Global dynamics above the ground state energy for the cubic NLS equation in 3D
We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011 ) on the nonlinear Klein–Gordon equation to the nonlinear Schrödinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove...
        Saved in:
      
    
          | Published in | Calculus of variations and partial differential equations Vol. 44; no. 1-2; pp. 1 - 45 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer-Verlag
    
        01.05.2012
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0944-2669 1432-0835  | 
| DOI | 10.1007/s00526-011-0424-9 | 
Cover
| Abstract | We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299–2333,
2011
) on the nonlinear Klein–Gordon equation to the nonlinear Schrödinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove that the initial data set splits into nine nonempty, pairwise disjoint regions which are characterized by the distinct behaviors of the solution for large time: blow-up, scattering to 0, or scattering to the family of ground states generated by the phase and scaling freedom. Solutions of this latter type form a smooth center-stable manifold, which contains the ground states and separates the phase space locally into two connected regions exhibiting blow-up and scattering to 0, respectively. The special solutions found by Duyckaerts and Roudenko (Rev Mater Iberoam 26(1):1–56,
2010
), following the seminal work on threshold solutions by Duyckaerts and Merle (Funct Anal 18(6):1787–1840,
2009
), appear here as the unique one-dimensional unstable/stable manifolds emanating from the ground states. In analogy with Nakanishi and Schlag (J Differ Equ 250:2299–2333,
2011
), the proof combines the hyperbolic dynamics near the ground states with the variational structure away from them. The main technical ingredient in the proof is a “one-pass” theorem which precludes “almost homoclinic orbits”, i.e., those solutions starting in, then moving away from, and finally returning to, a small neighborhood of the ground states. The main new difficulty compared with the Klein–Gordon case is the lack of finite propagation speed. We need the radial Sobolev inequality for the error estimate in the virial argument. Another major difference between Nakanishi and Schlag (J Differ Equ 250:2299–2333,
2011
) and this paper is the need to control two modulation parameters. | 
    
|---|---|
| AbstractList | We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299–2333,
2011
) on the nonlinear Klein–Gordon equation to the nonlinear Schrödinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove that the initial data set splits into nine nonempty, pairwise disjoint regions which are characterized by the distinct behaviors of the solution for large time: blow-up, scattering to 0, or scattering to the family of ground states generated by the phase and scaling freedom. Solutions of this latter type form a smooth center-stable manifold, which contains the ground states and separates the phase space locally into two connected regions exhibiting blow-up and scattering to 0, respectively. The special solutions found by Duyckaerts and Roudenko (Rev Mater Iberoam 26(1):1–56,
2010
), following the seminal work on threshold solutions by Duyckaerts and Merle (Funct Anal 18(6):1787–1840,
2009
), appear here as the unique one-dimensional unstable/stable manifolds emanating from the ground states. In analogy with Nakanishi and Schlag (J Differ Equ 250:2299–2333,
2011
), the proof combines the hyperbolic dynamics near the ground states with the variational structure away from them. The main technical ingredient in the proof is a “one-pass” theorem which precludes “almost homoclinic orbits”, i.e., those solutions starting in, then moving away from, and finally returning to, a small neighborhood of the ground states. The main new difficulty compared with the Klein–Gordon case is the lack of finite propagation speed. We need the radial Sobolev inequality for the error estimate in the virial argument. Another major difference between Nakanishi and Schlag (J Differ Equ 250:2299–2333,
2011
) and this paper is the need to control two modulation parameters. We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) on the nonlinear Klein-Gordon equation to the nonlinear Schrödinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove that the initial data set splits into nine nonempty, pairwise disjoint regions which are characterized by the distinct behaviors of the solution for large time: blow-up, scattering to 0, or scattering to the family of ground states generated by the phase and scaling freedom. Solutions of this latter type form a smooth center-stable manifold, which contains the ground states and separates the phase space locally into two connected regions exhibiting blow-up and scattering to 0, respectively. The special solutions found by Duyckaerts and Roudenko (Rev Mater Iberoam 26(1):1-56, 2010), following the seminal work on threshold solutions by Duyckaerts and Merle (Funct Anal 18(6):1787-1840, 2009), appear here as the unique one-dimensional unstable/stable manifolds emanating from the ground states. In analogy with Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011), the proof combines the hyperbolic dynamics near the ground states with the variational structure away from them. The main technical ingredient in the proof is a "one-pass" theorem which precludes "almost homoclinic orbits", i.e., those solutions starting in, then moving away from, and finally returning to, a small neighborhood of the ground states. The main new difficulty compared with the Klein-Gordon case is the lack of finite propagation speed. We need the radial Sobolev inequality for the error estimate in the virial argument. Another major difference between Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) and this paper is the need to control two modulation parameters.[PUBLICATION ABSTRACT] We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) on the nonlinear Klein-Gordon equation to the nonlinear Schrodinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove that the initial data set splits into nine nonempty, pairwise disjoint regions which are characterized by the distinct behaviors of the solution for large time: blow-up, scattering to 0, or scattering to the family of ground states generated by the phase and scaling freedom. Solutions of this latter type form a smooth center-stable manifold, which contains the ground states and separates the phase space locally into two connected regions exhibiting blow-up and scattering to 0, respectively. The special solutions found by Duyckaerts and Roudenko (Rev Mater Iberoam 26(1):1-56, 2010), following the seminal work on threshold solutions by Duyckaerts and Merle (Funct Anal 18(6):1787-1840, 2009), appear here as the unique one-dimensional unstable/stable manifolds emanating from the ground states. In analogy with Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011), the proof combines the hyperbolic dynamics near the ground states with the variational structure away from them. The main technical ingredient in the proof is a "one-pass" theorem which precludes "almost homoclinic orbits", i.e., those solutions starting in, then moving away from, and finally returning to, a small neighborhood of the ground states. The main new difficulty compared with the Klein-Gordon case is the lack of finite propagation speed. We need the radial Sobolev inequality for the error estimate in the virial argument. Another major difference between Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) and this paper is the need to control two modulation parameters.  | 
    
