Global dynamics above the ground state energy for the cubic NLS equation in 3D

We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011 ) on the nonlinear Klein–Gordon equation to the nonlinear Schrödinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove...

Full description

Saved in:
Bibliographic Details
Published inCalculus of variations and partial differential equations Vol. 44; no. 1-2; pp. 1 - 45
Main Authors Nakanishi, K., Schlag, W.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.05.2012
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-2669
1432-0835
DOI10.1007/s00526-011-0424-9

Cover

Abstract We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011 ) on the nonlinear Klein–Gordon equation to the nonlinear Schrödinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove that the initial data set splits into nine nonempty, pairwise disjoint regions which are characterized by the distinct behaviors of the solution for large time: blow-up, scattering to 0, or scattering to the family of ground states generated by the phase and scaling freedom. Solutions of this latter type form a smooth center-stable manifold, which contains the ground states and separates the phase space locally into two connected regions exhibiting blow-up and scattering to 0, respectively. The special solutions found by Duyckaerts and Roudenko (Rev Mater Iberoam 26(1):1–56, 2010 ), following the seminal work on threshold solutions by Duyckaerts and Merle (Funct Anal 18(6):1787–1840, 2009 ), appear here as the unique one-dimensional unstable/stable manifolds emanating from the ground states. In analogy with Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011 ), the proof combines the hyperbolic dynamics near the ground states with the variational structure away from them. The main technical ingredient in the proof is a “one-pass” theorem which precludes “almost homoclinic orbits”, i.e., those solutions starting in, then moving away from, and finally returning to, a small neighborhood of the ground states. The main new difficulty compared with the Klein–Gordon case is the lack of finite propagation speed. We need the radial Sobolev inequality for the error estimate in the virial argument. Another major difference between Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011 ) and this paper is the need to control two modulation parameters.
AbstractList We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011 ) on the nonlinear Klein–Gordon equation to the nonlinear Schrödinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove that the initial data set splits into nine nonempty, pairwise disjoint regions which are characterized by the distinct behaviors of the solution for large time: blow-up, scattering to 0, or scattering to the family of ground states generated by the phase and scaling freedom. Solutions of this latter type form a smooth center-stable manifold, which contains the ground states and separates the phase space locally into two connected regions exhibiting blow-up and scattering to 0, respectively. The special solutions found by Duyckaerts and Roudenko (Rev Mater Iberoam 26(1):1–56, 2010 ), following the seminal work on threshold solutions by Duyckaerts and Merle (Funct Anal 18(6):1787–1840, 2009 ), appear here as the unique one-dimensional unstable/stable manifolds emanating from the ground states. In analogy with Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011 ), the proof combines the hyperbolic dynamics near the ground states with the variational structure away from them. The main technical ingredient in the proof is a “one-pass” theorem which precludes “almost homoclinic orbits”, i.e., those solutions starting in, then moving away from, and finally returning to, a small neighborhood of the ground states. The main new difficulty compared with the Klein–Gordon case is the lack of finite propagation speed. We need the radial Sobolev inequality for the error estimate in the virial argument. Another major difference between Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011 ) and this paper is the need to control two modulation parameters.
We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) on the nonlinear Klein-Gordon equation to the nonlinear Schrödinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove that the initial data set splits into nine nonempty, pairwise disjoint regions which are characterized by the distinct behaviors of the solution for large time: blow-up, scattering to 0, or scattering to the family of ground states generated by the phase and scaling freedom. Solutions of this latter type form a smooth center-stable manifold, which contains the ground states and separates the phase space locally into two connected regions exhibiting blow-up and scattering to 0, respectively. The special solutions found by Duyckaerts and Roudenko (Rev Mater Iberoam 26(1):1-56, 2010), following the seminal work on threshold solutions by Duyckaerts and Merle (Funct Anal 18(6):1787-1840, 2009), appear here as the unique one-dimensional unstable/stable manifolds emanating from the ground states. In analogy with Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011), the proof combines the hyperbolic dynamics near the ground states with the variational structure away from them. The main technical ingredient in the proof is a "one-pass" theorem which precludes "almost homoclinic orbits", i.e., those solutions starting in, then moving away from, and finally returning to, a small neighborhood of the ground states. The main new difficulty compared with the Klein-Gordon case is the lack of finite propagation speed. We need the radial Sobolev inequality for the error estimate in the virial argument. Another major difference between Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) and this paper is the need to control two modulation parameters.[PUBLICATION ABSTRACT]
We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) on the nonlinear Klein-Gordon equation to the nonlinear Schrodinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove that the initial data set splits into nine nonempty, pairwise disjoint regions which are characterized by the distinct behaviors of the solution for large time: blow-up, scattering to 0, or scattering to the family of ground states generated by the phase and scaling freedom. Solutions of this latter type form a smooth center-stable manifold, which contains the ground states and separates the phase space locally into two connected regions exhibiting blow-up and scattering to 0, respectively. The special solutions found by Duyckaerts and Roudenko (Rev Mater Iberoam 26(1):1-56, 2010), following the seminal work on threshold solutions by Duyckaerts and Merle (Funct Anal 18(6):1787-1840, 2009), appear here as the unique one-dimensional unstable/stable manifolds emanating from the ground states. In analogy with Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011), the proof combines the hyperbolic dynamics near the ground states with the variational structure away from them. The main technical ingredient in the proof is a "one-pass" theorem which precludes "almost homoclinic orbits", i.e., those solutions starting in, then moving away from, and finally returning to, a small neighborhood of the ground states. The main new difficulty compared with the Klein-Gordon case is the lack of finite propagation speed. We need the radial Sobolev inequality for the error estimate in the virial argument. Another major difference between Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) and this paper is the need to control two modulation parameters.
Author Nakanishi, K.
Schlag, W.
Author_xml – sequence: 1
  givenname: K.
  surname: Nakanishi
  fullname: Nakanishi, K.
  organization: Department of Mathematics, Kyoto University
– sequence: 2
  givenname: W.
  surname: Schlag
  fullname: Schlag, W.
  email: schlag@math.uchicago.edu
  organization: Department of Mathematics, The University of Chicago
BookMark eNp9kE1r3DAQhkVJoJuPH5Cb6CkXpzP6sKVjyWdhSQ9NzkKWx1sHr5RIdmD_fZ1soRBoT3OY5xneeY_YQUyRGDtDuECA5msB0KKuALECJVRlP7EVKikqMFIfsBVYpSpR1_YzOyrlCQC1EWrF7m_H1PqRd7vot0Mo3Lfplfj0i_gmpzl2vEx-Ik6R8mbH-5Tfd2Fuh8Dv1z85vcx-GlLkQ-Ty6oQd9n4sdPpnHrPHm-uHy7tq_eP2--W3dRWUMVMlUNZdE6QmQx1KbUXXgVa6NwSdXpI12LUWtEaNrUSQbW1UIAkNmp5qJY_Z-f7uc04vM5XJbYcSaBx9pDQXh3WDQkqt6wX98gF9SnOOSzpnhQVhjdUL1OyhkFMpmXoXhun9ryn7YXQI7q1mt6_ZLTW7t5qdXUz8YD7nYevz7r-O2DtlYeOG8t9I_5Z-A_0gjiM
CitedBy_id crossref_primary_10_1007_s11012_021_01386_4
crossref_primary_10_1007_s00205_017_1109_0
crossref_primary_10_1090_memo_1369
crossref_primary_10_4213_rm9574
crossref_primary_10_1007_s00220_013_1677_2
crossref_primary_10_1007_s00220_014_2202_y
crossref_primary_10_1002_mma_3284
crossref_primary_10_1137_18M1216031
crossref_primary_10_1137_20M1381824
crossref_primary_10_1007_s00220_014_1900_9
crossref_primary_10_1007_s11511_014_0109_2
crossref_primary_10_1007_s00220_017_2902_1
crossref_primary_10_1002_cpa_21387
crossref_primary_10_1007_s10884_023_10329_4
crossref_primary_10_1215_00192082_8165582
crossref_primary_10_1007_s00209_011_0934_3
crossref_primary_10_3934_dcds_2021008
crossref_primary_10_1007_s00220_015_2509_3
crossref_primary_10_2969_jmsj_06941353
crossref_primary_10_1016_j_jde_2019_07_019
crossref_primary_10_1016_j_na_2023_113285
crossref_primary_10_1090_tran_9158
crossref_primary_10_1007_s00208_014_1059_x
crossref_primary_10_1017_prm_2019_28
crossref_primary_10_1007_s00526_023_02579_3
crossref_primary_10_1016_j_jde_2024_07_003
crossref_primary_10_3934_cpaa_2016026
crossref_primary_10_1016_j_amc_2016_07_045
crossref_primary_10_1016_j_jde_2013_11_002
crossref_primary_10_3934_dcds_2013_33_2423
crossref_primary_10_1007_s00222_021_01080_y
crossref_primary_10_1016_j_jde_2023_12_028
crossref_primary_10_1080_03605302_2012_665973
crossref_primary_10_1007_s00526_019_1556_6
crossref_primary_10_1007_s00220_023_04904_5
crossref_primary_10_1090_memo_1331
crossref_primary_10_1063_5_0048880
crossref_primary_10_3934_cpaa_2015_14_1481
crossref_primary_10_3934_cpaa_2017028
crossref_primary_10_1002_mma_3015
crossref_primary_10_1070_RM2014v069n02ABEH004888
crossref_primary_10_1007_s00220_018_3189_6
crossref_primary_10_1007_s00220_016_2795_4
crossref_primary_10_1016_j_jfa_2021_109326
crossref_primary_10_1007_s00028_019_00547_z
crossref_primary_10_1016_j_anihpc_2015_11_001
crossref_primary_10_1007_s10114_021_0354_1
crossref_primary_10_1016_j_jde_2024_08_072
crossref_primary_10_1007_s10114_014_3314_1
crossref_primary_10_1016_j_jde_2010_10_027
crossref_primary_10_5802_jedp_91
crossref_primary_10_2140_apde_2019_12_43
Cites_doi 10.1007/s00220-008-0427-3
10.1016/0022-1236(79)90077-6
10.1002/cpa.1018
10.1353/ajm.1998.0039
10.1007/s00039-010-0081-8
10.1007/BF01403504
10.1007/BF01626517
10.1081/PDE-120016161
10.1007/BF00251502
10.1112/blms/bdm065
10.1088/0951-7715/19/4/004
10.1006/jdeq.1997.3345
10.1016/0022-0396(92)90098-8
10.1353/ajm.1999.0001
10.1016/0022-1236(90)90016-E
10.1007/s00220-008-0529-y
10.1006/jdeq.2000.3951
10.1007/PL00001048
10.1016/0022-0396(91)90052-B
10.1007/s11511-008-0031-6
10.1090/S0894-0347-06-00524-8
10.1016/j.jde.2010.10.027
10.1137/0516034
10.1016/j.physd.2006.06.010
10.1088/0951-7715/24/2/003
10.1002/cpa.3160410602
10.1007/s00222-006-0011-4
10.1007/s00220-008-0605-3
10.1007/BF02789446
10.1002/cpa.3160430302
10.1063/1.523491
10.4007/annals.2009.169.139
10.1002/cpa.3160390103
10.1007/BF00250684
10.1215/S0012-7094-93-06919-0
10.4171/RMI/592
10.1007/BF02096557
10.4171/JEMS/143
10.1512/iumj.2000.49.1838
10.1016/0022-1236(87)90044-9
10.1155/S1073792898000270
10.4310/MRL.2008.v15.n6.a13
10.1090/cbms/073
10.1007/978-3-322-96657-5_4
10.1007/s00222-003-0346-z
10.1007/s00039-009-0707-x
10.1007/BF00250555
10.1007/978-3-322-96657-5_1
10.1090/cbms/106
10.1090/cln/010
10.1090/trans2/164/04
10.1007/BFb0092042
ContentType Journal Article
Copyright Springer-Verlag 2011
Springer-Verlag 2012
Copyright_xml – notice: Springer-Verlag 2011
– notice: Springer-Verlag 2012
DBID AAYXX
CITATION
3V.
7XB
88I
8AO
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7SU
7TB
7U5
8FD
C1K
FR3
H8D
KR7
L7M
DOI 10.1007/s00526-011-0424-9
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Computer Science Database
Aerospace Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
EndPage 45
ExternalDocumentID 2613427841
10_1007_s00526_011_0424_9
Genre Feature
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7Z
Z88
Z8T
Z92
ZMTXR
ZWQNP
~EX
88I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
BGLVJ
CCPQU
CITATION
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
3V.
7XB
8AO
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
DWQXO
GNUQQ
HCIFZ
JQ2
L6V
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
7SU
7TB
7U5
8FD
C1K
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c488t-2136d7c35e8ed13592dd0545f8e0d558271db9055151b3103b684ce30718fe643
IEDL.DBID U2A
ISSN 0944-2669
IngestDate Tue Oct 07 09:42:44 EDT 2025
Wed Sep 17 23:55:45 EDT 2025
Thu Apr 24 23:03:17 EDT 2025
Wed Oct 01 05:10:48 EDT 2025
Fri Feb 21 02:35:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 37K45
35Q55
37K40
35P15
37D10
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-2136d7c35e8ed13592dd0545f8e0d558271db9055151b3103b684ce30718fe643
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 929029895
PQPubID 32028
PageCount 45
ParticipantIDs proquest_miscellaneous_1671233556
proquest_journals_929029895
crossref_citationtrail_10_1007_s00526_011_0424_9
crossref_primary_10_1007_s00526_011_0424_9
springer_journals_10_1007_s00526_011_0424_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Calculus of variations and partial differential equations
PublicationTitleAbbrev Calc. Var
PublicationYear 2012
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References Berestycki, Lions (CR7) 1983; 82
Keraani (CR37) 2001; 175
Erdogan, Schlag (CR20) 2006; 99
Ginibre, Velo (CR24) 1985; 64
Keel, Tao (CR34) 1998; 120
Cuccagna, Mizumachi (CR15) 2008; 284
Hirsch, Pugh, Shub (CR30) 1977
Merle, Raphael (CR43) 2006; 191
Sulem, Sulem (CR56) 1999
Perelman (CR49) 2001; 2
Cazenave, Lions (CR12) 1982; 85
CR33
Marzuola, Simpson (CR41) 2011; 24
Krieger, Schlag (CR38) 2006; 19
Hundertmark, Lee (CR32) 2007; 39
Cuccagna (CR14) 2001; 54
Soffer, Weinstein (CR52) 1990; 133
Fibich, Merle, Raphaël (CR21) 2006; 220
Schlag (CR51) 2009; 169
Soffer, Weinstein (CR53) 1992; 98
Duyckaerts, Holmer, Roudenko (CR19) 2008; 15
Krieger, Schlag (CR39) 2009; 11
Glassey (CR25) 1977; 18
CR2
Duyckaerts, Merle (CR17) 2009; 18
Kwong (CR40) 1989; 105
CR4
Holmer, Roudenko (CR31) 2008; 282
Merle (CR42) 1993; 69
CR5
Duykaerts, Roudenko (CR18) 2010; 26
Ginibre, Velo (CR23) 1979; 32
CR9
Nakanishi, Schlag (CR47) 2011; 250
CR46
Grillakis, Shatah, Strauss (CR29) 1990; 94
Pillet, Wayne (CR50) 1997; 141
Weinstein (CR61) 1986; 39
Kenig, Merle (CR35) 2006; 166
Weinstein (CR60) 1985; 16
Merle, Vega (CR44) 1998; 8
Tsai, Yau (CR58) 2002; 27
Ogawa, Tsutsumi (CR48) 1991; 92
Bahouri, Gérard (CR1) 1999; 121
Bourgain, Wang (CR8) 1997; 25
CR59
CR57
Merle, Raphael, Szeftel (CR45) 2010; 20
CR11
CR55
CR10
Grillakis, Shatah, Strauss (CR28) 1987; 74
Gesztesy, Jones, Latushkin, Stanislavova (CR22) 2000; 49
Beceanu (CR3) 2008; 280
Demanet, Schlag (CR16) 2006; 19
Grillakis (CR27) 1990; 43
Berestycki, Cazenave (CR6) 1981; 293
Coffman (CR13) 1972; 46
Grillakis (CR26) 1988; 41
Kenig, Merle (CR36) 2008; 201
Strauss (CR54) 1977; 55
F. Merle (424_CR42) 1993; 69
cr-split#-424_CR43.1
cr-split#-424_CR43.2
M.W. Hirsch (424_CR30) 1977
S. Cuccagna (424_CR14) 2001; 54
J. Krieger (424_CR39) 2009; 11
H. Bahouri (424_CR1) 1999; 121
H. Berestycki (424_CR6) 1981; 293
424_CR46
C. Kenig (424_CR36) 2008; 201
C. Kenig (424_CR35) 2006; 166
F. Merle (424_CR44) 1998; 8
A. Soffer (424_CR52) 1990; 133
J. Holmer (424_CR31) 2008; 282
B. Erdogan (424_CR20) 2006; 99
H. Berestycki (424_CR7) 1983; 82
M. Weinstein (424_CR60) 1985; 16
T. Cazenave (424_CR12) 1982; 85
J. Ginibre (424_CR23) 1979; 32
J. Ginibre (424_CR24) 1985; 64
424_CR57
424_CR11
424_CR55
424_CR59
G. Perelman (424_CR49) 2001; 2
M. Keel (424_CR34) 1998; 120
M. Weinstein (424_CR61) 1986; 39
D. Hundertmark (424_CR32) 2007; 39
424_CR10
M. Kwong (424_CR40) 1989; 105
G. Fibich (424_CR21) 2006; 220
424_CR5
424_CR4
S. Keraani (424_CR37) 2001; 175
424_CR2
C. Sulem (424_CR56) 1999
S. Cuccagna (424_CR15) 2008; 284
R.T. Glassey (424_CR25) 1977; 18
F. Merle (424_CR45) 2010; 20
W. Schlag (424_CR51) 2009; 169
F. Gesztesy (424_CR22) 2000; 49
A. Soffer (424_CR53) 1992; 98
M. Grillakis (424_CR28) 1987; 74
C.A. Pillet (424_CR50) 1997; 141
T. Ogawa (424_CR48) 1991; 92
J. Marzuola (424_CR41) 2011; 24
T. Duyckaerts (424_CR19) 2008; 15
cr-split#-424_CR17.1
T. Duykaerts (424_CR18) 2010; 26
J. Krieger (424_CR38) 2006; 19
K. Nakanishi (424_CR47) 2011; 250
M. Beceanu (424_CR3) 2008; 280
cr-split#-424_CR17.2
L. Demanet (424_CR16) 2006; 19
M. Grillakis (424_CR26) 1988; 41
J. Bourgain (424_CR8) 1997; 25
M. Grillakis (424_CR27) 1990; 43
W.A. Strauss (424_CR54) 1977; 55
C. Coffman (424_CR13) 1972; 46
424_CR33
M. Grillakis (424_CR29) 1990; 94
T.P. Tsai (424_CR58) 2002; 27
424_CR9
References_xml – volume: 293
  start-page: 489
  issue: 9
  year: 1981
  end-page: 492
  ident: CR6
  article-title: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires
  publication-title: C. R. Acad. Sci. Paris I Math.
– volume: 280
  start-page: 145
  issue: 1
  year: 2008
  end-page: 205
  ident: CR3
  article-title: A centre-stable manifold for the focussing cubic NLS in
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0427-3
– volume: 32
  start-page: 33
  issue: 1-32
  year: 1979
  end-page: 71
  ident: CR23
  article-title: On a class of nonlinear Schrödinger equation. I. The Cauchy problems; II. Scattering theory, general case
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(79)90077-6
– ident: CR4
– volume: 54
  start-page: 1110
  issue: 9
  year: 2001
  end-page: 1145
  ident: CR14
  article-title: Stabilization of solutions to nonlinear Schrödinger equations
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.1018
– volume: 120
  start-page: 955
  year: 1998
  end-page: 980
  ident: CR34
  article-title: Endpoint Strichartz estimates
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.1998.0039
– volume: 20
  start-page: 1028
  issue: 4
  year: 2010
  end-page: 1071
  ident: CR45
  article-title: Stable self-similar blow-up dynamics for slightly super-critical NLS equations
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-010-0081-8
– volume: 85
  start-page: 549
  issue: 4
  year: 1982
  end-page: 561
  ident: CR12
  article-title: Orbital stability of standing waves for some nonlinear Schrödinger equations
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01403504
– volume: 55
  start-page: 149
  issue: 2
  year: 1977
  end-page: 162
  ident: CR54
  article-title: Existence of solitary waves in higher dimensions
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01626517
– volume: 27
  start-page: 2363
  issue: 11&12
  year: 2002
  end-page: 2402
  ident: CR58
  article-title: Stable directions for excited states of nonlinear Schroedinger equations
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1081/PDE-120016161
– volume: 105
  start-page: 243
  issue: 3
  year: 1989
  end-page: 266
  ident: CR40
  article-title: Uniqueness of positive solutions of Δ + + = 0 in
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251502
– volume: 39
  start-page: 709
  issue: 5
  year: 2007
  end-page: 720
  ident: CR32
  article-title: Exponential decay of eigenfunctions and generalized eigenfunctions of a non-self-adjoint matrix Schrödinger operator related to NLS
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms/bdm065
– ident: CR46
– volume: 18
  start-page: 1787
  issue: 6
  year: 2009
  end-page: 1840
  ident: CR17
  article-title: Dynamics of threshold solutions for energy-critical wave equation
  publication-title: Geom. Funct. Anal.
– volume: 19
  start-page: 829
  issue: 4
  year: 2006
  end-page: 852
  ident: CR16
  article-title: Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/19/4/004
– volume: 82
  start-page: 313
  issue: 4
  year: 1983
  end-page: 345
  ident: CR7
  article-title: Nonlinear scalar field equations. I. Existence of a ground state
  publication-title: Arch. Ration. Mech. Anal.
– volume: 141
  start-page: 310
  issue: 2
  year: 1997
  end-page: 326
  ident: CR50
  article-title: Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.1997.3345
– ident: CR11
– ident: CR9
– volume: 98
  start-page: 376
  year: 1992
  end-page: 390
  ident: CR53
  article-title: Multichannel nonlinear scattering, II. The case of anisotropic potentials and data
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(92)90098-8
– ident: CR57
– volume: 121
  start-page: 131
  issue: 1
  year: 1999
  end-page: 175
  ident: CR1
  article-title: High frequency approximation of solutions to critical nonlinear wave equations
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.1999.0001
– ident: CR5
– volume: 94
  start-page: 308
  issue: 2
  year: 1990
  end-page: 348
  ident: CR29
  article-title: Stability theory of solitary waves in the presence of symmetry. II
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(90)90016-E
– volume: 282
  start-page: 435
  issue: 2
  year: 2008
  end-page: 467
  ident: CR31
  article-title: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0529-y
– volume: 175
  start-page: 353
  year: 2001
  end-page: 392
  ident: CR37
  article-title: On the defect of compactness for the Strichartz estimates of the Schrödinger equation
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.2000.3951
– volume: 25
  start-page: 197
  issue: 1-2
  year: 1997
  end-page: 215
  ident: CR8
  article-title: Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
  publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
– volume: 2
  start-page: 605
  issue: 4
  year: 2001
  end-page: 673
  ident: CR49
  article-title: On the formation of singularities in solutions of the critical nonlinear Schrödinger equation
  publication-title: Ann. Henri Poincaré
  doi: 10.1007/PL00001048
– volume: 92
  start-page: 317
  year: 1991
  end-page: 330
  ident: CR48
  article-title: Blow-Up of , solution for the Nonlinear Schrödinger Equation
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(91)90052-B
– volume: 201
  start-page: 147
  issue: 2
  year: 2008
  end-page: 212
  ident: CR36
  article-title: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation
  publication-title: Acta Math.
  doi: 10.1007/s11511-008-0031-6
– volume: 19
  start-page: 815
  issue: 4
  year: 2006
  end-page: 920
  ident: CR38
  article-title: Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-06-00524-8
– volume: 250
  start-page: 2299
  year: 2011
  end-page: 2333
  ident: CR47
  article-title: Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2010.10.027
– volume: 64
  start-page: 363
  issue: 4
  year: 1985
  end-page: 401
  ident: CR24
  article-title: Scattering theory in the energy space for a class of nonlinear Schrödinger equations
  publication-title: J. Math. Pures Appl. (9)
– volume: 16
  start-page: 472
  issue: 3
  year: 1985
  end-page: 491
  ident: CR60
  article-title: Modulational stability of ground states of nonlinear Schrödinger equations
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0516034
– volume: 220
  start-page: 1
  issue: 1
  year: 2006
  end-page: 13
  ident: CR21
  article-title: Proof of a spectral property related to the singularity formation for the critical nonlinear Schrödinger equation
  publication-title: Phys. D
  doi: 10.1016/j.physd.2006.06.010
– year: 1977
  ident: CR30
  publication-title: Invariant manifolds. In: Lecture Notes in Mathematics, vol. 583
– ident: CR2
– volume: 24
  start-page: 389
  year: 2011
  end-page: 429
  ident: CR41
  article-title: Spectral analysis for matrix Hamiltonian operators
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/2/003
– year: 1999
  ident: CR56
  publication-title: The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139
– ident: CR10
– ident: CR33
– volume: 41
  start-page: 747
  year: 1988
  end-page: 774
  ident: CR26
  article-title: Linearized instability for nonlinear Schrödinger and Klein–Gordon equations
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160410602
– volume: 166
  start-page: 645
  issue: 3
  year: 2006
  end-page: 675
  ident: CR35
  article-title: Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case
  publication-title: Invent. Math.
  doi: 10.1007/s00222-006-0011-4
– volume: 284
  start-page: 51
  issue: 1
  year: 2008
  end-page: 77
  ident: CR15
  article-title: On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0605-3
– volume: 99
  start-page: 199
  year: 2006
  end-page: 248
  ident: CR20
  article-title: Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. II
  publication-title: J. Anal. Math.
  doi: 10.1007/BF02789446
– volume: 43
  start-page: 299
  year: 1990
  end-page: 333
  ident: CR27
  article-title: Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160430302
– volume: 191
  start-page: 37
  issue: 1
  year: 2006
  end-page: 90
  ident: CR43
  article-title: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation
  publication-title: Ann. Math. 2
– volume: 18
  start-page: 1794
  issue: 9
  year: 1977
  end-page: 1797
  ident: CR25
  article-title: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation
  publication-title: J. Math. Phys.
  doi: 10.1063/1.523491
– volume: 169
  start-page: 139
  issue: 1
  year: 2009
  end-page: 227
  ident: CR51
  article-title: Stable manifolds for an orbitally unstable nonlinear Schrödinger equation
  publication-title: Ann. Math. (2)
  doi: 10.4007/annals.2009.169.139
– volume: 39
  start-page: 51
  issue: 1
  year: 1986
  end-page: 67
  ident: CR61
  article-title: Lyapunov stability of ground states of nonlinear dispersive evolution equations
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160390103
– volume: 46
  start-page: 81
  year: 1972
  end-page: 95
  ident: CR13
  article-title: Uniqueness of the ground state solution for Δ − +  = 0 and a variational characterization of other solutions
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00250684
– volume: 69
  start-page: 427
  issue: 2
  year: 1993
  end-page: 454
  ident: CR42
  article-title: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-93-06919-0
– ident: CR55
– volume: 26
  start-page: 1
  issue: 1
  year: 2010
  end-page: 56
  ident: CR18
  article-title: Thresholdsolutions for the focusing 3D cubic Schrödinger equation
  publication-title: Rev. Mater. Iberoam.
  doi: 10.4171/RMI/592
– volume: 133
  start-page: 119
  year: 1990
  end-page: 146
  ident: CR52
  article-title: Multichannel nonlinear scattering for nonintegrable equations
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02096557
– ident: CR59
– volume: 15
  start-page: 1233
  issue: 6
  year: 2008
  end-page: 1250
  ident: CR19
  article-title: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation
  publication-title: Math. Res. Lett.
– volume: 11
  start-page: 1
  issue: 1
  year: 2009
  end-page: 125
  ident: CR39
  article-title: Non-generic blow-up solutions for the critical focusing NLS in 1-D
  publication-title: J. Eur. Math. Soc. (JEMS)
  doi: 10.4171/JEMS/143
– volume: 49
  start-page: 221
  issue: 1
  year: 2000
  end-page: 243
  ident: CR22
  article-title: A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2000.49.1838
– volume: 74
  start-page: 160
  issue: 1
  year: 1987
  end-page: 197
  ident: CR28
  article-title: Stability theory of solitary waves in the presence of symmetry. I
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(87)90044-9
– volume: 8
  start-page: 399
  year: 1998
  end-page: 425
  ident: CR44
  article-title: Compactness at blow-up time for solutions of the critical nonlinear Schrödinger equation in 2D
  publication-title: Intern. Math. Res. Notice
  doi: 10.1155/S1073792898000270
– volume: 16
  start-page: 472
  issue: 3
  year: 1985
  ident: 424_CR60
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0516034
– volume: 18
  start-page: 1794
  issue: 9
  year: 1977
  ident: 424_CR25
  publication-title: J. Math. Phys.
  doi: 10.1063/1.523491
– volume: 49
  start-page: 221
  issue: 1
  year: 2000
  ident: 424_CR22
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.2000.49.1838
– volume: 24
  start-page: 389
  year: 2011
  ident: 424_CR41
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/2/003
– volume: 15
  start-page: 1233
  issue: 6
  year: 2008
  ident: 424_CR19
  publication-title: Math. Res. Lett.
  doi: 10.4310/MRL.2008.v15.n6.a13
– volume: 64
  start-page: 363
  issue: 4
  year: 1985
  ident: 424_CR24
  publication-title: J. Math. Pures Appl. (9)
– volume: 39
  start-page: 709
  issue: 5
  year: 2007
  ident: 424_CR32
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms/bdm065
– volume-title: The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139
  year: 1999
  ident: 424_CR56
– ident: 424_CR55
  doi: 10.1090/cbms/073
– ident: 424_CR59
  doi: 10.1007/978-3-322-96657-5_4
– volume: 98
  start-page: 376
  year: 1992
  ident: 424_CR53
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(92)90098-8
– volume: 121
  start-page: 131
  issue: 1
  year: 1999
  ident: 424_CR1
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.1999.0001
– ident: #cr-split#-424_CR43.2
  doi: 10.1007/s00222-003-0346-z
– volume: 92
  start-page: 317
  year: 1991
  ident: 424_CR48
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(91)90052-B
– volume: 120
  start-page: 955
  year: 1998
  ident: 424_CR34
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.1998.0039
– volume: 20
  start-page: 1028
  issue: 4
  year: 2010
  ident: 424_CR45
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-010-0081-8
– volume: 250
  start-page: 2299
  year: 2011
  ident: 424_CR47
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2010.10.027
– ident: #cr-split#-424_CR17.1
  doi: 10.1007/s00039-009-0707-x
– volume: 32
  start-page: 33
  issue: 1-32
  year: 1979
  ident: 424_CR23
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(79)90077-6
– ident: 424_CR46
– volume: 43
  start-page: 299
  year: 1990
  ident: 424_CR27
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160430302
– volume: 201
  start-page: 147
  issue: 2
  year: 2008
  ident: 424_CR36
  publication-title: Acta Math.
  doi: 10.1007/s11511-008-0031-6
– volume: 82
  start-page: 313
  issue: 4
  year: 1983
  ident: 424_CR7
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00250555
– volume: 11
  start-page: 1
  issue: 1
  year: 2009
  ident: 424_CR39
  publication-title: J. Eur. Math. Soc. (JEMS)
  doi: 10.4171/JEMS/143
– volume: 94
  start-page: 308
  issue: 2
  year: 1990
  ident: 424_CR29
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(90)90016-E
– volume: 282
  start-page: 435
  issue: 2
  year: 2008
  ident: 424_CR31
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0529-y
– ident: 424_CR5
– volume: 19
  start-page: 829
  issue: 4
  year: 2006
  ident: 424_CR16
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/19/4/004
– ident: #cr-split#-424_CR17.2
– volume: 19
  start-page: 815
  issue: 4
  year: 2006
  ident: 424_CR38
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-06-00524-8
– ident: 424_CR9
– volume: 41
  start-page: 747
  year: 1988
  ident: 424_CR26
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160410602
– volume: 280
  start-page: 145
  issue: 1
  year: 2008
  ident: 424_CR3
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0427-3
– volume: 166
  start-page: 645
  issue: 3
  year: 2006
  ident: 424_CR35
  publication-title: Invent. Math.
  doi: 10.1007/s00222-006-0011-4
– volume: 74
  start-page: 160
  issue: 1
  year: 1987
  ident: 424_CR28
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(87)90044-9
– volume: 46
  start-page: 81
  year: 1972
  ident: 424_CR13
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00250684
– volume: 55
  start-page: 149
  issue: 2
  year: 1977
  ident: 424_CR54
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01626517
– volume: 99
  start-page: 199
  year: 2006
  ident: 424_CR20
  publication-title: J. Anal. Math.
  doi: 10.1007/BF02789446
– volume: 220
  start-page: 1
  issue: 1
  year: 2006
  ident: 424_CR21
  publication-title: Phys. D
  doi: 10.1016/j.physd.2006.06.010
– volume: 293
  start-page: 489
  issue: 9
  year: 1981
  ident: 424_CR6
  publication-title: C. R. Acad. Sci. Paris I Math.
– volume: 69
  start-page: 427
  issue: 2
  year: 1993
  ident: 424_CR42
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-93-06919-0
– ident: 424_CR2
  doi: 10.1007/978-3-322-96657-5_1
– volume: 25
  start-page: 197
  issue: 1-2
  year: 1997
  ident: 424_CR8
  publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
– ident: 424_CR4
– volume: 26
  start-page: 1
  issue: 1
  year: 2010
  ident: 424_CR18
  publication-title: Rev. Mater. Iberoam.
  doi: 10.4171/RMI/592
– ident: 424_CR57
  doi: 10.1090/cbms/106
– volume: 8
  start-page: 399
  year: 1998
  ident: 424_CR44
  publication-title: Intern. Math. Res. Notice
  doi: 10.1155/S1073792898000270
– volume: 133
  start-page: 119
  year: 1990
  ident: 424_CR52
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02096557
– ident: 424_CR33
– volume: 284
  start-page: 51
  issue: 1
  year: 2008
  ident: 424_CR15
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0605-3
– volume: 27
  start-page: 2363
  issue: 11&12
  year: 2002
  ident: 424_CR58
  publication-title: Commun. Partial Differ. Equ.
  doi: 10.1081/PDE-120016161
– ident: 424_CR11
  doi: 10.1090/cln/010
– volume: 141
  start-page: 310
  issue: 2
  year: 1997
  ident: 424_CR50
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.1997.3345
– volume: 85
  start-page: 549
  issue: 4
  year: 1982
  ident: 424_CR12
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01403504
– volume: 105
  start-page: 243
  issue: 3
  year: 1989
  ident: 424_CR40
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251502
– volume: 169
  start-page: 139
  issue: 1
  year: 2009
  ident: 424_CR51
  publication-title: Ann. Math. (2)
  doi: 10.4007/annals.2009.169.139
– volume: 175
  start-page: 353
  year: 2001
  ident: 424_CR37
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.2000.3951
– ident: 424_CR10
  doi: 10.1090/trans2/164/04
– volume: 54
  start-page: 1110
  issue: 9
  year: 2001
  ident: 424_CR14
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.1018
– ident: #cr-split#-424_CR43.1
– volume: 2
  start-page: 605
  issue: 4
  year: 2001
  ident: 424_CR49
  publication-title: Ann. Henri Poincaré
  doi: 10.1007/PL00001048
– volume-title: Invariant manifolds. In: Lecture Notes in Mathematics, vol. 583
  year: 1977
  ident: 424_CR30
  doi: 10.1007/BFb0092042
– volume: 39
  start-page: 51
  issue: 1
  year: 1986
  ident: 424_CR61
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160390103
SSID ssj0015824
Score 2.291764
Snippet We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011 ) on the nonlinear Klein–Gordon equation to the nonlinear Schrödinger equation...
We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) on the nonlinear Klein-Gordon equation to the nonlinear Schrödinger equation...
We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) on the nonlinear Klein-Gordon equation to the nonlinear Schrodinger equation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Calculus of variations
Calculus of Variations and Optimal Control; Optimization
Control
Ground state
Manifolds
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonlinear equations
Nonlinearity
Partial differential equations
Proving
Scattering
Schroedinger equation
Systems Theory
Theoretical
Three dimensional
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEB50fdEH8cR6EcEnJdg0SY8HEY8VEbeIB_hW2iQLC9Jd7a6_30l6iIL73LSBSSbzTSfzfQDH3OR5GAhOJfdjKrhhNI45o7kQRRRpxXPXLjZIw7tXcf8m3xZg0PbC2GuV7ZnoDmo9VvYf-RmGcccWLi8mH9SKRtniaqugkTfKCvrcMYwtwlJgibF6sHTVTx-furKCjJ3KLaY0gmJkStoyp-9YRWVgk2vMrkUgaPI7UP2gzz8FUxeHbtdgtQGQ5LJe8XVYMOUGrAw69tVqE9KayJ_oWm2-IrjQX4bgCGKbOEpNXBsRMa7vjyBsdc_UrBgpkj48E_NRE4CTUUn4zRa83vZfru9oo5tAFbrjlAaMhzpSXJrYaMZlEmiNyEwOY-NriTaImC4SHy0lWWF1xoowFsqgt7N4aBCibEOvHJdmB4hQwjCNy-arROSByBEwYUobFVoMMXORHvitkTLVkIpbbYv3rKNDdnbN0K6ZtWuWeHDSvTKpGTXmDd5rLZ81zlVl3Vbw4Kh7il5hSx15acazKmNhhCEZsVTowWm7YD9f-He-3bnz7cEy4qWgvu-4D73p58wcICaZFofNTvsG3PzZSw
  priority: 102
  providerName: ProQuest
Title Global dynamics above the ground state energy for the cubic NLS equation in 3D
URI https://link.springer.com/article/10.1007/s00526-011-0424-9
https://www.proquest.com/docview/929029895
https://www.proquest.com/docview/1671233556
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: AMVHM
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: AFBBN
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPnF9LBE8KYGmSdr0uOqui7qLqCt6Km2ShQWpj-76-52mD1FU8JRDXjAz6XzpZL4BOOQ2SQJfcCq5p6jgllGlOKOJEGkYGs0Tly42GAb9kbh4kA9VHndev3avQ5LuS90kuzlqEup-6Qlf0GgeFmXB5oVGPPI7TehAKlfJFq8tgqL3iepQ5k9LfHVGnwjzW1DU-ZreKqxUIJF0Sq2uwZzN1mF50DCs5hswLMn6iSkryucElfluCY4gRaJGZohLFSLW5fYRhKauT8_SiSbDq1tiX0uSbzLJCD_bhFGve3fap1VtBKrxyE2pz3hgQs2lVdYwLiPfGERfcqysZyTKIGQmjTzEQ5KlRS2xNFBCWzzRTI0twpAtWMieM7sNRGhhmUHVeDoSiS8SBEV4bQ1TI8Z4O5Et8GohxboiDi_qVzzFDeWxk2uMco0LucZRC46aKS8la8Zfg3drycfVAcpjRG2OHB53P2h60fKLcEaS2edZHrMgRLeLeClowXGtsM8Vft1v51-jd2EJMZJfvnHcg4Xp28zuIw6Zpm2YV73zNix2zh8vu0U7uO8PsD3pDq9v2s4qPwBA_9Uz
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE-xlIeR4AKyiO1xHocKAW21pbsRglbqzSS2V6qEsi3ZBfHj-G-MnUcFEr31HMeWJmPPNxnP9wG8UL6qUomKa5XkHJUXPM-V4BVinWXOqiq2i83LdHqMH0_0yQb8HnphwrXK4UyMB7Vb2vCP_A2F8cgWrt-enfMgGhWKq4OCRtUrK7idyDDW93Uc-l8_KYNrdw526XO_lHJ_7-jDlPciA9yS7664FCp1mVXa594JpQvpHMEYvch94rTOZSZcXSQ0rRZ1EOWq0xytp60h8oWneE7zXoMtVFhQ7rf1fq_89HksY9Drkb-qQOQUCYuhrJpEFlMtQzJP2TxK5MXfgfEC7f5ToI1xb_823OoBK3vXedgd2PDNXbg5H9le23tQdsIBzHXq9i0jx_rhGY1goWmkcSy2LTEf-wwZweT4zK7rU8vK2RfmzzvCcXbaMLV7H46vxIQPYLNZNv4hMLTohSM3SWyBlcSKABql0FntcEGZkp5AMhjJ2J7EPGhpfDMj_XK0qyG7mmBXU0zg1fjKWcfgcdng7cHypt_MrRldbwLPx6e0C0NppWr8ct0akWYEAQi7pRN4PXywixn-u96jS9d7BtenR_OZmR2Uh9twg7Ca7O5aPobN1fe1f0J4aFU_7b2OwderdvQ_2TgT4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfQgPrHWRwRPSuhmk-zjWKylalsELfQWdpMsFGRb3dbf72z2URQVPGc2gZkM881O5huErpiJIs_ljAjmBIQzQ0kQMEoizmPf14pFtl1sOPL6Y_4wEZNyzmlWvXavSpJFT0PO0pQu2nOdtOvGN0tTQuzvPe5yEq6jDZ7zJMCFHruduowgAjvVFlIYTiAShVVZ86ctvgamFdr8ViC1cae3i3ZKwIg7hYX30JpJ99H2sGZbzQ7QqCDux7qYLp9hMOyHwSCB86aNVGPbNoSN7fPDAFPtmlrGU4VHg2ds3grCbzxNMeseonHv7uW2T8o5CUSB-y2IS5mnfcWECYymTISu1oDERBIYRwvQgU91HDqAjQSN87lisRdwZcC7aZAYgCRHqJHOUnOMMFfcUA1mclTII5dHAJAghfVjzRPIVEQTOZWSpCpJxPNZFq-ypj-2epWgV5nrVYZNdF1_Mi8YNP4SblWal6UzZRIQnCWKh9Mv61Xwgry0EaVmtswk9XwIwYCdvCa6qQy22uHX807-JX2BNp-6PTm4Hz220BZAJ7d4-niKGov3pTkDeLKIz-0V_AQH2tar
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+dynamics+above+the+ground+state+energy+for+the+cubic+NLS+equation+in+3D&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Nakanishi%2C+K.&rft.au=Schlag%2C+W.&rft.date=2012-05-01&rft.pub=Springer-Verlag&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=44&rft.issue=1-2&rft.spage=1&rft.epage=45&rft_id=info:doi/10.1007%2Fs00526-011-0424-9&rft.externalDocID=10_1007_s00526_011_0424_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon