Improvements in the numerical prediction of fully-suspended slurry flow in horizontal pipes

A new two-fluid model is presented for the simulation of fully-suspended liquid–solid slurry flows in horizontal pipes. The model is a significant upgrade of an earlier one [G.V. Messa, M. Malin, S. Malavasi, Powder Technol. 256 (2014), 61–70], and the main improvements concern the use of: (1) a new...

Full description

Saved in:
Bibliographic Details
Published inPowder technology Vol. 270; pp. 358 - 367
Main Authors Messa, Gianandrea Vittorio, Malavasi, Stefano
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2015
Subjects
Online AccessGet full text
ISSN0032-5910
1873-328X
1873-328X
DOI10.1016/j.powtec.2014.10.027

Cover

Abstract A new two-fluid model is presented for the simulation of fully-suspended liquid–solid slurry flows in horizontal pipes. The model is a significant upgrade of an earlier one [G.V. Messa, M. Malin, S. Malavasi, Powder Technol. 256 (2014), 61–70], and the main improvements concern the use of: (1) a new wall boundary condition for the solid phase (2) a more general correlation for the viscosity of the mixture, which allows accounting for particle shape; (3) a different solution algorithm, which reduces significantly the already low computational burden. By comparison with experimental data available in the literature regarding sand–water slurries, the model showed wider applicability compared to the earlier one. In particular, the validation was carried out for the following flow conditions: pipe diameter between 50 and 200mm; particle size between 90 and 640μm; mean delivered solid concentration up to 40% by volume; and slurry superficial velocity up to 9m/s. Slurries in which the dispersed phase consists of spherical glass beads have been briefly explored too. The improvements considerably increase the accuracy of the pressure gradient predictions, without affecting the model's capability in reproducing the other features of these flows of most engineering interest, namely solid volume fraction distribution and velocity distribution. [Display omitted] •New two-fluid model for slurry pipeline flows•New wall boundary condition for the solid phase•Innovative modeling of grain properties•Efficient solution algorithm•Wider applicability and higher accuracy compared to an earlier model
AbstractList A new two-fluid model is presented for the simulation of fully-suspended liquid–solid slurry flows in horizontal pipes. The model is a significant upgrade of an earlier one [G.V. Messa, M. Malin, S. Malavasi, Powder Technol. 256 (2014), 61–70], and the main improvements concern the use of: (1) a new wall boundary condition for the solid phase (2) a more general correlation for the viscosity of the mixture, which allows accounting for particle shape; (3) a different solution algorithm, which reduces significantly the already low computational burden. By comparison with experimental data available in the literature regarding sand–water slurries, the model showed wider applicability compared to the earlier one. In particular, the validation was carried out for the following flow conditions: pipe diameter between 50 and 200mm; particle size between 90 and 640μm; mean delivered solid concentration up to 40% by volume; and slurry superficial velocity up to 9m/s. Slurries in which the dispersed phase consists of spherical glass beads have been briefly explored too. The improvements considerably increase the accuracy of the pressure gradient predictions, without affecting the model's capability in reproducing the other features of these flows of most engineering interest, namely solid volume fraction distribution and velocity distribution.
A new two-fluid model is presented for the simulation of fully-suspended liquid–solid slurry flows in horizontal pipes. The model is a significant upgrade of an earlier one [G.V. Messa, M. Malin, S. Malavasi, Powder Technol. 256 (2014), 61–70], and the main improvements concern the use of: (1) a new wall boundary condition for the solid phase (2) a more general correlation for the viscosity of the mixture, which allows accounting for particle shape; (3) a different solution algorithm, which reduces significantly the already low computational burden. By comparison with experimental data available in the literature regarding sand–water slurries, the model showed wider applicability compared to the earlier one. In particular, the validation was carried out for the following flow conditions: pipe diameter between 50 and 200mm; particle size between 90 and 640μm; mean delivered solid concentration up to 40% by volume; and slurry superficial velocity up to 9m/s. Slurries in which the dispersed phase consists of spherical glass beads have been briefly explored too. The improvements considerably increase the accuracy of the pressure gradient predictions, without affecting the model's capability in reproducing the other features of these flows of most engineering interest, namely solid volume fraction distribution and velocity distribution. [Display omitted] •New two-fluid model for slurry pipeline flows•New wall boundary condition for the solid phase•Innovative modeling of grain properties•Efficient solution algorithm•Wider applicability and higher accuracy compared to an earlier model
Author Malavasi, Stefano
Messa, Gianandrea Vittorio
Author_xml – sequence: 1
  givenname: Gianandrea Vittorio
  surname: Messa
  fullname: Messa, Gianandrea Vittorio
  email: gianandreavittorio.messa@polimi.it
– sequence: 2
  givenname: Stefano
  surname: Malavasi
  fullname: Malavasi, Stefano
BookMark eNqNkU1LJDEQhoO44Di7_8BDH730bKU_pjseBBF1hQEvLizsIcSkwmRIJ22Sdhh_vd20Jw_qqeClnrfgqVNy7LxDQs4orCjQ9e_dqvf7hHJVAK3GaAVFc0QWtG3KvCzaf8dkAVAWec0onJDTGHcAsC4pLMj_-64P_gU7dClmxmVpi5kbOgxGCpv1AZWRyXiXeZ3pwdpDHofYo1OosmiHEA6Ztn4_oVsfzKt3aeJMj_En-aGFjfjrfS7J39ubx-s_-ebh7v76apPLqm1TLhRTQtd6LatGsboqEVlFnwCq5glqbFvR1KpRVYG1LiVlSjGgtKVaacUKpsslqefewfXisBfW8j6YToQDp8AnQ3zHZ0N8MjSlo6GRO5-50cDzgDHxzkSJ1gqHfoi8oHTdshrotFrNqzL4GAPq7164-IBJk8SkMwVh7Ffw5Qzj6O7FYOBRGnRy_EhAmbjy5vOCN3oYqOs
CitedBy_id crossref_primary_10_2118_223953_PA
crossref_primary_10_1016_j_ijmecsci_2020_105909
crossref_primary_10_1016_j_sajce_2020_04_001
crossref_primary_10_3390_en14164909
crossref_primary_10_3390_pr9091566
crossref_primary_10_1080_01932691_2023_2215286
crossref_primary_10_1063_5_0172006
crossref_primary_10_1155_2016_5743471
crossref_primary_10_3390_pr10030597
crossref_primary_10_1016_j_fuel_2022_125245
crossref_primary_10_1016_j_powtec_2020_06_080
crossref_primary_10_1063_5_0107952
crossref_primary_10_1016_j_apt_2020_12_012
crossref_primary_10_3390_en12214070
crossref_primary_10_1016_j_petrol_2021_109395
crossref_primary_10_1016_j_powtec_2020_06_085
crossref_primary_10_1016_j_jngse_2022_104410
crossref_primary_10_1016_j_powtec_2024_119595
crossref_primary_10_1080_02726351_2019_1621412
crossref_primary_10_1016_j_powtec_2019_11_049
crossref_primary_10_1016_j_cherd_2022_10_043
crossref_primary_10_1016_j_powtec_2020_03_026
crossref_primary_10_1016_j_oceaneng_2025_120408
crossref_primary_10_1080_02726351_2022_2124209
crossref_primary_10_1080_02726351_2023_2201179
crossref_primary_10_1016_j_wear_2017_11_025
crossref_primary_10_14356_kona_2023008
crossref_primary_10_3390_app10041349
crossref_primary_10_1016_j_wear_2015_08_015
crossref_primary_10_1515_johh_2017_0042
crossref_primary_10_1016_j_powtec_2018_11_070
crossref_primary_10_18186_thermal_672785
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104094
crossref_primary_10_18186_thermal_729205
crossref_primary_10_9798_KOSHAM_2018_18_2_361
crossref_primary_10_1016_j_cryogenics_2018_02_008
crossref_primary_10_1016_j_oceaneng_2018_06_046
crossref_primary_10_1016_j_powtec_2019_07_015
crossref_primary_10_1080_02726351_2017_1364313
crossref_primary_10_3390_en17174240
crossref_primary_10_1007_s12257_015_0327_2
crossref_primary_10_1016_j_powtec_2024_119850
crossref_primary_10_1016_j_oceaneng_2019_03_065
crossref_primary_10_1186_s40677_022_00217_2
crossref_primary_10_3390_w12061763
crossref_primary_10_1016_j_powtec_2018_07_088
crossref_primary_10_1016_j_powtec_2017_11_067
crossref_primary_10_1016_j_powtec_2019_09_017
crossref_primary_10_1080_01457632_2018_1436670
crossref_primary_10_18186_thermal_849583
crossref_primary_10_1088_1742_6596_760_1_012002
crossref_primary_10_1016_j_ijheatfluidflow_2022_108974
crossref_primary_10_1016_j_oceaneng_2022_110617
Cites_doi 10.1017/S0022112088000102
10.1016/0045-7825(74)90029-2
10.1002/cjce.5450780413
10.1016/S0032-5910(02)00274-7
10.1016/0095-8522(51)90036-0
10.2478/johh-2014-0021
10.1002/nme.1620040409
10.1002/cjce.5450460405
10.1002/aic.690360404
10.1016/j.powtec.2009.09.023
10.1016/j.powtec.2006.11.020
10.1016/j.powtec.2011.09.031
10.1016/j.powtec.2014.02.005
10.1002/aic.13927
10.1021/ie801505z
10.1016/0032-5910(94)02877-X
10.1017/S0022112087000570
10.1002/cjce.5450610402
10.1016/S0301-9322(96)90004-X
10.1016/j.ijmultiphaseflow.2012.03.005
10.2478/v10180-010-0003-1
10.1002/cjce.5450820523
10.1016/0301-9322(95)00071-2
10.1002/cjce.5450780414
10.1080/02726359808906790
10.1061/(ASCE)0733-9429(2003)129:1(73)
10.2298/CICEQ091030031L
10.1115/PVP2013-97737
10.1016/0017-9310(72)90054-3
10.1016/j.powtec.2005.05.054
10.1002/cjce.5450780415
10.1016/0032-5910(92)80073-6
10.1016/S0894-1777(02)00176-0
10.1007/s11814-009-0190-y
10.1016/j.powtec.2014.01.020
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.powtec.2014.10.027
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-328X
EndPage 367
ExternalDocumentID oai:re.public.polimi.it:11311/864535
10_1016_j_powtec_2014_10_027
S0032591014008778
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
T9H
WUQ
XPP
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c488t-ad9daf5f6c47d9543ee941b0047b05e88a75d7d42e5f3c19dd901181fdfd929f3
IEDL.DBID .~1
ISSN 0032-5910
1873-328X
IngestDate Sun Oct 26 04:02:10 EDT 2025
Thu Oct 02 12:13:33 EDT 2025
Wed Oct 01 02:46:23 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Fri Feb 23 02:28:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pipe flow
Fully-suspended flow
Two-phase flow
Two-fluid model
Slurries
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-ad9daf5f6c47d9543ee941b0047b05e88a75d7d42e5f3c19dd901181fdfd929f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11311/864535
PQID 2116895017
PQPubID 24069
PageCount 10
ParticipantIDs unpaywall_primary_10_1016_j_powtec_2014_10_027
proquest_miscellaneous_2116895017
crossref_primary_10_1016_j_powtec_2014_10_027
crossref_citationtrail_10_1016_j_powtec_2014_10_027
elsevier_sciencedirect_doi_10_1016_j_powtec_2014_10_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle Powder technology
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shook, Daniel, Scott, Holgate (bb0190) 1968; 46
Messa, Malin, Malavasi (bb0040) 2013
Enwald, Peirano, Almstedt (bb0055) 1996; 22
Messa, Malin, Malavasi (bb0155) 2014; 256
Kaushal, Tomita (bb0200) 2007; 172
Lee, Matousek, Chung, Lee (bb0050) 2005; 99
Ekambara, Sanders, Nandakumar, Masliyah (bb0220) 2009; 48
Spalding (bb0085) 1981
Spalding (bb0095) 1980
R.G Gillies, C.A. Shook, J. Xu, Modelling Heterogeneous Slurry Flow at High Velocities, Can. J. Chem. Eng. 82(5) (2004) 1060–1065.
Shook, Bartosik (bb0035) 1994; 81
Kaushal, Thinglas, Tomita, Juchii, Tsukamoto (bb0230) 2012; 43
Ding, Gidaspow (bb0025) 1990; 36
Launder, Spalding (bb0090) 1974; 3
Messa, Malavasi (bb0245) 2014; 62
V. Matousek, Non-stratified flow of sand–water slurries, in: N. Heywood (Ed.), Proc. 15th Int. Conf. on Hydrotransport, BHRG, Banff, Canada, 2002 (3–5 June), pp. 563–574.
Shiller, Naumann (bb0065) 1935; 77
Johnson, Jackson (bb0010) 1987; 176
Launder, Spalding (bb0005) 2014
Wasp, Kenny, Gandhi (bb0135) 1977
Gillies, Shook (bb0175) 2000; 78
M.R. Malin, Turbulence modelling for fluid flow and heat transfer in jets, wakes, and plumes, PhD Thesis, Imperial College, London, 1986.
Doron, Barnea (bb0130) 1996; 22
G.V. Messa, Two-fluid Model for Solid–Liquid Flows in Pipeline Systems, PhD Thesis, Politecnico di Milano University, Milano, Italy, 2013. Available at https://www.politesi.polimi.it/handle/10589/74528.
Jiang, Zhang (bb0015) 2013; 59
Spalding (bb0125) 1972; 4
Wilson, Sanders, Gillies, Shook (bb0165) 2010; 197
Spalding (bb0115) 1981
A. Bartosik, Influence of coarse-dispersive solid phase on the “particle-wall” shear stress in turbulent slurry flow with high solid concentration, Arch. Mech. Eng. LVII(1) (2010) 45–68.
Matousek (bb0150) 2005; 156
F.N. Krampa-Morlu, J.D. Bugg, D.J. Bergstrom, R.S. Sanders, J. Shaan, Frictional pressure drop calculation for liquid–solid vertical flows using two-fluid model. Proc 14th Annual Conference of the Computational Fluid Dynamics Society of Canada, Kingston, Canada, 2006.
Feng, Ponton, Michaelides, Mao (bb0265) 2014; 265
Chung, Troutt (bb0060) 1988; 186
Messa, Malavasi (bb0250) 2014; 8
Shaan, Shook (bb0205) 2000; 78
Roco, Shook (bb0045) 1983; 61
S. Malavasi, G.V. Messa, G. Ferrarese, Solid–liquid flows through a wellhead choke valve, Proc. ASME 2013 Pressure Vessels & Piping Division Conference PVP2013, Paris, France, 2013.
Matousek (bb0240) 2002; 26
Jacobs (bb0145) 2005
Wilson, Sellgren (bb0210) 2003; 129
Schlichting (bb0105) 1960
Patankar, Spalding (bb0110) 1972; 15
Issa, Oliveira (bb0100) 1997
Davis, Michaelides, Feng (bb0260) 2012; 220
Shaan, Sumner, Gillies, Shook (bb0235) 2000; 78
Carstens, Addie (bb0195) 1981; 107
Spalding (bb0080) 1980
Lahiri, Ghanta (bb0225) 2010; 16
Mooney (bb0070) 1951; 6
Ferre, Shook (bb0170) 1998; 16
Chen, Duan, Pu, Zhao (bb0215) 2009; 26
Ding, Lyczkowski (bb0030) 1992; 73
Cheng, Law (bb0075) 2003; 129
Ferre (10.1016/j.powtec.2014.10.027_bb0170) 1998; 16
Patankar (10.1016/j.powtec.2014.10.027_bb0110) 1972; 15
Wilson (10.1016/j.powtec.2014.10.027_bb0210) 2003; 129
Jiang (10.1016/j.powtec.2014.10.027_bb0015) 2013; 59
Ding (10.1016/j.powtec.2014.10.027_bb0025) 1990; 36
Wilson (10.1016/j.powtec.2014.10.027_bb0165) 2010; 197
Issa (10.1016/j.powtec.2014.10.027_bb0100) 1997
Chen (10.1016/j.powtec.2014.10.027_bb0215) 2009; 26
Messa (10.1016/j.powtec.2014.10.027_bb0250) 2014; 8
Ekambara (10.1016/j.powtec.2014.10.027_bb0220) 2009; 48
Shook (10.1016/j.powtec.2014.10.027_bb0190) 1968; 46
Roco (10.1016/j.powtec.2014.10.027_bb0045) 1983; 61
10.1016/j.powtec.2014.10.027_bb0180
10.1016/j.powtec.2014.10.027_bb0185
Lahiri (10.1016/j.powtec.2014.10.027_bb0225) 2010; 16
10.1016/j.powtec.2014.10.027_bb0020
10.1016/j.powtec.2014.10.027_bb0140
10.1016/j.powtec.2014.10.027_bb0255
Launder (10.1016/j.powtec.2014.10.027_bb0090) 1974; 3
Messa (10.1016/j.powtec.2014.10.027_bb0245) 2014; 62
Spalding (10.1016/j.powtec.2014.10.027_bb0115) 1981
Jacobs (10.1016/j.powtec.2014.10.027_bb0145) 2005
Chung (10.1016/j.powtec.2014.10.027_bb0060) 1988; 186
Messa (10.1016/j.powtec.2014.10.027_bb0040) 2013
Cheng (10.1016/j.powtec.2014.10.027_bb0075) 2003; 129
Spalding (10.1016/j.powtec.2014.10.027_bb0085) 1981
Matousek (10.1016/j.powtec.2014.10.027_bb0150) 2005; 156
Wasp (10.1016/j.powtec.2014.10.027_bb0135) 1977
Shaan (10.1016/j.powtec.2014.10.027_bb0235) 2000; 78
Davis (10.1016/j.powtec.2014.10.027_bb0260) 2012; 220
Kaushal (10.1016/j.powtec.2014.10.027_bb0230) 2012; 43
Feng (10.1016/j.powtec.2014.10.027_bb0265) 2014; 265
Shaan (10.1016/j.powtec.2014.10.027_bb0205) 2000; 78
Mooney (10.1016/j.powtec.2014.10.027_bb0070) 1951; 6
Messa (10.1016/j.powtec.2014.10.027_bb0155) 2014; 256
Shiller (10.1016/j.powtec.2014.10.027_bb0065) 1935; 77
Shook (10.1016/j.powtec.2014.10.027_bb0035) 1994; 81
Johnson (10.1016/j.powtec.2014.10.027_bb0010) 1987; 176
Ding (10.1016/j.powtec.2014.10.027_bb0030) 1992; 73
Enwald (10.1016/j.powtec.2014.10.027_bb0055) 1996; 22
Doron (10.1016/j.powtec.2014.10.027_bb0130) 1996; 22
Carstens (10.1016/j.powtec.2014.10.027_bb0195) 1981; 107
Matousek (10.1016/j.powtec.2014.10.027_bb0240) 2002; 26
10.1016/j.powtec.2014.10.027_bb0160
Gillies (10.1016/j.powtec.2014.10.027_bb0175) 2000; 78
10.1016/j.powtec.2014.10.027_bb0120
Lee (10.1016/j.powtec.2014.10.027_bb0050) 2005; 99
Kaushal (10.1016/j.powtec.2014.10.027_bb0200) 2007; 172
Spalding (10.1016/j.powtec.2014.10.027_bb0125) 1972; 4
Spalding (10.1016/j.powtec.2014.10.027_bb0095) 1980
Launder (10.1016/j.powtec.2014.10.027_bb0005) 2014
Schlichting (10.1016/j.powtec.2014.10.027_bb0105) 1960
Spalding (10.1016/j.powtec.2014.10.027_bb0080) 1980
References_xml – volume: 46
  start-page: 238
  year: 1968
  end-page: 244
  ident: bb0190
  article-title: Flow of suspensions in pipelines. Part 2: two mechanisms of particle suspension
  publication-title: Can. J. Chem. Eng.
– volume: 73
  start-page: 127
  year: 1992
  end-page: 138
  ident: bb0030
  article-title: Three-dimensional kinetic theory modelling of hydrodynamics and erosion in fluidized beds
  publication-title: Powder Technol.
– volume: 186
  start-page: 199
  year: 1988
  end-page: 222
  ident: bb0060
  article-title: Simulation of particle dispersion in an axisymmetric jet
  publication-title: J. Fluid Mech.
– volume: 78
  start-page: 717
  year: 2000
  end-page: 725
  ident: bb0235
  article-title: The effect of particle shape on pipeline friction for Newtonian slurries of fine particles
  publication-title: Can. J. Chem. Eng.
– volume: 48
  start-page: 8159
  year: 2009
  end-page: 8171
  ident: bb0220
  article-title: Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX
  publication-title: Ind. Eng. Chem. Res.
– year: 2013
  ident: bb0040
  article-title: Numerical prediction of pressure gradient of slurry flows in horizontal pipes
  publication-title: Proc. ASME Pressure Vessels & Piping Division Conference PVP2013
– volume: 22
  start-page: 273
  year: 1996
  end-page: 283
  ident: bb0130
  article-title: Flow pattern maps for solid–liquid flow in pipes
  publication-title: Int. J. Multiphase Flow
– volume: 16
  start-page: 125
  year: 1998
  end-page: 133
  ident: bb0170
  article-title: Coarse particle wall friction in vertical slurry flows
  publication-title: Particul. Sci. Technol.
– start-page: 139
  year: 1980
  end-page: 168
  ident: bb0080
  article-title: Numerical computation of multi-phase fluid flow and heat transfer
  publication-title: Recent Advances in Numerical Methods in Fluids
– reference: V. Matousek, Non-stratified flow of sand–water slurries, in: N. Heywood (Ed.), Proc. 15th Int. Conf. on Hydrotransport, BHRG, Banff, Canada, 2002 (3–5 June), pp. 563–574.
– volume: 61
  start-page: 494
  year: 1983
  end-page: 503
  ident: bb0045
  article-title: Modeling of slurry flow: the effect of particle size
  publication-title: Can. J. Chem. Eng.
– volume: 172
  start-page: 177
  year: 2007
  end-page: 187
  ident: bb0200
  article-title: Experimental investigation for near-wall lift of coarser particles in slurry pipeline using
  publication-title: Powder Technol.
– volume: 176
  start-page: 67
  year: 1987
  end-page: 93
  ident: bb0010
  article-title: Frictional–collisional constitutive relations for granular materials, with application to plane shearing
  publication-title: J. Fluid Mech.
– volume: 22
  start-page: 21
  year: 1996
  end-page: 66
  ident: bb0055
  article-title: Eulerian two-phase flow theory applied to fluidization
  publication-title: Int. J. Multiphase Flow
– year: 1981
  ident: bb0085
  article-title: PHOENICS: A General-Purpose Computer Program for Multi-Dimensional One- and Two-Phase Flow, CFDU Report HTS/81/11
– reference: R.G Gillies, C.A. Shook, J. Xu, Modelling Heterogeneous Slurry Flow at High Velocities, Can. J. Chem. Eng. 82(5) (2004) 1060–1065.
– year: 1980
  ident: bb0095
  article-title: Mathematical Modelling of Fluid-Mechanics, Heat-Transfer and Chemical-Reaction Processes: A Lecture Course, CFDU Report HTS/80/1
– volume: 77
  start-page: 318
  year: 1935
  end-page: 320
  ident: bb0065
  article-title: A drag coefficient correlation
  publication-title: Z. Ver. Dtsch. Ing.
– reference: S. Malavasi, G.V. Messa, G. Ferrarese, Solid–liquid flows through a wellhead choke valve, Proc. ASME 2013 Pressure Vessels & Piping Division Conference PVP2013, Paris, France, 2013.
– reference: G.V. Messa, Two-fluid Model for Solid–Liquid Flows in Pipeline Systems, PhD Thesis, Politecnico di Milano University, Milano, Italy, 2013. Available at https://www.politesi.polimi.it/handle/10589/74528.
– reference: F.N. Krampa-Morlu, J.D. Bugg, D.J. Bergstrom, R.S. Sanders, J. Shaan, Frictional pressure drop calculation for liquid–solid vertical flows using two-fluid model. Proc 14th Annual Conference of the Computational Fluid Dynamics Society of Canada, Kingston, Canada, 2006.
– volume: 99
  start-page: 3
  year: 2005
  end-page: 10
  ident: bb0050
  article-title: Pipe size effect on hydraulic transport of Jumoonjin sand: experiments in a dredging test loop
  publication-title: Terra et Aqua
– volume: 129
  start-page: 73
  year: 2003
  end-page: 76
  ident: bb0210
  article-title: Interaction of particles and near-wall lift in slurry pipelines
  publication-title: J. Hydraul. Eng.
– volume: 78
  start-page: 726
  year: 2000
  end-page: 730
  ident: bb0205
  article-title: Anomalous friction in slurry flows
  publication-title: Can. J. Chem. Eng.
– year: 2014
  ident: bb0005
  article-title: Mathematical Models of Turbulence
– volume: 129
  start-page: 156
  year: 2003
  end-page: 160
  ident: bb0075
  article-title: Exponential formula for computing effective viscosity
  publication-title: Powder Technol.
– reference: M.R. Malin, Turbulence modelling for fluid flow and heat transfer in jets, wakes, and plumes, PhD Thesis, Imperial College, London, 1986.
– volume: 62
  start-page: 234
  year: 2014
  end-page: 240
  ident: bb0245
  article-title: Computational investigation of liquid–solid slurry flow through an expansion in a rectangular duct
  publication-title: J. Hydrol. Hydromech
– volume: 81
  start-page: 117
  year: 1994
  end-page: 124
  ident: bb0035
  article-title: Particle-wall stresses in vertical slurry flows
  publication-title: Powder Technol.
– year: 1997
  ident: bb0100
  article-title: Assessment of a particle–turbulence interaction model in conjunction with an Eulerian two-phase flow formulation
  publication-title: Proc 2nd Int Symp. on Turbulence Heat and Mass Transfer
– volume: 26
  start-page: 693
  year: 2002
  end-page: 702
  ident: bb0240
  article-title: Pressure drop and flow patterns in sand-mixture pipes
  publication-title: Exp. Therm. Fluid Sci.
– volume: 6
  start-page: 162
  year: 1951
  end-page: 170
  ident: bb0070
  article-title: The viscosity of a concentrated suspension of spherical particles
  publication-title: J. Colloid Sci.
– volume: 107
  start-page: 501
  year: 1981
  end-page: 507
  ident: bb0195
  article-title: A sand–water slurry experiment
  publication-title: J. Hydr. Div. ASCE
– year: 1960
  ident: bb0105
  article-title: Boundary Layer Theory
– volume: 16
  start-page: 295
  year: 2010
  end-page: 308
  ident: bb0225
  article-title: Slurry flow modeling by CFD
  publication-title: CI&CEQ
– year: 1977
  ident: bb0135
  article-title: Solid Liquid Flow Slurry Pipeline Transportation
– volume: 156
  start-page: 43
  year: 2005
  end-page: 51
  ident: bb0150
  article-title: Research developments in pipeline transport of settling slurries
  publication-title: Powder Technol.
– volume: 8
  start-page: 356
  year: 2014
  end-page: 372
  ident: bb0250
  article-title: Numerical prediction of particle distribution of solid–liquid slurries in straight pipes and bends
  publication-title: Eng. Appl. Comput. Fluid Mech.
– year: 1981
  ident: bb0115
  article-title: IPSA 1981: New Developments and Computed Results, CFDU Report HTS/81/2
– volume: 43
  start-page: 85
  year: 2012
  end-page: 100
  ident: bb0230
  article-title: CFD modeling for pipeline flow of fine particles at high concentration
  publication-title: Int. J. Multiphase Flow
– year: 2005
  ident: bb0145
  article-title: Design of Slurry Transport Systems
– volume: 4
  start-page: 551
  year: 1972
  end-page: 559
  ident: bb0125
  article-title: A novel finite-difference formulation for differential expressions involving both first and second derivatives
  publication-title: Int. J. Numer. Methods Eng.
– volume: 197
  start-page: 247
  year: 2010
  end-page: 253
  ident: bb0165
  article-title: Verification of the near-wall model for slurry flow
  publication-title: Powder Technol.
– volume: 78
  start-page: 709
  year: 2000
  end-page: 716
  ident: bb0175
  article-title: Modeling high concentration settling slurry flows
  publication-title: Can. J. Chem. Eng.
– reference: A. Bartosik, Influence of coarse-dispersive solid phase on the “particle-wall” shear stress in turbulent slurry flow with high solid concentration, Arch. Mech. Eng. LVII(1) (2010) 45–68.
– volume: 3
  start-page: 269
  year: 1974
  end-page: 289
  ident: bb0090
  article-title: The numerical computation of turbulent flows
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 265
  start-page: 88
  year: 2014
  end-page: 97
  ident: bb0265
  article-title: Using the direct numerical simulation to compute the slip boundary condition of the solid phase in two-fluid model simulations
  publication-title: Powder Technol.
– volume: 256
  start-page: 61
  year: 2014
  end-page: 70
  ident: bb0155
  article-title: Numerical prediction of fully-suspended slurry flow in horizontal pipes
  publication-title: Powder Technol.
– volume: 36
  start-page: 523
  year: 1990
  end-page: 538
  ident: bb0025
  article-title: A bubbling fluidization model using kinetic theory of granular flow
  publication-title: AIChE J.
– volume: 26
  start-page: 1144
  year: 2009
  end-page: 1154
  ident: bb0215
  article-title: CFD simulation of coal–water slurry flowing in horizontal pipelines
  publication-title: Korean J. Chem. Eng.
– volume: 220
  start-page: 15
  year: 2012
  end-page: 23
  ident: bb0260
  article-title: Particle velocity near vertical boundaries. A source of uncertainty in two-fluid models
  publication-title: Powder Technol.
– volume: 15
  start-page: 1787
  year: 1972
  end-page: 1806
  ident: bb0110
  article-title: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows
  publication-title: Int. J. Mass Transfer
– volume: 59
  start-page: 1762
  year: 2013
  end-page: 1773
  ident: bb0015
  article-title: Pressure drop and flow pattern of slush nitrogen in a horizontal pipe
  publication-title: AIChE J.
– volume: 186
  start-page: 199
  issue: 1
  year: 1988
  ident: 10.1016/j.powtec.2014.10.027_bb0060
  article-title: Simulation of particle dispersion in an axisymmetric jet
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112088000102
– volume: 3
  start-page: 269
  year: 1974
  ident: 10.1016/j.powtec.2014.10.027_bb0090
  article-title: The numerical computation of turbulent flows
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/0045-7825(74)90029-2
– volume: 78
  start-page: 709
  year: 2000
  ident: 10.1016/j.powtec.2014.10.027_bb0175
  article-title: Modeling high concentration settling slurry flows
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450780413
– ident: 10.1016/j.powtec.2014.10.027_bb0020
– year: 1997
  ident: 10.1016/j.powtec.2014.10.027_bb0100
  article-title: Assessment of a particle–turbulence interaction model in conjunction with an Eulerian two-phase flow formulation
– volume: 129
  start-page: 156
  issue: 1–3
  year: 2003
  ident: 10.1016/j.powtec.2014.10.027_bb0075
  article-title: Exponential formula for computing effective viscosity
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(02)00274-7
– volume: 6
  start-page: 162
  issue: 2
  year: 1951
  ident: 10.1016/j.powtec.2014.10.027_bb0070
  article-title: The viscosity of a concentrated suspension of spherical particles
  publication-title: J. Colloid Sci.
  doi: 10.1016/0095-8522(51)90036-0
– volume: 62
  start-page: 234
  issue: 3
  year: 2014
  ident: 10.1016/j.powtec.2014.10.027_bb0245
  article-title: Computational investigation of liquid–solid slurry flow through an expansion in a rectangular duct
  publication-title: J. Hydrol. Hydromech
  doi: 10.2478/johh-2014-0021
– ident: 10.1016/j.powtec.2014.10.027_bb0180
– volume: 4
  start-page: 551
  issue: 4
  year: 1972
  ident: 10.1016/j.powtec.2014.10.027_bb0125
  article-title: A novel finite-difference formulation for differential expressions involving both first and second derivatives
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620040409
– volume: 46
  start-page: 238
  issue: 4
  year: 1968
  ident: 10.1016/j.powtec.2014.10.027_bb0190
  article-title: Flow of suspensions in pipelines. Part 2: two mechanisms of particle suspension
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450460405
– volume: 36
  start-page: 523
  year: 1990
  ident: 10.1016/j.powtec.2014.10.027_bb0025
  article-title: A bubbling fluidization model using kinetic theory of granular flow
  publication-title: AIChE J.
  doi: 10.1002/aic.690360404
– volume: 197
  start-page: 247
  issue: 3
  year: 2010
  ident: 10.1016/j.powtec.2014.10.027_bb0165
  article-title: Verification of the near-wall model for slurry flow
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2009.09.023
– volume: 172
  start-page: 177
  year: 2007
  ident: 10.1016/j.powtec.2014.10.027_bb0200
  article-title: Experimental investigation for near-wall lift of coarser particles in slurry pipeline using γ-ray densitometer
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2006.11.020
– volume: 220
  start-page: 15
  year: 2012
  ident: 10.1016/j.powtec.2014.10.027_bb0260
  article-title: Particle velocity near vertical boundaries. A source of uncertainty in two-fluid models
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.09.031
– ident: 10.1016/j.powtec.2014.10.027_bb0120
– year: 2014
  ident: 10.1016/j.powtec.2014.10.027_bb0005
– volume: 256
  start-page: 61
  year: 2014
  ident: 10.1016/j.powtec.2014.10.027_bb0155
  article-title: Numerical prediction of fully-suspended slurry flow in horizontal pipes
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.02.005
– volume: 8
  start-page: 356
  issue: 3
  year: 2014
  ident: 10.1016/j.powtec.2014.10.027_bb0250
  article-title: Numerical prediction of particle distribution of solid–liquid slurries in straight pipes and bends
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 59
  start-page: 1762
  issue: 5
  year: 2013
  ident: 10.1016/j.powtec.2014.10.027_bb0015
  article-title: Pressure drop and flow pattern of slush nitrogen in a horizontal pipe
  publication-title: AIChE J.
  doi: 10.1002/aic.13927
– year: 1981
  ident: 10.1016/j.powtec.2014.10.027_bb0085
– volume: 48
  start-page: 8159
  issue: 17
  year: 2009
  ident: 10.1016/j.powtec.2014.10.027_bb0220
  article-title: Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie801505z
– volume: 81
  start-page: 117
  issue: 2
  year: 1994
  ident: 10.1016/j.powtec.2014.10.027_bb0035
  article-title: Particle-wall stresses in vertical slurry flows
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(94)02877-X
– volume: 176
  start-page: 67
  year: 1987
  ident: 10.1016/j.powtec.2014.10.027_bb0010
  article-title: Frictional–collisional constitutive relations for granular materials, with application to plane shearing
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087000570
– volume: 61
  start-page: 494
  year: 1983
  ident: 10.1016/j.powtec.2014.10.027_bb0045
  article-title: Modeling of slurry flow: the effect of particle size
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450610402
– volume: 22
  start-page: 21
  year: 1996
  ident: 10.1016/j.powtec.2014.10.027_bb0055
  article-title: Eulerian two-phase flow theory applied to fluidization
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(96)90004-X
– volume: 43
  start-page: 85
  year: 2012
  ident: 10.1016/j.powtec.2014.10.027_bb0230
  article-title: CFD modeling for pipeline flow of fine particles at high concentration
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2012.03.005
– start-page: 139
  year: 1980
  ident: 10.1016/j.powtec.2014.10.027_bb0080
  article-title: Numerical computation of multi-phase fluid flow and heat transfer
– year: 2013
  ident: 10.1016/j.powtec.2014.10.027_bb0040
  article-title: Numerical prediction of pressure gradient of slurry flows in horizontal pipes
– ident: 10.1016/j.powtec.2014.10.027_bb0185
  doi: 10.2478/v10180-010-0003-1
– ident: 10.1016/j.powtec.2014.10.027_bb0160
  doi: 10.1002/cjce.5450820523
– ident: 10.1016/j.powtec.2014.10.027_bb0140
– volume: 22
  start-page: 273
  issue: 2
  year: 1996
  ident: 10.1016/j.powtec.2014.10.027_bb0130
  article-title: Flow pattern maps for solid–liquid flow in pipes
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/0301-9322(95)00071-2
– volume: 78
  start-page: 717
  issue: 4
  year: 2000
  ident: 10.1016/j.powtec.2014.10.027_bb0235
  article-title: The effect of particle shape on pipeline friction for Newtonian slurries of fine particles
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450780414
– year: 2005
  ident: 10.1016/j.powtec.2014.10.027_bb0145
– volume: 99
  start-page: 3
  year: 2005
  ident: 10.1016/j.powtec.2014.10.027_bb0050
  article-title: Pipe size effect on hydraulic transport of Jumoonjin sand: experiments in a dredging test loop
  publication-title: Terra et Aqua
– volume: 16
  start-page: 125
  year: 1998
  ident: 10.1016/j.powtec.2014.10.027_bb0170
  article-title: Coarse particle wall friction in vertical slurry flows
  publication-title: Particul. Sci. Technol.
  doi: 10.1080/02726359808906790
– volume: 129
  start-page: 73
  issue: 1
  year: 2003
  ident: 10.1016/j.powtec.2014.10.027_bb0210
  article-title: Interaction of particles and near-wall lift in slurry pipelines
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(2003)129:1(73)
– volume: 16
  start-page: 295
  issue: 4
  year: 2010
  ident: 10.1016/j.powtec.2014.10.027_bb0225
  article-title: Slurry flow modeling by CFD
  publication-title: CI&CEQ
  doi: 10.2298/CICEQ091030031L
– ident: 10.1016/j.powtec.2014.10.027_bb0255
  doi: 10.1115/PVP2013-97737
– volume: 15
  start-page: 1787
  year: 1972
  ident: 10.1016/j.powtec.2014.10.027_bb0110
  article-title: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows
  publication-title: Int. J. Mass Transfer
  doi: 10.1016/0017-9310(72)90054-3
– volume: 156
  start-page: 43
  issue: 1
  year: 2005
  ident: 10.1016/j.powtec.2014.10.027_bb0150
  article-title: Research developments in pipeline transport of settling slurries
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2005.05.054
– volume: 107
  start-page: 501
  year: 1981
  ident: 10.1016/j.powtec.2014.10.027_bb0195
  article-title: A sand–water slurry experiment
  publication-title: J. Hydr. Div. ASCE
– volume: 78
  start-page: 726
  issue: 4
  year: 2000
  ident: 10.1016/j.powtec.2014.10.027_bb0205
  article-title: Anomalous friction in slurry flows
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450780415
– volume: 73
  start-page: 127
  year: 1992
  ident: 10.1016/j.powtec.2014.10.027_bb0030
  article-title: Three-dimensional kinetic theory modelling of hydrodynamics and erosion in fluidized beds
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(92)80073-6
– year: 1981
  ident: 10.1016/j.powtec.2014.10.027_bb0115
– volume: 26
  start-page: 693
  issue: 6–7
  year: 2002
  ident: 10.1016/j.powtec.2014.10.027_bb0240
  article-title: Pressure drop and flow patterns in sand-mixture pipes
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(02)00176-0
– volume: 26
  start-page: 1144
  issue: 4
  year: 2009
  ident: 10.1016/j.powtec.2014.10.027_bb0215
  article-title: CFD simulation of coal–water slurry flowing in horizontal pipelines
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-009-0190-y
– year: 1980
  ident: 10.1016/j.powtec.2014.10.027_bb0095
– volume: 77
  start-page: 318
  year: 1935
  ident: 10.1016/j.powtec.2014.10.027_bb0065
  article-title: A drag coefficient correlation
  publication-title: Z. Ver. Dtsch. Ing.
– year: 1960
  ident: 10.1016/j.powtec.2014.10.027_bb0105
– year: 1977
  ident: 10.1016/j.powtec.2014.10.027_bb0135
– volume: 265
  start-page: 88
  year: 2014
  ident: 10.1016/j.powtec.2014.10.027_bb0265
  article-title: Using the direct numerical simulation to compute the slip boundary condition of the solid phase in two-fluid model simulations
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.01.020
SSID ssj0006310
Score 2.3764725
Snippet A new two-fluid model is presented for the simulation of fully-suspended liquid–solid slurry flows in horizontal pipes. The model is a significant upgrade of...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 358
SubjectTerms algorithms
Fully-suspended flow
glass
particle size
Pipe flow
pipes
powders
prediction
Slurries
Two-fluid model
Two-phase flow
viscosity
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_S9GH0YV23lWV0Q4O-KosryZIfS1kpg4Y-LJDSB2NbJ5bW2MYfhPSvnxTZJWxj7R5tfGBzd76f7uN3AKfMZDzUgtEgkEi5yVKqUhQ0k0YzZZicoZtGvp6HVwv-fSmWIxi2rv1GLxA4MpivKuSCiT3YD4XF22PYX8xvzm8936I9SUWeckBJRtmZWg7zcdsmrqpct-iYCgM-dU1cbnnM3-PPDr581RVVslkneb4Tai4P4WIY2PEdJg_Trk2n2eOf_I3_-Io38LpHmuTcm8YRjLB4Cwc7_IPv4M6nFLYZwoasCmLRICk6X8TJSVW7Ko7THCkNcYn6DW26Zrs1V5Mm7-p6Q0xerp3oz7JePZZutpJUqwqb97C4_Pbj4or22xZoZp24pYmOdGKECTMudSQ4Q4x44LxapjOBSiVSaKn5GQrDsiDS2k-tGm20xViGHcO4KAv8AIRZMcVRRRigBYQzd8VSnKWCmyCMcAJs0EGc9VTkbiNGHg89Z_ex11zsNOfuWs1NgD5JVZ6K45nn5aDeuIcTHibENlo8I_llsIbYepsroSQFll0T2-NyqCJhf2MTmD6ZyYte5-P_CpzAuK07_GRBT5t-7q3-F45uAmE
  priority: 102
  providerName: Unpaywall
Title Improvements in the numerical prediction of fully-suspended slurry flow in horizontal pipes
URI https://dx.doi.org/10.1016/j.powtec.2014.10.027
https://www.proquest.com/docview/2116895017
http://hdl.handle.net/11311/864535
UnpaywallVersion submittedVersion
Volume 270
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: AKRWK
  dateStart: 19670201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFA-iB93D4ic76wcRvGacbpKmPQ6ijIqDBwdc9lDa5oXtUtrSThnGg3-7ef3QEQQXTyEhD8J7ycsvL--DkDNuYuFqyZnjKGDCxBHzIpAsVkZzz3A1AoxGvpu6k5m4eZSPa-Sij4VBt8pO97c6vdHW3ch5x83zIkkwxpdb7I61ZjGvmsKAXyEUVjEYPr-5ebjc6VIz2keXnd2HzzU-XkW-mAMmMnTEEH28sLbMx9fTCvzcrLMiXC7CNF25ia62yfcOQtJxu8odsgbZLvm2klhwj_xpbQWN6a-iSUYtzKNZ3f7OpLQo8XsGRUJzQ9ECv2RVXTXlcDWt0rosl9Sk-QJJ_-Zl8pRj0CQtkgKqfTK7uny4mLCujAKL7emcs1D7OjTSuLFQ2peCA_jCweOqopEEzwuV1EqLXyANjx1f6zYc1WijLXgy_ICsZ3kGPwjllswT4PnggEV6I-zxCEaRFMZxfRgQ3nMviLsc41jqIg16Z7J_QcvzAHmOo5bnA8JeqYo2x8Yn81UvmODdXgnsNfAJ5Wkvx8AeI_wbCTPI6yqw72DX86XVTwMyfBXwfy3n55eXc0i2bE-2Fp0jsj4vazi2GGcenTSb-IRsjK9vJ1Pbzqb3498vinn_tA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S9JDmUPqkm_ShQq_arCPJso8lNGzbJKcEAj0I2xpRF2Mbe82yOeS3R-NHuoVCSo-WNSBmpNGneQJ8Ei6ToVWCB4FGLl2W8ihFxTPtrIic0AukbOTzi3B5Jb9dq-sdOJlyYSisctT9g07vtfU4cjRy86jOc8rxFR67U69Zqqumo0fwWKpjTS-w-e3vOI9QBGNtRv_q8tOn_Lk-yKuu1iukSoaBnFOQFzWX-fv9tIU_97qyTjbrpCi2rqLTZ_B0xJDs87DM57CD5QvY36os-BJ-DMaC3vbXsrxkHuexshvcMwWrG_LPkExY5RiZ4De87dq-H65lbdE1zYa5oloT6c-qyW8qyppkdV5j-wquTr9cniz52EeBZ_54rnhiY5s45cJMahsrKRBjGdB51elCYRQlWllt5TEqJ7IgtnbIR3XWWY-enHgNu2VV4htgwpNFEqMYA_RQb0FfIsVFqqQLwhhnICbumWwsMk69LgozRZP9MgPPDfGcRj3PZ8DvqeqhyMYD8_UkGPPHZjH-HniA8uMkR-PPETlHkhKrrjX-IRxGsfIKagbzewH_03IO_ns5H2BveXl-Zs6-Xnw_hCf-jxrMO29hd9V0-M4DnlX6vt_Qd2jO_5k
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_S9GH0YV23lWV0Q4O-KosryZIfS1kpg4Y-LJDSB2NbJ5bW2MYfhPSvnxTZJWxj7R5tfGBzd76f7uN3AKfMZDzUgtEgkEi5yVKqUhQ0k0YzZZicoZtGvp6HVwv-fSmWIxi2rv1GLxA4MpivKuSCiT3YD4XF22PYX8xvzm8936I9SUWeckBJRtmZWg7zcdsmrqpct-iYCgM-dU1cbnnM3-PPDr581RVVslkneb4Tai4P4WIY2PEdJg_Trk2n2eOf_I3_-Io38LpHmuTcm8YRjLB4Cwc7_IPv4M6nFLYZwoasCmLRICk6X8TJSVW7Ko7THCkNcYn6DW26Zrs1V5Mm7-p6Q0xerp3oz7JePZZutpJUqwqb97C4_Pbj4or22xZoZp24pYmOdGKECTMudSQ4Q4x44LxapjOBSiVSaKn5GQrDsiDS2k-tGm20xViGHcO4KAv8AIRZMcVRRRigBYQzd8VSnKWCmyCMcAJs0EGc9VTkbiNGHg89Z_ex11zsNOfuWs1NgD5JVZ6K45nn5aDeuIcTHibENlo8I_llsIbYepsroSQFll0T2-NyqCJhf2MTmD6ZyYte5-P_CpzAuK07_GRBT5t-7q3-F45uAmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvements+in+the+numerical+prediction+of+fully-suspended+slurry+flow+in+horizontal+pipes&rft.jtitle=Powder+technology&rft.au=Messa%2C+Gianandrea+Vittorio&rft.au=Malavasi%2C+Stefano&rft.date=2015-01-01&rft.issn=0032-5910&rft.volume=270+p.358-367&rft.spage=358&rft.epage=367&rft_id=info:doi/10.1016%2Fj.powtec.2014.10.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon