Lack of interleukin-13 receptor α1 delays the loss of dopaminergic neurons during chronic stress

Background The majority of Parkinson’s disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD....

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroinflammation Vol. 14; no. 1; pp. 88 - 10
Main Authors Mori, Simone, Sugama, Shuei, Nguyen, William, Michel, Tatiana, Sanna, M. Germana, Sanchez-Alavez, Manuel, Cintron-Colon, Rigo, Moroncini, Gianluca, Kakinuma, Yoshihiko, Maher, Pamela, Conti, Bruno
Format Journal Article
LanguageEnglish
Published London BioMed Central 21.04.2017
BMC
Subjects
Online AccessGet full text
ISSN1742-2094
1742-2094
DOI10.1186/s12974-017-0862-1

Cover

Abstract Background The majority of Parkinson’s disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Rα1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons. Methods Mice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Rα1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Rα1 knock-out animals ( Il13ra1 Y/ − ) and their wild-type littermates ( Il13ra1 Y/+ ) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week non-stressed period and compared to non-stressed mice. Results IL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in Il13ra1 Y/+ mice. Neuronal loss at 16 weeks was significantly lower in Il13ra1 Y /− mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in Il13ra1 Y/+ and Il13ra1 Y /− mice. Conclusions IL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Rα1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Rα1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress.
AbstractList Background The majority of Parkinson’s disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Rα1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons. Methods Mice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Rα1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Rα1 knock-out animals ( Il13ra1 Y/ − ) and their wild-type littermates ( Il13ra1 Y/+ ) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week non-stressed period and compared to non-stressed mice. Results IL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in Il13ra1 Y/+ mice. Neuronal loss at 16 weeks was significantly lower in Il13ra1 Y /− mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in Il13ra1 Y/+ and Il13ra1 Y /− mice. Conclusions IL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Rα1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Rα1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress.
The majority of Parkinson's disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Rα1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons. Mice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Rα1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Rα1 knock-out animals (Il13ra1 ) and their wild-type littermates (Il13ra1 ) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week non-stressed period and compared to non-stressed mice. IL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in Il13ra1 mice. Neuronal loss at 16 weeks was significantly lower in Il13ra1 mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in Il13ra1 and Il13ra1 mice. IL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Rα1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Rα1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress.
The majority of Parkinson's disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Rα1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons.BACKGROUNDThe majority of Parkinson's disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Rα1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons.Mice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Rα1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Rα1 knock-out animals (Il13ra1 Y/ - ) and their wild-type littermates (Il13ra1 Y/+ ) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week non-stressed period and compared to non-stressed mice.METHODSMice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Rα1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Rα1 knock-out animals (Il13ra1 Y/ - ) and their wild-type littermates (Il13ra1 Y/+ ) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week non-stressed period and compared to non-stressed mice.IL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in Il13ra1 Y/+ mice. Neuronal loss at 16 weeks was significantly lower in Il13ra1 Y/- mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in Il13ra1 Y/+ and Il13ra1 Y/- mice.RESULTSIL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in Il13ra1 Y/+ mice. Neuronal loss at 16 weeks was significantly lower in Il13ra1 Y/- mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in Il13ra1 Y/+ and Il13ra1 Y/- mice.IL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Rα1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Rα1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress.CONCLUSIONSIL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Rα1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Rα1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress.
Abstract Background The majority of Parkinson’s disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental and genetic factors. Stress and neuroinflammation are among the factors being investigated for their possible contributions to PD. Experiments in rodents showed that severe chronic stress can reduce the number of dopaminergic neurons in the substantia nigra pars compacta (SNc); the same cells that are lost in PD. These actions are at least in part mediated by increased oxidative stress. Here, we tested the hypothesis that the interleukin-13 receptor alpha 1 (IL-13Rα1), a cytokine receptor whose activation increases the vulnerability of dopaminergic neurons to oxidative damage, participates in the stress-dependent damage of these neurons. Methods Mice were subject to daily sessions of 8 h (acute) stress for 16 weeks (5 days a week), a procedure previously showed to induce loss of dopaminergic neurons in the SNc. The source and the kinetics of interleukin-13 (IL-13), the endogenous ligand of IL-13Rα1, were evaluated 0, 1, 3, 6, and 8 h and at 16 weeks of stress. Identification of IL-13 producing cell-type was performed by immunofluorescent and by in situ hybridization experiments. Markers of oxidative stress, microglia activation, and the number of dopaminergic neurons in IL-13Rα1 knock-out animals (Il13ra1 Y/ − ) and their wild-type littermates (Il13ra1 Y/+ ) were evaluated at 16 weeks of stress and at 20 weeks, following a 4 week non-stressed period and compared to non-stressed mice. Results IL-13 was expressed in microglial cells within the SN and in a fraction of the tyrosine hydroxylase-positive neurons in the SNc. IL-13 levels were elevated during daily stress and peaked at 6 h. 16 weeks of chronic restraint stress significantly reduced the number of SNc dopaminergic neurons in Il13ra1 Y/+ mice. Neuronal loss at 16 weeks was significantly lower in Il13ra1 Y/− mice. However, the loss of dopaminergic neurons measured at 20 weeks, after 4 weeks of non-stress following the 16 weeks of stress, was similar in Il13ra1 Y/+ and Il13ra1 Y/− mice. Conclusions IL-13, a cytokine previously demonstrated to increase the susceptibility of SNc dopaminergic neurons to oxidative stress, is elevated in the SN by restraint stress. Lack of IL-13Rα1 did not prevent nor halted but delayed neuronal loss in the mouse model of chronic restraint stress. IL-13/IL-13Rα1 may represent a target to reduce the rate of DA neuronal loss that can occur during severe chronic restraint stress.
ArticleNumber 88
Author Sanchez-Alavez, Manuel
Cintron-Colon, Rigo
Conti, Bruno
Sanna, M. Germana
Michel, Tatiana
Sugama, Shuei
Nguyen, William
Mori, Simone
Kakinuma, Yoshihiko
Moroncini, Gianluca
Maher, Pamela
Author_xml – sequence: 1
  givenname: Simone
  surname: Mori
  fullname: Mori, Simone
  organization: Department of Molecular Medicine, The Scripps Research Institute
– sequence: 2
  givenname: Shuei
  surname: Sugama
  fullname: Sugama, Shuei
  organization: Department of Physiology, Nippon Medical School
– sequence: 3
  givenname: William
  surname: Nguyen
  fullname: Nguyen, William
  organization: Department of Molecular Medicine, The Scripps Research Institute
– sequence: 4
  givenname: Tatiana
  surname: Michel
  fullname: Michel, Tatiana
  organization: Department of Molecular Medicine, The Scripps Research Institute, Department of Infection and Immunity, Luxembourg Institute of Health
– sequence: 5
  givenname: M. Germana
  surname: Sanna
  fullname: Sanna, M. Germana
  organization: Department of Molecular Medicine, The Scripps Research Institute
– sequence: 6
  givenname: Manuel
  surname: Sanchez-Alavez
  fullname: Sanchez-Alavez, Manuel
  organization: Department of Neuroscience, The Scripps Research Institute
– sequence: 7
  givenname: Rigo
  surname: Cintron-Colon
  fullname: Cintron-Colon, Rigo
  organization: Department of Molecular Medicine, The Scripps Research Institute
– sequence: 8
  givenname: Gianluca
  surname: Moroncini
  fullname: Moroncini, Gianluca
  organization: Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche
– sequence: 9
  givenname: Yoshihiko
  surname: Kakinuma
  fullname: Kakinuma, Yoshihiko
  organization: Department of Physiology, Nippon Medical School
– sequence: 10
  givenname: Pamela
  surname: Maher
  fullname: Maher, Pamela
  organization: Cellular Neurobiology Laboratory, Salk Institute for Biological Studies
– sequence: 11
  givenname: Bruno
  orcidid: 0000-0002-9185-5201
  surname: Conti
  fullname: Conti, Bruno
  email: bconti@scripps.edu
  organization: Department of Molecular Medicine, The Scripps Research Institute, Department of Neuroscience, The Scripps Research Institute, Dorris Neuroscience Center, The Scripps Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28427412$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVARfcAHsEFesgn4OnYcb5BQxaPSSGxgbTnOzYynGXuwE6R-Vn-Eb8IhpWpZdOXj63POtX3POTkJMSAhr4G9A2ib9xm4VqJioCrWNryCZ-QMlOAVZ1qcPMCn5DznPWM1lw1_QU55K7gSwM-I3Vh3TeNAfZgwjThf-1BBTRM6PE4x0d-3QHsc7U2m0w7pGHNe6H082oMPmLbe0YBziiHTfk4-bKnblV0p5ylhzi_J88GOGV_drRfkx-dP3y-_VptvX64uP24qJ1oNFUeNvQAGrnF9x7peIxMchV2QY7XrlJASZc8L4KAkEy1j0GipmNB1XV-Qq9W3j3ZvjskfbLox0XrztxDT1tg0eTeikVoyKy0AYCPEUHdcDBp107nODgqG4vVh9TrO3QF7h2FKdnxk-vgk-J3Zxl9G1lrXQhSDt3cGKf6cMU_m4LPDcbQB45wNlCcDbxXIQn3zsNd9k38zKgRYCS6Vz0843FOAmSUHZs2BKTkwSw4MFI36T-P8ZCcfl-v68UklX5X5uAwTk9nHOYUyuSdEfwBCyseg
CitedBy_id crossref_primary_10_2147_JIR_S374060
crossref_primary_10_1016_j_bbi_2020_04_007
crossref_primary_10_1016_j_yhbeh_2020_104741
crossref_primary_10_1038_s12276_021_00660_5
crossref_primary_10_5607_en_2018_27_4_309
crossref_primary_10_1186_s13075_020_02270_4
crossref_primary_10_1038_s41467_023_35806_8
crossref_primary_10_1016_j_neuint_2021_104987
crossref_primary_10_1016_j_jadr_2021_100254
crossref_primary_10_4049_jimmunol_1900909
crossref_primary_10_5607_en21032
crossref_primary_10_1038_s41419_024_07252_x
crossref_primary_10_1186_s12974_024_03128_1
crossref_primary_10_1016_j_bbi_2019_06_019
crossref_primary_10_3390_brainsci9090228
crossref_primary_10_1016_j_neuint_2022_105302
crossref_primary_10_1016_j_cyto_2017_09_018
crossref_primary_10_1007_s00018_024_05402_0
crossref_primary_10_1111_pcn_12901
crossref_primary_10_1111_acer_14209
crossref_primary_10_1016_j_intimp_2021_107526
crossref_primary_10_2174_1568026619666191127122452
crossref_primary_10_15789_1563_0625_EOR_2935
crossref_primary_10_3390_cells13100882
crossref_primary_10_21638_spbu03_2024_301
crossref_primary_10_37871_jbres1408
Cites_doi 10.1016/j.expneurol.2011.09.035
10.3109/10253899609001092
10.1006/nbdi.1995.0012
10.1016/j.neuroscience.2007.02.043
10.1016/j.bbi.2015.10.003
10.1371/journal.pone.0058488
10.4049/jimmunol.1102150
10.1016/j.brainres.2007.05.010
10.1016/S0140-6736(80)90015-X
10.1016/S0031-9384(02)00939-3
10.1016/j.jneuroim.2008.11.007
10.1016/j.jns.2010.06.004
10.1126/science.1132191
10.1016/j.nbd.2009.11.004
10.1016/0006-8993(92)91597-8
10.1038/mp.2013.108
10.1016/j.bbr.2009.07.005
10.4049/jimmunol.1601546
10.1111/j.1471-4159.2010.07083.x
10.1523/JNEUROSCI.10-09-02897.1990
10.1016/j.jneuroim.2010.11.002
10.1007/s11064-004-9691-6
10.1186/1742-2094-11-34
10.1523/JNEUROSCI.1685-15.2015
10.1093/cercor/bhr229
10.1523/JNEUROSCI.20-04-01568.2000
10.1111/j.1460-9568.2008.06177.x
10.1038/ni1544
10.1016/j.neures.2016.04.008
10.1186/1742-2094-9-71
10.1007/s11064-009-0026-5
10.1016/j.bbi.2015.08.015
10.1016/j.bbi.2016.10.001
10.1620/tjem.221.237
10.1016/S1474-4422(06)70471-9
10.3389/fphys.2015.00006
10.1093/bmb/ldn013
10.1016/j.brainresbull.2005.02.026
10.1016/j.bbi.2010.02.001
10.1002/ana.410240415
10.3390/brainsci6020018
10.1038/mp.2013.155
10.1016/S0306-4522(97)00424-7
10.1016/j.cell.2010.02.016
ContentType Journal Article
Copyright The Author(s). 2017
Copyright_xml – notice: The Author(s). 2017
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s12974-017-0862-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ - The Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1742-2094
EndPage 10
ExternalDocumentID oai_doaj_org_article_5950a5a111e644f3b24f9e96bcbaf71f
PMC5399344
28427412
10_1186_s12974_017_0862_1
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Michael J. Fox Foundation for Parkinson's Research
  funderid: http://dx.doi.org/10.13039/100000864
– fundername: National Institutes of Health
  grantid: NS085155
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NINDS NIH HHS
  grantid: R01 NS085155
– fundername: ;
– fundername: ;
  grantid: NS085155
GroupedDBID ---
0R~
29L
2WC
53G
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4891-2e9ed4101c6cdb0bd9e042e4abd9ec03cb7455e5d2b7421750480016957049333
IEDL.DBID M48
ISSN 1742-2094
IngestDate Wed Aug 27 01:27:18 EDT 2025
Thu Aug 21 18:28:45 EDT 2025
Fri Sep 05 06:59:17 EDT 2025
Thu Apr 03 06:57:54 EDT 2025
Thu Apr 24 22:53:10 EDT 2025
Tue Jul 01 02:54:27 EDT 2025
Sat Sep 06 07:29:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Oxidative stress
Neuroinflammation
Interleukin
Stress
Parkinson’s disease
Microglia
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4891-2e9ed4101c6cdb0bd9e042e4abd9ec03cb7455e5d2b7421750480016957049333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9185-5201
OpenAccessLink https://doi.org/10.1186/s12974-017-0862-1
PMID 28427412
PQID 1891128715
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_5950a5a111e644f3b24f9e96bcbaf71f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5399344
proquest_miscellaneous_1891128715
pubmed_primary_28427412
crossref_primary_10_1186_s12974_017_0862_1
crossref_citationtrail_10_1186_s12974_017_0862_1
springer_journals_10_1186_s12974_017_0862_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170421
PublicationDateYYYYMMDD 2017-04-21
PublicationDate_xml – month: 4
  year: 2017
  text: 20170421
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of neuroinflammation
PublicationTitleAbbrev J Neuroinflammation
PublicationTitleAlternate J Neuroinflammation
PublicationYear 2017
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References BE Morrison (862_CR26) 2012; 189
JL Bollinger (862_CR37) 2016; 52
CA Davie (862_CR2) 2008; 86
N Rasheed (862_CR38) 2010; 35
S Sugama (862_CR11) 2016; 51
M Hinwood (862_CR16) 2012; 22
LK Smith (862_CR9) 2008; 27
RM de Pablos (862_CR13) 2014; 11
A Kojo (862_CR20) 2010; 221
Y Diz-Chaves (862_CR19) 2012; 9
JL Voorhees (862_CR43) 2013; 8
PL Mcgeer (862_CR22) 1988; 24
S Monteiro (862_CR41) 2015; 6
RM Sapolsky (862_CR4) 1990; 10
TR Ramalingam (862_CR28) 2008; 9
JT Yu (862_CR31) 2010; 296
LM de Lau (862_CR1) 2006; 5
FU Fontella (862_CR35) 2005; 30
TM Brombacher (862_CR33) 2017; 198
AM Hemmerle (862_CR12) 2014; 19
RJ Tynan (862_CR17) 2010; 24
FU Fontella (862_CR34) 2005; 65
L Bardin (862_CR42) 2009; 205
MG Tansey (862_CR25) 2010; 37
BT Volpe (862_CR29) 1995; 2
AD Smith (862_CR8) 2002; 77
S Sugama (862_CR10) 2016; 111
S Sugama (862_CR15) 2007; 146
M Sanchez-Alavez (862_CR5) 2007; 1158
K Mizoguchi (862_CR39) 2000; 20
S Mori (862_CR27) 2016; 6
BT Volpe (862_CR30) 1998; 83
RM Sapolsky (862_CR3) 1996; 1
BG Perez Nievas (862_CR23) 2011; 116
FB Gibberd (862_CR6) 1980; 2
CK Glass (862_CR24) 2010; 140
Y Watanabe (862_CR40) 1992; 588
LK Ong (862_CR14) 2017; 60
X Zhao (862_CR32) 2015; 35
T Kreisel (862_CR36) 2014; 19
B Conti (862_CR44) 2006; 314
AM Hemmerle (862_CR7) 2012; 233
S Sugama (862_CR21) 2011; 233
862_CR18
20581431 - Tohoku J Exp Med. 2010 Jul;221(3):237-43
17433555 - Neuroscience. 2007 May 25;146(3):1388-99
18412632 - Eur J Neurosci. 2008 Apr;27(8):2133-46
23999522 - Mol Psychiatry. 2014 Jun;19(6):638-40
26269636 - J Neurosci. 2015 Aug 12;35(32):11281-91
9483558 - Neuroscience. 1998 Apr;83(3):741-8
22001159 - Exp Neurol. 2012 Jan;233(1):79-86
19616033 - Behav Brain Res. 2009 Dec 28;205(2):360-6
15756938 - Neurochem Res. 2005 Jan;30(1):105-11
17570349 - Brain Res. 2007 Jul 16;1158:71-80
25698978 - Front Psychiatry. 2015 Feb 02;6:6
21044080 - J Neurochem. 2011 Jan;116(1):43-52
17082459 - Science. 2006 Nov 3;314(5800):825-8
27717686 - Brain Behav Immun. 2017 Feb;60:117-125
26291405 - Brain Behav Immun. 2016 Jan;51:39-46
27142317 - Neurosci Res. 2016 Oct;111:48-55
27304970 - Brain Sci. 2016 Jun 13;6(2):null
26441134 - Brain Behav Immun. 2016 Feb;52:88-97
19913097 - Neurobiol Dis. 2010 Mar;37(3):510-8
16713924 - Lancet Neurol. 2006 Jun;5(6):525-35
23169588 - J Immunol. 2012 Dec 15;189(12):5498-502
3239957 - Ann Neurol. 1988 Oct;24(4):574-6
15833599 - Brain Res Bull. 2005 May 15;65(5):443-50
23520517 - PLoS One. 2013;8(3):e58488
19568932 - Neurochem Res. 2010 Jan;35(1):22-32
20580380 - J Neurol Sci. 2010 Sep 15;296(1-2):69-78
28202615 - J Immunol. 2017 Apr 1;198(7):2681-2688
18398010 - Br Med Bull. 2008;86:109-27
1393587 - Brain Res. 1992 Aug 21;588(2):341-5
21115202 - J Neuroimmunol. 2011 Apr;233(1-2):29-36
8980015 - Neurobiol Dis. 1995 Apr;2(2):119-27
2398367 - J Neurosci. 1990 Sep;10(9):2897-902
19111355 - J Neuroimmunol. 2009 Feb 15;207(1-2):24-31
12526994 - Physiol Behav. 2002 Dec;77(4-5):527-31
20153418 - Brain Behav Immun. 2010 Oct;24(7):1058-68
20303880 - Cell. 2010 Mar 19;140(6):918-34
10662846 - J Neurosci. 2000 Feb 15;20(4):1568-74
24565378 - J Neuroinflammation. 2014 Feb 24;11:34
6105303 - Lancet. 1980 Jul 19;2(8186):135-7
21878486 - Cereb Cortex. 2012 Jun;22(6):1442-54
22520439 - J Neuroinflammation. 2012 Apr 20;9:71
18066066 - Nat Immunol. 2008 Jan;9(1):25-33
9807058 - Stress. 1996 Jul;1(1):1-19
24342992 - Mol Psychiatry. 2014 Jun;19(6):699-709
References_xml – volume: 233
  start-page: 79
  year: 2012
  ident: 862_CR7
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2011.09.035
– volume: 1
  start-page: 1
  year: 1996
  ident: 862_CR3
  publication-title: Stress
  doi: 10.3109/10253899609001092
– volume: 2
  start-page: 119
  year: 1995
  ident: 862_CR29
  publication-title: Neurobiol Dis
  doi: 10.1006/nbdi.1995.0012
– volume: 146
  start-page: 1388
  year: 2007
  ident: 862_CR15
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2007.02.043
– volume: 52
  start-page: 88
  year: 2016
  ident: 862_CR37
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2015.10.003
– volume: 8
  start-page: e58488
  year: 2013
  ident: 862_CR43
  publication-title: Plos One
  doi: 10.1371/journal.pone.0058488
– volume: 189
  start-page: 5498
  year: 2012
  ident: 862_CR26
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1102150
– volume: 1158
  start-page: 71
  year: 2007
  ident: 862_CR5
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2007.05.010
– volume: 2
  start-page: 135
  year: 1980
  ident: 862_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(80)90015-X
– volume: 77
  start-page: 527
  year: 2002
  ident: 862_CR8
  publication-title: Physiol Behav
  doi: 10.1016/S0031-9384(02)00939-3
– ident: 862_CR18
  doi: 10.1016/j.jneuroim.2008.11.007
– volume: 296
  start-page: 69
  year: 2010
  ident: 862_CR31
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2010.06.004
– volume: 314
  start-page: 825
  year: 2006
  ident: 862_CR44
  publication-title: Science
  doi: 10.1126/science.1132191
– volume: 37
  start-page: 510
  year: 2010
  ident: 862_CR25
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2009.11.004
– volume: 588
  start-page: 341
  year: 1992
  ident: 862_CR40
  publication-title: Brain Res
  doi: 10.1016/0006-8993(92)91597-8
– volume: 19
  start-page: 638
  year: 2014
  ident: 862_CR12
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.108
– volume: 205
  start-page: 360
  year: 2009
  ident: 862_CR42
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2009.07.005
– volume: 198
  start-page: 2681
  issue: 7
  year: 2017
  ident: 862_CR33
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1601546
– volume: 116
  start-page: 43
  year: 2011
  ident: 862_CR23
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2010.07083.x
– volume: 10
  start-page: 2897
  year: 1990
  ident: 862_CR4
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.10-09-02897.1990
– volume: 233
  start-page: 29
  year: 2011
  ident: 862_CR21
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2010.11.002
– volume: 30
  start-page: 105
  year: 2005
  ident: 862_CR35
  publication-title: Neurochem Res
  doi: 10.1007/s11064-004-9691-6
– volume: 11
  start-page: 34
  year: 2014
  ident: 862_CR13
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-11-34
– volume: 35
  start-page: 11281
  year: 2015
  ident: 862_CR32
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1685-15.2015
– volume: 22
  start-page: 1442
  year: 2012
  ident: 862_CR16
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhr229
– volume: 20
  start-page: 1568
  year: 2000
  ident: 862_CR39
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-04-01568.2000
– volume: 27
  start-page: 2133
  year: 2008
  ident: 862_CR9
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2008.06177.x
– volume: 9
  start-page: 25
  year: 2008
  ident: 862_CR28
  publication-title: Nat Immunol
  doi: 10.1038/ni1544
– volume: 111
  start-page: 48
  year: 2016
  ident: 862_CR10
  publication-title: Neurosci Res
  doi: 10.1016/j.neures.2016.04.008
– volume: 9
  start-page: 71
  year: 2012
  ident: 862_CR19
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-9-71
– volume: 35
  start-page: 22
  year: 2010
  ident: 862_CR38
  publication-title: Neurochem Res
  doi: 10.1007/s11064-009-0026-5
– volume: 51
  start-page: 39
  year: 2016
  ident: 862_CR11
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2015.08.015
– volume: 60
  start-page: 117
  year: 2017
  ident: 862_CR14
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2016.10.001
– volume: 221
  start-page: 237
  year: 2010
  ident: 862_CR20
  publication-title: Tohoku J Exp Med
  doi: 10.1620/tjem.221.237
– volume: 5
  start-page: 525
  year: 2006
  ident: 862_CR1
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(06)70471-9
– volume: 6
  start-page: 6
  year: 2015
  ident: 862_CR41
  publication-title: Front Psych
  doi: 10.3389/fphys.2015.00006
– volume: 86
  start-page: 109
  year: 2008
  ident: 862_CR2
  publication-title: Br Med Bull
  doi: 10.1093/bmb/ldn013
– volume: 65
  start-page: 443
  year: 2005
  ident: 862_CR34
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2005.02.026
– volume: 24
  start-page: 1058
  year: 2010
  ident: 862_CR17
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2010.02.001
– volume: 24
  start-page: 574
  year: 1988
  ident: 862_CR22
  publication-title: Ann Neurol
  doi: 10.1002/ana.410240415
– volume: 6
  start-page: 18
  issue: 2
  year: 2016
  ident: 862_CR27
  publication-title: Brain Sci
  doi: 10.3390/brainsci6020018
– volume: 19
  start-page: 699
  year: 2014
  ident: 862_CR36
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.155
– volume: 83
  start-page: 741
  year: 1998
  ident: 862_CR30
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(97)00424-7
– volume: 140
  start-page: 918
  year: 2010
  ident: 862_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.016
– reference: 1393587 - Brain Res. 1992 Aug 21;588(2):341-5
– reference: 22001159 - Exp Neurol. 2012 Jan;233(1):79-86
– reference: 18398010 - Br Med Bull. 2008;86:109-27
– reference: 26269636 - J Neurosci. 2015 Aug 12;35(32):11281-91
– reference: 9807058 - Stress. 1996 Jul;1(1):1-19
– reference: 9483558 - Neuroscience. 1998 Apr;83(3):741-8
– reference: 17570349 - Brain Res. 2007 Jul 16;1158:71-80
– reference: 26291405 - Brain Behav Immun. 2016 Jan;51:39-46
– reference: 8980015 - Neurobiol Dis. 1995 Apr;2(2):119-27
– reference: 16713924 - Lancet Neurol. 2006 Jun;5(6):525-35
– reference: 19568932 - Neurochem Res. 2010 Jan;35(1):22-32
– reference: 6105303 - Lancet. 1980 Jul 19;2(8186):135-7
– reference: 26441134 - Brain Behav Immun. 2016 Feb;52:88-97
– reference: 21044080 - J Neurochem. 2011 Jan;116(1):43-52
– reference: 19913097 - Neurobiol Dis. 2010 Mar;37(3):510-8
– reference: 23169588 - J Immunol. 2012 Dec 15;189(12):5498-502
– reference: 27142317 - Neurosci Res. 2016 Oct;111:48-55
– reference: 12526994 - Physiol Behav. 2002 Dec;77(4-5):527-31
– reference: 20153418 - Brain Behav Immun. 2010 Oct;24(7):1058-68
– reference: 20580380 - J Neurol Sci. 2010 Sep 15;296(1-2):69-78
– reference: 2398367 - J Neurosci. 1990 Sep;10(9):2897-902
– reference: 25698978 - Front Psychiatry. 2015 Feb 02;6:6
– reference: 15833599 - Brain Res Bull. 2005 May 15;65(5):443-50
– reference: 17082459 - Science. 2006 Nov 3;314(5800):825-8
– reference: 10662846 - J Neurosci. 2000 Feb 15;20(4):1568-74
– reference: 3239957 - Ann Neurol. 1988 Oct;24(4):574-6
– reference: 27304970 - Brain Sci. 2016 Jun 13;6(2):null
– reference: 19616033 - Behav Brain Res. 2009 Dec 28;205(2):360-6
– reference: 17433555 - Neuroscience. 2007 May 25;146(3):1388-99
– reference: 15756938 - Neurochem Res. 2005 Jan;30(1):105-11
– reference: 24342992 - Mol Psychiatry. 2014 Jun;19(6):699-709
– reference: 23999522 - Mol Psychiatry. 2014 Jun;19(6):638-40
– reference: 19111355 - J Neuroimmunol. 2009 Feb 15;207(1-2):24-31
– reference: 28202615 - J Immunol. 2017 Apr 1;198(7):2681-2688
– reference: 23520517 - PLoS One. 2013;8(3):e58488
– reference: 27717686 - Brain Behav Immun. 2017 Feb;60:117-125
– reference: 20303880 - Cell. 2010 Mar 19;140(6):918-34
– reference: 24565378 - J Neuroinflammation. 2014 Feb 24;11:34
– reference: 22520439 - J Neuroinflammation. 2012 Apr 20;9:71
– reference: 21115202 - J Neuroimmunol. 2011 Apr;233(1-2):29-36
– reference: 18412632 - Eur J Neurosci. 2008 Apr;27(8):2133-46
– reference: 21878486 - Cereb Cortex. 2012 Jun;22(6):1442-54
– reference: 20581431 - Tohoku J Exp Med. 2010 Jul;221(3):237-43
– reference: 18066066 - Nat Immunol. 2008 Jan;9(1):25-33
SSID ssj0032562
Score 2.275964
Snippet Background The majority of Parkinson’s disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both...
The majority of Parkinson's disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of both environmental...
Abstract Background The majority of Parkinson’s disease (PD) cases are sporadic and idiopathic suggesting that this neurodegenerative disorder is the result of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 88
SubjectTerms Animals
Biomedical and Life Sciences
Biomedicine
Cell Count - methods
Dopaminergic Neurons - metabolism
Dopaminergic Neurons - pathology
Immunology
Interleukin
Interleukin-13 Receptor alpha1 Subunit - deficiency
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Microglia
Neurobiology
Neuroinflammation
Neurology
Neurosciences
Oxidative stress
Oxidative Stress - physiology
Parkinson’s disease
Stress
Stress, Psychological - metabolism
Stress, Psychological - pathology
Substantia Nigra - metabolism
Substantia Nigra - pathology
SummonAdditionalLinks – databaseName: DOAJ - The Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWqLlA3iEeBFKiMxApk1c84WQKiqhBlRaXuLNtxxKhDpmo6i35Wf6Tf1HvtzKgDBTZsoihxFNv3eeTrY0LemoZbL5oE2MTDxTaCBek16wLveN9Yr3K1-_G3-uhEfzk1p3eO-sKasEIPXCbuwLSGe-PBJBOE7l4Fqfs2tXWIwfdW9Oh9ectXYKr4YAWBXE5rmKKpD0aIaharLSzDFJ6JjSiUyfrvyzB_L5T8ZbU0B6HDR-ThlD3SD6XXj8lWGp6QB8fT-vhT4r_6eEYXPUUWiIt5Wp7NBiYUBbeWzgFd05trQZEX8mqkkPnROXQOm3cAnX_mbYCzSDPF5TDSsoORxkKfS8uukl1ycvj5-6cjNh2iwKJuWsFkalOnwfBiHUEAoWsT2GnSHu8iVzFYbUwynYQbwCcGN5kjRYuxAB6UUs_I9rAY0gtCU2h16L23PAAs63xobJAKMj7T8Sg9rwhfTaqLE8M4HnQxdxlpNLUrcnAgB4dycKIi79afnBd6jb81_oiSWjdEZuz8APTFTfri_qUvFXmzkrMDS8LlET-kxXJ0AqZLIIA0FXle5L7-FQRx5PmRFbEbGrHRl803w-xHZutG6l-ldUXer3THTW5i_PNQ9_7HUF-SHZlVXjMpXpHty4tleg0p1GXYz9ZyC8AEF_E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFD7ICuKLeLfeiOCTEsy1aR91cFnE9cmFfQtJmuKwY2fZ7jz4s_wj_ibPSTuDo6vgSyltStOc68fJ-Qrw0jbCBdlkxCYBD66RPKpgeBdFJ_rGBV12ux9_qo9OzIdTezqTRVMvzK_1e9nUb0aMR472SThOyTdHoHPdot8lZV7Ui63T1Ri51Vy0vPKxvbBT2PmvSin_3Bn5W3m0RJ3D23BrThfZ20m-d-BaHu7CjeO5IH4PwseQzti6Z0T7cLHKm7PlwKVm6MfyOcJp9uO7ZEQE-W1kmOqxFU6OhneIlb-Wvr9lYoXTchjZ1LLI0sSXy6Y2kvtwcvj-8-KIz39N4Mk0reQqt7kzaGmpTrjisWszGmY2gc6S0Ck6Y222ncITBCSWusqJk8U6RAta6wdwMKyH_AhYjq2JfQhORMRhXYiNi0pjimc7kVQQFYjtovo0U4rTny1WvkCLpvaTHDzKwZMcvKzg1e6R84lP41-D35GkdgOJCrtcQA3xs2V521oRbECfnTG363VUpm9zW8cUQ-9kX8GLrZw9mg7VQ8KQ15vRS1wuSYjRVvBwkvvuVRi1idhHVeD2NGJvLvt3huWXQs9NXL_amApeb3XHz35h_PunPv6v0U_gpiq6bbiST-Hg8mKTn2FydBmfF7P4CcFSB3g
  priority: 102
  providerName: Springer Nature
Title Lack of interleukin-13 receptor α1 delays the loss of dopaminergic neurons during chronic stress
URI https://link.springer.com/article/10.1186/s12974-017-0862-1
https://www.ncbi.nlm.nih.gov/pubmed/28427412
https://www.proquest.com/docview/1891128715
https://pubmed.ncbi.nlm.nih.gov/PMC5399344
https://doaj.org/article/5950a5a111e644f3b24f9e96bcbaf71f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD4am4R4QdwJl8pIPIEC8S1OHhDqqk1TxSYEVOqbZTsOVCvpaFeJ_Sz-CL-JYyepVOh4SSzHVhyfc-zz5difAV7KIlOGFh6xicGLKmhqmRFpZbMqqwtleFztfnqWn0zEeCqne9Afb9V14GontAvnSU2W8zc_f1y9R4N_Fw2-yN-ucM5SYS2FSoODniIYOojhorCST2yCChxnd9YFNndWC8TAhQh8Lmxrlopk_rs80H8XUv4VTY2T1PEduN15l2TYqsNd2PPNPbh52sXP74P5YNw5WdQksEQs5359PmtSygkOe_4C0Tf5_YuSwBt5tSLoGZI5Ni4UrxBaf4_bBGeORArMZkXaHY7EtfS6pN118gAmx0dfRidpd8hC6kRR0pT50lcCDdPlDgVkq9KjHXthQspl3FklpPSyYphA_CLDJvRA4SIVggvO-UPYbxaNfwzE21LY2hiVWYRtlbGFsoyjRyirzDGTJZD1napdx0AeDsKY64hEily3ItEoEh1EomkCrzZVLlr6jf8VPgyS2hQMzNkxY7H8qjtD1LKUmZEGh3iPrmDNLRN16cvcOmtqResEXvRy1mhpIXxiGr9YrzTF7qIBYMoEHrVy37yq15sE1JZGbLVl-0kz-xbZvAM1MBcigde97ujeCq7_1CfXtuAp3GJRpUXK6DPYv1yu_XP0my7tAG6oqRrAwXA4_jzG--HR2cdPmDvKR4P4L2IQ7eUPaxwXow
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkYAL4k14GokTyMLPODnCimqB3Z5aqTfLdhyx6jZbNd0DP6t_pL-JGSe7YqEgcYmsZKI4Ho9nPo3nMyFvTcWtF1UCbOLhYivBgvSaNYE3vK2sV3m3-_ygnB7pr8fmeCSLxlqYX_P3oio_9OCPLO6TsAyDbwZA5yYmLpEmf1JONouuAs8tx6Tlta_tuJ3Mzn9dSPnnzsjf0qPZ6-zfI3fHcJF-HPR7n9xI3QNyaz4mxB8SP_PxhK5airQP58u0Pll0TCgK61g6AzhNry4FRSLIHz2FUI8uoXMo3gBWPs11f4tIM6dl19OhZJHGgS-XDmUkj8jR_ufDyZSNpyawqKtaMJnq1GiwtFhGGPHQ1AkMM2mPrchVDFYbk0wjoQGAxGBVOXKyGAtoQSn1mOx1qy49JTSFWofWe8sD4LDGh8oGqSDEMw2P0vOC8M2gujhSiuPJFkuXoUVVukEPDvTgUA9OFOTd9pWzgU_jX8KfUFNbQaTCzjdghrjRspypDffGw5qdILZrVZC6rVNdhhh8a0VbkDcbPTswHcyH-C6t1r0TMFwCEaMpyJNB79tPgddGYh9ZELszI3b6svukW3zP9NzI9au0Lsj7zdxx47rQ__1Xn_2X9Gtye3o4n7nZl4Nvz8kdmee5ZlK8IHsX5-v0EgKli_Aqm8hPTSMKZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQK1VcUMszbQEjcQJZ9TNOjstjVZa2QoJKvVm248Cq2-xqs3vgZ_FH-E2MnWSlhYLEJbISR3E8Hs98mpnPCL1UBdWWFQGwiYWLLhhx3EpSOVrRutBWpGz384v89FJOrtRVf85pO2S7DyHJrqYhsjQ1q5NFVXcqXuQnLVgpHbMnNIkuOQH4s1uosgT0tTsaTT5Phs1YgEXnfTDz1he3zFFi7b_N1fwzY_K3sGmyRuN9dK93I_Gok_sBuhOa-2jvvA-UP0D2zPprPK9xpINYzsL6etoQJjDsb2EBMBv__MFwJIj83mJwAfEMBhe7V4Chb1I94NTjxHXZtLgrZcS-49HFXXnJQ3Q5fv_l7SnpT1MgXhYlIzyUoZKggT73IAlXlQEUNkgbW54K77RUKqiKQwOAiorV5pGrRWlAEUKIR2inmTfhCcLBldLV1mrqAJ9V1hXacQGun6qo55ZmiA6TanxPNR5PvJiZBDmK3HRyMCAHE-VgWIZebV5ZdDwb_-r8Jkpq0zFSZKcb8-VX02ucUaWiVlnYywP4fLVwXNZlKHPnna01qzP0YpCzAZWKcRLbhPm6NQymi0UkqTL0uJP75lNgzSPhD8-Q3loRW2PZftJMvyXa7sgBLKTM0Oth7Zh-v2j__quH_9X7Odr79G5szj5cfDxCd3la5pJwdox2Vst1eAr-08o963XkF3m5FCU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lack+of+interleukin-13+receptor+%CE%B11+delays+the+loss+of+dopaminergic+neurons+during+chronic+stress&rft.jtitle=Journal+of+neuroinflammation&rft.au=Mori%2C+Simone&rft.au=Sugama%2C+Shuei&rft.au=Nguyen%2C+William&rft.au=Michel%2C+Tatiana&rft.date=2017-04-21&rft.eissn=1742-2094&rft.volume=14&rft.issue=1&rft.spage=88&rft_id=info:doi/10.1186%2Fs12974-017-0862-1&rft_id=info%3Apmid%2F28427412&rft.externalDocID=28427412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-2094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-2094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-2094&client=summon