Biofeedback for Gait Retraining Based on Real-Time Estimation of Tibiofemoral Joint Contact Forces

Biofeedback assisted rehabilitation and intervention technologies have the potential to modify clinically relevant biomechanics. Gait retraining has been used to reduce the knee adduction moment, a surrogate of medial tibiofemoral joint loading often used in knee osteoarthritis research. In this pap...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 25; no. 9; pp. 1612 - 1621
Main Authors Pizzolato, Claudio, Reggiani, Monica, Saxby, David J., Ceseracciu, Elena, Modenese, Luca, Lloyd, David G.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2017
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2017.2683488

Cover

Abstract Biofeedback assisted rehabilitation and intervention technologies have the potential to modify clinically relevant biomechanics. Gait retraining has been used to reduce the knee adduction moment, a surrogate of medial tibiofemoral joint loading often used in knee osteoarthritis research. In this paper, we present an electromyogram-driven neuromusculoskeletal model of the lower-limb to estimate, in real-time, the tibiofemoral joint loads. The model included 34 musculotendon units spanning the hip, knee, and ankle joints. Full-body inverse kinematics, inverse dynamics, and musculotendon kinematics were solved in real-time from motion capture and force plate data to estimate the knee medial tibiofemoral contact force (MTFF). We analyzed five healthy subjects while they were walking on an instrumented treadmill with visual biofeedback of their MTFF. Each subject was asked to modify their gait in order to vary the magnitude of their MTFF. All subjects were able to increase their MTFF, whereas only three subjects could decrease it, and only after receiving verbal suggestions about possible gait modification strategies. Results indicate the important role of knee muscle activation patterns in modulating the MTFF. While this paper focused on the knee, the technology can be extended to examine the musculoskeletal tissue loads at different sites of the human body.
AbstractList Biofeedback assisted rehabilitation and intervention technologies have the potential to modify clinically relevant biomechanics. Gait retraining has been used to reduce the knee adduction moment, a surrogate of medial tibiofemoral joint loading often used in knee osteoarthritis research. In this paper, we present an electromyogram-driven neuromusculoskeletal model of the lower-limb to estimate, in real-time, the tibiofemoral joint loads. The model included 34 musculotendon units spanning the hip, knee, and ankle joints. Full-body inverse kinematics, inverse dynamics, and musculotendon kinematics were solved in real-time from motion capture and force plate data to estimate the knee medial tibiofemoral contact force (MTFF). We analyzed five healthy subjects while they were walking on an instrumented treadmill with visual biofeedback of their MTFF. Each subject was asked to modify their gait in order to vary the magnitude of their MTFF. All subjects were able to increase their MTFF, whereas only three subjects could decrease it, and only after receiving verbal suggestions about possible gait modification strategies. Results indicate the important role of knee muscle activation patterns in modulating the MTFF. While this paper focused on the knee, the technology can be extended to examine the musculoskeletal tissue loads at different sites of the human body.Biofeedback assisted rehabilitation and intervention technologies have the potential to modify clinically relevant biomechanics. Gait retraining has been used to reduce the knee adduction moment, a surrogate of medial tibiofemoral joint loading often used in knee osteoarthritis research. In this paper, we present an electromyogram-driven neuromusculoskeletal model of the lower-limb to estimate, in real-time, the tibiofemoral joint loads. The model included 34 musculotendon units spanning the hip, knee, and ankle joints. Full-body inverse kinematics, inverse dynamics, and musculotendon kinematics were solved in real-time from motion capture and force plate data to estimate the knee medial tibiofemoral contact force (MTFF). We analyzed five healthy subjects while they were walking on an instrumented treadmill with visual biofeedback of their MTFF. Each subject was asked to modify their gait in order to vary the magnitude of their MTFF. All subjects were able to increase their MTFF, whereas only three subjects could decrease it, and only after receiving verbal suggestions about possible gait modification strategies. Results indicate the important role of knee muscle activation patterns in modulating the MTFF. While this paper focused on the knee, the technology can be extended to examine the musculoskeletal tissue loads at different sites of the human body.
Biofeedback assisted rehabilitation and intervention technologies have the potential to modify clinically relevant biomechanics. Gait retraining has been used to reduce the knee adduction moment, a surrogate of medial tibiofemoral joint loading often used in knee osteoarthritis research. In this paper, we present an electromyogram-driven neuromusculoskeletal model of the lower-limb to estimate, in real-time, the tibiofemoral joint loads. The model included 34 musculotendon units spanning the hip, knee, and ankle joints. Full-body inverse kinematics, inverse dynamics, and musculotendon kinematics were solved in real-time from motion capture and force plate data to estimate the knee medial tibiofemoral contact force (MTFF). We analyzed five healthy subjects while they were walking on an instrumented treadmill with visual biofeedback of their MTFF. Each subject was asked to modify their gait in order to vary the magnitude of their MTFF. All subjects were able to increase their MTFF, whereas only three subjects could decrease it, and only after receiving verbal suggestions about possible gait modification strategies. Results indicate the important role of knee muscle activation patterns in modulating the MTFF. While this paper focused on the knee, the technology can be extended to examine the musculoskeletal tissue loads at different sites of the human body.
Biofeedback assisted rehabilitation and intervention technologies have the potential to modify clinically relevant biomechanics. Gait retraining has been used to reduce the knee adduction moment, a surrogate of medial tibiofemoral joint loading often used in knee osteoarthritis research. In this study we present an electromyogram-driven neuromusculoskeletal model of the lower-limb to estimate, in real-time, the tibiofemoral joint loads. The model included 34 musculotendon units spanning the hip, knee, and ankle joints. Full-body inverse kinematics, inverse dynamics, and musculotendon kinematics were solved in real-time from motion capture and force plate data to estimate the knee medial tibiofemoral contact force (MTFF). We analyzed 5 healthy subjects while they were walking on an instrumented treadmill with visual biofeedback of their MTFF. Each subject was asked to modify their gait in order to vary the magnitude of their MTFF. All subjects were able to increase their MTFF, whereas only 3 subjects could decrease it, and only after receiving verbal suggestions about possible gait modification strategies. Results indicate the important role of knee muscle activation patterns in modulating the MTFF. While this study focused on the knee, the technology can be extended to examine the musculoskeletal tissue loads at different sites of the human body.
Author Saxby, David J.
Modenese, Luca
Ceseracciu, Elena
Lloyd, David G.
Pizzolato, Claudio
Reggiani, Monica
Author_xml – sequence: 1
  givenname: Claudio
  orcidid: 0000-0002-0292-2776
  surname: Pizzolato
  fullname: Pizzolato, Claudio
  email: c.pizzolato@griffith.edu.au
  organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
– sequence: 2
  givenname: Monica
  surname: Reggiani
  fullname: Reggiani, Monica
  organization: Department of Management and Engineering, University of Padova, Vicenza, Italy
– sequence: 3
  givenname: David J.
  surname: Saxby
  fullname: Saxby, David J.
  organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
– sequence: 4
  givenname: Elena
  surname: Ceseracciu
  fullname: Ceseracciu, Elena
  organization: Department of Management and Engineering, University of Padova, Vicenza, Italy
– sequence: 5
  givenname: Luca
  orcidid: 0000-0003-1402-5359
  surname: Modenese
  fullname: Modenese, Luca
  organization: Department of Mechanical Engineering, INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, U.K
– sequence: 6
  givenname: David G.
  surname: Lloyd
  fullname: Lloyd, David G.
  organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28436878$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVAr-gF_ACTkI5csju3YkwsSXW1bUFWkspwt23GKIbFL7EXi39fZ3VbQQ08zGr_3ZvzeCToIMTiE3tRkUdek_bC-_nazWlBSywUVwDjAC3RcNw1UhNbkYO4Zrzij5AidpPSTFKRo5Et0RIEzARKOkTnzsXeuM9r-wn2c8IX2Gd-4PGkffLjFZzq5DsdQZnqo1n50eJWyH3X2ZRh7vPZmlhjjpAf8JfqQ8TKGrG3G53GyLr1Ch70eknu9r6fo-_lqvbysrr5efF5-uqpsuTxXDIA10BrZi9ZwxvtW0A4IWAoWWhDGMkuNtEKalnW0M2C05p2QQHrmuGWn6ONO925jRtdZF8onBnU3lWOnvypqr_5_Cf6Huo1_VCMbyYAUgfd7gSn-3riU1eiTdcOgg4ubpGpoa95IuYW--3fX45IHYwsAdgA7xZQm1yvr89az2dlB1UTNGapthmrOUO0zLFT6hPqg_izp7Y7knXOPBNkSJplg9_BwqOI
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_clinbiomech_2024_106301
crossref_primary_10_1109_TNSRE_2019_2959449
crossref_primary_10_1016_j_knee_2017_08_054
crossref_primary_10_3390_app10207255
crossref_primary_10_1007_s00167_018_5006_3
crossref_primary_10_1016_j_clinbiomech_2021_105292
crossref_primary_10_1080_24733938_2019_1709654
crossref_primary_10_1016_j_jbiomech_2018_08_023
crossref_primary_10_1080_14763141_2021_1959947
crossref_primary_10_3389_fncom_2017_00096
crossref_primary_10_1109_MCOM_001_2000639
crossref_primary_10_26603_001c_18710
crossref_primary_10_1109_TNSRE_2022_3226860
crossref_primary_10_1109_THMS_2021_3090738
crossref_primary_10_1016_j_jbiomech_2023_111623
crossref_primary_10_1109_JSEN_2023_3281401
crossref_primary_10_3390_app112311440
crossref_primary_10_1038_s41598_022_13386_9
crossref_primary_10_1016_j_knee_2022_09_001
crossref_primary_10_1016_j_bspc_2023_105471
crossref_primary_10_1038_s41598_023_30058_4
crossref_primary_10_3390_life11070598
crossref_primary_10_1007_s11914_020_00592_5
crossref_primary_10_1088_1741_2552_aae26b
crossref_primary_10_1016_j_medengphy_2018_12_001
crossref_primary_10_1016_j_jbiomech_2018_10_027
crossref_primary_10_1249_MSS_0000000000002971
crossref_primary_10_1186_s12984_018_0419_2
crossref_primary_10_1016_j_jsams_2023_04_001
crossref_primary_10_1177_23259671221084742
crossref_primary_10_1111_sms_13396
crossref_primary_10_1371_journal_pone_0257171
crossref_primary_10_1007_s10237_020_01367_8
crossref_primary_10_1016_j_gaitpost_2023_02_017
crossref_primary_10_1109_LRA_2023_3291921
crossref_primary_10_1136_bjsports_2018_099020
crossref_primary_10_1080_10255842_2018_1522532
crossref_primary_10_1016_j_jbiomech_2019_01_057
crossref_primary_10_1016_j_ocarto_2023_100344
crossref_primary_10_3390_bioengineering10050510
crossref_primary_10_1002_jor_24314
crossref_primary_10_1109_JSEN_2022_3197461
crossref_primary_10_3389_fnbot_2019_00097
crossref_primary_10_1080_23335432_2019_1629839
crossref_primary_10_3389_fnbot_2021_620928
crossref_primary_10_1016_j_gaitpost_2020_04_025
crossref_primary_10_1109_TNSRE_2022_3159685
crossref_primary_10_1016_j_gaitpost_2018_11_009
crossref_primary_10_14336_AD_2017_1031
crossref_primary_10_1109_TNSRE_2024_3455262
crossref_primary_10_1109_ACCESS_2020_2999473
crossref_primary_10_1016_j_jsams_2023_02_004
crossref_primary_10_1123_jab_2017_0262
crossref_primary_10_1155_2020_2041549
crossref_primary_10_1016_j_clinbiomech_2019_08_004
crossref_primary_10_1038_s41598_022_07541_5
crossref_primary_10_1016_j_jbiomech_2023_111727
crossref_primary_10_1016_j_ocarto_2021_100230
crossref_primary_10_1371_journal_pone_0270423
crossref_primary_10_1017_wtc_2025_3
crossref_primary_10_3390_app13031376
crossref_primary_10_3389_fbioe_2021_642742
crossref_primary_10_1016_j_joca_2024_02_891
crossref_primary_10_1002_jor_23895
crossref_primary_10_1007_s10439_018_02190_0
crossref_primary_10_1371_journal_pone_0269331
crossref_primary_10_1007_s10237_021_01440_w
crossref_primary_10_1002_jor_24822
crossref_primary_10_3390_s22083006
crossref_primary_10_1016_j_jbiomech_2025_112586
crossref_primary_10_1016_j_joca_2018_12_011
crossref_primary_10_1038_s41598_024_53857_9
crossref_primary_10_3389_fbioe_2024_1356417
crossref_primary_10_1038_s41598_018_35628_5
crossref_primary_10_1115_1_4055885
crossref_primary_10_3390_s21051804
crossref_primary_10_21303_2504_5679_2020_001444
crossref_primary_10_1016_j_joca_2023_11_015
Cites_doi 10.1136/ard.2006.062927
10.1016/S0021-9290(00)00155-X
10.1002/jor.22240
10.1002/jor.22340
10.1016/j.gaitpost.2006.10.008
10.1016/j.jbiomech.2009.06.019
10.1016/S0140-6736(86)90837-8
10.1109/TBME.2007.901024
10.1016/j.joca.2007.10.017
10.1152/jn.01042.2012
10.1016/j.jbiomech.2011.03.016
10.1016/j.clinbiomech.2013.05.012
10.1016/j.jbiomech.2010.11.027
10.1109/IROS.2015.7353997
10.1002/jor.21142
10.1136/ard.61.7.617
10.1016/j.jbiomech.2012.10.019
10.2519/jospt.2009.3079
10.1016/j.jbiomech.2015.11.006
10.1016/j.joca.2016.01.195
10.1136/ard.2009.118182
10.1097/01.bor.0000240365.16842.4e
10.1016/j.jbiomech.2013.09.005
10.1115/1.4003621
10.1007/s11517-014-1233-z
10.1016/S1050-6411(00)00027-4
10.1002/jor.22845
10.1371/journal.pone.0052618
10.1115/1.2796044
10.1016/j.jbiomech.2016.12.018
10.1016/j.jbiomech.2010.03.040
10.1016/j.jbiomech.2006.02.001
10.1080/10255840701552036
10.1080/10255842.2016.1240789
10.1016/j.gaitpost.2016.06.014
10.1016/S0021-9290(01)00095-1
10.1046/j.1365-201X.1996.483230000.x
10.1016/j.humov.2012.02.009
10.1007/s11420-011-9229-9
10.1002/art.22899
10.1115/1.4023457
10.1016/j.humov.2012.08.007
10.1109/TBME.2007.891934
10.1016/j.joca.2015.02.779
10.1016/j.jbiomech.2011.10.040
10.1002/jor.22601
10.1002/art.34681
10.1016/j.joca.2014.07.026
10.1016/j.jbiomech.2009.01.032
10.1007/BF00228882
10.1016/j.jbiomech.2015.09.021
10.2106/00004623-199072060-00017
10.1016/j.clinbiomech.2009.08.005
10.1111/j.1600-0838.2011.01309.x
10.1016/j.jbiomech.2014.12.049
10.1016/j.jbiomech.2006.02.003
10.1249/MSS.0000000000001021
10.1177/0363546515608475
10.1115/1.4001584
10.1016/j.clinbiomech.2013.09.006
10.1002/art.20396
10.1002/jor.22023
10.1186/s13029-015-0044-4
10.1186/1743-0003-9-18
10.1016/j.clinbiomech.2014.05.005
10.1002/jor.20843
10.1371/journal.pone.0081036
10.1002/jor.20379
10.1007/s11517-013-1076-z
10.1016/j.piutam.2011.04.014
10.2106/00004623-198567080-00007
10.1016/0304-3940(95)11727-E
10.1016/S0021-9290(03)00010-1
10.1016/j.apmr.2016.07.006
10.1016/j.jbiomech.2007.07.001
10.1007/s11044-011-9285-4
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1109/TNSRE.2017.2683488
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1621
ExternalDocumentID PMC5757380
28436878
10_1109_TNSRE_2017_2683488
7903736
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Ph.D. scholarship from Griffith University and Menzies Health Institute Queensland
  funderid: 10.13039/501100001791
– fundername: Australian National Health and Medical Research Council
  grantid: 628850
  funderid: 10.13039/501100000925
– fundername: EU-F7 Grant BioMot
  grantid: 611695
  funderid: 10.13039/501100004963
– fundername: Griffith University Areas of Strategic Investment Fund
  funderid: 10.13039/501100001791
– fundername: Royal Society of NZ Marsden Fund
  grantid: 12-UOA-1221
  funderid: 10.13039/501100000288
– fundername: Australian Research Council Linkage Project scheme
  grantid: LP150100905
  funderid: 10.13039/501100000923
– fundername: U.S. National Institutes of Health
  grantid: R01EB009351
  funderid: 10.13039/100000002
– fundername: U.K. Engineering and Physical Sciences Research Council
  grantid: EP/K03877X/1
  funderid: 10.13039/501100000266
– fundername: NIBIB NIH HHS
  grantid: R01 EB009351
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c488t-3883589b7f69b434f962d808c28c8986bc3c2b7c67b93d2db8baa4d6780f3e4c3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Aug 21 17:31:05 EDT 2025
Fri Jul 11 14:38:54 EDT 2025
Mon Jul 21 05:51:32 EDT 2025
Tue Jul 01 00:43:15 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/3.0/legalcode
Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-3883589b7f69b434f962d808c28c8986bc3c2b7c67b93d2db8baa4d6780f3e4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1402-5359
0000-0002-0292-2776
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7903736
PMID 28436878
PQID 1891457780
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1891457780
crossref_citationtrail_10_1109_TNSRE_2017_2683488
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5757380
pubmed_primary_28436878
ieee_primary_7903736
crossref_primary_10_1109_TNSRE_2017_2683488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref75
ref31
ref74
ref30
simic (ref22) 2011; 63
ref77
ref33
ref76
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
23884905 - Med Biol Eng Comput. 2013 Oct;51(10):1069-77
28153474 - J Biomech. 2017 Feb 28;53:45-55
19268945 - J Biomech. 2009 May 11;42(7):898-905
20590285 - J Biomech Eng. 2010 Jul;132(7):071007
17943485 - Comput Methods Biomech Biomed Engin. 2008 Feb;11(1):63-71
26522621 - J Biomech. 2015 Nov 5;48(14 ):3929-36
18206395 - Osteoarthritis Cartilage. 2008 May;16(5):591-9
27723992 - Comput Methods Biomech Biomed Engin. 2017 Mar;20(4):436-445
26493337 - Am J Sports Med. 2016 Jan;44(1):143-51
7478214 - Neurosci Lett. 1995 Jul 14;194(1-2):61-4
19647257 - J Biomech. 2009 Oct 16;42(14):2294-300
15188321 - Arthritis Rheum. 2004 Jun 15;51(3):371-6
21496109 - Scand J Med Sci Sports. 2012 Dec;22(6):776-82
12742444 - J Biomech. 2003 Jun;36(6):765-76
17678933 - J Biomech. 2008;41(1):165-70
26776930 - J Biomech. 2016 Jan 25;49(2):141-8
23146322 - J Biomech. 2013 Jan 4;46(1):122-8
8800357 - Acta Physiol Scand. 1996 Jun;157(2):175-86
21459384 - J Biomech. 2011 May 17;44(8):1605-9
17867361 - IEEE Trans Biomed Eng. 2007 Sep;54(9):1687-95
16896293 - Curr Opin Rheumatol. 2006 Sep;18(5):514-8
24135198 - Clin Biomech (Bristol, Avon). 2013 Nov-Dec;28(9-10):1014-9
19881006 - J Orthop Sports Phys Ther. 2009 Nov;39(11):807-15
25862486 - Osteoarthritis Cartilage. 2015 Jul;23(7):1107-11
27337173 - Med Sci Sports Exerc. 2016 Nov;48(11):2195-2206
18018689 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50
23623229 - Hum Mov Sci. 2013 Apr;32(2):301-13
23647833 - Hum Mov Sci. 2013 Jun;32(3):412-24
25676012 - J Orthop Res. 2015 Jul;33(7):1054-60
25106675 - Osteoarthritis Cartilage. 2014 Nov;22(11):1886-93
16545388 - J Biomech. 2007;40(3):678-81
17343285 - J Orthop Res. 2007 Jun;25(6):789-97
26579208 - Source Code Biol Med. 2015 Nov 16;10:12
24615885 - J Orthop Res. 2014 Jun;32(6):769-76
23787032 - Clin Biomech (Bristol, Avon). 2013 Jul;28(6):649-54
19765867 - Clin Biomech (Bristol, Avon). 2009 Dec;24(10):833-41
2868172 - Lancet. 1986 Feb 8;1(8476):307-10
23192791 - Arthritis Rheum. 2012 Dec;64(12):3917-25
21144522 - J Biomech. 2011 Mar 15;44(5):943-7
19910299 - Ann Rheum Dis. 2010 Jun;69(6):1151-4
22176708 - J Biomech. 2012 Feb 2;45(3):595-601
24074941 - J Biomech. 2013 Nov 15;46(16):2778-86
27391249 - Gait Posture. 2016 Sep;49:78-85
23372529 - HSS J. 2012 Feb;8(1):45-8
21428681 - J Biomech Eng. 2011 Apr;133(4):041007
23027590 - J Orthop Res. 2013 Mar;31(3):434-40
4055843 - J Bone Joint Surg Am. 1985 Oct;67(8):1188-94
22463378 - J Neuroeng Rehabil. 2012 Mar 30;9:18
11522305 - J Biomech. 2001 Oct;34(10):1257-67
20452595 - J Biomech. 2010 Aug 10;43(11):2208-13
22161745 - J Orthop Res. 2012 Apr;30(4):503-13
23825398 - J Neurophysiol. 2013 Oct;110(8):1837-47
8950661 - J Biomech Eng. 1996 Nov;118(4):565-74
2311690 - Exp Brain Res. 1990;79(1):138-42
25480419 - Med Biol Eng Comput. 2015 Mar;53(3):275-86
20981808 - Arthritis Care Res (Hoboken). 2011 Mar;63(3):405-26
20839320 - J Orthop Res. 2010 Oct;28(10):1348-54
23419878 - Multibody Syst Dyn. 2012 Aug;28(1-2):169-180
24312522 - PLoS One. 2013 Dec 02;8(12):e81036
16584737 - J Biomech. 2007;40(3):595-602
17267516 - Ann Rheum Dis. 2007 Oct;66(10):1271-5
19148939 - J Orthop Res. 2009 Aug;27(8):1016-21
23300725 - PLoS One. 2012;7(12):e52618
25595425 - J Biomech. 2015 Feb 26;48(4):644-50
12079903 - Ann Rheum Dis. 2002 Jul;61(7):617-22
11018445 - J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
17134902 - Gait Posture. 2007 Sep;26(3):436-41
11165278 - J Biomech. 2001 Feb;34(2):153-61
27485366 - Arch Phys Med Rehabil. 2017 Jan;98 (1):137-150
23494804 - J Orthop Res. 2013 Jul;31(7):1020-5
17665490 - Arthritis Rheum. 2007 Aug 15;57(6):1012-7
23445059 - J Biomech Eng. 2013 Feb;135(2):021014
2365722 - J Bone Joint Surg Am. 1990 Jul;72(6):905-9
24917175 - Clin Biomech (Bristol, Avon). 2014 Aug;29(7):828-34
References_xml – ident: ref27
  doi: 10.1136/ard.2006.062927
– ident: ref45
  doi: 10.1016/S0021-9290(00)00155-X
– ident: ref42
  doi: 10.1002/jor.22240
– ident: ref21
  doi: 10.1002/jor.22340
– ident: ref32
  doi: 10.1016/j.gaitpost.2006.10.008
– ident: ref6
  doi: 10.1016/j.jbiomech.2009.06.019
– ident: ref60
  doi: 10.1016/S0140-6736(86)90837-8
– ident: ref43
  doi: 10.1109/TBME.2007.901024
– ident: ref33
  doi: 10.1016/j.joca.2007.10.017
– ident: ref64
  doi: 10.1152/jn.01042.2012
– ident: ref20
  doi: 10.1016/j.jbiomech.2011.03.016
– ident: ref72
  doi: 10.1016/j.clinbiomech.2013.05.012
– ident: ref65
  doi: 10.1016/j.jbiomech.2010.11.027
– ident: ref61
  doi: 10.1109/IROS.2015.7353997
– ident: ref37
  doi: 10.1002/jor.21142
– ident: ref8
  doi: 10.1136/ard.61.7.617
– ident: ref30
  doi: 10.1016/j.jbiomech.2012.10.019
– ident: ref74
  doi: 10.2519/jospt.2009.3079
– ident: ref55
  doi: 10.1016/j.jbiomech.2015.11.006
– ident: ref17
  doi: 10.1016/j.joca.2016.01.195
– ident: ref10
  doi: 10.1136/ard.2009.118182
– ident: ref1
  doi: 10.1097/01.bor.0000240365.16842.4e
– ident: ref48
  doi: 10.1016/j.jbiomech.2013.09.005
– ident: ref34
  doi: 10.1115/1.4003621
– ident: ref23
  doi: 10.1007/s11517-014-1233-z
– ident: ref52
  doi: 10.1016/S1050-6411(00)00027-4
– ident: ref4
  doi: 10.1002/jor.22845
– ident: ref53
  doi: 10.1371/journal.pone.0052618
– ident: ref67
  doi: 10.1115/1.2796044
– ident: ref73
  doi: 10.1016/j.jbiomech.2016.12.018
– ident: ref38
  doi: 10.1016/j.jbiomech.2010.03.040
– ident: ref63
  doi: 10.1016/j.jbiomech.2006.02.001
– ident: ref35
  doi: 10.1080/10255840701552036
– ident: ref51
  doi: 10.1080/10255842.2016.1240789
– ident: ref40
  doi: 10.1016/j.gaitpost.2016.06.014
– ident: ref70
  doi: 10.1016/S0021-9290(01)00095-1
– ident: ref12
  doi: 10.1046/j.1365-201X.1996.483230000.x
– ident: ref31
  doi: 10.1016/j.humov.2012.02.009
– ident: ref59
  doi: 10.1007/s11420-011-9229-9
– ident: ref28
  doi: 10.1002/art.22899
– ident: ref49
  doi: 10.1115/1.4023457
– ident: ref36
  doi: 10.1016/j.humov.2012.08.007
– ident: ref25
  doi: 10.1109/TBME.2007.891934
– ident: ref3
  doi: 10.1016/j.joca.2015.02.779
– ident: ref57
  doi: 10.1016/j.jbiomech.2011.10.040
– ident: ref71
  doi: 10.1002/jor.22601
– ident: ref15
  doi: 10.1002/art.34681
– ident: ref13
  doi: 10.1016/j.joca.2014.07.026
– ident: ref75
  doi: 10.1016/j.jbiomech.2009.01.032
– ident: ref69
  doi: 10.1007/BF00228882
– ident: ref50
  doi: 10.1016/j.jbiomech.2015.09.021
– ident: ref11
  doi: 10.2106/00004623-199072060-00017
– ident: ref46
  doi: 10.1016/j.clinbiomech.2009.08.005
– ident: ref14
  doi: 10.1111/j.1600-0838.2011.01309.x
– ident: ref44
  doi: 10.1016/j.jbiomech.2014.12.049
– ident: ref54
  doi: 10.1016/j.jbiomech.2006.02.003
– ident: ref16
  doi: 10.1249/MSS.0000000000001021
– ident: ref18
  doi: 10.1177/0363546515608475
– ident: ref19
  doi: 10.1115/1.4001584
– ident: ref5
  doi: 10.1016/j.clinbiomech.2013.09.006
– ident: ref9
  doi: 10.1002/art.20396
– ident: ref41
  doi: 10.1002/jor.22023
– ident: ref58
  doi: 10.1186/s13029-015-0044-4
– ident: ref77
  doi: 10.1186/1743-0003-9-18
– ident: ref66
  doi: 10.1016/j.clinbiomech.2014.05.005
– ident: ref24
  doi: 10.1002/jor.20843
– ident: ref39
  doi: 10.1371/journal.pone.0081036
– ident: ref7
  doi: 10.1002/jor.20379
– ident: ref56
  doi: 10.1007/s11517-013-1076-z
– ident: ref76
  doi: 10.1016/j.piutam.2011.04.014
– ident: ref2
  doi: 10.2106/00004623-198567080-00007
– volume: 63
  start-page: 405
  year: 2011
  ident: ref22
  article-title: Gait modification strategies for altering medial knee joint load: A systematic review
  publication-title: Arthritis Care Res
– ident: ref68
  doi: 10.1016/0304-3940(95)11727-E
– ident: ref47
  doi: 10.1016/S0021-9290(03)00010-1
– ident: ref29
  doi: 10.1016/j.apmr.2016.07.006
– ident: ref26
  doi: 10.1016/j.jbiomech.2007.07.001
– ident: ref62
  doi: 10.1007/s11044-011-9285-4
– reference: 11165278 - J Biomech. 2001 Feb;34(2):153-61
– reference: 18018689 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50
– reference: 19268945 - J Biomech. 2009 May 11;42(7):898-905
– reference: 28153474 - J Biomech. 2017 Feb 28;53:45-55
– reference: 16896293 - Curr Opin Rheumatol. 2006 Sep;18(5):514-8
– reference: 11522305 - J Biomech. 2001 Oct;34(10):1257-67
– reference: 23494804 - J Orthop Res. 2013 Jul;31(7):1020-5
– reference: 11018445 - J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
– reference: 19765867 - Clin Biomech (Bristol, Avon). 2009 Dec;24(10):833-41
– reference: 2311690 - Exp Brain Res. 1990;79(1):138-42
– reference: 25106675 - Osteoarthritis Cartilage. 2014 Nov;22(11):1886-93
– reference: 23419878 - Multibody Syst Dyn. 2012 Aug;28(1-2):169-180
– reference: 16584737 - J Biomech. 2007;40(3):595-602
– reference: 23445059 - J Biomech Eng. 2013 Feb;135(2):021014
– reference: 21459384 - J Biomech. 2011 May 17;44(8):1605-9
– reference: 23146322 - J Biomech. 2013 Jan 4;46(1):122-8
– reference: 23623229 - Hum Mov Sci. 2013 Apr;32(2):301-13
– reference: 26579208 - Source Code Biol Med. 2015 Nov 16;10:12
– reference: 12079903 - Ann Rheum Dis. 2002 Jul;61(7):617-22
– reference: 17343285 - J Orthop Res. 2007 Jun;25(6):789-97
– reference: 23647833 - Hum Mov Sci. 2013 Jun;32(3):412-24
– reference: 24615885 - J Orthop Res. 2014 Jun;32(6):769-76
– reference: 27337173 - Med Sci Sports Exerc. 2016 Nov;48(11):2195-2206
– reference: 23372529 - HSS J. 2012 Feb;8(1):45-8
– reference: 17665490 - Arthritis Rheum. 2007 Aug 15;57(6):1012-7
– reference: 26522621 - J Biomech. 2015 Nov 5;48(14 ):3929-36
– reference: 26776930 - J Biomech. 2016 Jan 25;49(2):141-8
– reference: 2868172 - Lancet. 1986 Feb 8;1(8476):307-10
– reference: 25862486 - Osteoarthritis Cartilage. 2015 Jul;23(7):1107-11
– reference: 25595425 - J Biomech. 2015 Feb 26;48(4):644-50
– reference: 7478214 - Neurosci Lett. 1995 Jul 14;194(1-2):61-4
– reference: 8950661 - J Biomech Eng. 1996 Nov;118(4):565-74
– reference: 17678933 - J Biomech. 2008;41(1):165-70
– reference: 27391249 - Gait Posture. 2016 Sep;49:78-85
– reference: 16545388 - J Biomech. 2007;40(3):678-81
– reference: 8800357 - Acta Physiol Scand. 1996 Jun;157(2):175-86
– reference: 21144522 - J Biomech. 2011 Mar 15;44(5):943-7
– reference: 22176708 - J Biomech. 2012 Feb 2;45(3):595-601
– reference: 21428681 - J Biomech Eng. 2011 Apr;133(4):041007
– reference: 24135198 - Clin Biomech (Bristol, Avon). 2013 Nov-Dec;28(9-10):1014-9
– reference: 24074941 - J Biomech. 2013 Nov 15;46(16):2778-86
– reference: 2365722 - J Bone Joint Surg Am. 1990 Jul;72(6):905-9
– reference: 23192791 - Arthritis Rheum. 2012 Dec;64(12):3917-25
– reference: 20452595 - J Biomech. 2010 Aug 10;43(11):2208-13
– reference: 19148939 - J Orthop Res. 2009 Aug;27(8):1016-21
– reference: 20590285 - J Biomech Eng. 2010 Jul;132(7):071007
– reference: 26493337 - Am J Sports Med. 2016 Jan;44(1):143-51
– reference: 17267516 - Ann Rheum Dis. 2007 Oct;66(10):1271-5
– reference: 24312522 - PLoS One. 2013 Dec 02;8(12):e81036
– reference: 23787032 - Clin Biomech (Bristol, Avon). 2013 Jul;28(6):649-54
– reference: 19647257 - J Biomech. 2009 Oct 16;42(14):2294-300
– reference: 19910299 - Ann Rheum Dis. 2010 Jun;69(6):1151-4
– reference: 27723992 - Comput Methods Biomech Biomed Engin. 2017 Mar;20(4):436-445
– reference: 12742444 - J Biomech. 2003 Jun;36(6):765-76
– reference: 19881006 - J Orthop Sports Phys Ther. 2009 Nov;39(11):807-15
– reference: 23825398 - J Neurophysiol. 2013 Oct;110(8):1837-47
– reference: 23884905 - Med Biol Eng Comput. 2013 Oct;51(10):1069-77
– reference: 15188321 - Arthritis Rheum. 2004 Jun 15;51(3):371-6
– reference: 17943485 - Comput Methods Biomech Biomed Engin. 2008 Feb;11(1):63-71
– reference: 18206395 - Osteoarthritis Cartilage. 2008 May;16(5):591-9
– reference: 22463378 - J Neuroeng Rehabil. 2012 Mar 30;9:18
– reference: 23300725 - PLoS One. 2012;7(12):e52618
– reference: 21496109 - Scand J Med Sci Sports. 2012 Dec;22(6):776-82
– reference: 23027590 - J Orthop Res. 2013 Mar;31(3):434-40
– reference: 17134902 - Gait Posture. 2007 Sep;26(3):436-41
– reference: 24917175 - Clin Biomech (Bristol, Avon). 2014 Aug;29(7):828-34
– reference: 27485366 - Arch Phys Med Rehabil. 2017 Jan;98 (1):137-150
– reference: 20839320 - J Orthop Res. 2010 Oct;28(10):1348-54
– reference: 20981808 - Arthritis Care Res (Hoboken). 2011 Mar;63(3):405-26
– reference: 25480419 - Med Biol Eng Comput. 2015 Mar;53(3):275-86
– reference: 4055843 - J Bone Joint Surg Am. 1985 Oct;67(8):1188-94
– reference: 22161745 - J Orthop Res. 2012 Apr;30(4):503-13
– reference: 17867361 - IEEE Trans Biomed Eng. 2007 Sep;54(9):1687-95
– reference: 25676012 - J Orthop Res. 2015 Jul;33(7):1054-60
SSID ssj0017657
Score 2.5127234
Snippet Biofeedback assisted rehabilitation and intervention technologies have the potential to modify clinically relevant biomechanics. Gait retraining has been used...
Biofeedback assisted rehabilitation and intervention technologies have the potential to modify clinically relevant biomechanics. Gait retraining has been used...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1612
SubjectTerms Adult
Biofeedback, Psychology - methods
Biological control systems
Biological system modeling
Computer Simulation
Computer Systems
contact force
electromyography
Electromyography - methods
Force
Gait
Gait Disorders, Neurologic - physiopathology
Gait Disorders, Neurologic - rehabilitation
Gait modification
Humans
Knee
knee joint
Knee Joint - physiopathology
Legged locomotion
Male
Models, Biological
Muscles
real-time biofeedback
Real-time systems
Stress, Mechanical
Therapy, Computer-Assisted - methods
Treatment Outcome
Title Biofeedback for Gait Retraining Based on Real-Time Estimation of Tibiofemoral Joint Contact Forces
URI https://ieeexplore.ieee.org/document/7903736
https://www.ncbi.nlm.nih.gov/pubmed/28436878
https://www.proquest.com/docview/1891457780
https://pubmed.ncbi.nlm.nih.gov/PMC5757380
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbanrjwKo9AqQYJuEC2SSY7j2OLdqkq0UPZSr1FmUdE1JKgkr3w62tPHtqtKsQtSjzROPaMPbH9GeCDomiSSU0slaMWZiqJjUhtLCqnOVoEy03ItjgXp5f52dX8age-TLUw3vuQfOZndBli-a61a_pVdiR1wiUXu7CLatbXak0RAykCqicu4DzOeZaMBTKJPlqd_7hYUBaXnGVCcVRZggBWhL1O3dU27FFosPKQr3k_ZXLDBi2fwPdx9n3qyfVs3ZmZ_XsP2PF_2XsKjwdnlB332vMMdnzzHD5uAg-zVY86wD6xiy1M730wJ3Vboe0zpb1m6Pqyb2XdIdXYdIKdoIF0rG3wXnkTU60JW-CG0tdKsrZiq9rQK34RSAA7a-umYwSWVdqOLdtb3MBewOVysfp6Gg8dG2KLX7WLuUKHTmkjK6FNzvNKi8ypRNlMWaWVMJbbzEgrpNHcZc4oU5a5Q4OZVNznlr-EvaZt_GtgBDwnvRTCWtxnKoK6mleJy2RVpsZqGUE6yq2wA-vE4E0RjjWJLoLYCxJ7MYg9gs_TmN89mMc_qfdJRhPlIJ4I3o_qUeBSpPhK2fh2_adIlU7zuURmInjVq8s0eFS3COSWIk0EBPO9_aSpfwa4b3SoJVfJm4en8xYe0aT7tLcD2Otu1_4d-kmdOQwL5A6aiw4a
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZKOcAFCoUSoDBIwAWyTTLZeRxbtMtS2j2UVOotykwmImpJUMle-PXYeWm3qipuUeKJxrFn7IntzwDvFUWTTGh8qXJqYaYC34jQ-qLINUeLYLlpsy2WYnEeH19ML7bg81gL45xrk8_chC7bWH5e2xX9KjuQOuCSi3twf4qnCtVVa40xAylaXE9cwrEf8ygYSmQCfZAsf5zNKI9LTiKhOI4lEGBF6OvUX23NIrUtVm7zNm8mTa5ZofljOB3m3yWfXE5WjZnYvzegHf-XwR141Luj7LDTnyew5aqn8GEdepglHe4A-8jONlC9d8EclXWB1s9k9pKh88u-ZmWDVEPbCXaEJjJndYX3siufqk3YDLeUrlqS1QVLSkOv-EUwAey4LquGEVxWZhs2r69xC3sG5_NZ8mXh9z0bfItftfG5QpdOaSMLoU3M40KLKFeBspGySithLLeRkVZIo3ke5UaZLItzNJlBwV1s-XPYrurKvQBG0HPSSSGsxZ2mILCraRHkkSyy0FgtPQgHuaW2Z50YvErbg02g01bsKYk97cXuwadxzO8OzuNO6l2S0UjZi8eDd4N6pLgYKcKSVa5e_UlDpcN4KpEZD_Y6dRkHD-rmgdxQpJGAgL43n1TlzxbwG11qyVXw8vbpvIUHi-T0JD35tvz-Ch4SA10S3GvYbq5Xbh-9psa8aRfLP-0tEW0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biofeedback+for+gait+retraining+based+on+real-time+estimation+of+tibiofemoral+joint+contact+forces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Pizzolato%2C+C.&rft.au=Reggiani%2C+M.&rft.au=Saxby%2C+D.J.&rft.au=Ceseracciu%2C+E.&rft.date=2017-09-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=25&rft.issue=9&rft.spage=1612&rft.epage=1621&rft_id=info:doi/10.1109%2FTNSRE.2017.2683488&rft_id=info%3Apmid%2F28436878&rft.externalDocID=PMC5757380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon