CNN-based lung CT registration with multiple anatomical constraints
•We present a deep-learning-based method for lung registration.•We introduce a novel constraining method to control volume change and therefore avoid foldings inside the deformation field.•We integrate keypoints correspondence into the loss function to increase the alignment of airways and vessels....
Saved in:
Published in | Medical image analysis Vol. 72; p. 102139 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2021.102139 |
Cover
Abstract | •We present a deep-learning-based method for lung registration.•We introduce a novel constraining method to control volume change and therefore avoid foldings inside the deformation field.•We integrate keypoints correspondence into the loss function to increase the alignment of airways and vessels.
[Display omitted]
Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside.
In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures.
We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/. |
---|---|
AbstractList | Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/. Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/.Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/. •We present a deep-learning-based method for lung registration.•We introduce a novel constraining method to control volume change and therefore avoid foldings inside the deformation field.•We integrate keypoints correspondence into the loss function to increase the alignment of airways and vessels. [Display omitted] Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/. Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/ . |
ArticleNumber | 102139 |
Author | Hering, Alessa Häger, Stephanie Lessmann, Nikolas Heldmann, Stefan Moltz, Jan van Ginneken, Bram |
AuthorAffiliation | c Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, Bremen 28359, Germany a Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Str 3, Lübeck 23562, Germany b Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
AuthorAffiliation_xml | – name: b Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands – name: a Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Str 3, Lübeck 23562, Germany – name: c Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, Bremen 28359, Germany |
Author_xml | – sequence: 1 givenname: Alessa surname: Hering fullname: Hering, Alessa email: alessa.hering@mevis.fraunhofer.de organization: Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Str 3, Lübeck 23562, Germany – sequence: 2 givenname: Stephanie surname: Häger fullname: Häger, Stephanie organization: Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Str 3, Lübeck 23562, Germany – sequence: 3 givenname: Jan surname: Moltz fullname: Moltz, Jan organization: Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, Bremen 28359, Germany – sequence: 4 givenname: Nikolas surname: Lessmann fullname: Lessmann, Nikolas organization: Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands – sequence: 5 givenname: Stefan surname: Heldmann fullname: Heldmann, Stefan organization: Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Str 3, Lübeck 23562, Germany – sequence: 6 givenname: Bram surname: van Ginneken fullname: van Ginneken, Bram organization: Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34216959$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNvAEyChkdiwmeC_2OMFQtUIaKWqbMracjx3UkceO9ieIt4epykRdAErW_Z3js695xydhBgAodcELwkm4v12OcHgzJJiSuoLJUw9Q2eECdJ2nLKT452sTtF5zluMseQcv0CnjFMi1Eqdob6_uWnXJsPQ-Dlsmv62SbBxuSRTXAzND1fummn2xe08NCaYEidnjW9sDHvIhZJfouej8RlePZ4L9O3zp9v-sr3--uWqv7huLe-60g7dIChTRkqQQAarYATOVthQPJDRUjOCMMRaTpTs1pQQqTpp6IitktgQwxbo48F3N6_r6BZCDeD1LrnJpJ86Gqf__gnuTm_ivSaYCSUkqw7vHh1S_D5DLnpy2YL3JkCcs6Yr3nHMRc25QG-foNs4p1Dnq5SkggjciUq9-TPSMcvvBVeAHQCbYs4JxiNCsN7XqLf6oUa9r1Efaqwq9URlXXkoZL9y_x_th4MWahX3DpLO1kGwFUxgix6i-6f-F5_7uQM |
CitedBy_id | crossref_primary_10_1109_TMI_2023_3321425 crossref_primary_10_1109_ACCESS_2023_3243104 crossref_primary_10_1016_j_compmedimag_2024_102397 crossref_primary_10_1002_mp_17120 crossref_primary_10_1016_j_bspc_2024_106172 crossref_primary_10_1109_TBME_2023_3280463 crossref_primary_10_1016_j_cmpb_2022_107025 crossref_primary_10_1016_j_cmpb_2023_107389 crossref_primary_10_1016_j_media_2023_102917 crossref_primary_10_1016_j_cmpb_2024_108401 crossref_primary_10_1016_j_apm_2024_02_033 crossref_primary_10_1109_TRPMS_2024_3410021 crossref_primary_10_1016_j_media_2022_102434 crossref_primary_10_3389_fnimg_2022_977491 crossref_primary_10_1002_jum_15889 crossref_primary_10_1016_j_media_2024_103385 crossref_primary_10_1109_TMI_2022_3213983 crossref_primary_10_1016_j_compmedimag_2023_102184 crossref_primary_10_1007_s10278_022_00763_z crossref_primary_10_1016_j_compbiomed_2024_108673 crossref_primary_10_1186_s12880_022_00854_x crossref_primary_10_1007_s10278_024_01154_2 crossref_primary_10_3788_AOS240778 crossref_primary_10_3390_bioengineering10050562 crossref_primary_10_1002_ima_22801 crossref_primary_10_1117_1_JMI_10_6_067501 crossref_primary_10_1016_j_compbiomed_2022_105799 crossref_primary_10_1016_j_compbiomed_2022_105876 crossref_primary_10_1016_j_compbiomed_2023_107434 crossref_primary_10_3390_s21217112 crossref_primary_10_1016_j_compbiomed_2023_107150 crossref_primary_10_1016_j_media_2024_103351 crossref_primary_10_1088_1361_6560_ad2717 |
Cites_doi | 10.1109/TMI.2021.3073986 10.1137/17M1125522 10.1109/TMI.2019.2897112 10.1023/A:1021897212261 10.1016/j.media.2018.07.002 10.1088/1361-6560/ab5da0 10.1016/j.neuroimage.2017.07.008 10.1016/S0734-189X(89)80014-3 10.1088/0031-9155/54/7/001 10.3109/15412550903499522 10.1007/s11548-019-02068-z 10.1109/TMI.2011.2158349 10.1109/TMI.2017.2691259 10.1016/j.media.2018.11.010 10.1088/0031-9155/58/9/2861 10.1109/TMI.2013.2246577 10.1109/TMI.2013.2265603 10.1002/mp.14065 10.1109/TMI.2019.2897538 10.1016/S1361-8415(01)80026-8 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved. Copyright Elsevier BV Aug 2021 |
Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Aug 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM |
DOI | 10.1016/j.media.2021.102139 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
EndPage | 102139 |
ExternalDocumentID | PMC10369673 34216959 10_1016_j_media_2021_102139 S1361841521001857 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: U01 HL089897 – fundername: NHLBI NIH HHS grantid: U01 HL089856 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 ACLOT ~HD 5PM |
ID | FETCH-LOGICAL-c488t-d8d6239a77e7e1dc9efe4350a20d1fc2afe6a1cc41978b2117987a2f0c970a1a3 |
IEDL.DBID | AIKHN |
ISSN | 1361-8415 1361-8423 |
IngestDate | Thu Aug 21 18:37:23 EDT 2025 Sun Sep 28 10:04:57 EDT 2025 Sat Jul 26 03:27:03 EDT 2025 Mon Jul 21 06:05:06 EDT 2025 Tue Jul 01 02:49:30 EDT 2025 Thu Apr 24 23:10:41 EDT 2025 Fri Feb 23 02:47:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Image registration Lung CT Keypoints Volume change control Multilevel |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-d8d6239a77e7e1dc9efe4350a20d1fc2afe6a1cc41978b2117987a2f0c970a1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1361841521001857 |
PMID | 34216959 |
PQID | 2572616086 |
PQPubID | 2045428 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10369673 proquest_miscellaneous_2548404662 proquest_journals_2572616086 pubmed_primary_34216959 crossref_primary_10_1016_j_media_2021_102139 crossref_citationtrail_10_1016_j_media_2021_102139 elsevier_sciencedirect_doi_10_1016_j_media_2021_102139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Ehrhardt, Werner, Schmidt-Richberg, Handels (bib0010) 2010; 2010 Modersitzki (bib0044) 2009; 6 Polzin, Rühaak, Werner, Strehlow, Heldmann, Handels, Modersitzki (bib0048) 2013 Fischer, Modersitzki (bib0015) 2003; 5032 de Vos, Berendsen, Viergever, Sokooti, Staring, Išgum (bib0059) 2019; 52 Heinrich (bib0023) 2019 Eppenhof, Lafarge, Veta, Pluim (bib0012) 2019 Heinrich, Jenkinson, Brady, Schnabel (bib0025) 2013; 32 Bajcsy, Kovačič (bib0002) 1989; 46 Haber, Modersitzki (bib0019) 2004 Kervadec, Dolz, Wang, Granger, Ayed (bib0035) 2020 Ronneberger, Fischer, Brox (bib0052) 2015 Hering, van Ginneken, Heldmann (bib0026) 2019 Fischer, Modersitzki (bib0016) 2003; 18 Hansen, Heinrich (bib0022) 2021 Ferrante, Oktay, Glocker, Milone (bib0014) 2018 Berendsen, Kotte, Viergever, Pluim (bib0005) 2014; 9034 Eppenhof, Lafarge, Moeskops, Veta, Pluim (bib0011) 2018; 10574 Krebs, Delingette, Mailhé, Ayache, Mansi (bib0038) 2019; 38 Kuckertz, Papenberg, Honegger, Morgas, Haas, Heldmann (bib0040) 2020; 11313 Murphy, Van Ginneken, Reinhardt, Kabus, Ding, Deng, Cao, Du, Christensen, Garcia (bib0046) 2011; 30 Sokooti, de Vos, Berendsen, Lelieveldt, Išgum, Staring (bib0057) 2017 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0003) 2018 Dalca, Balakrishnan, Guttag, Sabuncu (bib0009) 2018 König, Rühaak, Derksen, Lellmann (bib0037) 2018; 40 Sentker, Madesta, Werner (bib0056) 2018 Arsigny, Commowick, Pennec, Ayache (bib0001) 2006 Jaderberg, Simonyan, Zisserman (bib0032) 2015 Regan, Hokanson, Murphy, Make, Lynch, Beaty, Curran-Everett, Silverman, Crapo (bib0050) 2011; 7 Hering, Heldmann (bib0027) 2019; 10949 Krebs, Mansi, Delingette, Zhang, Ghesu, Miao, Maier, Ayache, Liao, Kamen (bib0039) 2017 Eppenhof, Pluim (bib0013) 2018 Schmidt-Richberg, Werner, Ehrhardt, Wolf, Handels (bib0054) 2011; 7962 Castillo, Castillo, Guerra, Johnson, McPhail, Garg, Guerrero (bib0008) 2009; 54 Mok, Chung (bib0045) 2020 Qiu, H., Qin, C., Schuh, A., Hammernik, K., Rueckert, D., 2021. Learning diffeomorphic and modality-invariant registration using b-splines. Heinrich, Jenkinson, Brady, Schnabel (bib0024) 2012 Hu, Modat, Gibson, Ghavami, Bonmati, Moore, Emberton, Noble, Barratt, Vercauteren (bib0030) 2018 Hering, Kuckerts, Heldmann, Heinrich (bib0028) 2019 Hering, Kuckertz, Heldmann, Heinrich (bib0029) 2019; 14 Rohé, Datar, Heimann, Sermesant, Pennec (bib0051) 2017 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0004) 2019 Glorot, Bengio (bib0018) 2010 Haber, Modersitzki (bib0020) 2006; 3216 Jiang, Yin, Ge, Ren (bib0033) 2020; 65 Yang, Kwitt, Styner, Niethammer (bib0061) 2017 Castillo, Castillo, Fuentes, Ahmad, Wood, Ludwig, Guerrero (bib0007) 2013; 58 Boyd, Boyd, Vandenberghe (bib0006) 2004 Li, Fan (bib0041) 2018 Hansen, Heinrich (bib0021) 2020 Maintz, Viergever (bib0042) 1998; 2 Sotiras, Davatzikos, Paragios (bib0058) 2013; 32 Fu, Lei, Wang, Higgins, Bradley, Curran, Liu, Yang (bib0017) 2020; 47 Schnabel, Rueckert, Quist, Blackall, Castellano-Smith, Hartkens, Penney, Hall, Liu, Truwit (bib0055) 2001 Kabus, Lorenz (bib0034) 2010 Kervadec, Dolz, Yuan, Desrosiers, Granger, Ayed (bib0036) 2019 Modersitzki (bib0043) 2004 de Vos, Berendsen, Viergever, Staring, Išgum (bib0060) 2017 Rühaak, Polzin, Heldmann, Simpson, Handels, Modersitzki, Heinrich (bib0053) 2017; 36 Yang, Kwitt, Styner, Niethammer (bib0062) 2017; 158 Papenberg, Olesch, Lange, Schlag, Fischer (bib0047) 2009 Hu, Modat, Gibson, Li, Ghavami, Bonmati, Wang, Bandula, Moore, Emberton (bib0031) 2018; 49 Eppenhof (10.1016/j.media.2021.102139_bib0011) 2018; 10574 Fischer (10.1016/j.media.2021.102139_bib0015) 2003; 5032 Schnabel (10.1016/j.media.2021.102139_bib0055) 2001 Hering (10.1016/j.media.2021.102139_bib0029) 2019; 14 Rohé (10.1016/j.media.2021.102139_bib0051) 2017 Jiang (10.1016/j.media.2021.102139_bib0033) 2020; 65 Hu (10.1016/j.media.2021.102139_bib0030) 2018 Castillo (10.1016/j.media.2021.102139_bib0007) 2013; 58 Glorot (10.1016/j.media.2021.102139_bib0018) 2010 Heinrich (10.1016/j.media.2021.102139_bib0024) 2012 Hansen (10.1016/j.media.2021.102139_bib0022) 2021 Sentker (10.1016/j.media.2021.102139_bib0056) 2018 Kervadec (10.1016/j.media.2021.102139_bib0035) 2020 Jaderberg (10.1016/j.media.2021.102139_bib0032) 2015 Papenberg (10.1016/j.media.2021.102139_bib0047) 2009 Berendsen (10.1016/j.media.2021.102139_bib0005) 2014; 9034 Schmidt-Richberg (10.1016/j.media.2021.102139_bib0054) 2011; 7962 Polzin (10.1016/j.media.2021.102139_bib0048) 2013 Balakrishnan (10.1016/j.media.2021.102139_bib0003) 2018 Li (10.1016/j.media.2021.102139_bib0041) 2018 Yang (10.1016/j.media.2021.102139_bib0061) 2017 Hering (10.1016/j.media.2021.102139_bib0027) 2019; 10949 Regan (10.1016/j.media.2021.102139_bib0050) 2011; 7 Ehrhardt (10.1016/j.media.2021.102139_bib0010) 2010; 2010 Fu (10.1016/j.media.2021.102139_bib0017) 2020; 47 Maintz (10.1016/j.media.2021.102139_bib0042) 1998; 2 König (10.1016/j.media.2021.102139_bib0037) 2018; 40 Krebs (10.1016/j.media.2021.102139_bib0038) 2019; 38 Hering (10.1016/j.media.2021.102139_bib0028) 2019 Sotiras (10.1016/j.media.2021.102139_bib0058) 2013; 32 de Vos (10.1016/j.media.2021.102139_bib0060) 2017 Dalca (10.1016/j.media.2021.102139_bib0009) 2018 Heinrich (10.1016/j.media.2021.102139_bib0023) 2019 Kabus (10.1016/j.media.2021.102139_bib0034) 2010 Rühaak (10.1016/j.media.2021.102139_bib0053) 2017; 36 Haber (10.1016/j.media.2021.102139_bib0019) 2004 Sokooti (10.1016/j.media.2021.102139_bib0057) 2017 Hu (10.1016/j.media.2021.102139_bib0031) 2018; 49 Arsigny (10.1016/j.media.2021.102139_bib0001) 2006 de Vos (10.1016/j.media.2021.102139_bib0059) 2019; 52 Heinrich (10.1016/j.media.2021.102139_bib0025) 2013; 32 Bajcsy (10.1016/j.media.2021.102139_bib0002) 1989; 46 Eppenhof (10.1016/j.media.2021.102139_bib0012) 2019 Balakrishnan (10.1016/j.media.2021.102139_bib0004) 2019 Fischer (10.1016/j.media.2021.102139_bib0016) 2003; 18 Hansen (10.1016/j.media.2021.102139_bib0021) 2020 Boyd (10.1016/j.media.2021.102139_bib0006) 2004 10.1016/j.media.2021.102139_bib0049 Kuckertz (10.1016/j.media.2021.102139_bib0040) 2020; 11313 Ronneberger (10.1016/j.media.2021.102139_bib0052) 2015 Yang (10.1016/j.media.2021.102139_bib0062) 2017; 158 Krebs (10.1016/j.media.2021.102139_bib0039) 2017 Ferrante (10.1016/j.media.2021.102139_bib0014) 2018 Haber (10.1016/j.media.2021.102139_bib0020) 2006; 3216 Murphy (10.1016/j.media.2021.102139_bib0046) 2011; 30 Hering (10.1016/j.media.2021.102139_bib0026) 2019 Kervadec (10.1016/j.media.2021.102139_bib0036) 2019 Modersitzki (10.1016/j.media.2021.102139_bib0044) 2009; 6 Eppenhof (10.1016/j.media.2021.102139_bib0013) 2018 Castillo (10.1016/j.media.2021.102139_bib0008) 2009; 54 Modersitzki (10.1016/j.media.2021.102139_bib0043) 2004 Mok (10.1016/j.media.2021.102139_bib0045) 2020 |
References_xml | – volume: 158 start-page: 378 year: 2017 end-page: 396 ident: bib0062 article-title: Quicksilver: fast predictive image registration–a deep learning approach publication-title: Neuroimage – volume: 9034 start-page: 90340E year: 2014 ident: bib0005 article-title: Registration of organs with sliding interfaces and changing topologies publication-title: Medical Imaging 2014: Image Processing – volume: 49 start-page: 1 year: 2018 end-page: 13 ident: bib0031 article-title: Weakly-supervised convolutional neural networks for multimodal image registration publication-title: Med. Image Anal. – volume: 40 start-page: B858 year: 2018 end-page: B888 ident: bib0037 article-title: A matrix-free approach to parallel and memory-efficient deformable image registration publication-title: SIAM J. Sci. Comput. – start-page: 204 year: 2017 end-page: 212 ident: bib0060 article-title: End-to-end Unsupervised Deformable Image Registration with a Convolutional Neural Network publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 10949 year: 2019 ident: bib0027 article-title: Unsupervised learning for large motion thoracic ct follow-up registration publication-title: SPIE Medical Imaging 2019: Image Processing – volume: 10574 start-page: 105740S year: 2018 ident: bib0011 article-title: Deformable image registration using convolutional neural networks publication-title: Medical Imaging 2018: Image Processing – start-page: 81 year: 2010 end-page: 89 ident: bib0034 article-title: Fast elastic image registration publication-title: Med. Image Anal. Clin. – start-page: 309 year: 2019 end-page: 314 ident: bib0028 article-title: Enhancing label-driven deep deformable image registration with local distance metrics for state-of-the-art cardiac motion tracking publication-title: Bildverarbeitung für die Medizin 2019 - Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 17. bis 19. März 2019 in Lübeck – start-page: 115 year: 2012 end-page: 122 ident: bib0024 article-title: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 232 year: 2017 end-page: 239 ident: bib0057 article-title: Nonrigid image registration using multi-scale 3d convolutional neural networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2004 ident: bib0006 article-title: Convex optimization – start-page: 234 year: 2015 end-page: 241 ident: bib0052 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical image computing and computer-assisted intervention – volume: 47 start-page: 1763 year: 2020 ident: bib0017 article-title: Lungregnet: an unsupervised deformable image registration method for 4d-ct lung. publication-title: Med. Phys. – year: 2020 ident: bib0021 article-title: Tackling the problem of large deformations in deep learning based medical image registration using displacement embeddings publication-title: arXiv preprint arXiv:2005.13338 – volume: 32 start-page: 1239 year: 2013 end-page: 1248 ident: bib0025 article-title: Mrf-based deformable registration and ventilation estimation of lung ct publication-title: IEEE Trans. Med. Imag. – volume: 54 start-page: 1849 year: 2009 ident: bib0008 article-title: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets publication-title: Phys. Med. Biol. – start-page: 249 year: 2010 end-page: 256 ident: bib0018 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics – start-page: 266 year: 2017 end-page: 274 ident: bib0051 article-title: Svf-net: Learning deformable image registration using shape matching publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2018 ident: bib0009 article-title: Unsupervised learning for fast probabilistic diffeomorphic registration publication-title: arXiv preprint arXiv:1805.04605 – volume: 3216 start-page: 591 year: 2006 end-page: 598 ident: bib0020 article-title: Intensity gradient based registration and fusion of multi-modal images publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006 – year: 2018 ident: bib0013 article-title: Pulmonary ct registration through supervised learning with convolutional neural networks publication-title: IEEE Trans. Med. Imag. – start-page: 257 year: 2019 end-page: 265 ident: bib0026 article-title: mlvirnet: multilevel variational image registration network publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 7962 start-page: 79620T year: 2011 ident: bib0054 article-title: Landmark-driven parameter optimization for non-linear image registration publication-title: Medical Imaging 2011: Image Processing – volume: 32 start-page: 1153 year: 2013 end-page: 1190 ident: bib0058 article-title: Deformable medical image registration: a survey publication-title: Med. Imag. IEEE Trans. – volume: 2010 start-page: 165 year: 2010 end-page: 174 ident: bib0010 article-title: Automatic landmark detection and non-linear landmark-and surface-based registration of lung ct images publication-title: Med. Image Anal. Clinic-A Grand Challenge, MICCAI – year: 2004 ident: bib0019 article-title: Cofir: coarse and fine image registration publication-title: Real-Time PDE-Constrained Optimization – volume: 46 start-page: 1 year: 1989 end-page: 21 ident: bib0002 article-title: Multiresolution elastic matching publication-title: Comput. Vis. Graphic. Image Process. – volume: 58 start-page: 2861 year: 2013 ident: bib0007 article-title: A reference dataset for deformable image registration spatial accuracy evaluation using the copdgene study archive publication-title: Phys. Med. Biol. – volume: 38 start-page: 2165 year: 2019 end-page: 2176 ident: bib0038 article-title: Learning a probabilistic model for diffeomorphic registration publication-title: IEEE Trans. Med. Imag. – start-page: 924 year: 2006 end-page: 931 ident: bib0001 article-title: A log-euclidean framework for statistics on diffeomorphisms publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 85 year: 2013 end-page: 96 ident: bib0048 article-title: Combining automatic landmark detection and variational methods for lung ct registration publication-title: Fifth International Workshop on Pulmonary Image Analysis – volume: 6 year: 2009 ident: bib0044 article-title: FAIR: Flexible algorithms for image registration – volume: 11313 start-page: 113130Q year: 2020 ident: bib0040 article-title: Deep learning based ct-cbct image registration for adaptive radio therapy publication-title: Medical Imaging 2020: Image Processing – reference: Qiu, H., Qin, C., Schuh, A., Hammernik, K., Rueckert, D., 2021. Learning diffeomorphic and modality-invariant registration using b-splines. – start-page: 2017 year: 2015 end-page: 2025 ident: bib0032 article-title: Spatial transformer networks publication-title: Advances in Neural Information Processing Systems – start-page: 294 year: 2018 end-page: 302 ident: bib0014 article-title: On the adaptability of unsupervised cnn-based deformable image registration to unseen image domains publication-title: International Workshop on Machine Learning in Medical Imaging – year: 2019 ident: bib0036 article-title: Constrained deep networks: lagrangian optimization via log-barrier extensions publication-title: arXiv preprint arXiv:1904.04205 – year: 2018 ident: bib0041 article-title: Non-rigid image registration using self-supervised fully convolutional networks without training data publication-title: arXiv preprint arXiv:1801.04012 – volume: 65 start-page: 015011 year: 2020 ident: bib0033 article-title: A multi-scale framework with unsupervised joint training of convolutional neural networks for pulmonary deformable image registration publication-title: Phys. Med. Biol. – volume: 14 start-page: 1901 year: 2019 end-page: 1912 ident: bib0029 article-title: Memory-efficient 2.5 d convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart ct and mri scans publication-title: Int. J. Comput. Assist. Radiol. Surg. – year: 2020 ident: bib0035 article-title: Bounding boxes for weakly supervised segmentation: global constraints get close to full supervision publication-title: arXiv preprint arXiv:2004.06816 – year: 2019 ident: bib0004 article-title: Voxelmorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Image. – year: 2004 ident: bib0043 article-title: Numerical methods for image registration – year: 2019 ident: bib0012 article-title: Progressively trained convolutional neural networks for deformable image registration publication-title: IEEE Trans. Med. Imag. – volume: 7 start-page: 32 year: 2011 end-page: 43 ident: bib0050 article-title: Genetic epidemiology of copd (copdgene) study design publication-title: COPD: J. Chronic Obstruct. Pulmon. Diseas. – start-page: 858 year: 2017 end-page: 862 ident: bib0061 article-title: Fast predictive multimodal image registration publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) – start-page: 9252 year: 2018 end-page: 9260 ident: bib0003 article-title: An unsupervised learning model for deformable medical image registration publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 18 start-page: 81 year: 2003 end-page: 85 ident: bib0016 article-title: Curvature based image registration publication-title: J. Math. Imag. Vis. – start-page: 765 year: 2018 end-page: 773 ident: bib0056 article-title: Gdl-fire 4d: deep learning-based fast 4d ct image registration publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 573 year: 2001 end-page: 581 ident: bib0055 article-title: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations publication-title: MICCAI 2001 – volume: 52 start-page: 128 year: 2019 end-page: 143 ident: bib0059 article-title: A deep learning framework for unsupervised affine and deformable image registration publication-title: Med. Image Anal. – volume: 30 start-page: 1901 year: 2011 end-page: 1920 ident: bib0046 article-title: Evaluation of registration methods on thoracic ct: the empire10 challenge publication-title: IEEE Trans. Med. Imag. – start-page: 211 year: 2020 end-page: 221 ident: bib0045 article-title: Large deformation diffeomorphic image registration with laplacian pyramid networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 50 year: 2019 end-page: 58 ident: bib0023 article-title: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 36 start-page: 1746 year: 2017 end-page: 1757 ident: bib0053 article-title: Estimation of large motion in lung ct by integrating regularized keypoint correspondences into dense deformable registration publication-title: IEEE Trans. Med. Imag. – volume: 5032 start-page: 1037 year: 2003 end-page: 1048 ident: bib0015 article-title: Combination of automatic non-rigid and landmark-based registration: the best of both worlds publication-title: Medical Imaging 2003: Image Processing – year: 2021 ident: bib0022 article-title: Graphregnet: deep graph regularisation networks on sparse keypoints for dense registration of 3d lung cts publication-title: IEEE Trans. Med. Imag. – start-page: 122 year: 2009 end-page: 126 ident: bib0047 article-title: Landmark Constrained Non-parametric Image Registration with Isotropic Tolerances publication-title: Bildverarbeitung für die Medizin 2009 – start-page: 344 year: 2017 end-page: 352 ident: bib0039 article-title: Robust non-rigid registration through agent-based action learning publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 2 start-page: 1 year: 1998 end-page: 36 ident: bib0042 article-title: A survey of medical image registration publication-title: Med. Image. Anal. – start-page: 1070 year: 2018 end-page: 1074 ident: bib0030 article-title: Label-driven weakly-supervised learning for multimodal deformable image registration publication-title: Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on – year: 2021 ident: 10.1016/j.media.2021.102139_bib0022 article-title: Graphregnet: deep graph regularisation networks on sparse keypoints for dense registration of 3d lung cts publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2021.3073986 – volume: 3216 start-page: 591 year: 2006 ident: 10.1016/j.media.2021.102139_bib0020 article-title: Intensity gradient based registration and fusion of multi-modal images – start-page: 266 year: 2017 ident: 10.1016/j.media.2021.102139_bib0051 article-title: Svf-net: Learning deformable image registration using shape matching – volume: 40 start-page: B858 issue: 3 year: 2018 ident: 10.1016/j.media.2021.102139_bib0037 article-title: A matrix-free approach to parallel and memory-efficient deformable image registration publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1125522 – start-page: 211 year: 2020 ident: 10.1016/j.media.2021.102139_bib0045 article-title: Large deformation diffeomorphic image registration with laplacian pyramid networks – volume: 38 start-page: 2165 issue: 9 year: 2019 ident: 10.1016/j.media.2021.102139_bib0038 article-title: Learning a probabilistic model for diffeomorphic registration publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2019.2897112 – volume: 18 start-page: 81 issue: 1 year: 2003 ident: 10.1016/j.media.2021.102139_bib0016 article-title: Curvature based image registration publication-title: J. Math. Imag. Vis. doi: 10.1023/A:1021897212261 – year: 2018 ident: 10.1016/j.media.2021.102139_bib0009 article-title: Unsupervised learning for fast probabilistic diffeomorphic registration publication-title: arXiv preprint arXiv:1805.04605 – volume: 49 start-page: 1 year: 2018 ident: 10.1016/j.media.2021.102139_bib0031 article-title: Weakly-supervised convolutional neural networks for multimodal image registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.07.002 – volume: 5032 start-page: 1037 year: 2003 ident: 10.1016/j.media.2021.102139_bib0015 article-title: Combination of automatic non-rigid and landmark-based registration: the best of both worlds – volume: 65 start-page: 015011 issue: 1 year: 2020 ident: 10.1016/j.media.2021.102139_bib0033 article-title: A multi-scale framework with unsupervised joint training of convolutional neural networks for pulmonary deformable image registration publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab5da0 – volume: 158 start-page: 378 year: 2017 ident: 10.1016/j.media.2021.102139_bib0062 article-title: Quicksilver: fast predictive image registration–a deep learning approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.008 – volume: 7962 start-page: 79620T year: 2011 ident: 10.1016/j.media.2021.102139_bib0054 article-title: Landmark-driven parameter optimization for non-linear image registration – volume: 10949 year: 2019 ident: 10.1016/j.media.2021.102139_bib0027 article-title: Unsupervised learning for large motion thoracic ct follow-up registration – volume: 46 start-page: 1 issue: 1 year: 1989 ident: 10.1016/j.media.2021.102139_bib0002 article-title: Multiresolution elastic matching publication-title: Comput. Vis. Graphic. Image Process. doi: 10.1016/S0734-189X(89)80014-3 – volume: 54 start-page: 1849 issue: 7 year: 2009 ident: 10.1016/j.media.2021.102139_bib0008 article-title: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/7/001 – start-page: 2017 year: 2015 ident: 10.1016/j.media.2021.102139_bib0032 article-title: Spatial transformer networks – start-page: 115 year: 2012 ident: 10.1016/j.media.2021.102139_bib0024 article-title: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling – volume: 7 start-page: 32 issue: 1 year: 2011 ident: 10.1016/j.media.2021.102139_bib0050 article-title: Genetic epidemiology of copd (copdgene) study design publication-title: COPD: J. Chronic Obstruct. Pulmon. Diseas. doi: 10.3109/15412550903499522 – start-page: 309 year: 2019 ident: 10.1016/j.media.2021.102139_bib0028 article-title: Enhancing label-driven deep deformable image registration with local distance metrics for state-of-the-art cardiac motion tracking – volume: 14 start-page: 1901 issue: 11 year: 2019 ident: 10.1016/j.media.2021.102139_bib0029 article-title: Memory-efficient 2.5 d convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart ct and mri scans publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-019-02068-z – volume: 30 start-page: 1901 issue: 11 year: 2011 ident: 10.1016/j.media.2021.102139_bib0046 article-title: Evaluation of registration methods on thoracic ct: the empire10 challenge publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2011.2158349 – year: 2004 ident: 10.1016/j.media.2021.102139_bib0019 article-title: Cofir: coarse and fine image registration – start-page: 257 year: 2019 ident: 10.1016/j.media.2021.102139_bib0026 article-title: mlvirnet: multilevel variational image registration network – volume: 10574 start-page: 105740S year: 2018 ident: 10.1016/j.media.2021.102139_bib0011 article-title: Deformable image registration using convolutional neural networks – start-page: 249 year: 2010 ident: 10.1016/j.media.2021.102139_bib0018 article-title: Understanding the difficulty of training deep feedforward neural networks – volume: 36 start-page: 1746 issue: 8 year: 2017 ident: 10.1016/j.media.2021.102139_bib0053 article-title: Estimation of large motion in lung ct by integrating regularized keypoint correspondences into dense deformable registration publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2017.2691259 – start-page: 858 year: 2017 ident: 10.1016/j.media.2021.102139_bib0061 article-title: Fast predictive multimodal image registration – volume: 52 start-page: 128 year: 2019 ident: 10.1016/j.media.2021.102139_bib0059 article-title: A deep learning framework for unsupervised affine and deformable image registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.11.010 – start-page: 204 year: 2017 ident: 10.1016/j.media.2021.102139_bib0060 article-title: End-to-end Unsupervised Deformable Image Registration with a Convolutional Neural Network – start-page: 122 year: 2009 ident: 10.1016/j.media.2021.102139_bib0047 article-title: Landmark Constrained Non-parametric Image Registration with Isotropic Tolerances – start-page: 573 year: 2001 ident: 10.1016/j.media.2021.102139_bib0055 article-title: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations – year: 2020 ident: 10.1016/j.media.2021.102139_bib0021 article-title: Tackling the problem of large deformations in deep learning based medical image registration using displacement embeddings publication-title: arXiv preprint arXiv:2005.13338 – start-page: 85 year: 2013 ident: 10.1016/j.media.2021.102139_bib0048 article-title: Combining automatic landmark detection and variational methods for lung ct registration – start-page: 1070 year: 2018 ident: 10.1016/j.media.2021.102139_bib0030 article-title: Label-driven weakly-supervised learning for multimodal deformable image registration – start-page: 232 year: 2017 ident: 10.1016/j.media.2021.102139_bib0057 article-title: Nonrigid image registration using multi-scale 3d convolutional neural networks – volume: 2010 start-page: 165 year: 2010 ident: 10.1016/j.media.2021.102139_bib0010 article-title: Automatic landmark detection and non-linear landmark-and surface-based registration of lung ct images publication-title: Med. Image Anal. Clinic-A Grand Challenge, MICCAI – year: 2004 ident: 10.1016/j.media.2021.102139_bib0043 – start-page: 924 year: 2006 ident: 10.1016/j.media.2021.102139_bib0001 article-title: A log-euclidean framework for statistics on diffeomorphisms – volume: 58 start-page: 2861 issue: 9 year: 2013 ident: 10.1016/j.media.2021.102139_bib0007 article-title: A reference dataset for deformable image registration spatial accuracy evaluation using the copdgene study archive publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/9/2861 – start-page: 50 year: 2019 ident: 10.1016/j.media.2021.102139_bib0023 article-title: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks – volume: 32 start-page: 1239 issue: 7 year: 2013 ident: 10.1016/j.media.2021.102139_bib0025 article-title: Mrf-based deformable registration and ventilation estimation of lung ct publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2013.2246577 – ident: 10.1016/j.media.2021.102139_bib0049 – start-page: 234 year: 2015 ident: 10.1016/j.media.2021.102139_bib0052 article-title: U-net: convolutional networks for biomedical image segmentation – year: 2004 ident: 10.1016/j.media.2021.102139_bib0006 – start-page: 9252 year: 2018 ident: 10.1016/j.media.2021.102139_bib0003 article-title: An unsupervised learning model for deformable medical image registration – year: 2019 ident: 10.1016/j.media.2021.102139_bib0036 article-title: Constrained deep networks: lagrangian optimization via log-barrier extensions publication-title: arXiv preprint arXiv:1904.04205 – start-page: 344 year: 2017 ident: 10.1016/j.media.2021.102139_bib0039 article-title: Robust non-rigid registration through agent-based action learning – start-page: 294 year: 2018 ident: 10.1016/j.media.2021.102139_bib0014 article-title: On the adaptability of unsupervised cnn-based deformable image registration to unseen image domains – year: 2019 ident: 10.1016/j.media.2021.102139_bib0012 article-title: Progressively trained convolutional neural networks for deformable image registration publication-title: IEEE Trans. Med. Imag. – year: 2018 ident: 10.1016/j.media.2021.102139_bib0013 article-title: Pulmonary ct registration through supervised learning with convolutional neural networks publication-title: IEEE Trans. Med. Imag. – year: 2020 ident: 10.1016/j.media.2021.102139_bib0035 article-title: Bounding boxes for weakly supervised segmentation: global constraints get close to full supervision publication-title: arXiv preprint arXiv:2004.06816 – volume: 9034 start-page: 90340E year: 2014 ident: 10.1016/j.media.2021.102139_bib0005 article-title: Registration of organs with sliding interfaces and changing topologies – volume: 32 start-page: 1153 issue: 7 year: 2013 ident: 10.1016/j.media.2021.102139_bib0058 article-title: Deformable medical image registration: a survey publication-title: Med. Imag. IEEE Trans. doi: 10.1109/TMI.2013.2265603 – year: 2018 ident: 10.1016/j.media.2021.102139_bib0041 article-title: Non-rigid image registration using self-supervised fully convolutional networks without training data publication-title: arXiv preprint arXiv:1801.04012 – volume: 11313 start-page: 113130Q year: 2020 ident: 10.1016/j.media.2021.102139_bib0040 article-title: Deep learning based ct-cbct image registration for adaptive radio therapy – volume: 47 start-page: 1763 issue: 4 year: 2020 ident: 10.1016/j.media.2021.102139_bib0017 article-title: Lungregnet: an unsupervised deformable image registration method for 4d-ct lung. publication-title: Med. Phys. doi: 10.1002/mp.14065 – start-page: 765 year: 2018 ident: 10.1016/j.media.2021.102139_bib0056 article-title: Gdl-fire 4d: deep learning-based fast 4d ct image registration – start-page: 81 year: 2010 ident: 10.1016/j.media.2021.102139_bib0034 article-title: Fast elastic image registration publication-title: Med. Image Anal. Clin. – volume: 6 year: 2009 ident: 10.1016/j.media.2021.102139_bib0044 – year: 2019 ident: 10.1016/j.media.2021.102139_bib0004 article-title: Voxelmorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Image. doi: 10.1109/TMI.2019.2897538 – volume: 2 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.media.2021.102139_bib0042 article-title: A survey of medical image registration publication-title: Med. Image. Anal. doi: 10.1016/S1361-8415(01)80026-8 |
SSID | ssj0007440 |
Score | 2.5686145 |
Snippet | •We present a deep-learning-based method for lung registration.•We introduce a novel constraining method to control volume change and therefore avoid foldings... Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102139 |
SubjectTerms | Algorithms Deep learning Deformation Humans Image Processing, Computer-Assisted Image registration Keypoints Lung - diagnostic imaging Lung CT Lungs Machine learning Multilevel Optimization Registration Thorax Tomography, X-Ray Computed Volume change control |
Title | CNN-based lung CT registration with multiple anatomical constraints |
URI | https://dx.doi.org/10.1016/j.media.2021.102139 https://www.ncbi.nlm.nih.gov/pubmed/34216959 https://www.proquest.com/docview/2572616086 https://www.proquest.com/docview/2548404662 https://pubmed.ncbi.nlm.nih.gov/PMC10369673 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WwnBoYLy2tJWRuKI2fgRJzkuEWV5dC-0qDfLcRyxqEorur3y25lJnKgLVQ-cosSeyJmx5xGPvwF446XTuVSBC1M7riuZche05qYoGvS-RaO73JyTpVmc6c_n6fkWlMNZGEqrjLq_1-mdto5PZpGbs6vVavZNKCpWQvaHKsul2TbsSLT2-QR25p--LJajQiYMvP74leBEMIAPdWle3QENjBOlIBQDQUXD7zZQ_zqgf-dR3jJMx49hN3qUbN4P-glshXYPHt3CGdyDBydxB_0plOVyycl01ewC1zkrTxnVZhjQcxn9l2VDliFzLcbkHaAA8-RIUj2J9fUzODv-cFoueCykwD2yes3rvEYvp3BZFrIgal-EJqCblDiZ1KJBcTXBOOG9FhhTVpJQ4vLMySbxRZY44dRzmLSXbXgJTBFtWlVaKa99bYpA-7-yRjcwUz5NpyAH7lkfUcZpcBd2SCf7aTuWW2K57Vk-hbcj0VUPsnF_dzOIxW7MFYtm4H7Cg0GINi7Va4s6C6NIg6HdFF6PzbjIaOfEteHyhvpoDIS1MXIKL3qZjwNVWgpTpPjyfGM2jB0IwHuzpV396IC8RULVFDO1_78f9Aoe0l2fkHgAk_Wvm3CITtK6OoLtd7_FUVwKeP34_uv3-R_AABFj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrcTjUEGhsLSAkThibfyIszlWEdWWdnNhK_VmOY4jFlVp1W7_PzOJE3UB9cA19kTOjOcVj78B-OKl03OpAhemdlxXMuUuaM1NnjcYfYtGd7U5y9IsLvT3y_RyB4rhLgyVVUbb39v0zlrHJ7PIzdnNej37IRQ1KyH_Q53l0uwJ7Gpqaj2B3ePTs0U5GmTCwOuvXwlOBAP4UFfm1V3QwDxRCkIxENQ0_N8O6u8A9M86ygeO6eQl7MWIkh33i34FO6HdhxcPcAb34ekynqC_hqIoS06uq2ZXqOesWDHqzTCg5zL6L8uGKkPmWszJO0AB5imQpH4Sm7s3cHHybVUseGykwD2yesPreY1RTu6yLGRB1D4PTcAwKXEyqUWD4mqCccJ7LTCnrCShxM0zJ5vE51nihFMHMGmv2_AOmCLatKq0Ul772uSBzn9ljWFgpnyaTkEO3LM-oozT4q7sUE72y3Yst8Ry27N8Cl9HopseZOPx6WYQi93aKxbdwOOER4MQbVTVO4s2C7NIg6ndFD6Pw6hkdHLi2nB9T3M0JsLaGDmFt73Mx4UqLYXJU3z5fGs3jBMIwHt7pF3_7IC8RULdFDP1_n8_6BM8W6yW5_b8tDw7hOc00hcnHsFkc3sfPmDAtKk-RoX4DaFgEbo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-based+lung+CT+registration+with+multiple+anatomical+constraints&rft.jtitle=Medical+image+analysis&rft.au=Hering%2C+Alessa&rft.au=H%C3%A4ger%2C+Stephanie&rft.au=Moltz%2C+Jan&rft.au=Lessmann%2C+Nikolas&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=72&rft_id=info:doi/10.1016%2Fj.media.2021.102139&rft.externalDocID=S1361841521001857 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |