An arc fault diagnosis algorithm using multiinformation fusion and support vector machines

Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power consumption. In this paper, a detection algorithm for arc faults is tested in a low-voltage circuit. With capacitance coupling and a logarithmi...

Full description

Saved in:
Bibliographic Details
Published inRoyal Society open science Vol. 5; no. 9; p. 180160
Main Authors Yang, Jian-hong, Fang, Huai-ying, Zhang, Ren-cheng, Yang, Kai
Format Journal Article
LanguageEnglish
Published England The Royal Society 01.09.2018
Subjects
Online AccessGet full text
ISSN2054-5703
2054-5703
DOI10.1098/rsos.180160

Cover

Abstract Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power consumption. In this paper, a detection algorithm for arc faults is tested in a low-voltage circuit. With capacitance coupling and a logarithmic detector, the high-frequency radiation characteristics of arc faults can be extracted. A rapid method for computing the current waveform slope characteristics of an arc fault provides another characteristic. Current waveform periodic integral characteristics can be extracted according to asymmetries of the arc faults. These three characteristics are used to develop a detection algorithm of arc faults based on multiinformation fusion and support vector machine learning models. The tests indicated that for series arc faults with single and combination loads and for parallel arc faults between metallic contacts and along carbonization paths, the recognition algorithm could effectively avoid the problems of crosstalk and signal loss during arc fault detection.
AbstractList Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power consumption. In this paper, a detection algorithm for arc faults is tested in a low-voltage circuit. With capacitance coupling and a logarithmic detector, the high-frequency radiation characteristics of arc faults can be extracted. A rapid method for computing the current waveform slope characteristics of an arc fault provides another characteristic. Current waveform periodic integral characteristics can be extracted according to asymmetries of the arc faults. These three characteristics are used to develop a detection algorithm of arc faults based on multiinformation fusion and support vector machine learning models. The tests indicated that for series arc faults with single and combination loads and for parallel arc faults between metallic contacts and along carbonization paths, the recognition algorithm could effectively avoid the problems of crosstalk and signal loss during arc fault detection.
Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power consumption. In this paper, a detection algorithm for arc faults is tested in a low-voltage circuit. With capacitance coupling and a logarithmic detector, the high-frequency radiation characteristics of arc faults can be extracted. A rapid method for computing the current waveform slope characteristics of an arc fault provides another characteristic. Current waveform periodic integral characteristics can be extracted according to asymmetries of the arc faults. These three characteristics are used to develop a detection algorithm of arc faults based on multiinformation fusion and support vector machine learning models. The tests indicated that for series arc faults with single and combination loads and for parallel arc faults between metallic contacts and along carbonization paths, the recognition algorithm could effectively avoid the problems of crosstalk and signal loss during arc fault detection.Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power consumption. In this paper, a detection algorithm for arc faults is tested in a low-voltage circuit. With capacitance coupling and a logarithmic detector, the high-frequency radiation characteristics of arc faults can be extracted. A rapid method for computing the current waveform slope characteristics of an arc fault provides another characteristic. Current waveform periodic integral characteristics can be extracted according to asymmetries of the arc faults. These three characteristics are used to develop a detection algorithm of arc faults based on multiinformation fusion and support vector machine learning models. The tests indicated that for series arc faults with single and combination loads and for parallel arc faults between metallic contacts and along carbonization paths, the recognition algorithm could effectively avoid the problems of crosstalk and signal loss during arc fault detection.
Author Yang, Jian-hong
Fang, Huai-ying
Zhang, Ren-cheng
Yang, Kai
AuthorAffiliation Key Laboratory of Process Monitoring and System Optimization for Mechanical and Electrical Equipment (Huaqiao University), Fujian Province University , Xiamen, Fujian 361021 , People's Republic of China
AuthorAffiliation_xml – name: Key Laboratory of Process Monitoring and System Optimization for Mechanical and Electrical Equipment (Huaqiao University), Fujian Province University , Xiamen, Fujian 361021 , People's Republic of China
Author_xml – sequence: 1
  givenname: Jian-hong
  orcidid: 0000-0003-4731-312X
  surname: Yang
  fullname: Yang, Jian-hong
  email: 2323336765@qq.com
– sequence: 2
  givenname: Huai-ying
  surname: Fang
  fullname: Fang, Huai-ying
– sequence: 3
  givenname: Ren-cheng
  surname: Zhang
  fullname: Zhang, Ren-cheng
– sequence: 4
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30839700$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1UREvpiTvyEQm22IkTOxekquKjUiUucOFijR0n65VjB9sp2n-PtylVi0Ccxp555p2v5-jIB28QeknJOSWdeBdTSOdUENqSJ-ikIg3bNJzURw_ex-gspR0hhDak5i1_ho5rIuqOE3KCvl94DFHjARaXcW9h9CHZhMGNIdq8nfCSrB_xVMLW-iHECbINHg_FXwz4HqdlnkPM-MboHCKeQG-tN-kFejqAS-bszp6ibx8_fL38vLn-8unq8uJ6o5kQeTNQxVXb10oZ0fVGgaraxjCuiQFlgJcxYeCCtFAJzQ0MjapZBfwAaFHp-hRdrbp9gJ2co50g7mUAK28dIY4SYrbaGckp5y1TNbBeMV5sR6nWQIBUvWFNV7TerlqLn2H_E5y7F6REHjYuDxuX68YL_n7F50VNptfG5wjuUQ-PI95u5RhuZEs5aQQrAq_vBGL4sZiU5WSTNs6BN2FJsqJCNF3VMV7QVw9r3Rf5fcsCvFkBHUNK0Qz_aZ3-QWubb09bGrXuHzlkzYlhXy4atDV5L3dhib58_5ryCxXA1eE
CitedBy_id crossref_primary_10_1109_TIA_2023_3337063
crossref_primary_10_3390_en16103988
crossref_primary_10_23919_CJEE_2023_000038
crossref_primary_10_23919_CJEE_2024_000076
crossref_primary_10_1109_ACCESS_2019_2927635
Cites_doi 10.1016/j.ijepes.2016.02.003
10.1016/j.ijepes.2014.12.065
10.1016/j.epsr.2016.10.008
10.1016/j.engappai.2018.05.009
10.1016/j.solener.2018.06.004
10.1007/s00779-017-1042-0
10.1155/2017/3021950
10.1016/j.epsr.2016.07.011
10.1109/TIM.2016.2627248
10.4028/www.scientific.net/AMR.889-890.741
10.1109/TNN.2002.1031955
10.1016/j.cja.2018.01.004
10.1080/00207543.2014.980458
10.1007/BF00994018
ContentType Journal Article
Copyright 2018 The Authors.
2018 The Authors. 2018
Copyright_xml – notice: 2018 The Authors.
– notice: 2018 The Authors. 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1098/rsos.180160
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
DocumentTitleAlternate An Arc-Fault Diagnosis Algorithm
EISSN 2054-5703
ExternalDocumentID oai_doaj_org_article_717764b3a4db47b3a911cca0a02de459
10.1098/rsos.180160
PMC6170584
30839700
10_1098_rsos_180160
Genre Journal Article
GrantInformation_xml – fundername: The Fujian Natural Science Foundation
  grantid: 2018J05082
– fundername: the Major Project Foundation of Science and Technology in Fujian Province
  grantid: 2016H6013
– fundername: ;
  grantid: 2018J05082
– fundername: ;
  grantid: 2016H6013
GroupedDBID 53G
5VS
AAFWJ
ABXXB
ADBBV
ADRAZ
AFPKN
ALAEF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
EJD
GROUPED_DOAJ
HYE
ICLEN
KQ8
M48
M~E
OK1
OP1
RPM
V1E
7X2
88I
AAYXX
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
GNUQQ
H13
HCIFZ
KB.
M0K
M2P
M7P
M7S
PATMY
PCBAR
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
PYCSY
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c488t-f1b7b6d3bbe89debab265e47c0eabea7109af7806a28c7eaf5b342a77c0ec82c3
IEDL.DBID M48
ISSN 2054-5703
IngestDate Fri Oct 03 12:51:33 EDT 2025
Sun Oct 26 04:09:08 EDT 2025
Thu Aug 21 14:11:41 EDT 2025
Thu Jul 10 17:22:22 EDT 2025
Thu Jan 02 23:01:09 EST 2025
Wed Oct 01 04:25:50 EDT 2025
Thu Apr 24 23:03:18 EDT 2025
Wed Jan 17 02:37:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords slope characteristics
periodic integration characteristics
high-frequency radiation characteristics
multiinformation fusion
arc fault
Language English
License open-access: Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-f1b7b6d3bbe89debab265e47c0eabea7109af7806a28c7eaf5b342a77c0ec82c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.4216340.
ORCID 0000-0003-4731-312X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1098/rsos.180160
PMID 30839700
PQID 2188592947
PQPubID 23479
ParticipantIDs pubmed_primary_30839700
crossref_primary_10_1098_rsos_180160
royalsociety_journals_10_1098_rsos_180160
doaj_primary_oai_doaj_org_article_717764b3a4db47b3a911cca0a02de459
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6170584
proquest_miscellaneous_2188592947
crossref_citationtrail_10_1098_rsos_180160
unpaywall_primary_10_1098_rsos_180160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Royal Society open science
PublicationTitleAbbrev R. Soc. open sci
PublicationTitleAlternate R Soc Open Sci
PublicationYear 2018
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_6_10_2
e_1_3_6_5_2
e_1_3_6_4_2
e_1_3_6_3_2
e_1_3_6_9_2
e_1_3_6_7_2
Qu D (e_1_3_6_20_2) 2010; 17
e_1_3_6_6_2
e_1_3_6_19_2
Yong J (e_1_3_6_8_2) 2011; 26
e_1_3_6_13_2
e_1_3_6_12_2
e_1_3_6_11_2
Sun P (e_1_3_6_14_2) 2013; 16
e_1_3_6_18_2
e_1_3_6_17_2
2016 China Fire Yearbook (e_1_3_6_2_2) 2016
e_1_3_6_16_2
e_1_3_6_15_2
References_xml – ident: e_1_3_6_6_2
  doi: 10.1016/j.ijepes.2016.02.003
– ident: e_1_3_6_11_2
  doi: 10.1016/j.ijepes.2014.12.065
– volume: 17
  start-page: 77
  year: 2010
  ident: e_1_3_6_20_2
  article-title: Application of matrix analysis based DS evidence theory in netted radar
  publication-title: Electron. Opt. Control
– ident: e_1_3_6_3_2
– ident: e_1_3_6_4_2
  doi: 10.1016/j.epsr.2016.10.008
– ident: e_1_3_6_5_2
  doi: 10.1016/j.engappai.2018.05.009
– ident: e_1_3_6_7_2
  doi: 10.1016/j.solener.2018.06.004
– ident: e_1_3_6_17_2
  doi: 10.1007/s00779-017-1042-0
– volume: 16
  start-page: 56
  year: 2013
  ident: e_1_3_6_14_2
  article-title: Detection and diagnosis technology of series arc-faults based on grid fractal theory
  publication-title: Low Voltage Apparatus
– volume-title: Fire department of ministry of public security
  year: 2016
  ident: e_1_3_6_2_2
– volume: 26
  start-page: 213
  year: 2011
  ident: e_1_3_6_8_2
  article-title: Series arc faults identification in low voltage system based on autoregressive parameter model
  publication-title: Trans. China Electrotechnical Soc.
– ident: e_1_3_6_16_2
  doi: 10.1155/2017/3021950
– ident: e_1_3_6_12_2
  doi: 10.1016/j.epsr.2016.07.011
– ident: e_1_3_6_13_2
  doi: 10.1109/TIM.2016.2627248
– ident: e_1_3_6_9_2
  doi: 10.4028/www.scientific.net/AMR.889-890.741
– ident: e_1_3_6_18_2
  doi: 10.1109/TNN.2002.1031955
– ident: e_1_3_6_10_2
  doi: 10.1016/j.cja.2018.01.004
– ident: e_1_3_6_19_2
  doi: 10.1080/00207543.2014.980458
– ident: e_1_3_6_15_2
  doi: 10.1007/BF00994018
SSID ssj0001503767
Score 2.1260054
Snippet Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
royalsociety
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 180160
SubjectTerms Arc Fault
Engineering
High-Frequency Radiation Characteristics
Multiinformation Fusion
Periodic Integration Characteristics
Slope Characteristics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFD7IXtQHcf7sphJhghPqctu0SR-nOIagTw6GL-EkTbcLXe_ltnX433vSZJd74aIvPhXaQJLzo_mSfPkCcMS55aZyKpVZXqY03japoclPmgtRY2mcFI0_jfzte3l-Ib5eFpcbV315TliQBw6GO6HphiyFyVHURkh6UnZSrRx5VjtRTEf3uKo2JlPhfDD3MiXxQB6v1AnB1_7jTHlBta0haFLq3wUvd7AkV35G3wc25UO4P3ZL_H2LbbsxIp09hkcRSrLT0IV9uOe6J7Afk7Vn76Oi9PFT-HnaMQpo1uDYDqwO7Lp5z7C9Wqzmw_UN8_T3KzaxC6OUqncYa0a_mMawq1k_Lj1UZ7-mZX52M5EwXf8MLs6-_Ph8nsZLFVJLuTqkzcxIU9a5MU5VtTNosrJwQlru0Dj01ExspOIlZspKh01hcpGh9AWsymz-HPa6RedeAqtsLYUQ5M6MXOsEGkX4xDqROzuTsyyBD3d21jYqjvuLL1oddr6V9k7RwSkJHK0LL4PQxu5in7zD1kW8Ovb0gmJGx5jR_4qZBN7euVtTNvktEuzcYuw1AR5VEGIUMoEXwf3rqnJCq5Xk1AS5FRhbbdn-0s2vJ8Vur3pPSC-B480Q0vF30e_u6Lt1fP3NIAf_wyCH8ICAoArcuVewN6xG95rA1mDeTHn1B5MYLGA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Royal Society Open Access Journals
  dbid: OP1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_ofNA9iJtfVScRJjihsx9pkz5uwzEEPx4cDF9Ckqbbha73ctsq_vee02bdvXIRfCq0aZvm_E7zy8nJLwD7UWQjUzgZiiTNQ-xvq9Dg4CdMOS91bpzgFa1G_vwlPzvnny6yC7_PKa2FWdKguR0TFhdTIGaY0icfp5i0F0GSH5CRtoexJI20u3CPZEsI4l-_xbdBliwitRK_Lu-ve9Z6okGwfxPL3JAsuVrHbbjfNwv9-5eu65WO6fQRPPSMkh2NENiBO67Zhe0VncFd2PEe3LJ3Xmb64DH8OGoYopxVuq87Vo4pd7OW6fpyvpx1V9eMcuIv2ZBy6PVVyYqs6inCxnRTsrZfEH9nP4fYP7seMjNd-wTOTz9-PzkL_U4LoUUH7sIqNsLkZWqMk0XpjDZJnjkubOS0cZryNXUlZJTrRFrhdJWZlCdaUAErE5s-ha1m3rjnwApbCs452jhBezuujUTSYh1PnY1FnATw_qbVlfUy5LQbRq3G6XCpyERqNFEA-1Phxai-sbnYMZlvKkKS2cMJhI3yHqhw3CpyblLNS8MFHvE3j_CNdJSUjmdFAG9ujK_QxWjeRDdu3rcKWZDMkEZyEcCzEQzTq1KksIWIsApiDSZrdVm_0syuBhlvksJH-hfAwSqglP-HtJs_9O2Etn81yIv_eOZLeIAkUI55c69gq1v2bg-JVmdeD870B6NOLQw
  priority: 102
  providerName: Royal Society Publications
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4AOUZXjKiSLRSlmzixM5xeVQVEhUHVipcLNtx2hVpdrVJQPDrGcfeVVOtgFOkZKI4npn4c-bzZ4D9KNKRyg0PWZxkIY63Zahw8hMmlBYyU4bR0q5G_nSSHc_ox9P0dAdertfCDOr3OX-DqLMZT7jVQbsGu1mKgHsEu7OTz9Ovdts4BByh1ZDyK--u3DEYa3pJ_m04cgsdcmWn7o2jTd6E6129lL9-yqq6NPQc3Yb360Y7xsn3cdeqsf59Rc_xH291B2556EmmLlb2YMfUd2HPJ3dDXnsF6oN78G1aE0wAUsquaknh2HjzhsjqbLGat-cXxNLlz0jPRvTSq9bBpOzszzci64I03dJCe_KjLwuQi560aZr7MDv68OXdceg3YQg15nYblhPFVFYkShmeF0ZJFWepoUxHRiojLZVTloxHmYy5ZkaWqUpoLJk10DzWyQMY1YvaPAKS64JRStH9MYaCoVJxxDPa0MToCZvEARyu3SW0Vyi3G2VUwlXKubD9Jly_BbC_MV46YY7tZm-t3zcmVk27P4HuED45BU5pWUZVImmhKMMjjgAY2ZGM4sLQNA_gxTpqBGafLanI2iy6RiBA4ikiTMoCeOiiaPOoBNFtziJsAhvE16Atwyv1_LxX-LYq-YgMAzi4HInCf16a7S_6ahOmf-uQx_9p9wRuIDbkjk73FEbtqjPPEH-16rnPvz_WGzIt
  priority: 102
  providerName: Unpaywall
Title An arc fault diagnosis algorithm using multiinformation fusion and support vector machines
URI https://royalsocietypublishing.org/doi/full/10.1098/rsos.180160
https://www.ncbi.nlm.nih.gov/pubmed/30839700
https://www.proquest.com/docview/2188592947
https://pubmed.ncbi.nlm.nih.gov/PMC6170584
https://doi.org/10.1098/rsos.180160
https://doaj.org/article/717764b3a4db47b3a911cca0a02de459
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAUN
  databaseName: Royal Society Open Access Journals
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: OP1
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: http://royalsocietypublishing.org/journals
  providerName: Royal Society Publications
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: M48
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9qC1ofxKq18eNYoYIVUvOxyW4eRE6xFKG1Dx5UX8JusrkepLlrclH73zuTj-NOoi8JJBOy2ZnJ_HZ39jcAh46TODoy0haeH9oYbzNb4-DH9jlPVaiN4BntRj47D08n_MtlcLkFfTHOrgOrwaEd1ZOalPnx75vbD-jw71syJPkOkWl17EriSrsDOxiiIqrhcNbh_Ha7sEOsJVRoDiGKTaxT3V69v57fhbs-gpJI0I63tUDV8PkPgdCBXMqSxv1Vm3N5H-7VxULd_lJ5vha3Th7Cgw5wsnFrIXuwZYpHsNe5dMXedLzTR4_hx7hgaPYsU3W-ZGmbgzermMqn83K2vLpmlCQ_ZU0OYke4SmplWU1TbkwVKavqBfUl-9ksBrDrJlXTVE9gcvL526dTuyu9YCfo0Us7c7XQYeprbWSUGq20FwaGi8QxShtFCZwqE9IJlScTYVQWaJ97SpBAIr3E34ftYl6YA2BRkgrOOSrdQwMwXGmJKCYx3DeJK1zPgrd9P8dJx0tO5THyuF0flzHpJ271Y8HhSnjR0nEMi30kha1EiEO7uTAvp3HnkjEOZEXIta94qrnAM_730Z4d5Xip4UFkwate3TH6HC2kqMLM6ypGWCQDxJVcWPC0Vf_qVb35WCA2DGOjLZt3itlVw-tN3PiIBy04WjehuPeJ4Q99vbKv_3XIs3-28znsIgaUbdrcC9helrV5iThrqUfN_MSo8SQ8fr1wR7AzOb8Yf_8D9mMroQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZQeKlpeKS8jFYkiBfJwYudYENUCbeHQShUXy06cdqU0u9okIP49M4kbdtEKiVOkZJI4npn4m_H4M8B-EOSByaz0RRSnPo63pW8w-PFjzgudGit4SauRT07TyTn_fJFcuH1OaS3MgoLmZihYnI-JmH5Kn3ycctKOBEm-Q0TavA0lcaTdhjtJEnGKvr5-C_8kWZKA2Ercury_7lkZiXrC_nUoc02x5HIbt2Czq-f6109dVUsD09E92HaIkh0OJrADt2y9C1tLPIO7sOM8uGGvHc30wX34flgztHJW6q5qWTGU3E0bpqvL2WLaXl0zqom_ZH3JoeNXJS2ysqMMG9N1wZpuTvid_ehz_-y6r8y0zQM4P_p49mHiu50W_BwduPXL0AiTFrExVmaFNdpEaWK5yAOrjdVUr6lLIYNURzIXVpeJiXmkBQnkMsrjh7BRz2r7GFiWF4JzjjqOUN-WayMRtOSWxzYPRRh58Oam11XuaMhpN4xKDdPhUpGK1KAiD_ZH4fnAvrFe7D2pbxQhyuz-BJqNch6oMG4VKTex5oXhAo_4m0fzDXQQFZYnmQcvb5Sv0MVo3kTXdtY1ClGQTBBGcuHBo8EYxlfFCGEzEWATxIqZrLRl9Uo9veppvIkKH-GfBwfLBqXcP6RZ_6GvRmv7V4fs_cczX8Dm5OzkWB1_Ov3yBO4iIJRDDd1T2GgXnX2GoKs1z3vH-g3W_y_z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkaA9VG2BEkrBSEWiSIE8nNg5lseqvEoPVKp6sWzHaVdKs9EmAfHvGSdu2EUrJE6RkknieGbib8bjzwAHQaADlRnusyhOfRxvC19h8OPHlOYyVYbRwq5G_nqSHp_RT-fJudvn1K6FmduguRkKFusxEdNP6VsfN3VeOBIk_gYRafM65JYj7TbcSTCkstHXt9PwT5IlCSxbiVuX99c9SyNRT9i_CmWuKJZcbOMG3OuqWv76KctyYWCabMGmQ5TkaDCBbbhlqh3YWOAZ3IFt58ENeelopg_vw8VRRdDKSSG7siX5UHI3bYgsL2fzaXt1TWxN_CXpSw4dv6rVIik6m2EjsspJ09UWv5Mffe6fXPeVmaZ5AGeTD9_fHftupwVfowO3fhEqptI8VsrwLDdKqihNDGU6MFIZaes1ZcF4kMqIa2ZkkaiYRpJZAc0jHT-EtWpWmUdAMp0zSinqOEJ9GyoVR9CiDY2NDlkYefDqpteFdjTkdjeMUgzT4VxYFYlBRR4cjML1wL6xWuytVd8oYimz-xNoNsJ5oMC4laVUxZLmijI84m8ezTeQQZQbmmQePL9RvkAXs_MmsjKzrhGIgniCMJIyD3YHYxhfFSOEzViATWBLZrLUluUr1fSqp_G2VPgI_zw4XDQo4f4hzeoPfTFa27865PF_PPMZ3D19PxFfPp583oN1xIN8KKF7AmvtvDP7iLla9bT3q99YeS-C
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4AOUZXjKiSLRSlmzixM5xeVQVEhUHVipcLNtx2hVpdrVJQPDrGcfeVVOtgFOkZKI4npn4c-bzZ4D9KNKRyg0PWZxkIY63Zahw8hMmlBYyU4bR0q5G_nSSHc_ox9P0dAdertfCDOr3OX-DqLMZT7jVQbsGu1mKgHsEu7OTz9Ovdts4BByh1ZDyK--u3DEYa3pJ_m04cgsdcmWn7o2jTd6E6129lL9-yqq6NPQc3Yb360Y7xsn3cdeqsf59Rc_xH291B2556EmmLlb2YMfUd2HPJ3dDXnsF6oN78G1aE0wAUsquaknh2HjzhsjqbLGat-cXxNLlz0jPRvTSq9bBpOzszzci64I03dJCe_KjLwuQi560aZr7MDv68OXdceg3YQg15nYblhPFVFYkShmeF0ZJFWepoUxHRiojLZVTloxHmYy5ZkaWqUpoLJk10DzWyQMY1YvaPAKS64JRStH9MYaCoVJxxDPa0MToCZvEARyu3SW0Vyi3G2VUwlXKubD9Jly_BbC_MV46YY7tZm-t3zcmVk27P4HuED45BU5pWUZVImmhKMMjjgAY2ZGM4sLQNA_gxTpqBGafLanI2iy6RiBA4ikiTMoCeOiiaPOoBNFtziJsAhvE16Atwyv1_LxX-LYq-YgMAzi4HInCf16a7S_6ahOmf-uQx_9p9wRuIDbkjk73FEbtqjPPEH-16rnPvz_WGzIt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+arc+fault+diagnosis+algorithm+using+multiinformation+fusion+and+support+vector+machines&rft.jtitle=Royal+Society+open+science&rft.au=Yang%2C+Jian-Hong&rft.au=Fang%2C+Huai-Ying&rft.au=Zhang%2C+Ren-Cheng&rft.au=Yang%2C+Kai&rft.date=2018-09-01&rft.issn=2054-5703&rft.eissn=2054-5703&rft.volume=5&rft.issue=9&rft.spage=180160&rft_id=info:doi/10.1098%2Frsos.180160&rft_id=info%3Apmid%2F30839700&rft.externalDocID=30839700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-5703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-5703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-5703&client=summon