Stimulus‐dependent glucocorticoid‐resistance of GM‐CSF production in human cultured airway smooth muscle
1 For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and fibrogenic cytokine, granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) produced by human cultured airway smooth muscle (ASM). We have co...
Saved in:
Published in | British journal of pharmacology Vol. 145; no. 1; pp. 123 - 131 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2005
Nature Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0007-1188 1476-5381 |
DOI | 10.1038/sj.bjp.0706174 |
Cover
Abstract | 1
For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and fibrogenic cytokine, granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) produced by human cultured airway smooth muscle (ASM). We have contrasted the effects of a synthetic glucocorticoid, dexamethasone, on thrombin‐ and IL‐1α‐stimulated GM‐CSF production in human ASM cells.
2
Although IL‐1α stimulated three‐fold higher levels of GM‐CSF mRNA and protein compared to thrombin, dexamethasone concentration‐dependently reduced IL‐1α‐stimulated GM‐CSF more potently and to a greater extent than the response to thrombin. This pattern of glucocorticoid regulation was also observed at the GM‐CSF mRNA level and was reproduced with other glucocorticoids such as fluticasone propionate.
3
IL‐1α and thrombin stimulated NF‐κB‐dependent luciferase expression equally. Dexamethasone treatment reduced luciferase expression stimulated by both IL‐1α and thrombin.
4
The GM‐CSF mRNA half life was markedly prolonged by IL‐1α compared to thrombin. This IL‐1α‐induced GM‐CSF mRNA stability was prevented by either dexamethasone or the p38MAPK inhibitor, SB203580, neither of which influenced GM‐CSF mRNA stability in thrombin‐treated cells. Dexamethasone inhibited p38MAPK phosphorylation in IL‐1α‐stimulated ASM, whereas thrombin does not stimulate p38MAPK phosphorylation.
5
These data suggest that the mechanism underlying the greater potency and efficacy of glucocorticoids in reducing GM‐CSF synthesis stimulated by IL‐1α depends on inhibition of the involvement of p38MAPK‐induced increases in GM‐CSF message stability.
British Journal of Pharmacology (2005) 145, 123–131. doi:10.1038/sj.bjp.0706174 |
---|---|
AbstractList | For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and fibrogenic cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by human cultured airway smooth muscle (ASM). We have contrasted the effects of a synthetic glucocorticoid, dexamethasone, on thrombin- and IL-1alpha-stimulated GM-CSF production in human ASM cells. Although IL-1alpha stimulated three-fold higher levels of GM-CSF mRNA and protein compared to thrombin, dexamethasone concentration-dependently reduced IL-1alpha-stimulated GM-CSF more potently and to a greater extent than the response to thrombin. This pattern of glucocorticoid regulation was also observed at the GM-CSF mRNA level and was reproduced with other glucocorticoids such as fluticasone propionate. IL-1alpha and thrombin stimulated NF-kappa B-dependent luciferase expression equally. Dexamethasone treatment reduced luciferase expression stimulated by both IL-1alpha and thrombin. The GM-CSF mRNA half life was markedly prolonged by IL-1alpha compared to thrombin. This IL-1alpha-induced GM-CSF mRNA stability was prevented by either dexamethasone or the p38(MAPK) inhibitor, SB203580, neither of which influenced GM-CSF mRNA stability in thrombin-treated cells. Dexamethasone inhibited p38(MAPK) phosphorylation in IL-1alpha-stimulated ASM, whereas thrombin does not stimulate p38(MAPK) phosphorylation. These data suggest that the mechanism underlying the greater potency and efficacy of glucocorticoids in reducing GM-CSF synthesis stimulated by IL-1alpha depends on inhibition of the involvement of p38(MAPK)-induced increases in GM-CSF message stability. For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and fibrogenic cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by human cultured airway smooth muscle (ASM). We have contrasted the effects of a synthetic glucocorticoid, dexamethasone, on thrombin- and IL-1alpha-stimulated GM-CSF production in human ASM cells. Although IL-1alpha stimulated three-fold higher levels of GM-CSF mRNA and protein compared to thrombin, dexamethasone concentration-dependently reduced IL-1alpha-stimulated GM-CSF more potently and to a greater extent than the response to thrombin. This pattern of glucocorticoid regulation was also observed at the GM-CSF mRNA level and was reproduced with other glucocorticoids such as fluticasone propionate. IL-1alpha and thrombin stimulated NF-kappa B-dependent luciferase expression equally. Dexamethasone treatment reduced luciferase expression stimulated by both IL-1alpha and thrombin. The GM-CSF mRNA half life was markedly prolonged by IL-1alpha compared to thrombin. This IL-1alpha-induced GM-CSF mRNA stability was prevented by either dexamethasone or the p38(MAPK) inhibitor, SB203580, neither of which influenced GM-CSF mRNA stability in thrombin-treated cells. Dexamethasone inhibited p38(MAPK) phosphorylation in IL-1alpha-stimulated ASM, whereas thrombin does not stimulate p38(MAPK) phosphorylation. These data suggest that the mechanism underlying the greater potency and efficacy of glucocorticoids in reducing GM-CSF synthesis stimulated by IL-1alpha depends on inhibition of the involvement of p38(MAPK)-induced increases in GM-CSF message stability.For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and fibrogenic cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by human cultured airway smooth muscle (ASM). We have contrasted the effects of a synthetic glucocorticoid, dexamethasone, on thrombin- and IL-1alpha-stimulated GM-CSF production in human ASM cells. Although IL-1alpha stimulated three-fold higher levels of GM-CSF mRNA and protein compared to thrombin, dexamethasone concentration-dependently reduced IL-1alpha-stimulated GM-CSF more potently and to a greater extent than the response to thrombin. This pattern of glucocorticoid regulation was also observed at the GM-CSF mRNA level and was reproduced with other glucocorticoids such as fluticasone propionate. IL-1alpha and thrombin stimulated NF-kappa B-dependent luciferase expression equally. Dexamethasone treatment reduced luciferase expression stimulated by both IL-1alpha and thrombin. The GM-CSF mRNA half life was markedly prolonged by IL-1alpha compared to thrombin. This IL-1alpha-induced GM-CSF mRNA stability was prevented by either dexamethasone or the p38(MAPK) inhibitor, SB203580, neither of which influenced GM-CSF mRNA stability in thrombin-treated cells. Dexamethasone inhibited p38(MAPK) phosphorylation in IL-1alpha-stimulated ASM, whereas thrombin does not stimulate p38(MAPK) phosphorylation. These data suggest that the mechanism underlying the greater potency and efficacy of glucocorticoids in reducing GM-CSF synthesis stimulated by IL-1alpha depends on inhibition of the involvement of p38(MAPK)-induced increases in GM-CSF message stability. For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and fibrogenic cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by human cultured airway smooth muscle (ASM). We have contrasted the effects of a synthetic glucocorticoid, dexamethasone, on thrombin- and IL-1 α -stimulated GM-CSF production in human ASM cells. Although IL-1 α stimulated three-fold higher levels of GM-CSF mRNA and protein compared to thrombin, dexamethasone concentration-dependently reduced IL-1 α -stimulated GM-CSF more potently and to a greater extent than the response to thrombin. This pattern of glucocorticoid regulation was also observed at the GM-CSF mRNA level and was reproduced with other glucocorticoids such as fluticasone propionate. IL-1 α and thrombin stimulated NF- κ B-dependent luciferase expression equally. Dexamethasone treatment reduced luciferase expression stimulated by both IL-1 α and thrombin. The GM-CSF mRNA half life was markedly prolonged by IL-1 α compared to thrombin. This IL-1 α -induced GM-CSF mRNA stability was prevented by either dexamethasone or the p38 MAPK inhibitor, SB203580, neither of which influenced GM-CSF mRNA stability in thrombin-treated cells. Dexamethasone inhibited p38 MAPK phosphorylation in IL-1 α -stimulated ASM, whereas thrombin does not stimulate p38 MAPK phosphorylation. These data suggest that the mechanism underlying the greater potency and efficacy of glucocorticoids in reducing GM-CSF synthesis stimulated by IL-1 α depends on inhibition of the involvement of p38 MAPK -induced increases in GM-CSF message stability. 1 For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and fibrogenic cytokine, granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) produced by human cultured airway smooth muscle (ASM). We have contrasted the effects of a synthetic glucocorticoid, dexamethasone, on thrombin‐ and IL‐1α‐stimulated GM‐CSF production in human ASM cells. 2 Although IL‐1α stimulated three‐fold higher levels of GM‐CSF mRNA and protein compared to thrombin, dexamethasone concentration‐dependently reduced IL‐1α‐stimulated GM‐CSF more potently and to a greater extent than the response to thrombin. This pattern of glucocorticoid regulation was also observed at the GM‐CSF mRNA level and was reproduced with other glucocorticoids such as fluticasone propionate. 3 IL‐1α and thrombin stimulated NF‐κB‐dependent luciferase expression equally. Dexamethasone treatment reduced luciferase expression stimulated by both IL‐1α and thrombin. 4 The GM‐CSF mRNA half life was markedly prolonged by IL‐1α compared to thrombin. This IL‐1α‐induced GM‐CSF mRNA stability was prevented by either dexamethasone or the p38MAPK inhibitor, SB203580, neither of which influenced GM‐CSF mRNA stability in thrombin‐treated cells. Dexamethasone inhibited p38MAPK phosphorylation in IL‐1α‐stimulated ASM, whereas thrombin does not stimulate p38MAPK phosphorylation. 5 These data suggest that the mechanism underlying the greater potency and efficacy of glucocorticoids in reducing GM‐CSF synthesis stimulated by IL‐1α depends on inhibition of the involvement of p38MAPK‐induced increases in GM‐CSF message stability. British Journal of Pharmacology (2005) 145, 123–131. doi:10.1038/sj.bjp.0706174 For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and fibrogenic cytokine, granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) produced by human cultured airway smooth muscle (ASM). We have contrasted the effects of a synthetic glucocorticoid, dexamethasone, on thrombin‐ and IL‐1 α ‐stimulated GM‐CSF production in human ASM cells. Although IL‐1 α stimulated three‐fold higher levels of GM‐CSF mRNA and protein compared to thrombin, dexamethasone concentration‐dependently reduced IL‐1 α ‐stimulated GM‐CSF more potently and to a greater extent than the response to thrombin. This pattern of glucocorticoid regulation was also observed at the GM‐CSF mRNA level and was reproduced with other glucocorticoids such as fluticasone propionate. IL‐1 α and thrombin stimulated NF‐ κ B‐dependent luciferase expression equally. Dexamethasone treatment reduced luciferase expression stimulated by both IL‐1 α and thrombin. The GM‐CSF mRNA half life was markedly prolonged by IL‐1 α compared to thrombin. This IL‐1 α ‐induced GM‐CSF mRNA stability was prevented by either dexamethasone or the p38 MAPK inhibitor, SB203580, neither of which influenced GM‐CSF mRNA stability in thrombin‐treated cells. Dexamethasone inhibited p38 MAPK phosphorylation in IL‐1 α ‐stimulated ASM, whereas thrombin does not stimulate p38 MAPK phosphorylation. These data suggest that the mechanism underlying the greater potency and efficacy of glucocorticoids in reducing GM‐CSF synthesis stimulated by IL‐1 α depends on inhibition of the involvement of p38 MAPK ‐induced increases in GM‐CSF message stability. British Journal of Pharmacology (2005) 145 , 123–131. doi: 10.1038/sj.bjp.0706174 |
Author | Landells, Linda Tran, Thai Stewart, Alastair G Harris, Trudi Fernandes, Darren J Schuliga, Michael |
AuthorAffiliation | 1 Department of Pharmacology, University of Melbourne, Grattan St, Victoria 3010, Australia |
AuthorAffiliation_xml | – name: 1 Department of Pharmacology, University of Melbourne, Grattan St, Victoria 3010, Australia |
Author_xml | – sequence: 1 givenname: Thai surname: Tran fullname: Tran, Thai – sequence: 2 givenname: Darren J surname: Fernandes fullname: Fernandes, Darren J – sequence: 3 givenname: Michael surname: Schuliga fullname: Schuliga, Michael – sequence: 4 givenname: Trudi surname: Harris fullname: Harris, Trudi – sequence: 5 givenname: Linda surname: Landells fullname: Landells, Linda – sequence: 6 givenname: Alastair G surname: Stewart fullname: Stewart, Alastair G |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16746364$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15735656$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxi1URLeFK0cUIcEtix0ndnxBKivaIhWBVDhbjv90HTn2YsdUe-MReEaeBK92oVAJcbI08_vG883MCTjywWsAniK4RBD3r9K4HMbNElJIEG0fgAVqKak73KMjsIAQ0hqhvj8GJymNEJYk7R6BY9RR3JGOLIC_nu2UXU4_vn1XeqO90n6ublyWQYY4WxmsKqmok02z8FJXwVQX70todX1ebWJQWc42-Mr6ap0n4SuZ3ZyjVpWw8VZsqzSFMK-rKSfp9GPw0AiX9JPDewo-n7_9tLqsrz5cvFudXdWy7RmrBz1AhgyjsCGKEmUkaRg01CCjFUOiZ8L0LR0oxh1UBpICy-II9xJrJjt8Cl7v627yMGkli6koHN9EO4m45UFY_nfG2zW_CV95mQxBza7Ay0OBGL5knWY-2SS1c8LrkBMnlDLYsaaAz--BY8jRF3O8QbSBhEBWoGd_tvO7j197KMCLAyCSFM7EMmqb7jhCW4JJW7jlnpMxpBS1uUMg3x0ETyMvB8EPB1EE7T2BtLPYbazYtu7fMryX3Vqnt__5hL_5eNn0mOGf9FHQWQ |
CODEN | BJPCBM |
CitedBy_id | crossref_primary_10_1165_rcmb_2014_0419OC crossref_primary_10_1186_1465_9921_7_117 crossref_primary_10_3390_biom5031266 crossref_primary_10_1152_ajplung_00306_2006 crossref_primary_10_14814_phy2_16124 crossref_primary_10_1007_s11882_008_0043_5 crossref_primary_10_1016_j_pupt_2008_12_006 crossref_primary_10_1165_rcmb_2007_0014OC crossref_primary_10_1016_j_pupt_2008_12_004 crossref_primary_10_1007_s12013_007_0043_4 crossref_primary_10_1016_j_mce_2007_04_013 crossref_primary_10_3390_ijms23168966 crossref_primary_10_1016_j_pharmthera_2020_107589 crossref_primary_10_1111_bph_13628 crossref_primary_10_1155_2015_437695 crossref_primary_10_1177_1753465808091154 crossref_primary_10_1038_sj_bjp_0706881 crossref_primary_10_1152_ajplung_00161_2009 crossref_primary_10_1080_01902140600817515 crossref_primary_10_1183_09031936_00119307 crossref_primary_10_1038_s41392_023_01344_4 crossref_primary_10_3389_fimmu_2023_1179094 crossref_primary_10_1183_09031936_00112606 crossref_primary_10_1378_chest_07_0262 crossref_primary_10_1016_j_pharmthera_2015_01_006 |
Cites_doi | 10.1183/09031936.93.05010073 10.1164/ajrccm.162.3.9911099 10.1165/ajrcmb.26.4.4681 10.1164/ajrccm/145.3.669 10.1074/jbc.M212992200 10.1182/blood.V79.1.45.45 10.1164/ajrccm.164.4.2011004 10.1038/sj.bjp.0705135 10.1038/sj.bjp.0703454 10.1016/S0006-2952(01)00791-2 10.1165/rcmb.2002-0074OC 10.1152/ajplung.00409.2002 10.1002/eji.1830251002 10.1164/ajrccm.157.1.9703079 10.1016/S0091-6749(06)80008-4 10.1165/ajrcmb.22.5.3889 10.1164/ajrccm.158.supplement_2.13tac190 10.1152/ajplung.1999.277.5.L932 10.1210/mend.11.9.9979 10.1016/0091-6749(92)90218-Q 10.4049/jimmunol.161.5.2509 10.1074/jbc.M301785200 10.1165/ajrcmb/1.4.289 10.1164/ajrccm/145.4_Pt_1.890 10.1038/sj.bjp.0700998 10.4049/jimmunol.167.1.302 10.1038/sj.bjp.0705345 10.1002/j.1460-2075.1994.tb06726.x 10.1038/sj.bjp.0705106 10.1074/jbc.271.37.22570 10.1016/0091-6749(91)90125-8 10.1172/JCI112705 10.1165/rcmb.2002-0040OC 10.1016/0092-8674(86)90341-7 10.1111/j.0019-2805.2004.01833.x 10.1073/pnas.92.17.7686 10.1093/rheumatology/keh014 10.1016/0014-5793(95)00357-F 10.1165/ajrcmb.21.1.3396 10.1016/j.jneumeth.2003.09.005 10.4049/jimmunol.163.4.2128 10.1016/S0091-6749(98)70268-4 10.1038/sj.bjp.0703684 10.1038/sj.bjp.0701128 10.1067/mai.2001.114245 10.1096/fj.00-0103com 10.4049/jimmunol.155.3.1240 10.1172/JCI115366 10.1038/sj.bjp.0705809 10.1152/ajplung.1999.277.1.L65 10.1111/j.1749-6632.1998.tb09612.x 10.1161/01.ATV.19.7.1658 |
ContentType | Journal Article |
Copyright | 2005 British Pharmacological Society 2005 INIST-CNRS Copyright Nature Publishing Group May 2005 Copyright 2005, Nature Publishing Group 2005 Nature Publishing Group |
Copyright_xml | – notice: 2005 British Pharmacological Society – notice: 2005 INIST-CNRS – notice: Copyright Nature Publishing Group May 2005 – notice: Copyright 2005, Nature Publishing Group 2005 Nature Publishing Group |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7QP 7RV 7TK 7X7 7XB 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/sj.bjp.0706174 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1476-5381 |
EndPage | 131 |
ExternalDocumentID | PMC1576125 971588071 15735656 16746364 10_1038_sj_bjp_0706174 BPH2839 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OC 23N 2WC 31~ 33P 36B 3O- 3SF 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM AAESR AAEVG AAFWJ AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q.N Q2X QB0 ROL RPM SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE ALIPV CITATION IQODW 24P 3V. A00 AEUQT AFPWT CGR CUY CVF ECM EIF NPM P4E RIG RWI 7QP 7TK 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 1OB 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c4899-beb091f97026d76dfc6290f7f1fed91a89af847b73350df0691fc35638c3e9c53 |
IEDL.DBID | 7X7 |
ISSN | 0007-1188 |
IngestDate | Thu Aug 21 14:08:26 EDT 2025 Fri Sep 05 12:59:03 EDT 2025 Fri Jul 25 19:17:03 EDT 2025 Wed Feb 19 01:44:08 EST 2025 Mon Jul 21 09:16:01 EDT 2025 Thu Apr 24 22:54:29 EDT 2025 Tue Jul 01 00:53:31 EDT 2025 Wed Aug 20 07:25:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human Stability Serine endopeptidases Hemostatic Enzyme Cytokine Interleukin 1α airway smooth muscle Smooth muscle Thrombin interleukin-1α Respiratory system Glucocorticoid Resistance Respiratory tract Peptidases Messenger RNA Hydrolases glucocorticoids Physicochemical properties Granulocyte macrophage colony stimulating factor p38MAPK mRNA stability |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4899-beb091f97026d76dfc6290f7f1fed91a89af847b73350df0691fc35638c3e9c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1038/sj.bjp.0706174 |
PMID | 15735656 |
PQID | 217206609 |
PQPubID | 42104 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1576125 proquest_miscellaneous_67790592 proquest_journals_217206609 pubmed_primary_15735656 pascalfrancis_primary_16746364 crossref_primary_10_1038_sj_bjp_0706174 crossref_citationtrail_10_1038_sj_bjp_0706174 wiley_primary_10_1038_sj_bjp_0706174_BPH2839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2005 |
PublicationDateYYYYMMDD | 2005-05-01 |