| Author | Nakanishi, K. Schlag, W.  | 
    
| Author_xml | – sequence: 1 givenname: K. surname: Nakanishi fullname: Nakanishi, K. organization: Department of Mathematics, Kyoto University – sequence: 2 givenname: W. surname: Schlag fullname: Schlag, W. email: schlag@math.uchicago.edu organization: Department of Mathematics, The University of Chicago  | 
    
| BookMark | eNp9kE1r3DAQhkVJoJuPH5Cb6CkXpzP6sKVjyWdhSQ9NzkKWx1sHr5RIdmD_fZ1soRBoT3OY5xneeY_YQUyRGDtDuECA5msB0KKuALECJVRlP7EVKikqMFIfsBVYpSpR1_YzOyrlCQC1EWrF7m_H1PqRd7vot0Mo3Lfplfj0i_gmpzl2vEx-Ik6R8mbH-5Tfd2Fuh8Dv1z85vcx-GlLkQ-Ty6oQd9n4sdPpnHrPHm-uHy7tq_eP2--W3dRWUMVMlUNZdE6QmQx1KbUXXgVa6NwSdXpI12LUWtEaNrUSQbW1UIAkNmp5qJY_Z-f7uc04vM5XJbYcSaBx9pDQXh3WDQkqt6wX98gF9SnOOSzpnhQVhjdUL1OyhkFMpmXoXhun9ryn7YXQI7q1mt6_ZLTW7t5qdXUz8YD7nYevz7r-O2DtlYeOG8t9I_5Z-A_0gjiM | 
    
| CitedBy_id | crossref_primary_10_1007_s11012_021_01386_4 crossref_primary_10_1007_s00205_017_1109_0 crossref_primary_10_1090_memo_1369 crossref_primary_10_4213_rm9574 crossref_primary_10_1007_s00220_013_1677_2 crossref_primary_10_1007_s00220_014_2202_y crossref_primary_10_1002_mma_3284 crossref_primary_10_1137_18M1216031 crossref_primary_10_1137_20M1381824 crossref_primary_10_1007_s00220_014_1900_9 crossref_primary_10_1007_s11511_014_0109_2 crossref_primary_10_1007_s00220_017_2902_1 crossref_primary_10_1002_cpa_21387 crossref_primary_10_1007_s10884_023_10329_4 crossref_primary_10_1215_00192082_8165582 crossref_primary_10_1007_s00209_011_0934_3 crossref_primary_10_3934_dcds_2021008 crossref_primary_10_1007_s00220_015_2509_3 crossref_primary_10_2969_jmsj_06941353 crossref_primary_10_1016_j_jde_2019_07_019 crossref_primary_10_1016_j_na_2023_113285 crossref_primary_10_1090_tran_9158 crossref_primary_10_1007_s00208_014_1059_x crossref_primary_10_1017_prm_2019_28 crossref_primary_10_1007_s00526_023_02579_3 crossref_primary_10_1016_j_jde_2024_07_003 crossref_primary_10_3934_cpaa_2016026 crossref_primary_10_1016_j_amc_2016_07_045 crossref_primary_10_1016_j_jde_2013_11_002 crossref_primary_10_3934_dcds_2013_33_2423 crossref_primary_10_1007_s00222_021_01080_y crossref_primary_10_1016_j_jde_2023_12_028 crossref_primary_10_1080_03605302_2012_665973 crossref_primary_10_1007_s00526_019_1556_6 crossref_primary_10_1007_s00220_023_04904_5 crossref_primary_10_1090_memo_1331 crossref_primary_10_1063_5_0048880 crossref_primary_10_3934_cpaa_2015_14_1481 crossref_primary_10_3934_cpaa_2017028 crossref_primary_10_1002_mma_3015 crossref_primary_10_1070_RM2014v069n02ABEH004888 crossref_primary_10_1007_s00220_018_3189_6 crossref_primary_10_1007_s00220_016_2795_4 crossref_primary_10_1016_j_jfa_2021_109326 crossref_primary_10_1007_s00028_019_00547_z crossref_primary_10_1016_j_anihpc_2015_11_001 crossref_primary_10_1007_s10114_021_0354_1 crossref_primary_10_1016_j_jde_2024_08_072 crossref_primary_10_1007_s10114_014_3314_1 crossref_primary_10_1016_j_jde_2010_10_027 crossref_primary_10_5802_jedp_91 crossref_primary_10_2140_apde_2019_12_43  | 
    
| Cites_doi | 10.1007/s00220-008-0427-3 10.1016/0022-1236(79)90077-6 10.1002/cpa.1018 10.1353/ajm.1998.0039 10.1007/s00039-010-0081-8 10.1007/BF01403504 10.1007/BF01626517 10.1081/PDE-120016161 10.1007/BF00251502 10.1112/blms/bdm065 10.1088/0951-7715/19/4/004 10.1006/jdeq.1997.3345 10.1016/0022-0396(92)90098-8 10.1353/ajm.1999.0001 10.1016/0022-1236(90)90016-E 10.1007/s00220-008-0529-y 10.1006/jdeq.2000.3951 10.1007/PL00001048 10.1016/0022-0396(91)90052-B 10.1007/s11511-008-0031-6 10.1090/S0894-0347-06-00524-8 10.1016/j.jde.2010.10.027 10.1137/0516034 10.1016/j.physd.2006.06.010 10.1088/0951-7715/24/2/003 10.1002/cpa.3160410602 10.1007/s00222-006-0011-4 10.1007/s00220-008-0605-3 10.1007/BF02789446 10.1002/cpa.3160430302 10.1063/1.523491 10.4007/annals.2009.169.139 10.1002/cpa.3160390103 10.1007/BF00250684 10.1215/S0012-7094-93-06919-0 10.4171/RMI/592 10.1007/BF02096557 10.4171/JEMS/143 10.1512/iumj.2000.49.1838 10.1016/0022-1236(87)90044-9 10.1155/S1073792898000270 10.4310/MRL.2008.v15.n6.a13 10.1090/cbms/073 10.1007/978-3-322-96657-5_4 10.1007/s00222-003-0346-z 10.1007/s00039-009-0707-x 10.1007/BF00250555 10.1007/978-3-322-96657-5_1 10.1090/cbms/106 10.1090/cln/010 10.1090/trans2/164/04 10.1007/BFb0092042  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag 2011 Springer-Verlag 2012  | 
    
| Copyright_xml | – notice: Springer-Verlag 2011 – notice: Springer-Verlag 2012  | 
    
| DBID | AAYXX CITATION 3V. 7XB 88I 8AO 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7SU 7TB 7U5 8FD C1K FR3 H8D KR7 L7M  | 
    
| DOI | 10.1007/s00526-011-0424-9 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Computer Science Database Aerospace Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1432-0835 | 
    
| EndPage | 45 | 
    
| ExternalDocumentID | 2613427841 10_1007_s00526_011_0424_9  | 
    
| Genre | Feature | 
    
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7Z Z88 Z8T Z92 ZMTXR ZWQNP ~EX 88I AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA BGLVJ CCPQU CITATION K7- M2P M7S PHGZM PHGZT PQGLB PTHSS 3V. 7XB 8AO 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR DWQXO GNUQQ HCIFZ JQ2 L6V P62 PKEHL PQEST PQUKI PRINS Q9U 7SU 7TB 7U5 8FD C1K FR3 H8D KR7 L7M  | 
    
| ID | FETCH-LOGICAL-c488t-2136d7c35e8ed13592dd0545f8e0d558271db9055151b3103b684ce30718fe643 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0944-2669 | 
    
| IngestDate | Tue Oct 07 09:42:44 EDT 2025 Wed Sep 17 23:55:45 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Wed Oct 01 05:10:48 EDT 2025 Fri Feb 21 02:35:15 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1-2 | 
    
| Keywords | 37K45 35Q55 37K40 35P15 37D10  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c488t-2136d7c35e8ed13592dd0545f8e0d558271db9055151b3103b684ce30718fe643 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 929029895 | 
    
| PQPubID | 32028 | 
    
| PageCount | 45 | 
    
| ParticipantIDs | proquest_miscellaneous_1671233556 proquest_journals_929029895 crossref_citationtrail_10_1007_s00526_011_0424_9 crossref_primary_10_1007_s00526_011_0424_9 springer_journals_10_1007_s00526_011_0424_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-05-01 | 
    
| PublicationDateYYYYMMDD | 2012-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | Calculus of variations and partial differential equations | 
    
| PublicationTitleAbbrev | Calc. Var | 
    
| PublicationYear | 2012 | 
    
| Publisher | Springer-Verlag Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V  | 
    
| References | Berestycki, Lions (CR7) 1983; 82 Keraani (CR37) 2001; 175 Erdogan, Schlag (CR20) 2006; 99 Ginibre, Velo (CR24) 1985; 64 Keel, Tao (CR34) 1998; 120 Cuccagna, Mizumachi (CR15) 2008; 284 Hirsch, Pugh, Shub (CR30) 1977 Merle, Raphael (CR43) 2006; 191 Sulem, Sulem (CR56) 1999 Perelman (CR49) 2001; 2 Cazenave, Lions (CR12) 1982; 85 CR33 Marzuola, Simpson (CR41) 2011; 24 Krieger, Schlag (CR38) 2006; 19 Hundertmark, Lee (CR32) 2007; 39 Cuccagna (CR14) 2001; 54 Soffer, Weinstein (CR52) 1990; 133 Fibich, Merle, Raphaël (CR21) 2006; 220 Schlag (CR51) 2009; 169 Soffer, Weinstein (CR53) 1992; 98 Duyckaerts, Holmer, Roudenko (CR19) 2008; 15 Krieger, Schlag (CR39) 2009; 11 Glassey (CR25) 1977; 18 CR2 Duyckaerts, Merle (CR17) 2009; 18 Kwong (CR40) 1989; 105 CR4 Holmer, Roudenko (CR31) 2008; 282 Merle (CR42) 1993; 69 CR5 Duykaerts, Roudenko (CR18) 2010; 26 Ginibre, Velo (CR23) 1979; 32 CR9 Nakanishi, Schlag (CR47) 2011; 250 CR46 Grillakis, Shatah, Strauss (CR29) 1990; 94 Pillet, Wayne (CR50) 1997; 141 Weinstein (CR61) 1986; 39 Kenig, Merle (CR35) 2006; 166 Weinstein (CR60) 1985; 16 Merle, Vega (CR44) 1998; 8 Tsai, Yau (CR58) 2002; 27 Ogawa, Tsutsumi (CR48) 1991; 92 Bahouri, Gérard (CR1) 1999; 121 Bourgain, Wang (CR8) 1997; 25 CR59 CR57 Merle, Raphael, Szeftel (CR45) 2010; 20 CR11 CR55 CR10 Grillakis, Shatah, Strauss (CR28) 1987; 74 Gesztesy, Jones, Latushkin, Stanislavova (CR22) 2000; 49 Beceanu (CR3) 2008; 280 Demanet, Schlag (CR16) 2006; 19 Grillakis (CR27) 1990; 43 Berestycki, Cazenave (CR6) 1981; 293 Coffman (CR13) 1972; 46 Grillakis (CR26) 1988; 41 Kenig, Merle (CR36) 2008; 201 Strauss (CR54) 1977; 55 F. Merle (424_CR42) 1993; 69 cr-split#-424_CR43.1 cr-split#-424_CR43.2 M.W. Hirsch (424_CR30) 1977 S. Cuccagna (424_CR14) 2001; 54 J. Krieger (424_CR39) 2009; 11 H. Bahouri (424_CR1) 1999; 121 H. Berestycki (424_CR6) 1981; 293 424_CR46 C. Kenig (424_CR36) 2008; 201 C. Kenig (424_CR35) 2006; 166 F. Merle (424_CR44) 1998; 8 A. Soffer (424_CR52) 1990; 133 J. Holmer (424_CR31) 2008; 282 B. Erdogan (424_CR20) 2006; 99 H. Berestycki (424_CR7) 1983; 82 M. Weinstein (424_CR60) 1985; 16 T. Cazenave (424_CR12) 1982; 85 J. Ginibre (424_CR23) 1979; 32 J. Ginibre (424_CR24) 1985; 64 424_CR57 424_CR11 424_CR55 424_CR59 G. Perelman (424_CR49) 2001; 2 M. Keel (424_CR34) 1998; 120 M. Weinstein (424_CR61) 1986; 39 D. Hundertmark (424_CR32) 2007; 39 424_CR10 M. Kwong (424_CR40) 1989; 105 G. Fibich (424_CR21) 2006; 220 424_CR5 424_CR4 S. Keraani (424_CR37) 2001; 175 424_CR2 C. Sulem (424_CR56) 1999 S. Cuccagna (424_CR15) 2008; 284 R.T. Glassey (424_CR25) 1977; 18 F. Merle (424_CR45) 2010; 20 W. Schlag (424_CR51) 2009; 169 F. Gesztesy (424_CR22) 2000; 49 A. Soffer (424_CR53) 1992; 98 M. Grillakis (424_CR28) 1987; 74 C.A. Pillet (424_CR50) 1997; 141 T. Ogawa (424_CR48) 1991; 92 J. Marzuola (424_CR41) 2011; 24 T. Duyckaerts (424_CR19) 2008; 15 cr-split#-424_CR17.1 T. Duykaerts (424_CR18) 2010; 26 J. Krieger (424_CR38) 2006; 19 K. Nakanishi (424_CR47) 2011; 250 M. Beceanu (424_CR3) 2008; 280 cr-split#-424_CR17.2 L. Demanet (424_CR16) 2006; 19 M. Grillakis (424_CR26) 1988; 41 J. Bourgain (424_CR8) 1997; 25 M. Grillakis (424_CR27) 1990; 43 W.A. Strauss (424_CR54) 1977; 55 C. Coffman (424_CR13) 1972; 46 424_CR33 M. Grillakis (424_CR29) 1990; 94 T.P. Tsai (424_CR58) 2002; 27 424_CR9  | 
    
| References_xml | – volume: 293 start-page: 489 issue: 9 year: 1981 end-page: 492 ident: CR6 article-title: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires publication-title: C. R. Acad. Sci. Paris I Math. – volume: 280 start-page: 145 issue: 1 year: 2008 end-page: 205 ident: CR3 article-title: A centre-stable manifold for the focussing cubic NLS in publication-title: Commun. Math. Phys. doi: 10.1007/s00220-008-0427-3 – volume: 32 start-page: 33 issue: 1-32 year: 1979 end-page: 71 ident: CR23 article-title: On a class of nonlinear Schrödinger equation. I. The Cauchy problems; II. Scattering theory, general case publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(79)90077-6 – ident: CR4 – volume: 54 start-page: 1110 issue: 9 year: 2001 end-page: 1145 ident: CR14 article-title: Stabilization of solutions to nonlinear Schrödinger equations publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.1018 – volume: 120 start-page: 955 year: 1998 end-page: 980 ident: CR34 article-title: Endpoint Strichartz estimates publication-title: Am. J. Math. doi: 10.1353/ajm.1998.0039 – volume: 20 start-page: 1028 issue: 4 year: 2010 end-page: 1071 ident: CR45 article-title: Stable self-similar blow-up dynamics for slightly super-critical NLS equations publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-010-0081-8 – volume: 85 start-page: 549 issue: 4 year: 1982 end-page: 561 ident: CR12 article-title: Orbital stability of standing waves for some nonlinear Schrödinger equations publication-title: Commun. Math. Phys. doi: 10.1007/BF01403504 – volume: 55 start-page: 149 issue: 2 year: 1977 end-page: 162 ident: CR54 article-title: Existence of solitary waves in higher dimensions publication-title: Commun. Math. Phys. doi: 10.1007/BF01626517 – volume: 27 start-page: 2363 issue: 11&12 year: 2002 end-page: 2402 ident: CR58 article-title: Stable directions for excited states of nonlinear Schroedinger equations publication-title: Commun. Partial Differ. Equ. doi: 10.1081/PDE-120016161 – volume: 105 start-page: 243 issue: 3 year: 1989 end-page: 266 ident: CR40 article-title: Uniqueness of positive solutions of Δ + + = 0 in publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00251502 – volume: 39 start-page: 709 issue: 5 year: 2007 end-page: 720 ident: CR32 article-title: Exponential decay of eigenfunctions and generalized eigenfunctions of a non-self-adjoint matrix Schrödinger operator related to NLS publication-title: Bull. Lond. Math. Soc. doi: 10.1112/blms/bdm065 – ident: CR46 – volume: 18 start-page: 1787 issue: 6 year: 2009 end-page: 1840 ident: CR17 article-title: Dynamics of threshold solutions for energy-critical wave equation publication-title: Geom. Funct. Anal. – volume: 19 start-page: 829 issue: 4 year: 2006 end-page: 852 ident: CR16 article-title: Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation publication-title: Nonlinearity doi: 10.1088/0951-7715/19/4/004 – volume: 82 start-page: 313 issue: 4 year: 1983 end-page: 345 ident: CR7 article-title: Nonlinear scalar field equations. I. Existence of a ground state publication-title: Arch. Ration. Mech. Anal. – volume: 141 start-page: 310 issue: 2 year: 1997 end-page: 326 ident: CR50 article-title: Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations publication-title: J. Differ. Equ. doi: 10.1006/jdeq.1997.3345 – ident: CR11 – ident: CR9 – volume: 98 start-page: 376 year: 1992 end-page: 390 ident: CR53 article-title: Multichannel nonlinear scattering, II. The case of anisotropic potentials and data publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(92)90098-8 – ident: CR57 – volume: 121 start-page: 131 issue: 1 year: 1999 end-page: 175 ident: CR1 article-title: High frequency approximation of solutions to critical nonlinear wave equations publication-title: Am. J. Math. doi: 10.1353/ajm.1999.0001 – ident: CR5 – volume: 94 start-page: 308 issue: 2 year: 1990 end-page: 348 ident: CR29 article-title: Stability theory of solitary waves in the presence of symmetry. II publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(90)90016-E – volume: 282 start-page: 435 issue: 2 year: 2008 end-page: 467 ident: CR31 article-title: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation publication-title: Commun. Math. Phys. doi: 10.1007/s00220-008-0529-y – volume: 175 start-page: 353 year: 2001 end-page: 392 ident: CR37 article-title: On the defect of compactness for the Strichartz estimates of the Schrödinger equation publication-title: J. Differ. Equ. doi: 10.1006/jdeq.2000.3951 – volume: 25 start-page: 197 issue: 1-2 year: 1997 end-page: 215 ident: CR8 article-title: Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) – volume: 2 start-page: 605 issue: 4 year: 2001 end-page: 673 ident: CR49 article-title: On the formation of singularities in solutions of the critical nonlinear Schrödinger equation publication-title: Ann. Henri Poincaré doi: 10.1007/PL00001048 – volume: 92 start-page: 317 year: 1991 end-page: 330 ident: CR48 article-title: Blow-Up of , solution for the Nonlinear Schrödinger Equation publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(91)90052-B – volume: 201 start-page: 147 issue: 2 year: 2008 end-page: 212 ident: CR36 article-title: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation publication-title: Acta Math. doi: 10.1007/s11511-008-0031-6 – volume: 19 start-page: 815 issue: 4 year: 2006 end-page: 920 ident: CR38 article-title: Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-06-00524-8 – volume: 250 start-page: 2299 year: 2011 end-page: 2333 ident: CR47 article-title: Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.10.027 – volume: 64 start-page: 363 issue: 4 year: 1985 end-page: 401 ident: CR24 article-title: Scattering theory in the energy space for a class of nonlinear Schrödinger equations publication-title: J. Math. Pures Appl. (9) – volume: 16 start-page: 472 issue: 3 year: 1985 end-page: 491 ident: CR60 article-title: Modulational stability of ground states of nonlinear Schrödinger equations publication-title: SIAM J. Math. Anal. doi: 10.1137/0516034 – volume: 220 start-page: 1 issue: 1 year: 2006 end-page: 13 ident: CR21 article-title: Proof of a spectral property related to the singularity formation for the critical nonlinear Schrödinger equation publication-title: Phys. D doi: 10.1016/j.physd.2006.06.010 – year: 1977 ident: CR30 publication-title: Invariant manifolds. In: Lecture Notes in Mathematics, vol. 583 – ident: CR2 – volume: 24 start-page: 389 year: 2011 end-page: 429 ident: CR41 article-title: Spectral analysis for matrix Hamiltonian operators publication-title: Nonlinearity doi: 10.1088/0951-7715/24/2/003 – year: 1999 ident: CR56 publication-title: The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139 – ident: CR10 – ident: CR33 – volume: 41 start-page: 747 year: 1988 end-page: 774 ident: CR26 article-title: Linearized instability for nonlinear Schrödinger and Klein–Gordon equations publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160410602 – volume: 166 start-page: 645 issue: 3 year: 2006 end-page: 675 ident: CR35 article-title: Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case publication-title: Invent. Math. doi: 10.1007/s00222-006-0011-4 – volume: 284 start-page: 51 issue: 1 year: 2008 end-page: 77 ident: CR15 article-title: On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations publication-title: Commun. Math. Phys. doi: 10.1007/s00220-008-0605-3 – volume: 99 start-page: 199 year: 2006 end-page: 248 ident: CR20 article-title: Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. II publication-title: J. Anal. Math. doi: 10.1007/BF02789446 – volume: 43 start-page: 299 year: 1990 end-page: 333 ident: CR27 article-title: Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160430302 – volume: 191 start-page: 37 issue: 1 year: 2006 end-page: 90 ident: CR43 article-title: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation publication-title: Ann. Math. 2 – volume: 18 start-page: 1794 issue: 9 year: 1977 end-page: 1797 ident: CR25 article-title: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation publication-title: J. Math. Phys. doi: 10.1063/1.523491 – volume: 169 start-page: 139 issue: 1 year: 2009 end-page: 227 ident: CR51 article-title: Stable manifolds for an orbitally unstable nonlinear Schrödinger equation publication-title: Ann. Math. (2) doi: 10.4007/annals.2009.169.139 – volume: 39 start-page: 51 issue: 1 year: 1986 end-page: 67 ident: CR61 article-title: Lyapunov stability of ground states of nonlinear dispersive evolution equations publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160390103 – volume: 46 start-page: 81 year: 1972 end-page: 95 ident: CR13 article-title: Uniqueness of the ground state solution for Δ − + = 0 and a variational characterization of other solutions publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00250684 – volume: 69 start-page: 427 issue: 2 year: 1993 end-page: 454 ident: CR42 article-title: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power publication-title: Duke Math. J. doi: 10.1215/S0012-7094-93-06919-0 – ident: CR55 – volume: 26 start-page: 1 issue: 1 year: 2010 end-page: 56 ident: CR18 article-title: Thresholdsolutions for the focusing 3D cubic Schrödinger equation publication-title: Rev. Mater. Iberoam. doi: 10.4171/RMI/592 – volume: 133 start-page: 119 year: 1990 end-page: 146 ident: CR52 article-title: Multichannel nonlinear scattering for nonintegrable equations publication-title: Commun. Math. Phys. doi: 10.1007/BF02096557 – ident: CR59 – volume: 15 start-page: 1233 issue: 6 year: 2008 end-page: 1250 ident: CR19 article-title: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation publication-title: Math. Res. Lett. – volume: 11 start-page: 1 issue: 1 year: 2009 end-page: 125 ident: CR39 article-title: Non-generic blow-up solutions for the critical focusing NLS in 1-D publication-title: J. Eur. Math. Soc. (JEMS) doi: 10.4171/JEMS/143 – volume: 49 start-page: 221 issue: 1 year: 2000 end-page: 243 ident: CR22 article-title: A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.2000.49.1838 – volume: 74 start-page: 160 issue: 1 year: 1987 end-page: 197 ident: CR28 article-title: Stability theory of solitary waves in the presence of symmetry. I publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(87)90044-9 – volume: 8 start-page: 399 year: 1998 end-page: 425 ident: CR44 article-title: Compactness at blow-up time for solutions of the critical nonlinear Schrödinger equation in 2D publication-title: Intern. Math. Res. Notice doi: 10.1155/S1073792898000270 – volume: 16 start-page: 472 issue: 3 year: 1985 ident: 424_CR60 publication-title: SIAM J. Math. Anal. doi: 10.1137/0516034 – volume: 18 start-page: 1794 issue: 9 year: 1977 ident: 424_CR25 publication-title: J. Math. Phys. doi: 10.1063/1.523491 – volume: 49 start-page: 221 issue: 1 year: 2000 ident: 424_CR22 publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.2000.49.1838 – volume: 24 start-page: 389 year: 2011 ident: 424_CR41 publication-title: Nonlinearity doi: 10.1088/0951-7715/24/2/003 – volume: 15 start-page: 1233 issue: 6 year: 2008 ident: 424_CR19 publication-title: Math. Res. Lett. doi: 10.4310/MRL.2008.v15.n6.a13 – volume: 64 start-page: 363 issue: 4 year: 1985 ident: 424_CR24 publication-title: J. Math. Pures Appl. (9) – volume: 39 start-page: 709 issue: 5 year: 2007 ident: 424_CR32 publication-title: Bull. Lond. Math. Soc. doi: 10.1112/blms/bdm065 – volume-title: The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139 year: 1999 ident: 424_CR56 – ident: 424_CR55 doi: 10.1090/cbms/073 – ident: 424_CR59 doi: 10.1007/978-3-322-96657-5_4 – volume: 98 start-page: 376 year: 1992 ident: 424_CR53 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(92)90098-8 – volume: 121 start-page: 131 issue: 1 year: 1999 ident: 424_CR1 publication-title: Am. J. Math. doi: 10.1353/ajm.1999.0001 – ident: #cr-split#-424_CR43.2 doi: 10.1007/s00222-003-0346-z – volume: 92 start-page: 317 year: 1991 ident: 424_CR48 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(91)90052-B – volume: 120 start-page: 955 year: 1998 ident: 424_CR34 publication-title: Am. J. Math. doi: 10.1353/ajm.1998.0039 – volume: 20 start-page: 1028 issue: 4 year: 2010 ident: 424_CR45 publication-title: Geom. Funct. Anal. doi: 10.1007/s00039-010-0081-8 – volume: 250 start-page: 2299 year: 2011 ident: 424_CR47 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.10.027 – ident: #cr-split#-424_CR17.1 doi: 10.1007/s00039-009-0707-x – volume: 32 start-page: 33 issue: 1-32 year: 1979 ident: 424_CR23 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(79)90077-6 – ident: 424_CR46 – volume: 43 start-page: 299 year: 1990 ident: 424_CR27 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160430302 – volume: 201 start-page: 147 issue: 2 year: 2008 ident: 424_CR36 publication-title: Acta Math. doi: 10.1007/s11511-008-0031-6 – volume: 82 start-page: 313 issue: 4 year: 1983 ident: 424_CR7 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00250555 – volume: 11 start-page: 1 issue: 1 year: 2009 ident: 424_CR39 publication-title: J. Eur. Math. Soc. (JEMS) doi: 10.4171/JEMS/143 – volume: 94 start-page: 308 issue: 2 year: 1990 ident: 424_CR29 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(90)90016-E – volume: 282 start-page: 435 issue: 2 year: 2008 ident: 424_CR31 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-008-0529-y – ident: 424_CR5 – volume: 19 start-page: 829 issue: 4 year: 2006 ident: 424_CR16 publication-title: Nonlinearity doi: 10.1088/0951-7715/19/4/004 – ident: #cr-split#-424_CR17.2 – volume: 19 start-page: 815 issue: 4 year: 2006 ident: 424_CR38 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-06-00524-8 – ident: 424_CR9 – volume: 41 start-page: 747 year: 1988 ident: 424_CR26 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160410602 – volume: 280 start-page: 145 issue: 1 year: 2008 ident: 424_CR3 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-008-0427-3 – volume: 166 start-page: 645 issue: 3 year: 2006 ident: 424_CR35 publication-title: Invent. Math. doi: 10.1007/s00222-006-0011-4 – volume: 74 start-page: 160 issue: 1 year: 1987 ident: 424_CR28 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(87)90044-9 – volume: 46 start-page: 81 year: 1972 ident: 424_CR13 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00250684 – volume: 55 start-page: 149 issue: 2 year: 1977 ident: 424_CR54 publication-title: Commun. Math. Phys. doi: 10.1007/BF01626517 – volume: 99 start-page: 199 year: 2006 ident: 424_CR20 publication-title: J. Anal. Math. doi: 10.1007/BF02789446 – volume: 220 start-page: 1 issue: 1 year: 2006 ident: 424_CR21 publication-title: Phys. D doi: 10.1016/j.physd.2006.06.010 – volume: 293 start-page: 489 issue: 9 year: 1981 ident: 424_CR6 publication-title: C. R. Acad. Sci. Paris I Math. – volume: 69 start-page: 427 issue: 2 year: 1993 ident: 424_CR42 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-93-06919-0 – ident: 424_CR2 doi: 10.1007/978-3-322-96657-5_1 – volume: 25 start-page: 197 issue: 1-2 year: 1997 ident: 424_CR8 publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) – ident: 424_CR4 – volume: 26 start-page: 1 issue: 1 year: 2010 ident: 424_CR18 publication-title: Rev. Mater. Iberoam. doi: 10.4171/RMI/592 – ident: 424_CR57 doi: 10.1090/cbms/106 – volume: 8 start-page: 399 year: 1998 ident: 424_CR44 publication-title: Intern. Math. Res. Notice doi: 10.1155/S1073792898000270 – volume: 133 start-page: 119 year: 1990 ident: 424_CR52 publication-title: Commun. Math. Phys. doi: 10.1007/BF02096557 – ident: 424_CR33 – volume: 284 start-page: 51 issue: 1 year: 2008 ident: 424_CR15 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-008-0605-3 – volume: 27 start-page: 2363 issue: 11&12 year: 2002 ident: 424_CR58 publication-title: Commun. Partial Differ. Equ. doi: 10.1081/PDE-120016161 – ident: 424_CR11 doi: 10.1090/cln/010 – volume: 141 start-page: 310 issue: 2 year: 1997 ident: 424_CR50 publication-title: J. Differ. Equ. doi: 10.1006/jdeq.1997.3345 – volume: 85 start-page: 549 issue: 4 year: 1982 ident: 424_CR12 publication-title: Commun. Math. Phys. doi: 10.1007/BF01403504 – volume: 105 start-page: 243 issue: 3 year: 1989 ident: 424_CR40 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00251502 – volume: 169 start-page: 139 issue: 1 year: 2009 ident: 424_CR51 publication-title: Ann. Math. (2) doi: 10.4007/annals.2009.169.139 – volume: 175 start-page: 353 year: 2001 ident: 424_CR37 publication-title: J. Differ. Equ. doi: 10.1006/jdeq.2000.3951 – ident: 424_CR10 doi: 10.1090/trans2/164/04 – volume: 54 start-page: 1110 issue: 9 year: 2001 ident: 424_CR14 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.1018 – ident: #cr-split#-424_CR43.1 – volume: 2 start-page: 605 issue: 4 year: 2001 ident: 424_CR49 publication-title: Ann. Henri Poincaré doi: 10.1007/PL00001048 – volume-title: Invariant manifolds. In: Lecture Notes in Mathematics, vol. 583 year: 1977 ident: 424_CR30 doi: 10.1007/BFb0092042 – volume: 39 start-page: 51 issue: 1 year: 1986 ident: 424_CR61 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160390103  | 
    
| SSID | ssj0015824 | 
    
| Score | 2.291764 | 
    
| Snippet | We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299–2333,
2011
) on the nonlinear Klein–Gordon equation to the nonlinear Schrödinger equation... We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) on the nonlinear Klein-Gordon equation to the nonlinear Schrödinger equation... We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299-2333, 2011) on the nonlinear Klein-Gordon equation to the nonlinear Schrodinger equation...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Analysis Calculus of variations Calculus of Variations and Optimal Control; Optimization Control Ground state Manifolds Mathematical analysis Mathematical and Computational Physics Mathematics Mathematics and Statistics Nonlinear equations Nonlinearity Partial differential equations Proving Scattering Schroedinger equation Systems Theory Theoretical Three dimensional  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEB50fdEH8cR6EcEnJdg0SY8HEY8VEbeIB_hW2iQLC9Jd7a6_30l6iIL73LSBSSbzTSfzfQDH3OR5GAhOJfdjKrhhNI45o7kQRRRpxXPXLjZIw7tXcf8m3xZg0PbC2GuV7ZnoDmo9VvYf-RmGcccWLi8mH9SKRtniaqugkTfKCvrcMYwtwlJgibF6sHTVTx-furKCjJ3KLaY0gmJkStoyp-9YRWVgk2vMrkUgaPI7UP2gzz8FUxeHbtdgtQGQ5LJe8XVYMOUGrAw69tVqE9KayJ_oWm2-IrjQX4bgCGKbOEpNXBsRMa7vjyBsdc_UrBgpkj48E_NRE4CTUUn4zRa83vZfru9oo5tAFbrjlAaMhzpSXJrYaMZlEmiNyEwOY-NriTaImC4SHy0lWWF1xoowFsqgt7N4aBCibEOvHJdmB4hQwjCNy-arROSByBEwYUobFVoMMXORHvitkTLVkIpbbYv3rKNDdnbN0K6ZtWuWeHDSvTKpGTXmDd5rLZ81zlVl3Vbw4Kh7il5hSx15acazKmNhhCEZsVTowWm7YD9f-He-3bnz7cEy4qWgvu-4D73p58wcICaZFofNTvsG3PzZSw priority: 102 providerName: ProQuest  | 
    
| Title | Global dynamics above the ground state energy for the cubic NLS equation in 3D | 
    
| URI | https://link.springer.com/article/10.1007/s00526-011-0424-9 https://www.proquest.com/docview/929029895 https://www.proquest.com/docview/1671233556  | 
    
| Volume | 44 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1432-0835 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0015824 issn: 0944-2669 databaseCode: AMVHM dateStart: 20030401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0835 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015824 issn: 0944-2669 databaseCode: AFBBN dateStart: 19930301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0835 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015824 issn: 0944-2669 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0835 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015824 issn: 0944-2669 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPnF9LBE8KYGmSdr0uOqui7qLqCt6Km2ShQWpj-76-52mD1FU8JRDXjAz6XzpZL4BOOQ2SQJfcCq5p6jgllGlOKOJEGkYGs0Tly42GAb9kbh4kA9VHndev3avQ5LuS90kuzlqEup-6Qlf0GgeFmXB5oVGPPI7TehAKlfJFq8tgqL3iepQ5k9LfHVGnwjzW1DU-ZreKqxUIJF0Sq2uwZzN1mF50DCs5hswLMn6iSkryucElfluCY4gRaJGZohLFSLW5fYRhKauT8_SiSbDq1tiX0uSbzLJCD_bhFGve3fap1VtBKrxyE2pz3hgQs2lVdYwLiPfGERfcqysZyTKIGQmjTzEQ5KlRS2xNFBCWzzRTI0twpAtWMieM7sNRGhhmUHVeDoSiS8SBEV4bQ1TI8Z4O5Et8GohxboiDi_qVzzFDeWxk2uMco0LucZRC46aKS8la8Zfg3drycfVAcpjRG2OHB53P2h60fKLcEaS2edZHrMgRLeLeClowXGtsM8Vft1v51-jd2EJMZJfvnHcg4Xp28zuIw6Zpm2YV73zNix2zh8vu0U7uO8PsD3pDq9v2s4qPwBA_9Uz | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE-xlIeR4AKyiO1xHocKAW21pbsRglbqzSS2V6qEsi3ZBfHj-G-MnUcFEr31HMeWJmPPNxnP9wG8UL6qUomKa5XkHJUXPM-V4BVinWXOqiq2i83LdHqMH0_0yQb8HnphwrXK4UyMB7Vb2vCP_A2F8cgWrt-enfMgGhWKq4OCRtUrK7idyDDW93Uc-l8_KYNrdw526XO_lHJ_7-jDlPciA9yS7664FCp1mVXa594JpQvpHMEYvch94rTOZSZcXSQ0rRZ1EOWq0xytp60h8oWneE7zXoMtVFhQ7rf1fq_89HksY9Drkb-qQOQUCYuhrJpEFlMtQzJP2TxK5MXfgfEC7f5ToI1xb_823OoBK3vXedgd2PDNXbg5H9le23tQdsIBzHXq9i0jx_rhGY1goWmkcSy2LTEf-wwZweT4zK7rU8vK2RfmzzvCcXbaMLV7H46vxIQPYLNZNv4hMLTohSM3SWyBlcSKABql0FntcEGZkp5AMhjJ2J7EPGhpfDMj_XK0qyG7mmBXU0zg1fjKWcfgcdng7cHypt_MrRldbwLPx6e0C0NppWr8ct0akWYEAQi7pRN4PXywixn-u96jS9d7BtenR_OZmR2Uh9twg7Ca7O5aPobN1fe1f0J4aFU_7b2OwderdvQ_2TgT4g | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfQgPrHWRwRPSuhmk-zjWKylalsELfQWdpMsFGRb3dbf72z2URQVPGc2gZkM881O5huErpiJIs_ljAjmBIQzQ0kQMEoizmPf14pFtl1sOPL6Y_4wEZNyzmlWvXavSpJFT0PO0pQu2nOdtOvGN0tTQuzvPe5yEq6jDZ7zJMCFHruduowgAjvVFlIYTiAShVVZ86ctvgamFdr8ViC1cae3i3ZKwIg7hYX30JpJ99H2sGZbzQ7QqCDux7qYLp9hMOyHwSCB86aNVGPbNoSN7fPDAFPtmlrGU4VHg2ds3grCbzxNMeseonHv7uW2T8o5CUSB-y2IS5mnfcWECYymTISu1oDERBIYRwvQgU91HDqAjQSN87lisRdwZcC7aZAYgCRHqJHOUnOMMFfcUA1mclTII5dHAJAghfVjzRPIVEQTOZWSpCpJxPNZFq-ypj-2epWgV5nrVYZNdF1_Mi8YNP4SblWal6UzZRIQnCWKh9Mv61Xwgry0EaVmtswk9XwIwYCdvCa6qQy22uHX807-JX2BNp-6PTm4Hz220BZAJ7d4-niKGov3pTkDeLKIz-0V_AQH2tar | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+dynamics+above+the+ground+state+energy+for+the+cubic+NLS+equation+in+3D&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Nakanishi%2C+K.&rft.au=Schlag%2C+W.&rft.date=2012-05-01&rft.pub=Springer-Verlag&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=44&rft.issue=1-2&rft.spage=1&rft.epage=45&rft_id=info:doi/10.1007%2Fs00526-011-0424-9&rft.externalDocID=10_1007_s00526_011_0424_9 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon |