An arc fault diagnosis algorithm using multiinformation fusion and support vector machines
Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power consumption. In this paper, a detection algorithm for arc faults is tested in a low-voltage circuit. With capacitance coupling and a logarithmi...
Saved in:
| Published in | Royal Society open science Vol. 5; no. 9; p. 180160 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
The Royal Society
01.09.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2054-5703 2054-5703 |
| DOI | 10.1098/rsos.180160 |
Cover
| Abstract | Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power consumption. In this paper, a detection algorithm for arc faults is tested in a low-voltage circuit. With capacitance coupling and a logarithmic detector, the high-frequency radiation characteristics of arc faults can be extracted. A rapid method for computing the current waveform slope characteristics of an arc fault provides another characteristic. Current waveform periodic integral characteristics can be extracted according to asymmetries of the arc faults. These three characteristics are used to develop a detection algorithm of arc faults based on multiinformation fusion and support vector machine learning models. The tests indicated that for series arc faults with single and combination loads and for parallel arc faults between metallic contacts and along carbonization paths, the recognition algorithm could effectively avoid the problems of crosstalk and signal loss during arc fault detection. |
|---|---|
| AbstractList | Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power consumption. In this paper, a detection algorithm for arc faults is tested in a low-voltage circuit. With capacitance coupling and a logarithmic detector, the high-frequency radiation characteristics of arc faults can be extracted. A rapid method for computing the current waveform slope characteristics of an arc fault provides another characteristic. Current waveform periodic integral characteristics can be extracted according to asymmetries of the arc faults. These three characteristics are used to develop a detection algorithm of arc faults based on multiinformation fusion and support vector machine learning models. The tests indicated that for series arc faults with single and combination loads and for parallel arc faults between metallic contacts and along carbonization paths, the recognition algorithm could effectively avoid the problems of crosstalk and signal loss during arc fault detection. Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power consumption. In this paper, a detection algorithm for arc faults is tested in a low-voltage circuit. With capacitance coupling and a logarithmic detector, the high-frequency radiation characteristics of arc faults can be extracted. A rapid method for computing the current waveform slope characteristics of an arc fault provides another characteristic. Current waveform periodic integral characteristics can be extracted according to asymmetries of the arc faults. These three characteristics are used to develop a detection algorithm of arc faults based on multiinformation fusion and support vector machine learning models. The tests indicated that for series arc faults with single and combination loads and for parallel arc faults between metallic contacts and along carbonization paths, the recognition algorithm could effectively avoid the problems of crosstalk and signal loss during arc fault detection.Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power consumption. In this paper, a detection algorithm for arc faults is tested in a low-voltage circuit. With capacitance coupling and a logarithmic detector, the high-frequency radiation characteristics of arc faults can be extracted. A rapid method for computing the current waveform slope characteristics of an arc fault provides another characteristic. Current waveform periodic integral characteristics can be extracted according to asymmetries of the arc faults. These three characteristics are used to develop a detection algorithm of arc faults based on multiinformation fusion and support vector machine learning models. The tests indicated that for series arc faults with single and combination loads and for parallel arc faults between metallic contacts and along carbonization paths, the recognition algorithm could effectively avoid the problems of crosstalk and signal loss during arc fault detection. |
| Author | Yang, Jian-hong Fang, Huai-ying Zhang, Ren-cheng Yang, Kai |
| AuthorAffiliation | Key Laboratory of Process Monitoring and System Optimization for Mechanical and Electrical Equipment (Huaqiao University), Fujian Province University , Xiamen, Fujian 361021 , People's Republic of China |
| AuthorAffiliation_xml | – name: Key Laboratory of Process Monitoring and System Optimization for Mechanical and Electrical Equipment (Huaqiao University), Fujian Province University , Xiamen, Fujian 361021 , People's Republic of China |
| Author_xml | – sequence: 1 givenname: Jian-hong orcidid: 0000-0003-4731-312X surname: Yang fullname: Yang, Jian-hong email: 2323336765@qq.com – sequence: 2 givenname: Huai-ying surname: Fang fullname: Fang, Huai-ying – sequence: 3 givenname: Ren-cheng surname: Zhang fullname: Zhang, Ren-cheng – sequence: 4 givenname: Kai surname: Yang fullname: Yang, Kai |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30839700$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhi1UREvpiTvyEQm22IkTOxekquKjUiUucOFijR0n65VjB9sp2n-PtylVi0Ccxp555p2v5-jIB28QeknJOSWdeBdTSOdUENqSJ-ikIg3bNJzURw_ex-gspR0hhDak5i1_ho5rIuqOE3KCvl94DFHjARaXcW9h9CHZhMGNIdq8nfCSrB_xVMLW-iHECbINHg_FXwz4HqdlnkPM-MboHCKeQG-tN-kFejqAS-bszp6ibx8_fL38vLn-8unq8uJ6o5kQeTNQxVXb10oZ0fVGgaraxjCuiQFlgJcxYeCCtFAJzQ0MjapZBfwAaFHp-hRdrbp9gJ2co50g7mUAK28dIY4SYrbaGckp5y1TNbBeMV5sR6nWQIBUvWFNV7TerlqLn2H_E5y7F6REHjYuDxuX68YL_n7F50VNptfG5wjuUQ-PI95u5RhuZEs5aQQrAq_vBGL4sZiU5WSTNs6BN2FJsqJCNF3VMV7QVw9r3Rf5fcsCvFkBHUNK0Qz_aZ3-QWubb09bGrXuHzlkzYlhXy4atDV5L3dhib58_5ryCxXA1eE |
| CitedBy_id | crossref_primary_10_1109_TIA_2023_3337063 crossref_primary_10_3390_en16103988 crossref_primary_10_23919_CJEE_2023_000038 crossref_primary_10_23919_CJEE_2024_000076 crossref_primary_10_1109_ACCESS_2019_2927635 |
| Cites_doi | 10.1016/j.ijepes.2016.02.003 10.1016/j.ijepes.2014.12.065 10.1016/j.epsr.2016.10.008 10.1016/j.engappai.2018.05.009 10.1016/j.solener.2018.06.004 10.1007/s00779-017-1042-0 10.1155/2017/3021950 10.1016/j.epsr.2016.07.011 10.1109/TIM.2016.2627248 10.4028/www.scientific.net/AMR.889-890.741 10.1109/TNN.2002.1031955 10.1016/j.cja.2018.01.004 10.1080/00207543.2014.980458 10.1007/BF00994018 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors. 2018 The Authors. 2018 |
| Copyright_xml | – notice: 2018 The Authors. – notice: 2018 The Authors. 2018 |
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1098/rsos.180160 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| DocumentTitleAlternate | An Arc-Fault Diagnosis Algorithm |
| EISSN | 2054-5703 |
| ExternalDocumentID | oai_doaj_org_article_717764b3a4db47b3a911cca0a02de459 10.1098/rsos.180160 PMC6170584 30839700 10_1098_rsos_180160 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: The Fujian Natural Science Foundation grantid: 2018J05082 – fundername: the Major Project Foundation of Science and Technology in Fujian Province grantid: 2016H6013 – fundername: ; grantid: 2018J05082 – fundername: ; grantid: 2016H6013 |
| GroupedDBID | 53G 5VS AAFWJ ABXXB ADBBV ADRAZ AFPKN ALAEF ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS EJD GROUPED_DOAJ HYE ICLEN KQ8 M48 M~E OK1 OP1 RPM V1E 7X2 88I AAYXX ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR CCPQU CITATION DWQXO GNUQQ H13 HCIFZ KB. M0K M2P M7P M7S PATMY PCBAR PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO PYCSY NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c488t-f1b7b6d3bbe89debab265e47c0eabea7109af7806a28c7eaf5b342a77c0ec82c3 |
| IEDL.DBID | M48 |
| ISSN | 2054-5703 |
| IngestDate | Fri Oct 03 12:51:33 EDT 2025 Sun Oct 26 04:09:08 EDT 2025 Thu Aug 21 14:11:41 EDT 2025 Thu Jul 10 17:22:22 EDT 2025 Thu Jan 02 23:01:09 EST 2025 Wed Oct 01 04:25:50 EDT 2025 Thu Apr 24 23:03:18 EDT 2025 Wed Jan 17 02:37:21 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | slope characteristics periodic integration characteristics high-frequency radiation characteristics multiinformation fusion arc fault |
| Language | English |
| License | open-access: Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c488t-f1b7b6d3bbe89debab265e47c0eabea7109af7806a28c7eaf5b342a77c0ec82c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.4216340. |
| ORCID | 0000-0003-4731-312X |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1098/rsos.180160 |
| PMID | 30839700 |
| PQID | 2188592947 |
| PQPubID | 23479 |
| ParticipantIDs | pubmed_primary_30839700 crossref_primary_10_1098_rsos_180160 royalsociety_journals_10_1098_rsos_180160 doaj_primary_oai_doaj_org_article_717764b3a4db47b3a911cca0a02de459 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6170584 proquest_miscellaneous_2188592947 crossref_citationtrail_10_1098_rsos_180160 unpaywall_primary_10_1098_rsos_180160 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-01 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Royal Society open science |
| PublicationTitleAbbrev | R. Soc. open sci |
| PublicationTitleAlternate | R Soc Open Sci |
| PublicationYear | 2018 |
| Publisher | The Royal Society |
| Publisher_xml | – name: The Royal Society |
| References | e_1_3_6_10_2 e_1_3_6_5_2 e_1_3_6_4_2 e_1_3_6_3_2 e_1_3_6_9_2 e_1_3_6_7_2 Qu D (e_1_3_6_20_2) 2010; 17 e_1_3_6_6_2 e_1_3_6_19_2 Yong J (e_1_3_6_8_2) 2011; 26 e_1_3_6_13_2 e_1_3_6_12_2 e_1_3_6_11_2 Sun P (e_1_3_6_14_2) 2013; 16 e_1_3_6_18_2 e_1_3_6_17_2 2016 China Fire Yearbook (e_1_3_6_2_2) 2016 e_1_3_6_16_2 e_1_3_6_15_2 |
| References_xml | – ident: e_1_3_6_6_2 doi: 10.1016/j.ijepes.2016.02.003 – ident: e_1_3_6_11_2 doi: 10.1016/j.ijepes.2014.12.065 – volume: 17 start-page: 77 year: 2010 ident: e_1_3_6_20_2 article-title: Application of matrix analysis based DS evidence theory in netted radar publication-title: Electron. Opt. Control – ident: e_1_3_6_3_2 – ident: e_1_3_6_4_2 doi: 10.1016/j.epsr.2016.10.008 – ident: e_1_3_6_5_2 doi: 10.1016/j.engappai.2018.05.009 – ident: e_1_3_6_7_2 doi: 10.1016/j.solener.2018.06.004 – ident: e_1_3_6_17_2 doi: 10.1007/s00779-017-1042-0 – volume: 16 start-page: 56 year: 2013 ident: e_1_3_6_14_2 article-title: Detection and diagnosis technology of series arc-faults based on grid fractal theory publication-title: Low Voltage Apparatus – volume-title: Fire department of ministry of public security year: 2016 ident: e_1_3_6_2_2 – volume: 26 start-page: 213 year: 2011 ident: e_1_3_6_8_2 article-title: Series arc faults identification in low voltage system based on autoregressive parameter model publication-title: Trans. China Electrotechnical Soc. – ident: e_1_3_6_16_2 doi: 10.1155/2017/3021950 – ident: e_1_3_6_12_2 doi: 10.1016/j.epsr.2016.07.011 – ident: e_1_3_6_13_2 doi: 10.1109/TIM.2016.2627248 – ident: e_1_3_6_9_2 doi: 10.4028/www.scientific.net/AMR.889-890.741 – ident: e_1_3_6_18_2 doi: 10.1109/TNN.2002.1031955 – ident: e_1_3_6_10_2 doi: 10.1016/j.cja.2018.01.004 – ident: e_1_3_6_19_2 doi: 10.1080/00207543.2014.980458 – ident: e_1_3_6_15_2 doi: 10.1007/BF00994018 |
| SSID | ssj0001503767 |
| Score | 2.1260054 |
| Snippet | Arc faults in low-voltage electrical circuits are the main hidden cause of electric fires. Accurate identification of arc faults is essential for safe power... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref royalsociety |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 180160 |
| SubjectTerms | Arc Fault Engineering High-Frequency Radiation Characteristics Multiinformation Fusion Periodic Integration Characteristics Slope Characteristics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFD7IXtQHcf7sphJhghPqctu0SR-nOIagTw6GL-EkTbcLXe_ltnX433vSZJd74aIvPhXaQJLzo_mSfPkCcMS55aZyKpVZXqY03japoclPmgtRY2mcFI0_jfzte3l-Ib5eFpcbV315TliQBw6GO6HphiyFyVHURkh6UnZSrRx5VjtRTEf3uKo2JlPhfDD3MiXxQB6v1AnB1_7jTHlBta0haFLq3wUvd7AkV35G3wc25UO4P3ZL_H2LbbsxIp09hkcRSrLT0IV9uOe6J7Afk7Vn76Oi9PFT-HnaMQpo1uDYDqwO7Lp5z7C9Wqzmw_UN8_T3KzaxC6OUqncYa0a_mMawq1k_Lj1UZ7-mZX52M5EwXf8MLs6-_Ph8nsZLFVJLuTqkzcxIU9a5MU5VtTNosrJwQlru0Dj01ExspOIlZspKh01hcpGh9AWsymz-HPa6RedeAqtsLYUQ5M6MXOsEGkX4xDqROzuTsyyBD3d21jYqjvuLL1oddr6V9k7RwSkJHK0LL4PQxu5in7zD1kW8Ovb0gmJGx5jR_4qZBN7euVtTNvktEuzcYuw1AR5VEGIUMoEXwf3rqnJCq5Xk1AS5FRhbbdn-0s2vJ8Vur3pPSC-B480Q0vF30e_u6Lt1fP3NIAf_wyCH8ICAoArcuVewN6xG95rA1mDeTHn1B5MYLGA priority: 102 providerName: Directory of Open Access Journals – databaseName: Royal Society Open Access Journals dbid: OP1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_ofNA9iJtfVScRJjihsx9pkz5uwzEEPx4cDF9Ckqbbha73ctsq_vee02bdvXIRfCq0aZvm_E7zy8nJLwD7UWQjUzgZiiTNQ-xvq9Dg4CdMOS91bpzgFa1G_vwlPzvnny6yC7_PKa2FWdKguR0TFhdTIGaY0icfp5i0F0GSH5CRtoexJI20u3CPZEsI4l-_xbdBliwitRK_Lu-ve9Z6okGwfxPL3JAsuVrHbbjfNwv9-5eu65WO6fQRPPSMkh2NENiBO67Zhe0VncFd2PEe3LJ3Xmb64DH8OGoYopxVuq87Vo4pd7OW6fpyvpx1V9eMcuIv2ZBy6PVVyYqs6inCxnRTsrZfEH9nP4fYP7seMjNd-wTOTz9-PzkL_U4LoUUH7sIqNsLkZWqMk0XpjDZJnjkubOS0cZryNXUlZJTrRFrhdJWZlCdaUAErE5s-ha1m3rjnwApbCs452jhBezuujUTSYh1PnY1FnATw_qbVlfUy5LQbRq3G6XCpyERqNFEA-1Phxai-sbnYMZlvKkKS2cMJhI3yHqhw3CpyblLNS8MFHvE3j_CNdJSUjmdFAG9ujK_QxWjeRDdu3rcKWZDMkEZyEcCzEQzTq1KksIWIsApiDSZrdVm_0syuBhlvksJH-hfAwSqglP-HtJs_9O2Etn81yIv_eOZLeIAkUI55c69gq1v2bg-JVmdeD870B6NOLQw priority: 102 providerName: Royal Society Publications – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4AOUZXjKiSLRSlmzixM5xeVQVEhUHVipcLNtx2hVpdrVJQPDrGcfeVVOtgFOkZKI4npn4c-bzZ4D9KNKRyg0PWZxkIY63Zahw8hMmlBYyU4bR0q5G_nSSHc_ox9P0dAdertfCDOr3OX-DqLMZT7jVQbsGu1mKgHsEu7OTz9Ovdts4BByh1ZDyK--u3DEYa3pJ_m04cgsdcmWn7o2jTd6E6129lL9-yqq6NPQc3Yb360Y7xsn3cdeqsf59Rc_xH291B2556EmmLlb2YMfUd2HPJ3dDXnsF6oN78G1aE0wAUsquaknh2HjzhsjqbLGat-cXxNLlz0jPRvTSq9bBpOzszzci64I03dJCe_KjLwuQi560aZr7MDv68OXdceg3YQg15nYblhPFVFYkShmeF0ZJFWepoUxHRiojLZVTloxHmYy5ZkaWqUpoLJk10DzWyQMY1YvaPAKS64JRStH9MYaCoVJxxDPa0MToCZvEARyu3SW0Vyi3G2VUwlXKubD9Jly_BbC_MV46YY7tZm-t3zcmVk27P4HuED45BU5pWUZVImmhKMMjjgAY2ZGM4sLQNA_gxTpqBGafLanI2iy6RiBA4ikiTMoCeOiiaPOoBNFtziJsAhvE16Atwyv1_LxX-LYq-YgMAzi4HInCf16a7S_6ahOmf-uQx_9p9wRuIDbkjk73FEbtqjPPEH-16rnPvz_WGzIt priority: 102 providerName: Unpaywall |
| Title | An arc fault diagnosis algorithm using multiinformation fusion and support vector machines |
| URI | https://royalsocietypublishing.org/doi/full/10.1098/rsos.180160 https://www.ncbi.nlm.nih.gov/pubmed/30839700 https://www.proquest.com/docview/2188592947 https://pubmed.ncbi.nlm.nih.gov/PMC6170584 https://doi.org/10.1098/rsos.180160 https://doaj.org/article/717764b3a4db47b3a911cca0a02de459 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2054-5703 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001503767 issn: 2054-5703 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2054-5703 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001503767 issn: 2054-5703 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2054-5703 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001503767 issn: 2054-5703 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2054-5703 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001503767 issn: 2054-5703 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAUN databaseName: Royal Society Open Access Journals customDbUrl: eissn: 2054-5703 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001503767 issn: 2054-5703 databaseCode: OP1 dateStart: 20140901 isFulltext: true titleUrlDefault: http://royalsocietypublishing.org/journals providerName: Royal Society Publications – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2054-5703 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0001503767 issn: 2054-5703 databaseCode: M48 dateStart: 20140901 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9qC1ofxKq18eNYoYIVUvOxyW4eRE6xFKG1Dx5UX8JusrkepLlrclH73zuTj-NOoi8JJBOy2ZnJ_HZ39jcAh46TODoy0haeH9oYbzNb4-DH9jlPVaiN4BntRj47D08n_MtlcLkFfTHOrgOrwaEd1ZOalPnx75vbD-jw71syJPkOkWl17EriSrsDOxiiIqrhcNbh_Ha7sEOsJVRoDiGKTaxT3V69v57fhbs-gpJI0I63tUDV8PkPgdCBXMqSxv1Vm3N5H-7VxULd_lJ5vha3Th7Cgw5wsnFrIXuwZYpHsNe5dMXedLzTR4_hx7hgaPYsU3W-ZGmbgzermMqn83K2vLpmlCQ_ZU0OYke4SmplWU1TbkwVKavqBfUl-9ksBrDrJlXTVE9gcvL526dTuyu9YCfo0Us7c7XQYeprbWSUGq20FwaGi8QxShtFCZwqE9IJlScTYVQWaJ97SpBAIr3E34ftYl6YA2BRkgrOOSrdQwMwXGmJKCYx3DeJK1zPgrd9P8dJx0tO5THyuF0flzHpJ271Y8HhSnjR0nEMi30kha1EiEO7uTAvp3HnkjEOZEXIta94qrnAM_730Z4d5Xip4UFkwate3TH6HC2kqMLM6ypGWCQDxJVcWPC0Vf_qVb35WCA2DGOjLZt3itlVw-tN3PiIBy04WjehuPeJ4Q99vbKv_3XIs3-28znsIgaUbdrcC9helrV5iThrqUfN_MSo8SQ8fr1wR7AzOb8Yf_8D9mMroQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZQeKlpeKS8jFYkiBfJwYudYENUCbeHQShUXy06cdqU0u9okIP49M4kbdtEKiVOkZJI4npn4m_H4M8B-EOSByaz0RRSnPo63pW8w-PFjzgudGit4SauRT07TyTn_fJFcuH1OaS3MgoLmZihYnI-JmH5Kn3ycctKOBEm-Q0TavA0lcaTdhjtJEnGKvr5-C_8kWZKA2Ercury_7lkZiXrC_nUoc02x5HIbt2Czq-f6109dVUsD09E92HaIkh0OJrADt2y9C1tLPIO7sOM8uGGvHc30wX34flgztHJW6q5qWTGU3E0bpqvL2WLaXl0zqom_ZH3JoeNXJS2ysqMMG9N1wZpuTvid_ehz_-y6r8y0zQM4P_p49mHiu50W_BwduPXL0AiTFrExVmaFNdpEaWK5yAOrjdVUr6lLIYNURzIXVpeJiXmkBQnkMsrjh7BRz2r7GFiWF4JzjjqOUN-WayMRtOSWxzYPRRh58Oam11XuaMhpN4xKDdPhUpGK1KAiD_ZH4fnAvrFe7D2pbxQhyuz-BJqNch6oMG4VKTex5oXhAo_4m0fzDXQQFZYnmQcvb5Sv0MVo3kTXdtY1ClGQTBBGcuHBo8EYxlfFCGEzEWATxIqZrLRl9Uo9veppvIkKH-GfBwfLBqXcP6RZ_6GvRmv7V4fs_cczX8Dm5OzkWB1_Ov3yBO4iIJRDDd1T2GgXnX2GoKs1z3vH-g3W_y_z |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkaA9VG2BEkrBSEWiSIE8nNg5lseqvEoPVKp6sWzHaVdKs9EmAfHvGSdu2EUrJE6RkknieGbib8bjzwAHQaADlRnusyhOfRxvC19h8OPHlOYyVYbRwq5G_nqSHp_RT-fJudvn1K6FmduguRkKFusxEdNP6VsfN3VeOBIk_gYRafM65JYj7TbcSTCkstHXt9PwT5IlCSxbiVuX99c9SyNRT9i_CmWuKJZcbOMG3OuqWv76KctyYWCabMGmQ5TkaDCBbbhlqh3YWOAZ3IFt58ENeelopg_vw8VRRdDKSSG7siX5UHI3bYgsL2fzaXt1TWxN_CXpSw4dv6rVIik6m2EjsspJ09UWv5Mffe6fXPeVmaZ5AGeTD9_fHftupwVfowO3fhEqptI8VsrwLDdKqihNDGU6MFIZaes1ZcF4kMqIa2ZkkaiYRpJZAc0jHT-EtWpWmUdAMp0zSinqOEJ9GyoVR9CiDY2NDlkYefDqpteFdjTkdjeMUgzT4VxYFYlBRR4cjML1wL6xWuytVd8oYimz-xNoNsJ5oMC4laVUxZLmijI84m8ezTeQQZQbmmQePL9RvkAXs_MmsjKzrhGIgniCMJIyD3YHYxhfFSOEzViATWBLZrLUluUr1fSqp_G2VPgI_zw4XDQo4f4hzeoPfTFa27865PF_PPMZ3D19PxFfPp583oN1xIN8KKF7AmvtvDP7iLla9bT3q99YeS-C |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4AOUZXjKiSLRSlmzixM5xeVQVEhUHVipcLNtx2hVpdrVJQPDrGcfeVVOtgFOkZKI4npn4c-bzZ4D9KNKRyg0PWZxkIY63Zahw8hMmlBYyU4bR0q5G_nSSHc_ox9P0dAdertfCDOr3OX-DqLMZT7jVQbsGu1mKgHsEu7OTz9Ovdts4BByh1ZDyK--u3DEYa3pJ_m04cgsdcmWn7o2jTd6E6129lL9-yqq6NPQc3Yb360Y7xsn3cdeqsf59Rc_xH291B2556EmmLlb2YMfUd2HPJ3dDXnsF6oN78G1aE0wAUsquaknh2HjzhsjqbLGat-cXxNLlz0jPRvTSq9bBpOzszzci64I03dJCe_KjLwuQi560aZr7MDv68OXdceg3YQg15nYblhPFVFYkShmeF0ZJFWepoUxHRiojLZVTloxHmYy5ZkaWqUpoLJk10DzWyQMY1YvaPAKS64JRStH9MYaCoVJxxDPa0MToCZvEARyu3SW0Vyi3G2VUwlXKubD9Jly_BbC_MV46YY7tZm-t3zcmVk27P4HuED45BU5pWUZVImmhKMMjjgAY2ZGM4sLQNA_gxTpqBGafLanI2iy6RiBA4ikiTMoCeOiiaPOoBNFtziJsAhvE16Atwyv1_LxX-LYq-YgMAzi4HInCf16a7S_6ahOmf-uQx_9p9wRuIDbkjk73FEbtqjPPEH-16rnPvz_WGzIt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+arc+fault+diagnosis+algorithm+using+multiinformation+fusion+and+support+vector+machines&rft.jtitle=Royal+Society+open+science&rft.au=Yang%2C+Jian-Hong&rft.au=Fang%2C+Huai-Ying&rft.au=Zhang%2C+Ren-Cheng&rft.au=Yang%2C+Kai&rft.date=2018-09-01&rft.issn=2054-5703&rft.eissn=2054-5703&rft.volume=5&rft.issue=9&rft.spage=180160&rft_id=info:doi/10.1098%2Frsos.180160&rft_id=info%3Apmid%2F30839700&rft.externalDocID=30839700 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-5703&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-5703&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-5703&client=summon |