PublicationDate_xml | – month: 05 year: 2005 text: May 2005 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Basingstoke – name: England – name: London |
PublicationTitle | British journal of pharmacology |
PublicationTitleAlternate | Br J Pharmacol |
PublicationYear | 2005 |
Publisher | Blackwell Publishing Ltd Nature Publishing |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing |
References | 1986; 78 1999; 163 2000; 131 1998; 158 1998; 275 2001; 107 1998; 157 1992; 11 2003; 278 1992; 90 2004; 132 1997; 109 1997; 11 1991; 87 1999; 19 1991; 88 1995; 25 1986; 46 2000; 162 2001; 15 1998; 840 1995; 364 1992; 89 1985; 131 1998; 161 1985; 132 2001; 53 2003; 285 1992; 5 2004; 43 2001; 167 2004; 142 1995; 92 2001; 164 2003; 139 1989; 1 2003; 138 1992; 145 2000; 22 1999; 21 1992; 79 1995; 155 2001; 62 2004; 111 2002; 26 1997; 120 1997; 121 1996; 271 1994; 13 2003; 28 2003; 29 1999; 277 1998; 102 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 WAKITA H. (e_1_2_7_57_1) 1997; 109 e_1_2_7_15_1 e_1_2_7_41_1 AMRANI Y. (e_1_2_7_4_1) 1999; 163 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 BURKE C. (e_1_2_7_12_1) 1992; 5 e_1_2_7_28_1 PANG L. (e_1_2_7_39_1) 1998; 161 FABBRI L.M. (e_1_2_7_17_1) 1985; 132 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_6_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 BHAGAT R.G. (e_1_2_7_8_1) 1985; 131 ADKINS K.K. (e_1_2_7_2_1) 1998; 275 LI X.Y. (e_1_2_7_33_1) 2001; 53 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 KATO M. (e_1_2_7_29_1) 1992; 11 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 JENKINS F. (e_1_2_7_27_1) 1995; 155 2998242 - Am Rev Respir Dis. 1985 Nov;132(5):1010-4 15056380 - Immunology. 2004 Apr;111(4):430-4 9725250 - J Immunol. 1998 Sep 1;161(5):2509-15 10385595 - Am J Respir Cell Mol Biol. 1999 Jul;21(1):77-88 9445307 - Am J Respir Crit Care Med. 1998 Jan;157(1):256-62 9179374 - Br J Pharmacol. 1997 Jun;121(3):361-8 1546849 - Am Rev Respir Dis. 1992 Mar;145(3):669-74 2013675 - J Allergy Clin Immunol. 1991 Apr;87(4):794-802 7750577 - FEBS Lett. 1995 May 8;364(2):229-33 11755126 - Biochem Pharmacol. 2001 Dec 15;62(12):1719-24 12711618 - Br J Pharmacol. 2003 Apr;138(7):1203-6 10564178 - Am J Physiol. 1999 Nov;277(5 Pt 1):L932-42 12871860 - Am J Physiol Lung Cell Mol Physiol. 2003 Nov;285(5):L1087-98 7589063 - Eur J Immunol. 1995 Oct;25(10):2727-31 15249425 - Br J Pharmacol. 2004 Aug;142(7):1182-90 1374772 - J Allergy Clin Immunol. 1992 May;89(5):958-67 11418664 - J Immunol. 2001 Jul 1;167(1):302-10 12748173 - J Biol Chem. 2003 Aug 1;278(31):29366-75 1554218 - Am Rev Respir Dis. 1992 Apr;145(4 Pt 1):890-9 9817746 - Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 3):S201-6 1477181 - Lymphokine Cytokine Res. 1992 Dec;11(6):287-92 12556523 - J Biol Chem. 2003 Apr 4;278(14):12085-93 10960064 - Br J Pharmacol. 2000 Sep;131(1):17-28 3488815 - Cell. 1986 Aug 29;46(5):659-67 8076604 - EMBO J. 1994 Sep 1;13(17):4087-95 3021817 - J Clin Invest. 1986 Nov;78(5):1220-8 1629507 - J Allergy Clin Immunol. 1992 Jul;90(1):32-42 9069588 - Proc Assoc Am Physicians. 1997 Mar;109(2):190-207 10438953 - J Immunol. 1999 Aug 15;163(4):2128-34 11082122 - Br J Pharmacol. 2000 Nov;131(6):1143-53 14687679 - J Neurosci Methods. 2004 Jan 15;132(1):101-7 11919083 - Am J Respir Cell Mol Biol. 2002 Apr;26(4):465-74 10988133 - Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):1075-80 11520738 - Am J Respir Crit Care Med. 2001 Aug 15;164(4):688-97 1885766 - J Clin Invest. 1991 Sep;88(3):1048-53 8798425 - J Biol Chem. 1996 Sep 13;271(37):22570-7 9700099 - Am J Physiol. 1998 Aug;275(2 Pt 1):L372-8 10397683 - Arterioscler Thromb Vasc Biol. 1999 Jul;19(7):1658-68 11149914 - FASEB J. 2001 Jan;15(1):261-269 7644477 - Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686-9 9051287 - Br J Pharmacol. 1997 Feb;120(4):545-6 9259316 - Mol Endocrinol. 1997 Aug;11(9):1245-55 12642388 - Br J Pharmacol. 2003 Mar;138(5):865-75 2696516 - Am J Respir Cell Mol Biol. 1989 Oct;1(4):289-95 3890642 - Am Rev Respir Dis. 1985 Jun;131(6):902-6 12600835 - Am J Respir Cell Mol Biol. 2003 Jul;29(1):12-8 10409232 - Am J Physiol. 1999 Jul;277(1 Pt 1):L65-78 9802359 - J Allergy Clin Immunol. 1998 Oct;102(4 Pt 1):531-8 7636192 - J Immunol. 1995 Aug 1;155(3):1240-51 12871843 - Br J Pharmacol. 2003 Jul;139(6):1228-34 1370208 - Blood. 1992 Jan 1;79(1):45-51 11930217 - Sheng Li Xue Bao. 2001 Dec;53(6):414-8 9629300 - Ann N Y Acad Sci. 1998 May 1;840:735-46 11295658 - J Allergy Clin Immunol. 2001 Apr;107(4):679-85 13130151 - Rheumatology (Oxford). 2004 Feb;43(2):164-9 1577153 - Eur Respir J. 1992 Jan;5(1):73-9 10783130 - Am J Respir Cell Mol Biol. 2000 May;22(5):582-9 12594059 - Am J Respir Cell Mol Biol. 2003 Mar;28(3):330-8 |
References_xml | – volume: 131 start-page: 1143 year: 2000 end-page: 1153 article-title: p38 MAP kinase and MKK‐1 co‐operate in the generation of GM‐CSF from LPS‐stimulated human monocytes by an NF‐kappa B‐independent mechanism publication-title: Br. J. Pharmacol. – volume: 271 start-page: 22570 year: 1996 end-page: 22577 article-title: Angiotensin II activation of cyclin D1‐dependent kinase activity publication-title: J. Biol. Chem. – volume: 162 start-page: 1075 year: 2000 end-page: 1080 article-title: Inhalant corticosteroids inhibit hyperosmolarity‐induced, and cooling and rewarming‐induced interleukin‐8 and RANTES production by human bronchial epithelial cells publication-title: Am. J. Respir. Crit. Care Med. – volume: 157 start-page: 256 year: 1998 end-page: 262 article-title: Inhaled corticosteroids increase interleukin‐10 but reduce macrophage inflammatory protein‐1alpha, granulocyte‐macrophage colony‐stimulating factor, and interferon‐gamma release from alveolar macrophages in asthma publication-title: Am. J. Respir. Crit. Care Med. – volume: 29 start-page: 12 year: 2003 end-page: 18 article-title: Effects of transforming growth factor‐[beta] and budesonide on mitogen‐activated protein kinase activation and apoptosis in airway epithelial cells publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 43 start-page: 164 year: 2004 end-page: 169 article-title: Glucocorticoids inhibit induced and non‐induced mRNA accumulation of genes encoding hyaluronan synthases (HAS): hydrocortisone inhibits HAS1 activation by blocking the p38 mitogen‐activated protein kinase signalling pathway publication-title: Rheumatology (Oxford) – volume: 26 start-page: 465 year: 2002 end-page: 474 article-title: Tumor necrosis factor‐alpha‐induced secretion of RANTES and interleukin‐6 from human airway smooth muscle cells: modulation by glucocorticoids and beta‐agonists publication-title: Am. J. Respir. Cell. Mol. Biol. – volume: 15 start-page: 261 year: 2001 end-page: 269 article-title: Regulation of TNF‐alpha‐induced eotaxin release from cultured human airway smooth muscle cells by beta2‐agonists and corticosteroids publication-title: FASEB J. – volume: 275 start-page: L372 year: 1998 end-page: L378 article-title: Glucocorticoid regulation of GM‐CSF: evidence for transcriptional mechanisms in airway epithelial cells publication-title: Am. J. Physiol. – volume: 90 start-page: 32 year: 1992 end-page: 42 article-title: A comparative study of the effects of an inhaled corticosteroid, budesonide, and a beta 2‐agonist, terbutaline, on airway inflammation in newly diagnosed asthma: a randomized, double‐blind, parallel‐group controlled trial publication-title: J. Allergy Clin. Immunol. – volume: 142 start-page: 1182 year: 2004 end-page: 1190 article-title: Contribution of the p38MAPK signalling pathway to proliferation in human cultured airway smooth muscle cells is mitogen‐specific publication-title: Br. J. Pharmacol. – volume: 285 start-page: L1087 year: 2003 end-page: L1098 article-title: p38 MAPK and NF‐kappaB mediate COX‐2 expression in human airway myocytes publication-title: Am. J. Physiol. Lung Cell Mol. Physiol. – volume: 92 start-page: 7686 year: 1995 end-page: 7689 article-title: A synthetic inhibitor of the mitogen‐activated protein kinase cascade publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 11 start-page: 1245 year: 1997 end-page: 1255 article-title: Synthetic glucocorticoids that dissociate transactivation and AP‐1 transrepression exhibit antiinflammatory activity publication-title: Mol. Endocrinol. – volume: 278 start-page: 29366 year: 2003 end-page: 29375 article-title: Transcriptional regulation of interleukin (IL)‐8 by bradykinin in human airway smooth muscle cells involves prostanoid‐dependent activation of AP‐1 and nuclear factor (NF)‐IL‐6 and prostanoid‐independent activation of NF‐kappaB publication-title: J. Biol. Chem. – volume: 1 start-page: 289 year: 1989 end-page: 295 article-title: Human lung fibroblast‐derived granulocyte‐macrophage colony stimulating factor (GM‐CSF) mediates eosinophil survival publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 107 start-page: 679 year: 2001 end-page: 685 article-title: Airway epithelial cells release eosinophil survival‐promoting factors (GM‐CSF) after stimulation of proteinase‐activated receptor 2 publication-title: J. Allergy Clin. Immunol. – volume: 88 start-page: 1048 year: 1991 end-page: 1053 article-title: Endobronchial allergen challenge in asthma. Demonstration of cellular source of granulocyte macrophage colony‐stimulating factor by hybridization publication-title: J. Clin. Invest. – volume: 21 start-page: 77 year: 1999 end-page: 88 article-title: Glucocorticoids inhibit proliferation, cyclin D1 expression, and retinoblastoma protein phosphorylation, but not activity of the extracellular‐regulated kinases in human cultured airway smooth muscle publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 89 start-page: 958 year: 1992 end-page: 967 article-title: Cytokines in symptomatic asthma airways publication-title: J. Allergy Clin. Immunol. – volume: 13 start-page: 4087 year: 1994 end-page: 4095 article-title: A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP‐1 publication-title: EMBO J. – volume: 102 start-page: 531 year: 1998 end-page: 538 article-title: Efficacy of inhaled corticosteroids in asthma publication-title: J. Allergy Clin. Immunol. – volume: 364 start-page: 229 year: 1995 end-page: 233 article-title: SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin‐1 publication-title: FEBS Lett. – volume: 132 start-page: 101 year: 2004 end-page: 107 article-title: The use of real‐time PCR analysis in a gene expression study of Alzheimer's disease post‐mortem brains publication-title: J. Neurosci. Methods – volume: 87 start-page: 794 year: 1991 end-page: 802 article-title: Cellular and biochemical characteristics of bronchoalveolar lavage fluid in symptomatic nonallergic asthma publication-title: J. Allergy Clin. Immunol. – volume: 109 start-page: 190 year: 1997 end-page: 207 article-title: Thrombin and trypsin induce granulocyte‐macrophage colony‐stimulating factor and interleukin‐6 gene expression in cultured normal human keratinocytes publication-title: Proc. Assoc. Am. Physicians – volume: 278 start-page: 12085 year: 2003 end-page: 12093 article-title: Heterogeneity in control of mRNA stability by AU‐rich elements publication-title: J. Biol. Chem. – volume: 79 start-page: 45 year: 1992 end-page: 51 article-title: Glucocorticoids downregulate gene expression of GM‐CSF, NAP‐1/IL‐8, and IL‐6, but not of M‐CSF in human fibroblasts publication-title: Blood – volume: 138 start-page: 1203 year: 2003 end-page: 1206 article-title: Collagen‐induced resistance to glucocorticoid anti‐mitogenic actions: a potential explanation of smooth muscle hyperplasia in the asthmatic remodelled airway publication-title: Br. J. Pharmacol. – volume: 120 start-page: 545 year: 1997 end-page: 546 article-title: Release of granulocyte‐macrophage colony stimulating factor by human cultured airway smooth muscle cells: suppression by dexamethasone publication-title: Br. J. Pharmacol. – volume: 25 start-page: 2727 year: 1995 end-page: 2731 article-title: Secretion of the eosinophil‐active cytokines interleukin‐5, granulocyte/macrophage colony‐stimulating factor and interleukin‐3 by bronchoalveolar lavage CD4+ and CD8+ T cell lines in atopic asthmatics, and atopic and non‐atopic controls publication-title: Eur. J. Immunol. – volume: 53 start-page: 414 year: 2001 end-page: 418 article-title: Rapid activation of p38 mitogen‐activated protein kinase by corticosterone in PC12 cells publication-title: Sheng Li Xue Bao – volume: 158 start-page: S201 year: 1998 end-page: S206 article-title: Airway smooth muscle as a target of glucocorticoid action in the treatment of asthma publication-title: Am. J. Respir. Crit. Care Med. – volume: 121 start-page: 361 year: 1997 end-page: 368 article-title: Beta 2‐adrenoceptor agonist‐mediated inhibition of human airway smooth muscle cell proliferation: importance of the duration of beta 2‐adrenoceptor stimulation publication-title: Br. J. Pharmacol. – volume: 145 start-page: 669 year: 1992 end-page: 674 article-title: Effect of an inhaled corticosteroid on airway inflammation and symptoms in asthma publication-title: Am. Rev. Respir. Dis. – volume: 131 start-page: 902 year: 1985 end-page: 906 article-title: Effect of corticosteroids on bronchial responsiveness to methacholine in asthmatic children publication-title: Am. Rev. Respir. Dis. – volume: 277 start-page: L932 year: 1999 end-page: L942 article-title: Glucocorticoids ablate IL‐1beta‐induced beta‐adrenergic hyporesponsiveness in human airway smooth muscle cells publication-title: Am. J. Physiol. – volume: 840 start-page: 735 year: 1998 end-page: 746 article-title: Mechanisms of glucocorticoid‐resistant asthma publication-title: Ann. NY Acad. Sci. – volume: 277 start-page: L65 year: 1999 end-page: L78 article-title: Phosphatidylinositol 3‐kinase mediates mitogen‐induced human airway smooth muscle cell proliferation publication-title: Am. J. Physiol. – volume: 138 start-page: 865 year: 2003 end-page: 875 article-title: Protease‐activated receptor (PAR)‐independent growth and pro‐inflammatory actions of thrombin on human cultured airway smooth muscle publication-title: Br. J. Pharmacol. – volume: 28 start-page: 330 year: 2003 end-page: 338 article-title: Bradykinin induces interleukin‐6 production in human airway smooth muscle cells: modulation by Th2 cytokines and dexamethasone publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 19 start-page: 1658 year: 1999 end-page: 1668 article-title: Granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) modulates the expression of type VIII collagen mRNA in vascular smooth muscle cells and both are codistributed during atherogenesis publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 5 start-page: 73 year: 1992 end-page: 79 article-title: Lung function and immunopathological changes after inhaled corticosteroid therapy in asthma publication-title: Eur. Respir. J. – volume: 22 start-page: 582 year: 2000 end-page: 589 article-title: Molecular regulation of granulocyte macrophage colony‐stimulating factor in human lung epithelial cells by interleukin (IL)‐1beta, IL‐4, and IL‐13 involves both transcriptional and post‐transcriptional mechanisms publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 11 start-page: 287 year: 1992 end-page: 292 article-title: Production of granulocyte/macrophage colony‐stimulating factor in human airways during allergen‐induced late‐phase reactions in atopic subjects publication-title: Lymphokine Cytokine Res. – volume: 164 start-page: 688 year: 2001 end-page: 697 article-title: Inhibitors of mitogen‐activated protein kinases differentially regulate eosinophil‐activating cytokine release from human airway smooth muscle publication-title: Am. J. Respir. Crit. Care Med. – volume: 155 start-page: 1240 year: 1995 end-page: 1251 article-title: Multiple signals are required for function of the human granulocyte‐macrophage colony‐stimulating factor gene promoter in T cells publication-title: J. Immunol. – volume: 139 start-page: 1228 year: 2003 end-page: 1234 article-title: Role of c‐jun N‐terminal kinase in the induced release of GM‐CSF, RANTES and IL‐8 from human airway smooth muscle cells publication-title: Br. J. Pharmacol. – volume: 132 start-page: 1010 year: 1985 end-page: 1014 article-title: Prednisone inhibits late asthmatic reactions and the associated increase in airway responsiveness induced by toluene‐diisocyanate in sensitized subjects publication-title: Am. Rev. Respir. Dis. – volume: 62 start-page: 1719 year: 2001 end-page: 1724 article-title: Effects of glucocorticoids on activation of c‐jun N‐terminal, extracellular signal‐regulated, and p38 MAP kinases in human pulmonary endothelial cells publication-title: Biochem. Pharmacol. – volume: 167 start-page: 302 year: 2001 end-page: 310 article-title: A NF‐kappa B/Sp1 region is essential for chromatin remodeling and correct transcription of a human granulocyte‐macrophage colony‐stimulating factor transgene publication-title: J. Immunol. – volume: 163 start-page: 2128 year: 1999 end-page: 2134 article-title: Up‐regulation of ICAM‐1 by cytokines in human tracheal smooth muscle cells involves an NF‐kappa B‐dependent signaling pathway that is only partially sensitive to dexamethasone publication-title: J. Immunol. – volume: 46 start-page: 659 year: 1986 end-page: 667 article-title: A conserved AU sequence from the 3′ untranslated region of GM‐CSF mRNA mediates selective mRNA degradation publication-title: Cell – volume: 111 start-page: 430 year: 2004 end-page: 434 article-title: Nuclear factor‐kappaB does not mediate the inhibitory effects of dexamethasone on granulocyte‐macrophage colony‐stimulating factor expression publication-title: Immunology – volume: 78 start-page: 1220 year: 1986 end-page: 1228 article-title: Recombinant human granulocyte‐macrophage colony‐stimulating factor stimulates mature human neutrophil and eosinophil function, surface receptor expression, and survival publication-title: J. Clin. Invest. – volume: 131 start-page: 17 year: 2000 end-page: 28 article-title: The importance of ERK activity in the regulation of cyclin D1 levels and DNA synthesis in human cultured airway smooth muscle publication-title: Br. J. Pharmacol. – volume: 145 start-page: 890 year: 1992 end-page: 899 article-title: Effects of treatment on airway inflammation and thickening of basement membrane reticular collagen in asthma. A quantitative light and electron microscopic study publication-title: Am. Rev. Respir. Dis. – volume: 161 start-page: 2509 year: 1998 end-page: 2515 article-title: Bradykinin stimulates IL‐8 production in cultured human airway smooth muscle cells: role of cyclooxygenase products publication-title: J. Immunol. – volume: 5 start-page: 73 year: 1992 ident: e_1_2_7_12_1 article-title: Lung function and immunopathological changes after inhaled corticosteroid therapy in asthma publication-title: Eur. Respir. J. doi: 10.1183/09031936.93.05010073 – ident: e_1_2_7_22_1 doi: 10.1164/ajrccm.162.3.9911099 – ident: e_1_2_7_3_1 doi: 10.1165/ajrcmb.26.4.4681 – ident: e_1_2_7_15_1 doi: 10.1164/ajrccm/145.3.669 – ident: e_1_2_7_50_1 doi: 10.1074/jbc.M212992200 – ident: e_1_2_7_52_1 doi: 10.1182/blood.V79.1.45.45 – ident: e_1_2_7_21_1 doi: 10.1164/ajrccm.164.4.2011004 – ident: e_1_2_7_9_1 doi: 10.1038/sj.bjp.0705135 – ident: e_1_2_7_44_1 doi: 10.1038/sj.bjp.0703454 – volume: 109 start-page: 190 year: 1997 ident: e_1_2_7_57_1 article-title: Thrombin and trypsin induce granulocyte‐macrophage colony‐stimulating factor and interleukin‐6 gene expression in cultured normal human keratinocytes publication-title: Proc. Assoc. Am. Physicians – ident: e_1_2_7_42_1 doi: 10.1016/S0006-2952(01)00791-2 – ident: e_1_2_7_41_1 doi: 10.1165/rcmb.2002-0074OC – ident: e_1_2_7_47_1 doi: 10.1152/ajplung.00409.2002 – ident: e_1_2_7_51_1 doi: 10.1002/eji.1830251002 – ident: e_1_2_7_28_1 doi: 10.1164/ajrccm.157.1.9703079 – ident: e_1_2_7_31_1 doi: 10.1016/S0091-6749(06)80008-4 – ident: e_1_2_7_6_1 doi: 10.1165/ajrcmb.22.5.3889 – ident: e_1_2_7_24_1 doi: 10.1164/ajrccm.158.supplement_2.13tac190 – ident: e_1_2_7_37_1 doi: 10.1152/ajplung.1999.277.5.L932 – ident: e_1_2_7_55_1 doi: 10.1210/mend.11.9.9979 – ident: e_1_2_7_11_1 doi: 10.1016/0091-6749(92)90218-Q – volume: 161 start-page: 2509 year: 1998 ident: e_1_2_7_39_1 article-title: Bradykinin stimulates IL‐8 production in cultured human airway smooth muscle cells: role of cyclooxygenase products publication-title: J. Immunol. doi: 10.4049/jimmunol.161.5.2509 – ident: e_1_2_7_59_1 doi: 10.1074/jbc.M301785200 – volume: 275 start-page: L372 year: 1998 ident: e_1_2_7_2_1 article-title: Glucocorticoid regulation of GM‐CSF: evidence for transcriptional mechanisms in airway epithelial cells publication-title: Am. J. Physiol. – volume: 132 start-page: 1010 year: 1985 ident: e_1_2_7_17_1 article-title: Prednisone inhibits late asthmatic reactions and the associated increase in airway responsiveness induced by toluene‐diisocyanate in sensitized subjects publication-title: Am. Rev. Respir. Dis. – ident: e_1_2_7_54_1 doi: 10.1165/ajrcmb/1.4.289 – ident: e_1_2_7_26_1 doi: 10.1164/ajrccm/145.4_Pt_1.890 – ident: e_1_2_7_45_1 doi: 10.1038/sj.bjp.0700998 – ident: e_1_2_7_13_1 doi: 10.4049/jimmunol.167.1.302 – ident: e_1_2_7_38_1 doi: 10.1038/sj.bjp.0705345 – ident: e_1_2_7_23_1 doi: 10.1002/j.1460-2075.1994.tb06726.x – ident: e_1_2_7_53_1 doi: 10.1038/sj.bjp.0705106 – ident: e_1_2_7_58_1 doi: 10.1074/jbc.271.37.22570 – volume: 53 start-page: 414 year: 2001 ident: e_1_2_7_33_1 article-title: Rapid activation of p38 mitogen‐activated protein kinase by corticosterone in PC12 cells publication-title: Sheng Li Xue Bao – ident: e_1_2_7_35_1 doi: 10.1016/0091-6749(91)90125-8 – ident: e_1_2_7_34_1 doi: 10.1172/JCI112705 – ident: e_1_2_7_25_1 doi: 10.1165/rcmb.2002-0040OC – ident: e_1_2_7_46_1 doi: 10.1016/0092-8674(86)90341-7 – ident: e_1_2_7_7_1 doi: 10.1111/j.0019-2805.2004.01833.x – ident: e_1_2_7_16_1 doi: 10.1073/pnas.92.17.7686 – ident: e_1_2_7_49_1 doi: 10.1093/rheumatology/keh014 – ident: e_1_2_7_14_1 doi: 10.1016/0014-5793(95)00357-F – ident: e_1_2_7_18_1 doi: 10.1165/ajrcmb.21.1.3396 – volume: 131 start-page: 902 year: 1985 ident: e_1_2_7_8_1 article-title: Effect of corticosteroids on bronchial responsiveness to methacholine in asthmatic children publication-title: Am. Rev. Respir. Dis. – ident: e_1_2_7_20_1 doi: 10.1016/j.jneumeth.2003.09.005 – volume: 163 start-page: 2128 year: 1999 ident: e_1_2_7_4_1 article-title: Up‐regulation of ICAM‐1 by cytokines in human tracheal smooth muscle cells involves an NF‐kappa B‐dependent signaling pathway that is only partially sensitive to dexamethasone publication-title: J. Immunol. doi: 10.4049/jimmunol.163.4.2128 – ident: e_1_2_7_5_1 doi: 10.1016/S0091-6749(98)70268-4 – ident: e_1_2_7_36_1 doi: 10.1038/sj.bjp.0703684 – ident: e_1_2_7_48_1 doi: 10.1038/sj.bjp.0701128 – ident: e_1_2_7_56_1 doi: 10.1067/mai.2001.114245 – ident: e_1_2_7_40_1 doi: 10.1096/fj.00-0103com – volume: 155 start-page: 1240 year: 1995 ident: e_1_2_7_27_1 article-title: Multiple signals are required for function of the human granulocyte‐macrophage colony‐stimulating factor gene promoter in T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.155.3.1240 – ident: e_1_2_7_10_1 doi: 10.1172/JCI115366 – ident: e_1_2_7_19_1 doi: 10.1038/sj.bjp.0705809 – ident: e_1_2_7_30_1 doi: 10.1152/ajplung.1999.277.1.L65 – volume: 11 start-page: 287 year: 1992 ident: e_1_2_7_29_1 article-title: Production of granulocyte/macrophage colony‐stimulating factor in human airways during allergen‐induced late‐phase reactions in atopic subjects publication-title: Lymphokine Cytokine Res. – ident: e_1_2_7_32_1 doi: 10.1111/j.1749-6632.1998.tb09612.x – ident: e_1_2_7_43_1 doi: 10.1161/01.ATV.19.7.1658 – reference: 1554218 - Am Rev Respir Dis. 1992 Apr;145(4 Pt 1):890-9 – reference: 11755126 - Biochem Pharmacol. 2001 Dec 15;62(12):1719-24 – reference: 9725250 - J Immunol. 1998 Sep 1;161(5):2509-15 – reference: 2013675 - J Allergy Clin Immunol. 1991 Apr;87(4):794-802 – reference: 1885766 - J Clin Invest. 1991 Sep;88(3):1048-53 – reference: 10783130 - Am J Respir Cell Mol Biol. 2000 May;22(5):582-9 – reference: 1374772 - J Allergy Clin Immunol. 1992 May;89(5):958-67 – reference: 14687679 - J Neurosci Methods. 2004 Jan 15;132(1):101-7 – reference: 10397683 - Arterioscler Thromb Vasc Biol. 1999 Jul;19(7):1658-68 – reference: 11520738 - Am J Respir Crit Care Med. 2001 Aug 15;164(4):688-97 – reference: 7644477 - Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686-9 – reference: 11082122 - Br J Pharmacol. 2000 Nov;131(6):1143-53 – reference: 9445307 - Am J Respir Crit Care Med. 1998 Jan;157(1):256-62 – reference: 8798425 - J Biol Chem. 1996 Sep 13;271(37):22570-7 – reference: 9259316 - Mol Endocrinol. 1997 Aug;11(9):1245-55 – reference: 10960064 - Br J Pharmacol. 2000 Sep;131(1):17-28 – reference: 8076604 - EMBO J. 1994 Sep 1;13(17):4087-95 – reference: 12594059 - Am J Respir Cell Mol Biol. 2003 Mar;28(3):330-8 – reference: 12748173 - J Biol Chem. 2003 Aug 1;278(31):29366-75 – reference: 9069588 - Proc Assoc Am Physicians. 1997 Mar;109(2):190-207 – reference: 11418664 - J Immunol. 2001 Jul 1;167(1):302-10 – reference: 1370208 - Blood. 1992 Jan 1;79(1):45-51 – reference: 1577153 - Eur Respir J. 1992 Jan;5(1):73-9 – reference: 11930217 - Sheng Li Xue Bao. 2001 Dec;53(6):414-8 – reference: 13130151 - Rheumatology (Oxford). 2004 Feb;43(2):164-9 – reference: 9802359 - J Allergy Clin Immunol. 1998 Oct;102(4 Pt 1):531-8 – reference: 10988133 - Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):1075-80 – reference: 12556523 - J Biol Chem. 2003 Apr 4;278(14):12085-93 – reference: 9700099 - Am J Physiol. 1998 Aug;275(2 Pt 1):L372-8 – reference: 10438953 - J Immunol. 1999 Aug 15;163(4):2128-34 – reference: 1629507 - J Allergy Clin Immunol. 1992 Jul;90(1):32-42 – reference: 1477181 - Lymphokine Cytokine Res. 1992 Dec;11(6):287-92 – reference: 9179374 - Br J Pharmacol. 1997 Jun;121(3):361-8 – reference: 15249425 - Br J Pharmacol. 2004 Aug;142(7):1182-90 – reference: 11149914 - FASEB J. 2001 Jan;15(1):261-269 – reference: 10409232 - Am J Physiol. 1999 Jul;277(1 Pt 1):L65-78 – reference: 9051287 - Br J Pharmacol. 1997 Feb;120(4):545-6 – reference: 3488815 - Cell. 1986 Aug 29;46(5):659-67 – reference: 9817746 - Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 3):S201-6 – reference: 2998242 - Am Rev Respir Dis. 1985 Nov;132(5):1010-4 – reference: 3890642 - Am Rev Respir Dis. 1985 Jun;131(6):902-6 – reference: 12600835 - Am J Respir Cell Mol Biol. 2003 Jul;29(1):12-8 – reference: 9629300 - Ann N Y Acad Sci. 1998 May 1;840:735-46 – reference: 7750577 - FEBS Lett. 1995 May 8;364(2):229-33 – reference: 12642388 - Br J Pharmacol. 2003 Mar;138(5):865-75 – reference: 7589063 - Eur J Immunol. 1995 Oct;25(10):2727-31 – reference: 3021817 - J Clin Invest. 1986 Nov;78(5):1220-8 – reference: 12711618 - Br J Pharmacol. 2003 Apr;138(7):1203-6 – reference: 12871860 - Am J Physiol Lung Cell Mol Physiol. 2003 Nov;285(5):L1087-98 – reference: 11919083 - Am J Respir Cell Mol Biol. 2002 Apr;26(4):465-74 – reference: 1546849 - Am Rev Respir Dis. 1992 Mar;145(3):669-74 – reference: 12871843 - Br J Pharmacol. 2003 Jul;139(6):1228-34 – reference: 15056380 - Immunology. 2004 Apr;111(4):430-4 – reference: 10564178 - Am J Physiol. 1999 Nov;277(5 Pt 1):L932-42 – reference: 11295658 - J Allergy Clin Immunol. 2001 Apr;107(4):679-85 – reference: 7636192 - J Immunol. 1995 Aug 1;155(3):1240-51 – reference: 10385595 - Am J Respir Cell Mol Biol. 1999 Jul;21(1):77-88 – reference: 2696516 - Am J Respir Cell Mol Biol. 1989 Oct;1(4):289-95 |
SSID | ssj0014775 |
Score | 1.9422966 |
Snippet | 1
For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and... For a subpopulation of asthmatics, symptoms persist even with high doses of glucocorticoids. Glucocorticoids reduce the levels of the proinflammatory and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 123 |
SubjectTerms | airway smooth muscle Androstadienes - pharmacology Biological and medical sciences Cells, Cultured Dexamethasone - pharmacology Fluticasone Gene Expression - drug effects glucocorticoids Glucocorticoids - pharmacology Granulocyte-Macrophage Colony-Stimulating Factor - biosynthesis Humans Hydrocortisone - pharmacology Interleukin-1 - physiology interleukin‐1α Medical sciences mRNA stability Muscle, Smooth - drug effects Muscle, Smooth - metabolism p38 Mitogen-Activated Protein Kinases - antagonists & inhibitors p38MAPK Pharmacology. Drug treatments Phosphatidylinositol 3-Kinases - antagonists & inhibitors Respiratory System - cytology Respiratory System - drug effects Respiratory System - metabolism RNA, Messenger - metabolism thrombin Thrombin - physiology |
Title | Stimulus‐dependent glucocorticoid‐resistance of GM‐CSF production in human cultured airway smooth muscle |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fsj.bjp.0706174 https://www.ncbi.nlm.nih.gov/pubmed/15735656 https://www.proquest.com/docview/217206609 https://www.proquest.com/docview/67790592 https://pubmed.ncbi.nlm.nih.gov/PMC1576125 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba9swFBZb-zIYY93V7ZrpYXQvUeu7rKexlqZh0BLWFvJmZFmiDo3tVjEj_35H8iULuz0GH4fY35HPd6Lj70PoE-UBl4ArCUUcklAxShiT0KrkUUIVUz7zzbvDl1fx9Db8No_m3WyO7sYq-2eifVDnlTD_kZ8YIyUojy77Uj8QYxplNlc7B42naNcDImKcG-h86Le8kNLWwMDoIHpJ0ms2BsmJXhxni_oY8h0qeLhVk57XXMPtUa2vxZ-I5-_zk7_yWluYJi_Ri45R4q9tCuyhJ7J8hY5mrST1eoxvNm9Y6TE-wrONWPX6Nbq7XhXL5r7RpLfDXWE7xg5dKZxRFTmBhtyQTMgOXCl8cUnOrie4bpViAVVclNg6_eFWxUPmmBePP_ga62UFeYCXjYYf9gbdTs5vzqakc18gIoQmjGQyAy4B4EGXltM4VyL2mauo8pTMmccTxhWUtowGQeTmyo0hWAQR4C4CyUQUvEU7ZVXK9wizTAAWfuxzFYfCzblQkmXAdYyeHmWRg0h__1PRSZMbh4z71G6RB0mqFynglXZ4OejzEF-3ohx_jRxtwbkJj6mRSoOAgx7ftFu9Oh1yzUEfh6Ow7MxeCi9l1eg0NjqNEfMd9K7Nhc03RzQwLNlBdCtLhgAj6L19pCzurLA3nGoIp4PGNp_-c23p6WwK5JDt__MSDtAzqzZrZzQ_oJ3VYyMPgUetspFdLSO0e3p-NfsOny7m3k-kKCF8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V6QEkhHizFFofoFziNtmX14cK0dKQ0iaKaCv1tni9tpqo2Q1xoio_jv_GeB8JEa9Tzzu7snfGnm_8-D6At0x4QqFfqS9Dn_qaM8q5wlIlDSKmuXa5a-8O9_ph99L_chVcbcCP-i6MPVZZz4nFRJ3m0q6R71shJUyPLf5h8p1a0Si7uVoraIhKWSE9KBjGqnsdp2pxixWcOTj5hO5-57qd44ujLq1EBqj0sdagiUowZWIbsRhJWZhqGbq8pZlua5Xytoi40DiDJ8zzglaqWyEaSy_A7klPcWlFIzADbPp2_aQBm4fH_cHX5TaGz1gpoWCZGNtRVLNGetG-Ge0lo8kejjjEEP5aVnwwEQYdpEtljT9B399PcP6KrIvU2HkEDytMSz6WQfgYNlT2BHYHJSn2okkuVne8TJPsksGKLnvxFK7PZ8Px_GZuaC3IOyPFQXqsi_GNfJjSqTIW5mJ8klyTzz16dN4hk5KrFuOKDDNSaA2SkkdEpUQMp7diQcw4x0gk47nBhj2DyztxzXNoZHmmXgLhiURfuKErdOjLViqkVjxBtGUZ_RgPHKD1_49lRY5uNTpu4mKT3otiM4rRX3HlLwfeL-0nJS3IXy2319y5Mg-ZJWtDg63av3E1f5h4Ge0O7Cyf4sC3uzkiU_ncxKFligy468CLMhZWXw6YZ3G6A2wtSpYGllJ8_Uk2vC6oxfFVC3kdaBbx9J--xYeDLsJT_uqfXdiBe92L3ll8dtI_3YL7BfdtcWL0NTRm07l6g6hulmxXY4fAt7serj8Bw0xiDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimulus-dependent+glucocorticoid-resistance+of+GM-CSF+production+in+human+cultured+airway+smooth+muscle&rft.jtitle=British+journal+of+pharmacology&rft.au=Tran%2C+Thai&rft.au=Fernandes%2C+Darren+J&rft.au=Schuliga%2C+Michael&rft.au=Harris%2C+Trudi&rft.date=2005-05-01&rft.issn=0007-1188&rft.volume=145&rft.issue=1&rft.spage=123&rft_id=info:doi/10.1038%2Fsj.bjp.0706174&rft_id=info%3Apmid%2F15735656&rft.externalDocID=15735656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |