CNN-based lung CT registration with multiple anatomical constraints

•We present a deep-learning-based method for lung registration.•We introduce a novel constraining method to control volume change and therefore avoid foldings inside the deformation field.•We integrate keypoints correspondence into the loss function to increase the alignment of airways and vessels....

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 72; p. 102139
Main Authors Hering, Alessa, Häger, Stephanie, Moltz, Jan, Lessmann, Nikolas, Heldmann, Stefan, van Ginneken, Bram
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2021.102139

Cover

Abstract •We present a deep-learning-based method for lung registration.•We introduce a novel constraining method to control volume change and therefore avoid foldings inside the deformation field.•We integrate keypoints correspondence into the loss function to increase the alignment of airways and vessels. [Display omitted] Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/.
AbstractList Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/.
Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/.Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/.
•We present a deep-learning-based method for lung registration.•We introduce a novel constraining method to control volume change and therefore avoid foldings inside the deformation field.•We integrate keypoints correspondence into the loss function to increase the alignment of airways and vessels. [Display omitted] Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/.
Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/ .
ArticleNumber 102139
Author Hering, Alessa
Häger, Stephanie
Lessmann, Nikolas
Heldmann, Stefan
Moltz, Jan
van Ginneken, Bram
AuthorAffiliation c Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, Bremen 28359, Germany
a Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Str 3, Lübeck 23562, Germany
b Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
AuthorAffiliation_xml – name: b Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
– name: a Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Str 3, Lübeck 23562, Germany
– name: c Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, Bremen 28359, Germany
Author_xml – sequence: 1
  givenname: Alessa
  surname: Hering
  fullname: Hering, Alessa
  email: alessa.hering@mevis.fraunhofer.de
  organization: Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Str 3, Lübeck 23562, Germany
– sequence: 2
  givenname: Stephanie
  surname: Häger
  fullname: Häger, Stephanie
  organization: Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Str 3, Lübeck 23562, Germany
– sequence: 3
  givenname: Jan
  surname: Moltz
  fullname: Moltz, Jan
  organization: Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, Bremen 28359, Germany
– sequence: 4
  givenname: Nikolas
  surname: Lessmann
  fullname: Lessmann, Nikolas
  organization: Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
– sequence: 5
  givenname: Stefan
  surname: Heldmann
  fullname: Heldmann, Stefan
  organization: Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Str 3, Lübeck 23562, Germany
– sequence: 6
  givenname: Bram
  surname: van Ginneken
  fullname: van Ginneken, Bram
  organization: Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34216959$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNvAEyChkdiwmeC_2OMFQtUIaKWqbMracjx3UkceO9ieIt4epykRdAErW_Z3js695xydhBgAodcELwkm4v12OcHgzJJiSuoLJUw9Q2eECdJ2nLKT452sTtF5zluMseQcv0CnjFMi1Eqdob6_uWnXJsPQ-Dlsmv62SbBxuSRTXAzND1fummn2xe08NCaYEidnjW9sDHvIhZJfouej8RlePZ4L9O3zp9v-sr3--uWqv7huLe-60g7dIChTRkqQQAarYATOVthQPJDRUjOCMMRaTpTs1pQQqTpp6IitktgQwxbo48F3N6_r6BZCDeD1LrnJpJ86Gqf__gnuTm_ivSaYCSUkqw7vHh1S_D5DLnpy2YL3JkCcs6Yr3nHMRc25QG-foNs4p1Dnq5SkggjciUq9-TPSMcvvBVeAHQCbYs4JxiNCsN7XqLf6oUa9r1Efaqwq9URlXXkoZL9y_x_th4MWahX3DpLO1kGwFUxgix6i-6f-F5_7uQM
CitedBy_id crossref_primary_10_1109_TMI_2023_3321425
crossref_primary_10_1109_ACCESS_2023_3243104
crossref_primary_10_1016_j_compmedimag_2024_102397
crossref_primary_10_1002_mp_17120
crossref_primary_10_1016_j_bspc_2024_106172
crossref_primary_10_1109_TBME_2023_3280463
crossref_primary_10_1016_j_cmpb_2022_107025
crossref_primary_10_1016_j_cmpb_2023_107389
crossref_primary_10_1016_j_media_2023_102917
crossref_primary_10_1016_j_cmpb_2024_108401
crossref_primary_10_1016_j_apm_2024_02_033
crossref_primary_10_1109_TRPMS_2024_3410021
crossref_primary_10_1016_j_media_2022_102434
crossref_primary_10_3389_fnimg_2022_977491
crossref_primary_10_1002_jum_15889
crossref_primary_10_1016_j_media_2024_103385
crossref_primary_10_1109_TMI_2022_3213983
crossref_primary_10_1016_j_compmedimag_2023_102184
crossref_primary_10_1007_s10278_022_00763_z
crossref_primary_10_1016_j_compbiomed_2024_108673
