ruf, Greenspan, Goldberger (bib26) 2005; 8 Awate, Tasdizen, Foster, Whitaker (bib7) 2006; 10 Alfano, Brunetti, Larobina, Quarantelli, Tedeschi, Ciarmiello, Covelli, Salvatore (bib2) 2000; 12 Song, Tustison, Avants, Gee (bib29) 2006; 9 Jack, O'Brien, Rettman, Shiung, Xu, Muthupillai, Manduca, Avula, Erickson (bib16) 2001; 14 Barra, Boire (bib8) 2000; 11 Ikram, Vrooman, Vernooij, van der Lijn, Hofman, van der Lugt, Niessen, Breteler (bib15) 2008; 29 Khayati, Vafadust, Towhidkhah, Nabavi (bib17) 2008 Lemieux, Hammers, Mackinnon, Liu (bib21) 2003; 49 Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bib25) 1999; 18 Anbeek, Vincken, van Osch, Bisschops, van der Grond (bib4) 2004; 8 Hofman, Breteler, van Duijn, Krestin, Pols, Stricker, Tiemeier, Uitterlinden, Vingerling, Witteman (bib14) 2007; 22 Maillard, Delcroix, Crivello, Dufouil, Gicquel, Joliot, Tzourio-Mazoyer, Alpérovitch, Tzourio, Mazoyer (bib22) 2008; 50 DeCarli, Massaro, Harvey, Hald, Tullberg, Au, Beiser, D'Agostino, Wolf (bib12) 2005; 26 Vrooman, Cocosco, van der Lijn, Stokking, Ikram, Vernooij, Breteler, Niessen (bib33) 2007; 37 Anbeek, Vincken, van Bochove, van Osch, van der Grond (bib5) 2005; 27 Sled, Zijdenbos, Evans (bib27) 1998; 17 Kovacevic, Lobaugh, Bronskill, Levine, Feinstein, Black (bib19) 2002; 17 Ruan, Jaggi, Xue, Fadili, Bloyet (bib24) 2000; 19 Prins, van Dijk, den Heijer, Vermeer, Koudstaal, Oudkerk, Hofman, Breteler (bib23) 2004; 61 Van Leemput, Maes, Vandermeulen, Colchester, Suetens (bib31) 2001; 20 Ashburner, Friston (bib6) 2005; 26 de Groot, de Leeuw, Oudkerk, van Gijn, Hofman, Jolles, Breteler (bib10) 2002; 52 Admiraal-Behloul, van den Heuvel, Olofsen, van Osch, van der Grond, van Buchem, Reiber (bib1) 2005; 28 Kruggel, Paul, Gertz (bib20) 2008; 39 Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, Watkins, Ciccarelli, Cader, Matthews, Behrens (bib28) 2006; 31 Van Leemput, Maes, Vandermeulen, Suetens (bib30) 1999; 18 de Leeuw, de Groot, Achten, Oudkerk, Ramos, Heijboer, Hofman, Jolles, van Gijn, Breteler (bib11) 2001; 70 Harris, Andreasen, Cizadlo, Bailey, Bockholt, Magnotta, Arndt (bib13) 1999; 23 Amato, Larobina, Antoniadis, Alfano (bib3) 2003; 131 Vermeer, Hollander, van Dijk, Hofman, Koudstaal, Breteler, Study (bib32) 2003; 34 Zhang, Brady, Smith (bib34) 2001; 20 Klein (10.1016/j.neuroimage.2009.01.011_bib18) 2007; 16 Ruf (10.1016/j.neuroimage.2009.01.011_bib26) 2005; 8 Smith (10.1016/j.neuroimage.2009.01.011_bib28) 2006; 31 Hofman (10.1016/j.neuroimage.2009.01.011_bib14) 2007; 22 Van Leemput (10.1016/j.neuroimage.2009.01.011_bib30) 1999; 18 Sled (10.1016/j.neuroimage.2009.01.011_bib27) 1998; 17 de Groot (10.1016/j.neuroimage.2009.01.011_bib10) 2002; 52 Awate (10.1016/j.neuroimage.2009.01.011_bib7) 2006; 10 Zhang (10.1016/j.neuroimage.2009.01.011_bib34) 2001; 20 Kruggel (10.1016/j.neuroimage.2009.01.011_bib20) 2008; 39 Anbeek (10.1016/j.neuroimage.2009.01.011_bib5) 2005; 27 10.1016/j.neuroimage.2009.01.011_bib35 Rueckert (10.1016/j.neuroimage.2009.01.011_bib25) 1999; 18 Alfano (10.1016/j.neuroimage.2009.01.011_bib2) 2000; 12 Cocosco (10.1016/j.neuroimage.2009.01.011_bib9) 2003; 7 Amato (10.1016/j.neuroimage.2009.01.011_bib3) 2003; 131 Khayati (10.1016/j.neuroimage.2009.01.011_bib17) 2008 Van Leemput (10.1016/j.neuroimage.2009.01.011_bib31) 2001; 20 Jack (10.1016/j.neuroimage.2009.01.011_bib16) 2001; 14 Barra (10.1016/j.neuroimage.2009.01.011_bib8) 2000; 11 Harris (10.1016/j.neuroimage.2009.01.011_bib13) 1999; 23 Kovacevic (10.1016/j.neuroimage.2009.01.011_bib19) 2002; 17 Song (10.1016/j.neuroimage.2009.01.011_bib29) 2006; 9 Vermeer (10.1016/j.neuroimage.2009.01.011_bib32) 2003; 34 Anbeek (10.1016/j.neuroimage.2009.01.011_bib4) 2004; 8 Prins (10.1016/j.neuroimage.2009.01.011_bib23) 2004; 61 Ashburner (10.1016/j.neuroimage.2009.01.011_bib6) 2005; 26 Ruan (10.1016/j.neuroimage.2009.01.011_bib24) 2000; 19 de Leeuw (10.1016/j.neuroimage.2009.01.011_bib11) 2001; 70 DeCarli (10.1016/j.neuroimage.2009.01.011_bib12) 2005; 26 Vrooman (10.1016/j.neuroimage.2009.01.011_bib33) 2007; 37 Maillard (10.1016/j.neuroimage.2009.01.011_bib22) 2008; 50 Lemieux (10.1016/j.neuroimage.2009.01.011_bib21) 2003; 49 Ikram (10.1016/j.neuroimage.2009.01.011_bib15) 2008; 29 Admiraal-Behloul (10.1016/j.neuroimage.2009.01.011_bib1) 2005; 28  | 
    
| References_xml | – volume: 31 start-page: 1487 year: 2006 end-page: 1505 ident: bib28 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: Neuroimage – volume: 22 start-page: 819 year: 2007 end-page: 829 ident: bib14 article-title: The Rotterdam Study: objectives and design update publication-title: Eur J Epidemiol – volume: 27 start-page: 795 year: 2005 end-page: 804 ident: bib5 article-title: Probabilistic segmentation of brain tissue in MR imaging publication-title: Neuroimage – volume: 28 start-page: 607 year: 2005 end-page: 617 ident: bib1 article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly publication-title: Neuroimage – volume: 12 start-page: 799 year: 2000 end-page: 807 ident: bib2 article-title: Automated segmentation and measurement of global white matter lesion volume in patients with multiple sclerosis publication-title: J. Magn. Reson. Imaging – volume: 29 start-page: 882 year: 2008 end-page: 890 ident: bib15 article-title: Brain tissue volumes in the general elderly population. The Rotterdam Scan Study publication-title: Neurobiol. Aging – volume: 61 start-page: 1531 year: 2004 end-page: 1534 ident: bib23 article-title: Cerebral white matter lesions and the risk of dementia publication-title: Arch. Neurol. – volume: 70 start-page: 9 year: 2001 end-page: 14 ident: bib11 article-title: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 34 start-page: 1126 year: 2003 end-page: 1129 ident: bib32 article-title: Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study publication-title: Stroke – volume: 10 start-page: 726 year: 2006 end-page: 739 ident: bib7 article-title: Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification publication-title: Med. Image Anal. – volume: 11 start-page: 267 year: 2000 end-page: 278 ident: bib8 article-title: Tissue segmentation on MR images of the brain by possibilistic clustering on a 3D wavelet representation publication-title: J. Magn. Reson. Imaging – volume: 20 start-page: 677 year: 2001 end-page: 688 ident: bib31 article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection publication-title: IEEE Trans Med Imaging – volume: 52 start-page: 335 year: 2002 end-page: 341 ident: bib10 article-title: Periventricular cerebral white matter lesions predict rate of cognitive decline publication-title: Ann. Neurol. – volume: 18 start-page: 897 year: 1999 end-page: 908 ident: bib30 article-title: Automated model-based tissue classification of MR images of the brain publication-title: IEEE Trans Med Imaging – year: 2008 ident: bib17 article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model publication-title: Comput. Biol. Med. – volume: 49 start-page: 872 year: 2003 end-page: 884 ident: bib21 article-title: Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry publication-title: Magn. Reson. Med – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bib34 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm publication-title: IEEE Trans Med Imaging – volume: 18 start-page: 712 year: 1999 end-page: 721 ident: bib25 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bib6 article-title: Unified segmentation publication-title: Neuroimage – volume: 23 start-page: 144 year: 1999 end-page: 154 ident: bib13 article-title: Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection publication-title: J. Comput. Assist. Tomogr. – volume: 8 start-page: 790 year: 2005 end-page: 797 ident: bib26 article-title: Tissue classification of noisy MR brain images using constrained GMM publication-title: Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv. – volume: 8 start-page: 205 year: 2004 end-page: 215 ident: bib4 article-title: Automatic segmentation of different-sized white matter lesions by voxel probability estimation publication-title: Med. Image Anal. – volume: 9 start-page: 831 year: 2006 end-page: 838 ident: bib29 article-title: Integrated graph cuts for brain MRI segmentation publication-title: Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv. – volume: 7 start-page: 513 year: 2003 end-page: 527 ident: bib9 article-title: A fully automatic and robust brain MRI tissue classification method publication-title: Med. Image Anal. – volume: 16 start-page: 2879 year: 2007 end-page: 2890 ident: bib18 article-title: Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines publication-title: IEEE Trans. Image Process – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: bib27 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging – volume: 14 start-page: 668 year: 2001 end-page: 676 ident: bib16 article-title: Flair histogram segmentation for measurement of leukoaraiosis volume publication-title: J. Magn. Reson. Imaging – volume: 26 start-page: 491 year: 2005 end-page: 510 ident: bib12 article-title: Measures of brain morphology and infarction in the Framingham Heart Study: establishing what is normal publication-title: Neurobiol. Aging – volume: 37 start-page: 71 year: 2007 end-page: 81 ident: bib33 article-title: Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification publication-title: Neuroimage – volume: 17 start-page: 1087 year: 2002 end-page: 1100 ident: bib19 article-title: A robust method for extraction and automatic segmentation of brain images publication-title: Neuroimage – reference: Zijdenbos, A., Forghani, R., Evans, A., 1998. Automatic quantification of MS lesions in 3D MRI brain data sets: validation of INSECT. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI'98. pp. 439–448. – volume: 131 start-page: 65 year: 2003 end-page: 74 ident: bib3 article-title: Segmentation of magnetic resonance brain images through discriminant analysis publication-title: J. Neurosci. Methods – volume: 19 start-page: 1179 year: 2000 end-page: 1187 ident: bib24 article-title: Brain tissue classification of magnetic resonance images using partial volume modeling publication-title: IEEE Trans. Med. Imaging – volume: 39 start-page: 987 year: 2008 end-page: 996 ident: bib20 article-title: Texture-based segmentation of diffuse lesions of the brain's white matter publication-title: Neuroimage – volume: 50 start-page: 31 year: 2008 end-page: 42 ident: bib22 article-title: An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases publication-title: Neuroradiology – volume: 8 start-page: 205 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2009.01.011_bib4 article-title: Automatic segmentation of different-sized white matter lesions by voxel probability estimation publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.06.019 – volume: 31 start-page: 1487 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2009.01.011_bib28 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.024 – volume: 11 start-page: 267 issue: 3 year: 2000 ident: 10.1016/j.neuroimage.2009.01.011_bib8 article-title: Tissue segmentation on MR images of the brain by possibilistic clustering on a 3D wavelet representation publication-title: J. Magn. Reson. Imaging doi: 10.1002/(SICI)1522-2586(200003)11:3<267::AID-JMRI5>3.0.CO;2-8 – year: 2008 ident: 10.1016/j.neuroimage.2009.01.011_bib17 article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.12.005 – volume: 61 start-page: 1531 issue: 10 year: 2004 ident: 10.1016/j.neuroimage.2009.01.011_bib23 article-title: Cerebral white matter lesions and the risk of dementia publication-title: Arch. Neurol. doi: 10.1001/archneur.61.10.1531 – volume: 50 start-page: 31 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2009.01.011_bib22 article-title: An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases publication-title: Neuroradiology doi: 10.1007/s00234-007-0312-3 – volume: 28 start-page: 607 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2009.01.011_bib1 article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.061 – volume: 10 start-page: 726 issue: 5 year: 2006 ident: 10.1016/j.neuroimage.2009.01.011_bib7 article-title: Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification publication-title: Med. Image Anal. doi: 10.1016/j.media.2006.07.002 – volume: 52 start-page: 335 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2009.01.011_bib10 article-title: Periventricular cerebral white matter lesions predict rate of cognitive decline publication-title: Ann. Neurol. doi: 10.1002/ana.10294 – volume: 70 start-page: 9 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2009.01.011_bib11 article-title: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.70.1.9 – volume: 27 start-page: 795 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2009.01.011_bib5 article-title: Probabilistic segmentation of brain tissue in MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.046 – volume: 131 start-page: 65 issue: 1–2 year: 2003 ident: 10.1016/j.neuroimage.2009.01.011_bib3 article-title: Segmentation of magnetic resonance brain images through discriminant analysis publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(03)00237-1 – volume: 23 start-page: 144 issue: 1 year: 1999 ident: 10.1016/j.neuroimage.2009.01.011_bib13 article-title: Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199901000-00030 – volume: 16 start-page: 2879 issue: 12 year: 2007 ident: 10.1016/j.neuroimage.2009.01.011_bib18 article-title: Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2007.909412 – volume: 18 start-page: 712 issue: 8 year: 1999 ident: 10.1016/j.neuroimage.2009.01.011_bib25 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.796284 – volume: 7 start-page: 513 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2009.01.011_bib9 article-title: A fully automatic and robust brain MRI tissue classification method publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(03)00037-9 – volume: 34 start-page: 1126 issue: 5 year: 2003 ident: 10.1016/j.neuroimage.2009.01.011_bib32 article-title: Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study publication-title: Stroke doi: 10.1161/01.STR.0000068408.82115.D2 – volume: 37 start-page: 71 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2009.01.011_bib33 article-title: Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.05.018 – volume: 17 start-page: 1087 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2009.01.011_bib19 article-title: A robust method for extraction and automatic segmentation of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1221 – volume: 26 start-page: 839 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2009.01.011_bib6 article-title: Unified segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 14 start-page: 668 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2009.01.011_bib16 article-title: Flair histogram segmentation for measurement of leukoaraiosis volume publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.10011 – volume: 29 start-page: 882 issue: 6 year: 2008 ident: 10.1016/j.neuroimage.2009.01.011_bib15 article-title: Brain tissue volumes in the general elderly population. The Rotterdam Scan Study publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.12.012 – volume: 9 start-page: 831 issue: Pt 2 year: 2006 ident: 10.1016/j.neuroimage.2009.01.011_bib29 article-title: Integrated graph cuts for brain MRI segmentation publication-title: Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv. – volume: 17 start-page: 87 issue: 1 year: 1998 ident: 10.1016/j.neuroimage.2009.01.011_bib27 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging doi: 10.1109/42.668698 – volume: 22 start-page: 819 issue: 11 year: 2007 ident: 10.1016/j.neuroimage.2009.01.011_bib14 article-title: The Rotterdam Study: objectives and design update publication-title: Eur J Epidemiol doi: 10.1007/s10654-007-9199-x – ident: 10.1016/j.neuroimage.2009.01.011_bib35 doi: 10.1007/BFb0056229 – volume: 8 start-page: 790 issue: Pt 2 year: 2005 ident: 10.1016/j.neuroimage.2009.01.011_bib26 article-title: Tissue classification of noisy MR brain images using constrained GMM publication-title: Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv. – volume: 19 start-page: 1179 issue: 12 year: 2000 ident: 10.1016/j.neuroimage.2009.01.011_bib24 article-title: Brain tissue classification of magnetic resonance images using partial volume modeling publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.897810 – volume: 20 start-page: 677 issue: 8 year: 2001 ident: 10.1016/j.neuroimage.2009.01.011_bib31 article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection publication-title: IEEE Trans Med Imaging doi: 10.1109/42.938237 – volume: 20 start-page: 45 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2009.01.011_bib34 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906424 – volume: 49 start-page: 872 issue: 5 year: 2003 ident: 10.1016/j.neuroimage.2009.01.011_bib21 article-title: Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry publication-title: Magn. Reson. Med doi: 10.1002/mrm.10436 – volume: 12 start-page: 799 issue: 6 year: 2000 ident: 10.1016/j.neuroimage.2009.01.011_bib2 article-title: Automated segmentation and measurement of global white matter lesion volume in patients with multiple sclerosis publication-title: J. Magn. Reson. Imaging doi: 10.1002/1522-2586(200012)12:6<799::AID-JMRI2>3.0.CO;2-# – volume: 39 start-page: 987 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2009.01.011_bib20 article-title: Texture-based segmentation of diffuse lesions of the brain's white matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.058 – volume: 26 start-page: 491 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2009.01.011_bib12 article-title: Measures of brain morphology and infarction in the Framingham Heart Study: establishing what is normal publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2004.05.004 – volume: 18 start-page: 897 issue: 10 year: 1999 ident: 10.1016/j.neuroimage.2009.01.011_bib30 article-title: Automated model-based tissue classification of MR images of the brain publication-title: IEEE Trans Med Imaging doi: 10.1109/42.811270  | 
    
| SSID | ssj0009148 | 
    
| Score | 2.4388335 | 
    
| Snippet | A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM)... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1151 | 
    
| SubjectTerms | Age Aged Aged, 80 and over Algorithms Automation Brain Brain - pathology Brain tissue segmentation Confidence intervals Data imaging Demyelinating Diseases - pathology Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Medical imaging Medical research Methods MRI Nerve Fibers, Myelinated - pathology NMR Nuclear magnetic resonance Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Studies White matter hyperintensities White matter lesions  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEB7OPRBfxN-unpoHX4tNkzYJIqJyx6nsIocH9xaSNDmU2_Z0u_-_kzTdfVpZyEOhGQqTzORrZuYbgLdVzRSz1BbUylAgvrWFrD2ae6vKytjK1SmJZrFszi_5t6v66giWUy1MTKucfGJy1G3v4h35u8iEJ9CVNvzj7Z8ido2K0dWphYbJrRXaD4li7A4cV5EZawbHn0-XPy52NLyUj8VxNSskpSrn9owZX4lB8tcK7TjzWFIcdN-BtQ-QpoPp7AHcz4iSfBq3wEM48t0juLvIMfPH8D31wCOrRKRJbny8HiPp7js9DT0xm6FPzK3ExoYRZEiLQdb-epUrkzqCY3Hx9Qlcnp3-_HJe5BYKheNSDQV1oWW2qZx3jXGybUXFAuMh2ErQtjSycYIa4wwNAY2b0sYEnG4Y97KVwbGnMOv6zj8HwkplhDRKOud5aZ0MlgtTCoMQz6MG5yAmPWmX-cVjm4sbPSWS_dY7Dcf2l0qXFAdK0q3k7cixcYCMmpZCTzWk6PU0HgQHyL7fymacMeKHA6VPppXX2d7Xerc75_Bm-xotNYZfTOf7zVo3AlFCydgcyJ4ZgjelULWUc3g2bqmdPhTDH3cpXvz_6y_h3hjuihmZJzAb_m78K0RNg32dTeEfrkkYaw priority: 102 providerName: ProQuest  | 
    
| Title | White matter lesion extension to automatic brain tissue segmentation on MRI | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811909000561 https://dx.doi.org/10.1016/j.neuroimage.2009.01.011 https://www.ncbi.nlm.nih.gov/pubmed/19344687 https://www.proquest.com/docview/1506784764 https://www.proquest.com/docview/67123033 https://www.proquest.com/docview/746079588  | 
    
| Volume | 45 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBddCmOXse9l6zIddvViWbIlsVMbWtJ2CSVbITcjyVLJaJyyONf97XuS5YQeAoGCsI3tB-JJ70PSe7-H0Lcsp5JqohOihUvAv9WJyC2IeyXTTOnM5CGIZjItxrfsap7Pj9Coy4XxYZVR97c6PWjr-GYYuTl8WCyGv8AzAHMDBi3UvfRLoGOwP0L00PHp5fV4usPeJazNiMtp4gliQE8b5hVgIxdLEN4IXkmgkX1Wap8XGqzRxSv0MrqR-LTt6Wt0ZOs36PkkHpS_Rdeh8B1eBvRMfG_9nhgOG97hqVlhtWlWAa4Va18lAjdhBPDa3i1jOlKNoU1ml-_Q7cX579E4iXUTEsOEbBJiXEV1kRlrCmVEVfGMOsqc0xknVapEYThRyijiHEg0IYVy8LuizIpKOEPfo169qu1HhGkqFRdKCmMsS7URTjOuUq7Ar7PAwT7iHZ9KE0HFfW2L-7KLHvtT7jjsa17KMiXQgJJsKR9aYI0DaGQ3FGWXOAqqrgTtfwDtjy3towl2IPVJN_JlFPJ16cEZOVj3gvXR1-1nEE9_5qJqu9qsy4KDa5BS2kd4zx-cFSmXuRB99KGdUjt-SAqrdcE_Panvn9GL9gjMR2meoF7zd2O_gCfV6AF69v0fgSuf8wFIzWj282YQpQfuZ-fTm9l_Aqsjmg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgEviM9RGMwP8BgRx05sC02Ij00tXSs0bdLejO3YCLQ2g6ZC_HP8bZwdp30q6sskP0SKL5HufOez7-53CL0qSiqpISYjRvgM_FuTidKButcyL7QpbBmTaCbTanjBPl-Wlzvob18LE9Iqe5sYDXXd2HBH_iYg4XEwpRV7d_0zC12jQnS1b6GhU2uF-ihCjKXCjrH78xuOcIuj0SeQ9-uiODk-_zjMUpeBzDIh24xYX1NTFdbZSltR17ygnjLvTcFJnWtRWU60tpp4D-ufkEp7mK4pc6IW3lL47i20xyiTcPjb-3A8_XK2hv0lrCvGK2kmCJEpl6jLMIuIld9nYDcSbiaBQTZtkJsc4LgRntxH95IHi993S-4B2nHzh-j2JMXoH6Fx7LmHZxG4E1-5cB2H4117fGobrJdtE5FisQkNKnAbhY8X7tssVULNMYzJ2egxurgRZj5Bu_Nm7p4iTHOpudBSWOtYbqzwhnGdcw0upQMODhDv-aRswjMPbTWuVJ-49kOtORzabUqVExhASVaU1x2mxxY0sheF6mtWwcoq2Hi2oH27ok1-TeevbEl90EteJfuyUGttGKDD1WuwDCHco-euWS5UxcErySkdILxhBmdVzmUpxADtd0tqzQ9JGasEf_b_vx-iO8Pzyak6HU3Hz9HdLtQWskEP0G77a-legMfWmpdJLTD6etOa-A90LVgT | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeJr4pDOYHeIwWx05sCyGEGNVK6YQQk_pmbMdGoDXZaCrEv8Zfx9lx2qeivkzyQ6TkEum-fPH97g6hl0VJJTXEZMQIn0F8azJROjD3WuaFNoUtI4hmdl6dXbCP83K-h_4OtTABVjn4xOio69aGM_KT0AmPgyut2IlPsIjPp-O3V9dZmCAVMq3DOI1eRabuz2_4fVu-mZyCrF8VxfjD1_dnWZowkFkmZJcR62tqqsI6W2kr6poX1FPmvSk4qXMtKsuJ1lYT70H3Cam0h8c1ZU7UwlsK772FbnNKZYAT8jnfNPwlrC_DK2kmCJEJRdRjy2Kvyh8L8BipYyaBRbZtjdtC37gFju-iwxS74ne9st1De665jw5mKTv_AE3jtD28iC078aULB3E4nrLHq67FetW1sUcsNmE0Be6i2PHSfV-kGqgGw5p9mTxEFzfCykdov2kb9wRhmkvNhZbCWsdyY4U3jOucawgmHXBwhPjAJ2VTJ_MwUONSDZC1n2rD4TBoU6qcwAJKsqa86rt57EAjB1GooVoV_KuCLWcH2tdr2hTR9JHKjtRHg-RV8ixLtbGDETpe3wafEBI9unHtaqkqDvFITukI4S1PcFblXJZCjNDjXqU2_JCUsUrwp___-jE6APtTnybn02foTp9jCzDQI7Tf_Vq55xCqdeZFtAmMvt20Ef4DH15VrQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+matter+lesion+extension+to+automatic+brain+tissue+segmentation+on+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=de+Boer%2C+Renske&rft.au=Vrooman%2C+Henri+A&rft.au=van+der+Lijn%2C+Fedde&rft.au=Vernooij%2C+Meike+W&rft.date=2009-05-01&rft.eissn=1095-9572&rft.volume=45&rft.issue=4&rft.spage=1151&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.01.011&rft_id=info%3Apmid%2F19344687&rft.externalDocID=19344687 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |