The impact of noise and topology on opinion dynamics in social networks

We investigate the impact of noise and topology on opinion diversity in social networks. We do so by extending well-established models of opinion dynamics to a stochastic setting where agents are subject both to assimilative forces by their local social interactions, as well as to idiosyncratic fact...

Full description

Saved in:
Bibliographic Details
Published inRoyal Society open science Vol. 8; no. 4; p. 201943
Main Authors Stern, Samuel, Livan, Giacomo
Format Journal Article
LanguageEnglish
Published England The Royal Society 07.04.2021
Subjects
Online AccessGet full text
ISSN2054-5703
2054-5703
DOI10.1098/rsos.201943

Cover

More Information
Summary:We investigate the impact of noise and topology on opinion diversity in social networks. We do so by extending well-established models of opinion dynamics to a stochastic setting where agents are subject both to assimilative forces by their local social interactions, as well as to idiosyncratic factors preventing their population from reaching consensus. We model the latter to account for both scenarios where noise is entirely exogenous to peer influence and cases where it is instead endogenous, arising from the agents’ desire to maintain some uniqueness in their opinions. We derive a general analytical expression for opinion diversity, which holds for any network and depends on the network’s topology through its spectral properties alone. Using this expression, we find that opinion diversity decreases as communities and clusters are broken down. We test our predictions against data describing empirical influence networks between major news outlets and find that incorporating our measure in linear models for the sentiment expressed by such sources on a variety of topics yields a notable improvement in terms of explanatory power.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.201943