crossref_primary_10_1186_s12880_022_00854_x
crossref_primary_10_1007_s10278_024_01154_2
crossref_primary_10_3788_AOS240778
crossref_primary_10_3390_bioengineering10050562
crossref_primary_10_1002_ima_22801
crossref_primary_10_1117_1_JMI_10_6_067501
crossref_primary_10_1016_j_compbiomed_2022_105799
crossref_primary_10_1016_j_compbiomed_2022_105876
crossref_primary_10_1016_j_compbiomed_2023_107434
crossref_primary_10_3390_s21217112
crossref_primary_10_1016_j_compbiomed_2023_107150
crossref_primary_10_1016_j_media_2024_103351
crossref_primary_10_1088_1361_6560_ad2717
Cites_doi 10.1109/TMI.2021.3073986
10.1137/17M1125522
10.1109/TMI.2019.2897112
10.1023/A:1021897212261
10.1016/j.media.2018.07.002
10.1088/1361-6560/ab5da0
10.1016/j.neuroimage.2017.07.008
10.1016/S0734-189X(89)80014-3
10.1088/0031-9155/54/7/001
10.3109/15412550903499522
10.1007/s11548-019-02068-z
10.1109/TMI.2011.2158349
10.1109/TMI.2017.2691259
10.1016/j.media.2018.11.010
10.1088/0031-9155/58/9/2861
10.1109/TMI.2013.2246577
10.1109/TMI.2013.2265603
10.1002/mp.14065
10.1109/TMI.2019.2897538
10.1016/S1361-8415(01)80026-8
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright Elsevier BV Aug 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Aug 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.media.2021.102139
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 102139
ExternalDocumentID PMC10369673
34216959
10_1016_j_media_2021_102139
S1361841521001857
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: U01 HL089897
– fundername: NHLBI NIH HHS
  grantid: U01 HL089856
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
ACLOT
~HD
5PM
ID FETCH-LOGICAL-c488t-d8d6239a77e7e1dc9efe4350a20d1fc2afe6a1cc41978b2117987a2f0c970a1a3
IEDL.DBID AIKHN
ISSN 1361-8415
1361-8423
IngestDate Thu Aug 21 18:37:23 EDT 2025
Sun Sep 28 10:04:57 EDT 2025
Sat Jul 26 03:27:03 EDT 2025
Mon Jul 21 06:05:06 EDT 2025
Tue Jul 01 02:49:30 EDT 2025
Thu Apr 24 23:10:41 EDT 2025
Fri Feb 23 02:47:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Image registration
Lung CT
Keypoints
Volume change control
Multilevel
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-d8d6239a77e7e1dc9efe4350a20d1fc2afe6a1cc41978b2117987a2f0c970a1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1361841521001857
PMID 34216959
PQID 2572616086
PQPubID 2045428
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10369673
proquest_miscellaneous_2548404662
proquest_journals_2572616086
pubmed_primary_34216959
crossref_primary_10_1016_j_media_2021_102139
crossref_citationtrail_10_1016_j_media_2021_102139
elsevier_sciencedirect_doi_10_1016_j_media_2021_102139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ehrhardt, Werner, Schmidt-Richberg, Handels (bib0010) 2010; 2010
Modersitzki (bib0044) 2009; 6
Polzin, Rühaak, Werner, Strehlow, Heldmann, Handels, Modersitzki (bib0048) 2013
Fischer, Modersitzki (bib0015) 2003; 5032
de Vos, Berendsen, Viergever, Sokooti, Staring, Išgum (bib0059) 2019; 52
Heinrich (bib0023) 2019
Eppenhof, Lafarge, Veta, Pluim (bib0012) 2019
Heinrich, Jenkinson, Brady, Schnabel (bib0025) 2013; 32
Bajcsy, Kovačič (bib0002) 1989; 46
Haber, Modersitzki (bib0019) 2004
Kervadec, Dolz, Wang, Granger, Ayed (bib0035) 2020
Ronneberger, Fischer, Brox (bib0052) 2015
Hering, van Ginneken, Heldmann (bib0026) 2019
Fischer, Modersitzki (bib0016) 2003; 18
Hansen, Heinrich (bib0022) 2021
Ferrante, Oktay, Glocker, Milone (bib0014) 2018
Berendsen, Kotte, Viergever, Pluim (bib0005) 2014; 9034
Eppenhof, Lafarge, Moeskops, Veta, Pluim (bib0011) 2018; 10574
Krebs, Delingette, Mailhé, Ayache, Mansi (bib0038) 2019; 38
Kuckertz, Papenberg, Honegger, Morgas, Haas, Heldmann (bib0040) 2020; 11313
Murphy, Van Ginneken, Reinhardt, Kabus, Ding, Deng, Cao, Du, Christensen, Garcia (bib0046) 2011; 30
Sokooti, de Vos, Berendsen, Lelieveldt, Išgum, Staring (bib0057) 2017
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0003) 2018
Dalca, Balakrishnan, Guttag, Sabuncu (bib0009) 2018
König, Rühaak, Derksen, Lellmann (bib0037) 2018; 40
Sentker, Madesta, Werner (bib0056) 2018
Arsigny, Commowick, Pennec, Ayache (bib0001) 2006
Jaderberg, Simonyan, Zisserman (bib0032) 2015
Regan, Hokanson, Murphy, Make, Lynch, Beaty, Curran-Everett, Silverman, Crapo (bib0050) 2011; 7
Hering, Heldmann (bib0027) 2019; 10949
Krebs, Mansi, Delingette, Zhang, Ghesu, Miao, Maier, Ayache, Liao, Kamen (bib0039) 2017
Eppenhof, Pluim (bib0013) 2018
Schmidt-Richberg, Werner, Ehrhardt, Wolf, Handels (bib0054) 2011; 7962
Castillo, Castillo, Guerra, Johnson, McPhail, Garg, Guerrero (bib0008) 2009; 54
Mok, Chung (bib0045) 2020
Qiu, H., Qin, C., Schuh, A., Hammernik, K., Rueckert, D., 2021. Learning diffeomorphic and modality-invariant registration using b-splines.
Heinrich, Jenkinson, Brady, Schnabel (bib0024) 2012
Hu, Modat, Gibson, Ghavami, Bonmati, Moore, Emberton, Noble, Barratt, Vercauteren (bib0030) 2018
Hering, Kuckerts, Heldmann, Heinrich (bib0028) 2019
Hering, Kuckertz, Heldmann, Heinrich (bib0029) 2019; 14
Rohé, Datar, Heimann, Sermesant, Pennec (bib0051) 2017
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0004) 2019
Glorot, Bengio (bib0018) 2010
Haber, Modersitzki (bib0020) 2006; 3216
Jiang, Yin, Ge, Ren (bib0033) 2020; 65
Yang, Kwitt, Styner, Niethammer (bib0061) 2017
Castillo, Castillo, Fuentes, Ahmad, Wood, Ludwig, Guerrero (bib0007) 2013; 58
Boyd, Boyd, Vandenberghe (bib0006) 2004
Li, Fan (bib0041) 2018
Hansen, Heinrich (bib0021) 2020
Maintz, Viergever (bib0042) 1998; 2
Sotiras, Davatzikos, Paragios (bib0058) 2013; 32
Fu, Lei, Wang, Higgins, Bradley, Curran, Liu, Yang (bib0017) 2020; 47
Schnabel, Rueckert, Quist, Blackall, Castellano-Smith, Hartkens, Penney, Hall, Liu, Truwit (bib0055) 2001
Kabus, Lorenz (bib0034) 2010
Kervadec, Dolz, Yuan, Desrosiers, Granger, Ayed (bib0036) 2019
Modersitzki (bib0043) 2004
de Vos, Berendsen, Viergever, Staring, Išgum (bib0060) 2017
Rühaak, Polzin, Heldmann, Simpson, Handels, Modersitzki, Heinrich (bib0053) 2017; 36
Yang, Kwitt, Styner, Niethammer (bib0062) 2017; 158
Papenberg, Olesch, Lange, Schlag, Fischer (bib0047) 2009
Hu, Modat, Gibson, Li, Ghavami, Bonmati, Wang, Bandula, Moore, Emberton (bib0031) 2018; 49
Eppenhof (10.1016/j.media.2021.102139_bib0011) 2018; 10574
Fischer (10.1016/j.media.2021.102139_bib0015) 2003; 5032
Schnabel (10.1016/j.media.2021.102139_bib0055) 2001
Hering (10.1016/j.media.2021.102139_bib0029) 2019; 14
Rohé (10.1016/j.media.2021.102139_bib0051) 2017
Jiang (10.1016/j.media.2021.102139_bib0033) 2020; 65
Hu (10.1016/j.media.2021.102139_bib0030) 2018
Castillo (10.1016/j.media.2021.102139_bib0007) 2013; 58
Glorot (10.1016/j.media.2021.102139_bib0018) 2010
Heinrich (10.1016/j.media.2021.102139_bib0024) 2012
Hansen (10.1016/j.media.2021.102139_bib0022) 2021
Sentker (10.1016/j.media.2021.102139_bib0056) 2018
Kervadec (10.1016/j.media.2021.102139_bib0035) 2020
Jaderberg (10.1016/j.media.2021.102139_bib0032) 2015
Papenberg (10.1016/j.media.2021.102139_bib0047) 2009
Berendsen (10.1016/j.media.2021.102139_bib0005) 2014; 9034
Schmidt-Richberg (10.1016/j.media.2021.102139_bib0054) 2011; 7962
Polzin (10.1016/j.media.2021.102139_bib0048) 2013
Balakrishnan (10.1016/j.media.2021.102139_bib0003) 2018
Li (10.1016/j.media.2021.102139_bib0041) 2018
Yang (10.1016/j.media.2021.102139_bib0061) 2017
Hering (10.1016/j.media.2021.102139_bib0027) 2019; 10949
Regan (10.1016/j.media.2021.102139_bib0050) 2011; 7
Ehrhardt (10.1016/j.media.2021.102139_bib0010) 2010; 2010
Fu (10.1016/j.media.2021.102139_bib0017) 2020; 47
Maintz (10.1016/j.media.2021.102139_bib0042) 1998; 2
König (10.1016/j.media.2021.102139_bib0037) 2018; 40
Krebs (10.1016/j.media.2021.102139_bib0038) 2019; 38
Hering (10.1016/j.media.2021.102139_bib0028) 2019
Sotiras (10.1016/j.media.2021.102139_bib0058) 2013; 32
de Vos (10.1016/j.media.2021.102139_bib0060) 2017
Dalca (10.1016/j.media.2021.102139_bib0009) 2018
Heinrich (10.1016/j.media.2021.102139_bib0023) 2019
Kabus (10.1016/j.media.2021.102139_bib0034) 2010
Rühaak (10.1016/j.media.2021.102139_bib0053) 2017; 36
Haber (10.1016/j.media.2021.102139_bib0019) 2004
Sokooti (10.1016/j.media.2021.102139_bib0057) 2017
Hu (10.1016/j.media.2021.102139_bib0031) 2018; 49
Arsigny (10.1016/j.media.2021.102139_bib0001) 2006
de Vos (10.1016/j.media.2021.102139_bib0059) 2019; 52
Heinrich (10.1016/j.media.2021.102139_bib0025) 2013; 32
Bajcsy (10.1016/j.media.2021.102139_bib0002) 1989; 46
Eppenhof (10.1016/j.media.2021.102139_bib0012) 2019
Balakrishnan (10.1016/j.media.2021.102139_bib0004) 2019
Fischer (10.1016/j.media.2021.102139_bib0016) 2003; 18
Hansen (10.1016/j.media.2021.102139_bib0021) 2020
Boyd (10.1016/j.media.2021.102139_bib0006) 2004
10.1016/j.media.2021.102139_bib0049
Kuckertz (10.1016/j.media.2021.102139_bib0040) 2020; 11313
Ronneberger (10.1016/j.media.2021.102139_bib0052) 2015
Yang (10.1016/j.media.2021.102139_bib0062) 2017; 158
Krebs (10.1016/j.media.2021.102139_bib0039) 2017
Ferrante (10.1016/j.media.2021.102139_bib0014) 2018
Haber (10.1016/j.media.2021.102139_bib0020) 2006; 3216
Murphy (10.1016/j.media.2021.102139_bib0046) 2011; 30
Hering (10.1016/j.media.2021.102139_bib0026) 2019
Kervadec (10.1016/j.media.2021.102139_bib0036) 2019
Modersitzki (10.1016/j.media.2021.102139_bib0044) 2009; 6
Eppenhof (10.1016/j.media.2021.102139_bib0013) 2018
Castillo (10.1016/j.media.2021.102139_bib0008) 2009; 54
Modersitzki (10.1016/j.media.2021.102139_bib0043) 2004
Mok (10.1016/j.media.2021.102139_bib0045) 2020
References_xml – volume: 158
  start-page: 378
  year: 2017
  end-page: 396
  ident: bib0062
  article-title: Quicksilver: fast predictive image registration–a deep learning approach
  publication-title: Neuroimage
– volume: 9034
  start-page: 90340E
  year: 2014
  ident: bib0005
  article-title: Registration of organs with sliding interfaces and changing topologies
  publication-title: Medical Imaging 2014: Image Processing
– volume: 49
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib0031
  article-title: Weakly-supervised convolutional neural networks for multimodal image registration
  publication-title: Med. Image Anal.
– volume: 40
  start-page: B858
  year: 2018
  end-page: B888
  ident: bib0037
  article-title: A matrix-free approach to parallel and memory-efficient deformable image registration
  publication-title: SIAM J. Sci. Comput.
– start-page: 204
  year: 2017
  end-page: 212
  ident: bib0060
  article-title: End-to-end Unsupervised Deformable Image Registration with a Convolutional Neural Network
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 10949
  year: 2019
  ident: bib0027
  article-title: Unsupervised learning for large motion thoracic ct follow-up registration
  publication-title: SPIE Medical Imaging 2019: Image Processing
– volume: 10574
  start-page: 105740S
  year: 2018
  ident: bib0011
  article-title: Deformable image registration using convolutional neural networks
  publication-title: Medical Imaging 2018: Image Processing
– start-page: 81
  year: 2010
  end-page: 89
  ident: bib0034
  article-title: Fast elastic image registration
  publication-title: Med. Image Anal. Clin.
– start-page: 309
  year: 2019
  end-page: 314
  ident: bib0028
  article-title: Enhancing label-driven deep deformable image registration with local distance metrics for state-of-the-art cardiac motion tracking
  publication-title: Bildverarbeitung für die Medizin 2019 - Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 17. bis 19. März 2019 in Lübeck
– start-page: 115
  year: 2012
  end-page: 122
  ident: bib0024
  article-title: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 232
  year: 2017
  end-page: 239
  ident: bib0057
  article-title: Nonrigid image registration using multi-scale 3d convolutional neural networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2004
  ident: bib0006
  article-title: Convex optimization
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0052
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical image computing and computer-assisted intervention
– volume: 47
  start-page: 1763
  year: 2020
  ident: bib0017
  article-title: Lungregnet: an unsupervised deformable image registration method for 4d-ct lung.
  publication-title: Med. Phys.
– year: 2020
  ident: bib0021
  article-title: Tackling the problem of large deformations in deep learning based medical image registration using displacement embeddings
  publication-title: arXiv preprint arXiv:2005.13338
– volume: 32
  start-page: 1239
  year: 2013
  end-page: 1248
  ident: bib0025
  article-title: Mrf-based deformable registration and ventilation estimation of lung ct
  publication-title: IEEE Trans. Med. Imag.
– volume: 54
  start-page: 1849
  year: 2009
  ident: bib0008
  article-title: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets
  publication-title: Phys. Med. Biol.
– start-page: 249
  year: 2010
  end-page: 256
  ident: bib0018
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
– start-page: 266
  year: 2017
  end-page: 274
  ident: bib0051
  article-title: Svf-net: Learning deformable image registration using shape matching
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2018
  ident: bib0009
  article-title: Unsupervised learning for fast probabilistic diffeomorphic registration
  publication-title: arXiv preprint arXiv:1805.04605
– volume: 3216
  start-page: 591
  year: 2006
  end-page: 598
  ident: bib0020
  article-title: Intensity gradient based registration and fusion of multi-modal images
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006
– year: 2018
  ident: bib0013
  article-title: Pulmonary ct registration through supervised learning with convolutional neural networks
  publication-title: IEEE Trans. Med. Imag.
– start-page: 257
  year: 2019
  end-page: 265
  ident: bib0026
  article-title: mlvirnet: multilevel variational image registration network
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 7962
  start-page: 79620T
  year: 2011
  ident: bib0054
  article-title: Landmark-driven parameter optimization for non-linear image registration
  publication-title: Medical Imaging 2011: Image Processing
– volume: 32
  start-page: 1153
  year: 2013
  end-page: 1190
  ident: bib0058
  article-title: Deformable medical image registration: a survey
  publication-title: Med. Imag. IEEE Trans.
– volume: 2010
  start-page: 165
  year: 2010
  end-page: 174
  ident: bib0010
  article-title: Automatic landmark detection and non-linear landmark-and surface-based registration of lung ct images
  publication-title: Med. Image Anal. Clinic-A Grand Challenge, MICCAI
– year: 2004
  ident: bib0019
  article-title: Cofir: coarse and fine image registration
  publication-title: Real-Time PDE-Constrained Optimization
– volume: 46
  start-page: 1
  year: 1989
  end-page: 21
  ident: bib0002
  article-title: Multiresolution elastic matching
  publication-title: Comput. Vis. Graphic. Image Process.
– volume: 58
  start-page: 2861
  year: 2013
  ident: bib0007
  article-title: A reference dataset for deformable image registration spatial accuracy evaluation using the copdgene study archive
  publication-title: Phys. Med. Biol.
– volume: 38
  start-page: 2165
  year: 2019
  end-page: 2176
  ident: bib0038
  article-title: Learning a probabilistic model for diffeomorphic registration
  publication-title: IEEE Trans. Med. Imag.
– start-page: 924
  year: 2006
  end-page: 931
  ident: bib0001
  article-title: A log-euclidean framework for statistics on diffeomorphisms
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 85
  year: 2013
  end-page: 96
  ident: bib0048
  article-title: Combining automatic landmark detection and variational methods for lung ct registration
  publication-title: Fifth International Workshop on Pulmonary Image Analysis
– volume: 6
  year: 2009
  ident: bib0044
  article-title: FAIR: Flexible algorithms for image registration
– volume: 11313
  start-page: 113130Q
  year: 2020
  ident: bib0040
  article-title: Deep learning based ct-cbct image registration for adaptive radio therapy
  publication-title: Medical Imaging 2020: Image Processing
– reference: Qiu, H., Qin, C., Schuh, A., Hammernik, K., Rueckert, D., 2021. Learning diffeomorphic and modality-invariant registration using b-splines.
– start-page: 2017
  year: 2015
  end-page: 2025
  ident: bib0032
  article-title: Spatial transformer networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 294
  year: 2018
  end-page: 302
  ident: bib0014
  article-title: On the adaptability of unsupervised cnn-based deformable image registration to unseen image domains
  publication-title: International Workshop on Machine Learning in Medical Imaging
– year: 2019
  ident: bib0036
  article-title: Constrained deep networks: lagrangian optimization via log-barrier extensions
  publication-title: arXiv preprint arXiv:1904.04205
– year: 2018
  ident: bib0041
  article-title: Non-rigid image registration using self-supervised fully convolutional networks without training data
  publication-title: arXiv preprint arXiv:1801.04012
– volume: 65
  start-page: 015011
  year: 2020
  ident: bib0033
  article-title: A multi-scale framework with unsupervised joint training of convolutional neural networks for pulmonary deformable image registration
  publication-title: Phys. Med. Biol.
– volume: 14
  start-page: 1901
  year: 2019
  end-page: 1912
  ident: bib0029
  article-title: Memory-efficient 2.5 d convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart ct and mri scans
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– year: 2020
  ident: bib0035
  article-title: Bounding boxes for weakly supervised segmentation: global constraints get close to full supervision
  publication-title: arXiv preprint arXiv:2004.06816
– year: 2019
  ident: bib0004
  article-title: Voxelmorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Image.
– year: 2004
  ident: bib0043
  article-title: Numerical methods for image registration
– year: 2019
  ident: bib0012
  article-title: Progressively trained convolutional neural networks for deformable image registration
  publication-title: IEEE Trans. Med. Imag.
– volume: 7
  start-page: 32
  year: 2011
  end-page: 43
  ident: bib0050
  article-title: Genetic epidemiology of copd (copdgene) study design
  publication-title: COPD: J. Chronic Obstruct. Pulmon. Diseas.
– start-page: 858
  year: 2017
  end-page: 862
  ident: bib0061
  article-title: Fast predictive multimodal image registration
  publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
– start-page: 9252
  year: 2018
  end-page: 9260
  ident: bib0003
  article-title: An unsupervised learning model for deformable medical image registration
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 18
  start-page: 81
  year: 2003
  end-page: 85
  ident: bib0016
  article-title: Curvature based image registration
  publication-title: J. Math. Imag. Vis.
– start-page: 765
  year: 2018
  end-page: 773
  ident: bib0056
  article-title: Gdl-fire 4d: deep learning-based fast 4d ct image registration
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 573
  year: 2001
  end-page: 581
  ident: bib0055
  article-title: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations
  publication-title: MICCAI 2001
– volume: 52
  start-page: 128
  year: 2019
  end-page: 143
  ident: bib0059
  article-title: A deep learning framework for unsupervised affine and deformable image registration
  publication-title: Med. Image Anal.
– volume: 30
  start-page: 1901
  year: 2011
  end-page: 1920
  ident: bib0046
  article-title: Evaluation of registration methods on thoracic ct: the empire10 challenge
  publication-title: IEEE Trans. Med. Imag.
– start-page: 211
  year: 2020
  end-page: 221
  ident: bib0045
  article-title: Large deformation diffeomorphic image registration with laplacian pyramid networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 50
  year: 2019
  end-page: 58
  ident: bib0023
  article-title: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 36
  start-page: 1746
  year: 2017
  end-page: 1757
  ident: bib0053
  article-title: Estimation of large motion in lung ct by integrating regularized keypoint correspondences into dense deformable registration
  publication-title: IEEE Trans. Med. Imag.
– volume: 5032
  start-page: 1037
  year: 2003
  end-page: 1048
  ident: bib0015
  article-title: Combination of automatic non-rigid and landmark-based registration: the best of both worlds
  publication-title: Medical Imaging 2003: Image Processing
– year: 2021
  ident: bib0022
  article-title: Graphregnet: deep graph regularisation networks on sparse keypoints for dense registration of 3d lung cts
  publication-title: IEEE Trans. Med. Imag.
– start-page: 122
  year: 2009
  end-page: 126
  ident: bib0047
  article-title: Landmark Constrained Non-parametric Image Registration with Isotropic Tolerances
  publication-title: Bildverarbeitung für die Medizin 2009
– start-page: 344
  year: 2017
  end-page: 352
  ident: bib0039
  article-title: Robust non-rigid registration through agent-based action learning
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 2
  start-page: 1
  year: 1998
  end-page: 36
  ident: bib0042
  article-title: A survey of medical image registration
  publication-title: Med. Image. Anal.
– start-page: 1070
  year: 2018
  end-page: 1074
  ident: bib0030
  article-title: Label-driven weakly-supervised learning for multimodal deformable image registration
  publication-title: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on
– year: 2021
  ident: 10.1016/j.media.2021.102139_bib0022
  article-title: Graphregnet: deep graph regularisation networks on sparse keypoints for dense registration of 3d lung cts
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2021.3073986
– volume: 3216
  start-page: 591
  year: 2006
  ident: 10.1016/j.media.2021.102139_bib0020
  article-title: Intensity gradient based registration and fusion of multi-modal images
– start-page: 266
  year: 2017
  ident: 10.1016/j.media.2021.102139_bib0051
  article-title: Svf-net: Learning deformable image registration using shape matching
– volume: 40
  start-page: B858
  issue: 3
  year: 2018
  ident: 10.1016/j.media.2021.102139_bib0037
  article-title: A matrix-free approach to parallel and memory-efficient deformable image registration
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1125522
– start-page: 211
  year: 2020
  ident: 10.1016/j.media.2021.102139_bib0045
  article-title: Large deformation diffeomorphic image registration with laplacian pyramid networks
– volume: 38
  start-page: 2165
  issue: 9
  year: 2019
  ident: 10.1016/j.media.2021.102139_bib0038
  article-title: Learning a probabilistic model for diffeomorphic registration
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2019.2897112
– volume: 18
  start-page: 81
  issue: 1
  year: 2003
  ident: 10.1016/j.media.2021.102139_bib0016
  article-title: Curvature based image registration
  publication-title: J. Math. Imag. Vis.
  doi: 10.1023/A:1021897212261
– year: 2018
  ident: 10.1016/j.media.2021.102139_bib0009
  article-title: Unsupervised learning for fast probabilistic diffeomorphic registration
  publication-title: arXiv preprint arXiv:1805.04605
– volume: 49
  start-page: 1
  year: 2018
  ident: 10.1016/j.media.2021.102139_bib0031
  article-title: Weakly-supervised convolutional neural networks for multimodal image registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.07.002
– volume: 5032
  start-page: 1037
  year: 2003
  ident: 10.1016/j.media.2021.102139_bib0015
  article-title: Combination of automatic non-rigid and landmark-based registration: the best of both worlds
– volume: 65
  start-page: 015011
  issue: 1
  year: 2020
  ident: 10.1016/j.media.2021.102139_bib0033
  article-title: A multi-scale framework with unsupervised joint training of convolutional neural networks for pulmonary deformable image registration
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab5da0
– volume: 158
  start-page: 378
  year: 2017
  ident: 10.1016/j.media.2021.102139_bib0062
  article-title: Quicksilver: fast predictive image registration–a deep learning approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.008
– volume: 7962
  start-page: 79620T
  year: 2011
  ident: 10.1016/j.media.2021.102139_bib0054
  article-title: Landmark-driven parameter optimization for non-linear image registration
– volume: 10949
  year: 2019
  ident: 10.1016/j.media.2021.102139_bib0027
  article-title: Unsupervised learning for large motion thoracic ct follow-up registration
– volume: 46
  start-page: 1
  issue: 1
  year: 1989
  ident: 10.1016/j.media.2021.102139_bib0002
  article-title: Multiresolution elastic matching
  publication-title: Comput. Vis. Graphic. Image Process.
  doi: 10.1016/S0734-189X(89)80014-3
– volume: 54
  start-page: 1849
  issue: 7
  year: 2009
  ident: 10.1016/j.media.2021.102139_bib0008
  article-title: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/7/001
– start-page: 2017
  year: 2015
  ident: 10.1016/j.media.2021.102139_bib0032
  article-title: Spatial transformer networks
– start-page: 115
  year: 2012
  ident: 10.1016/j.media.2021.102139_bib0024
  article-title: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling
– volume: 7
  start-page: 32
  issue: 1
  year: 2011
  ident: 10.1016/j.media.2021.102139_bib0050
  article-title: Genetic epidemiology of copd (copdgene) study design
  publication-title: COPD: J. Chronic Obstruct. Pulmon. Diseas.
  doi: 10.3109/15412550903499522
– start-page: 309
  year: 2019
  ident: 10.1016/j.media.2021.102139_bib0028
  article-title: Enhancing label-driven deep deformable image registration with local distance metrics for state-of-the-art cardiac motion tracking
– volume: 14
  start-page: 1901
  issue: 11
  year: 2019
  ident: 10.1016/j.media.2021.102139_bib0029
  article-title: Memory-efficient 2.5 d convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart ct and mri scans
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-019-02068-z
– volume: 30
  start-page: 1901
  issue: 11
  year: 2011
  ident: 10.1016/j.media.2021.102139_bib0046
  article-title: Evaluation of registration methods on thoracic ct: the empire10 challenge
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2011.2158349
– year: 2004
  ident: 10.1016/j.media.2021.102139_bib0019
  article-title: Cofir: coarse and fine image registration
– start-page: 257
  year: 2019
  ident: 10.1016/j.media.2021.102139_bib0026
  article-title: mlvirnet: multilevel variational image registration network
– volume: 10574
  start-page: 105740S
  year: 2018
  ident: 10.1016/j.media.2021.102139_bib0011
  article-title: Deformable image registration using convolutional neural networks
– start-page: 249
  year: 2010
  ident: 10.1016/j.media.2021.102139_bib0018
  article-title: Understanding the difficulty of training deep feedforward neural networks
– volume: 36
  start-page: 1746
  issue: 8
  year: 2017
  ident: 10.1016/j.media.2021.102139_bib0053
  article-title: Estimation of large motion in lung ct by integrating regularized keypoint correspondences into dense deformable registration
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2017.2691259
– start-page: 858
  year: 2017
  ident: 10.1016/j.media.2021.102139_bib0061
  article-title: Fast predictive multimodal image registration
– volume: 52
  start-page: 128
  year: 2019
  ident: 10.1016/j.media.2021.102139_bib0059
  article-title: A deep learning framework for unsupervised affine and deformable image registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.11.010
– start-page: 204
  year: 2017
  ident: 10.1016/j.media.2021.102139_bib0060
  article-title: End-to-end Unsupervised Deformable Image Registration with a Convolutional Neural Network
– start-page: 122
  year: 2009
  ident: 10.1016/j.media.2021.102139_bib0047
  article-title: Landmark Constrained Non-parametric Image Registration with Isotropic Tolerances
– start-page: 573
  year: 2001
  ident: 10.1016/j.media.2021.102139_bib0055
  article-title: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations
– year: 2020
  ident: 10.1016/j.media.2021.102139_bib0021
  article-title: Tackling the problem of large deformations in deep learning based medical image registration using displacement embeddings
  publication-title: arXiv preprint arXiv:2005.13338
– start-page: 85
  year: 2013
  ident: 10.1016/j.media.2021.102139_bib0048
  article-title: Combining automatic landmark detection and variational methods for lung ct registration
– start-page: 1070
  year: 2018
  ident: 10.1016/j.media.2021.102139_bib0030
  article-title: Label-driven weakly-supervised learning for multimodal deformable image registration
– start-page: 232
  year: 2017
  ident: 10.1016/j.media.2021.102139_bib0057
  article-title: Nonrigid image registration using multi-scale 3d convolutional neural networks
– volume: 2010
  start-page: 165
  year: 2010
  ident: 10.1016/j.media.2021.102139_bib0010
  article-title: Automatic landmark detection and non-linear landmark-and surface-based registration of lung ct images
  publication-title: Med. Image Anal. Clinic-A Grand Challenge, MICCAI
– year: 2004
  ident: 10.1016/j.media.2021.102139_bib0043
– start-page: 924
  year: 2006
  ident: 10.1016/j.media.2021.102139_bib0001
  article-title: A log-euclidean framework for statistics on diffeomorphisms
– volume: 58
  start-page: 2861
  issue: 9
  year: 2013
  ident: 10.1016/j.media.2021.102139_bib0007
  article-title: A reference dataset for deformable image registration spatial accuracy evaluation using the copdgene study archive
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/9/2861
– start-page: 50
  year: 2019
  ident: 10.1016/j.media.2021.102139_bib0023
  article-title: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks
– volume: 32
  start-page: 1239
  issue: 7
  year: 2013
  ident: 10.1016/j.media.2021.102139_bib0025
  article-title: Mrf-based deformable registration and ventilation estimation of lung ct
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2013.2246577
– ident: 10.1016/j.media.2021.102139_bib0049
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2021.102139_bib0052
  article-title: U-net: convolutional networks for biomedical image segmentation
– year: 2004
  ident: 10.1016/j.media.2021.102139_bib0006
– start-page: 9252
  year: 2018
  ident: 10.1016/j.media.2021.102139_bib0003
  article-title: An unsupervised learning model for deformable medical image registration
– year: 2019
  ident: 10.1016/j.media.2021.102139_bib0036
  article-title: Constrained deep networks: lagrangian optimization via log-barrier extensions
  publication-title: arXiv preprint arXiv:1904.04205
– start-page: 344
  year: 2017
  ident: 10.1016/j.media.2021.102139_bib0039
  article-title: Robust non-rigid registration through agent-based action learning
– start-page: 294
  year: 2018
  ident: 10.1016/j.media.2021.102139_bib0014
  article-title: On the adaptability of unsupervised cnn-based deformable image registration to unseen image domains
– year: 2019
  ident: 10.1016/j.media.2021.102139_bib0012
  article-title: Progressively trained convolutional neural networks for deformable image registration
  publication-title: IEEE Trans. Med. Imag.
– year: 2018
  ident: 10.1016/j.media.2021.102139_bib0013
  article-title: Pulmonary ct registration through supervised learning with convolutional neural networks
  publication-title: IEEE Trans. Med. Imag.
– year: 2020
  ident: 10.1016/j.media.2021.102139_bib0035
  article-title: Bounding boxes for weakly supervised segmentation: global constraints get close to full supervision
  publication-title: arXiv preprint arXiv:2004.06816
– volume: 9034
  start-page: 90340E
  year: 2014
  ident: 10.1016/j.media.2021.102139_bib0005
  article-title: Registration of organs with sliding interfaces and changing topologies
– volume: 32
  start-page: 1153
  issue: 7
  year: 2013
  ident: 10.1016/j.media.2021.102139_bib0058
  article-title: Deformable medical image registration: a survey
  publication-title: Med. Imag. IEEE Trans.
  doi: 10.1109/TMI.2013.2265603
– year: 2018
  ident: 10.1016/j.media.2021.102139_bib0041
  article-title: Non-rigid image registration using self-supervised fully convolutional networks without training data
  publication-title: arXiv preprint arXiv:1801.04012
– volume: 11313
  start-page: 113130Q
  year: 2020
  ident: 10.1016/j.media.2021.102139_bib0040
  article-title: Deep learning based ct-cbct image registration for adaptive radio therapy
– volume: 47
  start-page: 1763
  issue: 4
  year: 2020
  ident: 10.1016/j.media.2021.102139_bib0017
  article-title: Lungregnet: an unsupervised deformable image registration method for 4d-ct lung.
  publication-title: Med. Phys.
  doi: 10.1002/mp.14065
– start-page: 765
  year: 2018
  ident: 10.1016/j.media.2021.102139_bib0056
  article-title: Gdl-fire 4d: deep learning-based fast 4d ct image registration
– start-page: 81
  year: 2010
  ident: 10.1016/j.media.2021.102139_bib0034
  article-title: Fast elastic image registration
  publication-title: Med. Image Anal. Clin.
– volume: 6
  year: 2009
  ident: 10.1016/j.media.2021.102139_bib0044
– year: 2019
  ident: 10.1016/j.media.2021.102139_bib0004
  article-title: Voxelmorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Image.
  doi: 10.1109/TMI.2019.2897538
– volume: 2
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.media.2021.102139_bib0042
  article-title: A survey of medical image registration
  publication-title: Med. Image. Anal.
  doi: 10.1016/S1361-8415(01)80026-8
SSID ssj0007440
Score 2.5686145
Snippet •We present a deep-learning-based method for lung registration.•We introduce a novel constraining method to control volume change and therefore avoid foldings...
Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102139
SubjectTerms Algorithms
Deep learning
Deformation
Humans
Image Processing, Computer-Assisted
Image registration
Keypoints
Lung - diagnostic imaging
Lung CT
Lungs
Machine learning
Multilevel
Optimization
Registration
Thorax
Tomography, X-Ray Computed
Volume change control
Title CNN-based lung CT registration with multiple anatomical constraints
URI https://dx.doi.org/10.1016/j.media.2021.102139
https://www.ncbi.nlm.nih.gov/pubmed/34216959
https://www.proquest.com/docview/2572616086
https://www.proquest.com/docview/2548404662
https://pubmed.ncbi.nlm.nih.gov/PMC10369673
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwnBoYLy2tJWRuKI2fgRJzkuEWV5dC-0qDfLcRyxqEorur3y25lJnKgLVQ-cosSeyJmx5xGPvwF446XTuVSBC1M7riuZche05qYoGvS-RaO73JyTpVmc6c_n6fkWlMNZGEqrjLq_1-mdto5PZpGbs6vVavZNKCpWQvaHKsul2TbsSLT2-QR25p--LJajQiYMvP74leBEMIAPdWle3QENjBOlIBQDQUXD7zZQ_zqgf-dR3jJMx49hN3qUbN4P-glshXYPHt3CGdyDBydxB_0plOVyycl01ewC1zkrTxnVZhjQcxn9l2VDliFzLcbkHaAA8-RIUj2J9fUzODv-cFoueCykwD2yes3rvEYvp3BZFrIgal-EJqCblDiZ1KJBcTXBOOG9FhhTVpJQ4vLMySbxRZY44dRzmLSXbXgJTBFtWlVaKa99bYpA-7-yRjcwUz5NpyAH7lkfUcZpcBd2SCf7aTuWW2K57Vk-hbcj0VUPsnF_dzOIxW7MFYtm4H7Cg0GINi7Va4s6C6NIg6HdFF6PzbjIaOfEteHyhvpoDIS1MXIKL3qZjwNVWgpTpPjyfGM2jB0IwHuzpV396IC8RULVFDO1_78f9Aoe0l2fkHgAk_Wvm3CITtK6OoLtd7_FUVwKeP34_uv3-R_AABFj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrcTjUEGhsLSAkThibfyIszlWEdWWdnNhK_VmOY4jFlVp1W7_PzOJE3UB9cA19kTOjOcVj78B-OKl03OpAhemdlxXMuUuaM1NnjcYfYtGd7U5y9IsLvT3y_RyB4rhLgyVVUbb39v0zlrHJ7PIzdnNej37IRQ1KyH_Q53l0uwJ7Gpqaj2B3ePTs0U5GmTCwOuvXwlOBAP4UFfm1V3QwDxRCkIxENQ0_N8O6u8A9M86ygeO6eQl7MWIkh33i34FO6HdhxcPcAb34ekynqC_hqIoS06uq2ZXqOesWDHqzTCg5zL6L8uGKkPmWszJO0AB5imQpH4Sm7s3cHHybVUseGykwD2yesPreY1RTu6yLGRB1D4PTcAwKXEyqUWD4mqCccJ7LTCnrCShxM0zJ5vE51nihFMHMGmv2_AOmCLatKq0Ul772uSBzn9ljWFgpnyaTkEO3LM-oozT4q7sUE72y3Yst8Ry27N8Cl9HopseZOPx6WYQi93aKxbdwOOER4MQbVTVO4s2C7NIg6ndFD6Pw6hkdHLi2nB9T3M0JsLaGDmFt73Mx4UqLYXJU3z5fGs3jBMIwHt7pF3_7IC8RULdFDP1_n8_6BM8W6yW5_b8tDw7hOc00hcnHsFkc3sfPmDAtKk-RoX4DaFgEbo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-based+lung+CT+registration+with+multiple+anatomical+constraints&rft.jtitle=Medical+image+analysis&rft.au=Hering%2C+Alessa&rft.au=H%C3%A4ger%2C+Stephanie&rft.au=Moltz%2C+Jan&rft.au=Lessmann%2C+Nikolas&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=72&rft_id=info:doi/10.1016%2Fj.media.2021.102139&rft.externalDocID=S1361841521001857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon