Machine learning: applications of artificial intelligence to imaging and diagnosis
Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying architecture and algorithms and growth in the size of datasets have led to increasing computer competence across a range of fields. These include...
        Saved in:
      
    
          | Published in | Biophysical reviews Vol. 11; no. 1; pp. 111 - 118 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.02.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1867-2450 1867-2469 1867-2469  | 
| DOI | 10.1007/s12551-018-0449-9 | 
Cover
| Abstract | Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying architecture and algorithms and growth in the size of datasets have led to increasing computer competence across a range of fields. These include driving a vehicle, language translation, chatbots and beyond human performance at complex board games such as Go. Here, we review the fundamentals and algorithms behind machine learning and highlight specific approaches to learning and optimisation. We then summarise the applications of ML to medicine. In particular, we showcase recent diagnostic performances, and caveats, in the fields of dermatology, radiology, pathology and general microscopy. | 
    
|---|---|
| AbstractList | Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying architecture and algorithms and growth in the size of datasets have led to increasing computer competence across a range of fields. These include driving a vehicle, language translation, chatbots and beyond human performance at complex board games such as Go. Here, we review the fundamentals and algorithms behind machine learning and highlight specific approaches to learning and optimisation. We then summarise the applications of ML to medicine. In particular, we showcase recent diagnostic performances, and caveats, in the fields of dermatology, radiology, pathology and general microscopy.Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying architecture and algorithms and growth in the size of datasets have led to increasing computer competence across a range of fields. These include driving a vehicle, language translation, chatbots and beyond human performance at complex board games such as Go. Here, we review the fundamentals and algorithms behind machine learning and highlight specific approaches to learning and optimisation. We then summarise the applications of ML to medicine. In particular, we showcase recent diagnostic performances, and caveats, in the fields of dermatology, radiology, pathology and general microscopy. Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying architecture and algorithms and growth in the size of datasets have led to increasing computer competence across a range of fields. These include driving a vehicle, language translation, chatbots and beyond human performance at complex board games such as Go. Here, we review the fundamentals and algorithms behind machine learning and highlight specific approaches to learning and optimisation. We then summarise the applications of ML to medicine. In particular, we showcase recent diagnostic performances, and caveats, in the fields of dermatology, radiology, pathology and general microscopy.  | 
    
| Author | Baker, Matthew A. B. Herbert Chan, Hsien W. Nichols, James A.  | 
    
| Author_xml | – sequence: 1 givenname: James A. surname: Nichols fullname: Nichols, James A. organization: Laboratoire Jacques-Louis Lions, Sorbonne Université – sequence: 2 givenname: Hsien W. surname: Herbert Chan fullname: Herbert Chan, Hsien W. organization: Centenary Institute, The University of Sydney, Department of Dermatology, Royal Prince Alfred Hospital – sequence: 3 givenname: Matthew A. B. orcidid: 0000-0002-5839-6904 surname: Baker fullname: Baker, Matthew A. B. email: matthew.baker@unsw.edu.au organization: School of Biotechnology and Biomolecular Sciences, University of New South Wales  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30182201$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU9rFTEUxYNU7B_9AG4k4MbNaHInmUlcCKW0KlQE0XW4Ly8zTclLxmRG6bc3z_dstaC4SuCe3-Hcc4_JQUzREfKUs5ecsf5V4SAlbxhXDRNCN_oBOeKq6xsQnT64_Ut2SI5LuWasE6DkI3LYVgSA8SPy6QPaKx8dDQ5z9HF8TXGagrc4-xQLTQPFPPvBW4-B-ji7EPzoonV0TtRvcKwMxbima49jTMWXx-ThgKG4J_v3hHy5OP989q65_Pj2_dnpZWOFUrrhEga3kkxjzxnqdpBykC3vgK24kNvogkM7gAUQ21nv-t6Bs5ZphWvE9oTAzneJE958xxDMlGuifGM4M9uCzK4gU7c124KMrtCbHTQtq41bWxfnjHdgQm_-nER_Zcb0zXSt4q0U1eDF3iCnr4srs9n4YmsrGF1aigGmtdJcKqjS5_ek12nJsXZigCsBvO1AVtWz3xPdRvl1oyrodwKbUynZDcb6-ed5akAf_rksv0f-T0H7VkvVxtHlu9B_h34Ah8jEUw | 
    
| CitedBy_id | crossref_primary_10_1042_BST20200746 crossref_primary_10_1080_1553118X_2024_2447019 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105796 crossref_primary_10_1016_j_eprac_2023_03_002 crossref_primary_10_1016_j_nlm_2025_108035 crossref_primary_10_1007_s12600_022_00993_5 crossref_primary_10_1016_j_ad_2019_01_014 crossref_primary_10_1016_j_amjoto_2024_104220 crossref_primary_10_1186_s43591_024_00107_4 crossref_primary_10_3390_publications11010005 crossref_primary_10_1007_s13555_020_00372_0 crossref_primary_10_1016_j_jse_2020_02_022 crossref_primary_10_1016_j_carbon_2024_119772 crossref_primary_10_1007_s40620_023_01573_4 crossref_primary_10_1097_QAD_0000000000004082 crossref_primary_10_1364_OE_531818 crossref_primary_10_1007_s11912_021_01054_6 crossref_primary_10_3389_fpsyt_2024_1436006 crossref_primary_10_1111_bjh_16868 crossref_primary_10_3389_fpsyg_2021_663922 crossref_primary_10_3233_XST_221356 crossref_primary_10_2147_OPTH_S438127 crossref_primary_10_1007_s12178_022_09738_7 crossref_primary_10_1038_s41698_024_00617_7 crossref_primary_10_1109_ACCESS_2020_2974008 crossref_primary_10_1111_cmi_13349 crossref_primary_10_29333_pr_14145 crossref_primary_10_1007_s10741_020_10052_y crossref_primary_10_1042_BST20180391 crossref_primary_10_1016_j_jocn_2025_111073 crossref_primary_10_1615_IntJMultCompEng_2022044133 crossref_primary_10_1016_j_asej_2022_102084 crossref_primary_10_3390_life14050557 crossref_primary_10_1590_1809_4430_eng_agric_v43n2e20220193_2023 crossref_primary_10_2478_amns_2024_2164 crossref_primary_10_1055_s_0044_1785482 crossref_primary_10_1093_noajnl_vdad134 crossref_primary_10_1016_j_ctro_2022_02_007 crossref_primary_10_1093_nar_gkad225 crossref_primary_10_1016_j_compfluid_2024_106270 crossref_primary_10_1016_j_jormas_2020_12_006 crossref_primary_10_1016_j_watres_2024_121145 crossref_primary_10_34133_icomputing_0095 crossref_primary_10_2139_ssrn_4490221 crossref_primary_10_3390_genes13101738 crossref_primary_10_1016_j_techfore_2023_122721 crossref_primary_10_3390_data9060074 crossref_primary_10_1016_j_eujim_2025_102434 crossref_primary_10_3390_diagnostics10070466 crossref_primary_10_1016_j_semcancer_2021_04_013 crossref_primary_10_3390_s24154852 crossref_primary_10_1177_0024363920922690 crossref_primary_10_54976_tjfdm_1407059 crossref_primary_10_3233_JAD_230525 crossref_primary_10_1002_med_21995 crossref_primary_10_1371_journal_pone_0312537 crossref_primary_10_1016_j_cjca_2024_04_014 crossref_primary_10_1016_j_eswa_2022_117099 crossref_primary_10_1007_s10896_023_00573_z crossref_primary_10_1016_j_heliyon_2024_e26298 crossref_primary_10_2196_48544 crossref_primary_10_2174_1573405619666230217100130 crossref_primary_10_62347_YQHQ1079 crossref_primary_10_1007_s42979_024_03155_y crossref_primary_10_1002_jcla_23641 crossref_primary_10_1038_s41598_021_85157_x crossref_primary_10_3389_fbioe_2023_1205009 crossref_primary_10_1186_s12960_023_00833_5 crossref_primary_10_1016_j_jtcvs_2023_09_027 crossref_primary_10_1016_j_irbm_2023_100795 crossref_primary_10_1016_j_chest_2020_02_079 crossref_primary_10_1007_s12551_019_00500_x crossref_primary_10_1111_opo_13315 crossref_primary_10_1136_bjo_2023_324923 crossref_primary_10_3390_diagnostics10080558 crossref_primary_10_1038_s41598_024_59811_z crossref_primary_10_1080_23311916_2024_2370900 crossref_primary_10_1007_s00431_024_05925_5 crossref_primary_10_1177_20539517231210269 crossref_primary_10_1016_j_ucl_2023_07_002 crossref_primary_10_1109_ACCESS_2022_3154405 crossref_primary_10_1016_j_jhevol_2021_103071 crossref_primary_10_1515_psr_2022_0121 crossref_primary_10_1007_s00417_023_06052_x crossref_primary_10_3390_informatics7030023 crossref_primary_10_1016_j_clindermatol_2024_06_017 crossref_primary_10_1016_j_cmpb_2024_108541 crossref_primary_10_1080_21681163_2025_2474438 crossref_primary_10_1007_s00330_023_10509_2 crossref_primary_10_1007_s11786_021_00517_0 crossref_primary_10_5005_jp_journals_10024_3386 crossref_primary_10_1016_j_iotech_2021_100028 crossref_primary_10_1039_D1DT01754C crossref_primary_10_3389_fcvm_2023_1331142 crossref_primary_10_3390_diagnostics12122901 crossref_primary_10_35378_gujs_1446469 crossref_primary_10_1259_bjro_20190037 crossref_primary_10_1111_ajd_13405 crossref_primary_10_1016_j_artmed_2023_102589 crossref_primary_10_1148_radiol_232746 crossref_primary_10_1097_RCT_0000000000001401 crossref_primary_10_12688_wellcomeopenres_14867_2 crossref_primary_10_1002_adma_202301449 crossref_primary_10_12688_wellcomeopenres_14867_1 crossref_primary_10_1016_j_matpr_2021_11_558 crossref_primary_10_3390_electronics11040610 crossref_primary_10_1186_s40478_023_01691_x crossref_primary_10_2196_27850 crossref_primary_10_1088_1755_1315_988_3_032085 crossref_primary_10_3389_fpsyg_2022_971044 crossref_primary_10_3390_electronics11101661 crossref_primary_10_1016_j_matpr_2023_07_121 crossref_primary_10_1016_j_ijpe_2023_109123 crossref_primary_10_1016_S1473_3099_23_00367_5 crossref_primary_10_25259_IJDVL_725_2021 crossref_primary_10_2174_0929867328666210405114938 crossref_primary_10_3390_diagnostics14040380 crossref_primary_10_1080_23746149_2020_1742584 crossref_primary_10_1186_s12903_024_04786_6 crossref_primary_10_3390_ecm1040035 crossref_primary_10_1080_14737159_2020_1816466 crossref_primary_10_1093_dmfr_twae018 crossref_primary_10_1007_s12551_019_00529_y crossref_primary_10_2147_VHRM_S279337 crossref_primary_10_3389_fneur_2019_00869 crossref_primary_10_1007_s41024_024_00541_0 crossref_primary_10_1002_asi_24388 crossref_primary_10_1200_GO_21_00393 crossref_primary_10_1016_j_eswa_2023_122778 crossref_primary_10_1016_j_adengl_2020_03_005 crossref_primary_10_1038_s41746_024_01412_1 crossref_primary_10_31083_j_rcm2308256 crossref_primary_10_1021_acs_chemrestox_0c00316 crossref_primary_10_1016_j_caeai_2023_100162 crossref_primary_10_3390_brainsci13030408 crossref_primary_10_3390_jcm12083018 crossref_primary_10_1007_s11831_024_10148_w crossref_primary_10_14814_phy2_70146 crossref_primary_10_1080_09540091_2024_2435654 crossref_primary_10_2174_1574887115666200621183459 crossref_primary_10_1111_jocd_15565 crossref_primary_10_1016_j_physleta_2024_130065 crossref_primary_10_1016_j_bpj_2021_05_011 crossref_primary_10_1111_srt_13377 crossref_primary_10_3390_app131810072 crossref_primary_10_1002_lsm_23414 crossref_primary_10_1016_j_csbj_2020_11_007 crossref_primary_10_1002_jum_15427 crossref_primary_10_3389_fpubh_2023_1110088 crossref_primary_10_1088_1742_6596_2162_1_012019 crossref_primary_10_1016_j_acra_2025_02_002 crossref_primary_10_61186_ijbc_15_3_42 crossref_primary_10_3389_fcell_2022_1069248 crossref_primary_10_2106_JBJS_21_01305 crossref_primary_10_3390_fermentation9040394 crossref_primary_10_3390_plants8070236 crossref_primary_10_1186_s12859_021_04261_x crossref_primary_10_1007_s10409_021_01144_5 crossref_primary_10_1038_s42256_020_0146_9 crossref_primary_10_1053_j_sart_2023_02_004 crossref_primary_10_1002_pssa_202200740 crossref_primary_10_3390_computers12090174 crossref_primary_10_3390_app10196881 crossref_primary_10_1007_s00296_021_04916_1 crossref_primary_10_3390_jpm13020204 crossref_primary_10_1016_j_ijcard_2024_132315 crossref_primary_10_1016_j_aanat_2024_152355 crossref_primary_10_1097_SCS_0000000000006069 crossref_primary_10_3390_math10162939 crossref_primary_10_1080_22797254_2023_2173659 crossref_primary_10_1109_ACCESS_2024_3472044 crossref_primary_10_29337_ijdh_32 crossref_primary_10_1142_S266131822150016X crossref_primary_10_2459_JCM_0000000000001431 crossref_primary_10_1016_j_redare_2020_11_010 crossref_primary_10_1016_j_heliyon_2023_e19411 crossref_primary_10_3390_ijtm1030016 crossref_primary_10_1007_s11042_024_18937_y crossref_primary_10_1016_j_xops_2024_100689 crossref_primary_10_1016_j_arth_2023_03_039 crossref_primary_10_3390_fi14120356 crossref_primary_10_3390_diagnostics13061060 crossref_primary_10_1016_j_clindermatol_2023_12_019 crossref_primary_10_1186_s12929_023_00926_2 crossref_primary_10_1002_btm2_70002 crossref_primary_10_1038_s41467_021_22518_0 crossref_primary_10_1186_s12880_021_00656_7 crossref_primary_10_1007_s11042_022_12801_7 crossref_primary_10_1016_j_envpol_2024_123386 crossref_primary_10_1097_BPO_0000000000002294 crossref_primary_10_36676_jrps_v14_i5_1434 crossref_primary_10_3390_s23031467 crossref_primary_10_1080_20961790_2022_2034714 crossref_primary_10_1016_j_susoc_2021_04_003 crossref_primary_10_1016_j_clindermatol_2021_03_011 crossref_primary_10_2196_31142 crossref_primary_10_1055_a_2208_6487 crossref_primary_10_1007_s10462_021_10121_0 crossref_primary_10_1097_MNM_0000000000001547 crossref_primary_10_2196_64284 crossref_primary_10_1016_j_redar_2020_11_017 crossref_primary_10_1016_j_mcpdig_2023_11_003 crossref_primary_10_1016_j_survophthal_2024_09_003 crossref_primary_10_1186_s42836_022_00118_7 crossref_primary_10_1136_military_2024_002682 crossref_primary_10_1186_s13040_024_00367_z crossref_primary_10_3390_jpm9030044 crossref_primary_10_1097_MD_0000000000035564 crossref_primary_10_1088_2040_8986_ac4870 crossref_primary_10_1063_5_0254068 crossref_primary_10_1186_s13018_023_03837_y crossref_primary_10_1177_23821205241284719 crossref_primary_10_2196_23415  | 
    
| Cites_doi | 10.1214/12-AOS1000 10.1007/s11263-015-0816-y 10.5201/ipol.2015.35 10.1109/CVPR.2016.308 10.1016/j.patrec.2005.10.010 10.1093/bioinformatics/btx180 10.1016/j.media.2017.07.005 10.1007/BF00058655 10.1038/nature24270 10.1371/journal.pbio.1002340 10.1038/nature21056 10.1007/978-0-387-84858-7 10.1038/323533a0 10.1001/jama.2017.14585 10.1038/srep26286 10.1007/978-3-7908-2604-3_16 10.1001/jama.2016.17216 10.1109/TKDE.2009.191 10.1001/jama.2017.7797 10.1016/j.protcy.2014.09.007 10.1148/rg.2017170077 10.1007/978-3-642-35289-8 10.1145/1656274.1656278 10.1038/nmeth.2019 10.1109/CVPRW.2009.5206848 10.1186/s40679-015-0010-x 10.1067/mod.2000.109031 10.1016/j.jaad.2017.08.016 10.1145/2783258.2788613  | 
    
| ContentType | Journal Article | 
    
| Copyright | International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Copyright Springer Nature B.V. 2019  | 
    
| Copyright_xml | – notice: International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Copyright Springer Nature B.V. 2019  | 
    
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s12551-018-0449-9 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1867-2469 | 
    
| EndPage | 118 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:6381354 PMC6381354 30182201 10_1007_s12551_018_0449_9  | 
    
| Genre | Journal Article Review  | 
    
| GrantInformation_xml | – fundername: University of New South Wales (AU) grantid: Scientia Research Fellowship – fundername: ; grantid: Scientia Research Fellowship  | 
    
| GroupedDBID | -5F -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 203 29~ 2JY 2KG 2~H 30V 4.4 406 408 409 40D 40E 67N 6NX 8TC 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AOIJS AUKKA AXYYD BA0 BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HG6 HLICF HMJXF HQYDN HRMNR HYE IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y N9A NPVJJ NQJWS NU0 O93 O9I O9J OAM OK1 PT4 QOR QOS R89 RLLFE ROL RPM RSV S27 S3A S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7U Z83 ZMTXR ZOVNA ~A9 2VQ AAAVM AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABRTQ ABULA ACSTC AEBTG AEKMD AEZWR AFDZB AFHIU AFLOW AFOHR AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CAG CITATION COF EN4 HF~ HZ~ O9- S1Z NPM 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4889-152feb509a710a93f55f531620b14518674123f2c224f55f7e77e2ecc098adaa3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1867-2450 1867-2469  | 
    
| IngestDate | Sun Oct 26 04:13:58 EDT 2025 Thu Aug 21 18:21:42 EDT 2025 Thu Sep 04 17:41:12 EDT 2025 Tue Oct 07 13:50:46 EDT 2025 Mon Jul 21 06:06:32 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Wed Oct 01 03:35:57 EDT 2025 Fri Feb 21 02:33:21 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Computer vision Microscopy Dermatology Imaging Machine learning Radiology Artificial intelligence  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4889-152feb509a710a93f55f531620b14518674123f2c224f55f7e77e2ecc098adaa3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23  | 
    
| ORCID | 0000-0002-5839-6904 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6381354 | 
    
| PMID | 30182201 | 
    
| PQID | 2184213625 | 
    
| PQPubID | 2043958 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s12551_018_0449_9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6381354 proquest_miscellaneous_2099891582 proquest_journals_2184213625 pubmed_primary_30182201 crossref_citationtrail_10_1007_s12551_018_0449_9 crossref_primary_10_1007_s12551_018_0449_9 springer_journals_10_1007_s12551_018_0449_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-Feb | 
    
| PublicationDateYYYYMMDD | 2019-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-Feb  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg  | 
    
| PublicationTitle | Biophysical reviews | 
    
| PublicationTitleAbbrev | Biophys Rev | 
    
| PublicationTitleAlternate | Biophys Rev | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Breiman (CR4) 1996; 24 Arganda-Carreras, Kaynig, Rueden, Eliceiri, Schindelin, Cardona, Seung (CR1) 2017; 33 Silver (CR26) 2017; 550 Russakovsky, Deng, Su, Krause, Satheesh, Ma (CR24) 2015; 115 CR18 CR17 CR16 CR15 CR13 CR12 Litjens, Kooi, Bejnordi, Arindra, Setio, Ciompi (CR19) 2017; 42 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR28) 2014; 15 Spontón, Cardelino (CR27) 2015; 5 Fawcett (CR11) 2006; 27 CR3 Parker (CR22) 1985 CR6 CR5 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (CR10) 2017; 542 CR8 CR7 CR29 CR9 CR25 Rumelhart, Hinton, Williams (CR23) 1986; 323 Hastie, Tibshirani, Friedman (CR14) 2009 CR21 CR20 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (CR30) 2015 Belevich, Joensuu, Kumar, Vihinen, Jokitalo (CR2) 2016; 14 O Russakovsky (449_CR24) 2015; 115 449_CR18 449_CR17 449_CR16 449_CR15 449_CR13 449_CR12 A Esteva (449_CR10) 2017; 542 G Litjens (449_CR19) 2017; 42 T Fawcett (449_CR11) 2006; 27 449_CR3 DE Rumelhart (449_CR23) 1986; 323 C Szegedy (449_CR30) 2015 T Hastie (449_CR14) 2009 H Spontón (449_CR27) 2015; 5 I Belevich (449_CR2) 2016; 14 449_CR29 L Breiman (449_CR4) 1996; 24 449_CR25 449_CR9 449_CR21 N Srivastava (449_CR28) 2014; 15 449_CR8 449_CR20 449_CR7 I Arganda-Carreras (449_CR1) 2017; 33 449_CR6 449_CR5 DB Parker (449_CR22) 1985 D Silver (449_CR26) 2017; 550  | 
    
| References_xml | – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR28 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res doi: 10.1214/12-AOS1000 – volume: 115 start-page: 211 issue: 3 year: 2015 end-page: 252 ident: CR24 article-title: ImageNet large scale visual recognition challenge publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – ident: CR18 – volume: 5 start-page: 90 year: 2015 end-page: 123 ident: CR27 article-title: A review of classic edge detectors publication-title: IPOL doi: 10.5201/ipol.2015.35 – year: 2015 ident: CR30 publication-title: Rethinking the inception architecture for computer vision doi: 10.1109/CVPR.2016.308 – ident: CR16 – volume: 27 start-page: 861 issue: 8 year: 2006 end-page: 874 ident: CR11 article-title: An introduction to ROC analysis publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 33 start-page: 2424 issue: 15 year: 2017 end-page: 2426 ident: CR1 article-title: Trainable Weka segmentation: a machine learning tool for microscopy pixel classification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx180 – ident: CR12 – year: 1985 ident: CR22 publication-title: Learning-logic: casting the cortex of the human brain in silicon – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: CR19 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – ident: CR6 – ident: CR29 – ident: CR8 – ident: CR25 – ident: CR21 – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 ident: CR4 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1007/BF00058655 – volume: 550 start-page: 354 issue: 7676 year: 2017 end-page: 359 ident: CR26 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – ident: CR3 – ident: CR15 – volume: 14 start-page: 1 issue: 1 year: 2016 end-page: 13 ident: CR2 article-title: Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002340 – volume: 542 start-page: 115 issue: 7639 year: 2017 end-page: 118 ident: CR10 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: CR17 – ident: CR13 – ident: CR9 – ident: CR5 – ident: CR7 – year: 2009 ident: CR14 publication-title: The elements of statistical learning doi: 10.1007/978-0-387-84858-7 – volume: 323 start-page: 533 issue: 6088 year: 1986 end-page: 536 ident: CR23 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: CR20 – ident: 449_CR9 doi: 10.1001/jama.2017.14585 – ident: 449_CR18 doi: 10.1038/srep26286 – volume: 15 start-page: 1929 year: 2014 ident: 449_CR28 publication-title: J Mach Learn Res doi: 10.1214/12-AOS1000 – volume: 5 start-page: 90 year: 2015 ident: 449_CR27 publication-title: IPOL doi: 10.5201/ipol.2015.35 – ident: 449_CR3 doi: 10.1007/978-3-7908-2604-3_16 – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 449_CR10 publication-title: Nature doi: 10.1038/nature21056 – volume: 14 start-page: 1 issue: 1 year: 2016 ident: 449_CR2 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002340 – ident: 449_CR12 doi: 10.1001/jama.2016.17216 – volume: 42 start-page: 60 year: 2017 ident: 449_CR19 publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 449_CR24 publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – ident: 449_CR21 doi: 10.1109/TKDE.2009.191 – ident: 449_CR5 doi: 10.1001/jama.2017.7797 – ident: 449_CR16 doi: 10.1016/j.protcy.2014.09.007 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 449_CR11 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.10.010 – ident: 449_CR7 doi: 10.1148/rg.2017170077 – ident: 449_CR17 doi: 10.1007/978-3-642-35289-8 – volume-title: Rethinking the inception architecture for computer vision year: 2015 ident: 449_CR30 doi: 10.1109/CVPR.2016.308 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 449_CR23 publication-title: Nature doi: 10.1038/323533a0 – volume: 550 start-page: 354 issue: 7676 year: 2017 ident: 449_CR26 publication-title: Nature doi: 10.1038/nature24270 – ident: 449_CR13 doi: 10.1145/1656274.1656278 – ident: 449_CR25 doi: 10.1038/nmeth.2019 – ident: 449_CR8 doi: 10.1109/CVPRW.2009.5206848 – ident: 449_CR29 doi: 10.1186/s40679-015-0010-x – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 449_CR4 publication-title: Mach Learn doi: 10.1007/BF00058655 – volume-title: The elements of statistical learning year: 2009 ident: 449_CR14 doi: 10.1007/978-0-387-84858-7 – ident: 449_CR15 doi: 10.1067/mod.2000.109031 – volume-title: Learning-logic: casting the cortex of the human brain in silicon year: 1985 ident: 449_CR22 – ident: 449_CR20 doi: 10.1016/j.jaad.2017.08.016 – volume: 33 start-page: 2424 issue: 15 year: 2017 ident: 449_CR1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx180 – ident: 449_CR6 doi: 10.1145/2783258.2788613  | 
    
| SSID | ssj0064285 | 
    
| Score | 2.5917792 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 111 | 
    
| SubjectTerms | Algorithms Artificial intelligence Biochemistry Biological and Medical Physics Biological Techniques Biomedical and Life Sciences Biophysics Cell Biology Dermatology Diagnostic systems Human performance Language translation Learning algorithms Life Sciences Machine learning Membrane Biology Nanotechnology Radiology Review  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_sSWl98Ls2frFCnyo5k9xusuublIoISpEe2Kewu9ltg3e5Q-8o-tc7my_vFBTfDnaT3GRmMr9hfjsD8E1QqYxgyo-yWPg01taXlFPfsIxbyROdWXca-eIyPuvT82t2vQBhcxamJO1rlXeLwbBb5P9KbuV4qI8antgRGkzYY_QDLMYM4XcHFvuXv07-uMSKo9NHtJzKWv-ORVPJLI_LIX52yTP3A0qFL-Zj0QuA-ZIn2RZLl-DTtBjL-_9yMJiJR6crcNVIUtFQbrrTierqh2dNHt8l6ios1-iUnFRLa7BginX4WM2rvN-Aq4uSemlIPWvi7zGZLYCTkSXurlVTCpLPdPskkxHJh-VEJCKLjGQVwy-_24T-6c_fP878eiiDr6ljRGG8t0YhzJCITaToWcYs-nEcBcoN_cXXTjEY2kgjNnBriUkSE6GhBILLTMreF-gUo8J8BRJqoyUP3VFbSTE15RYTZmu1skwHmisPgkY9qa47lrvBGYP0qdey02iKGk2dRlPhwff2knHVruO1zbuNztPac-9Sl_JGIYZ15sFBu4w-5wopsjCjKe5BWM1FyHjkwVZlIu3T8IOJmCsIPUjmjKfd4Pp5z6-g7su-3rW6PThszOzpb70ixGFriW-LvP2u3TvwGSURFUl9FzqT26nZQww2Ufu11z0CRNUrzw priority: 102 providerName: Unpaywall  | 
    
| Title | Machine learning: applications of artificial intelligence to imaging and diagnosis | 
    
| URI | https://link.springer.com/article/10.1007/s12551-018-0449-9 https://www.ncbi.nlm.nih.gov/pubmed/30182201 https://www.proquest.com/docview/2184213625 https://www.proquest.com/docview/2099891582 https://pubmed.ncbi.nlm.nih.gov/PMC6381354 https://www.ncbi.nlm.nih.gov/pmc/articles/6381354  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1867-2469 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064285 issn: 1867-2450 databaseCode: AFBBN dateStart: 20090301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1867-2469 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0064285 issn: 1867-2450 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1867-2469 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064285 issn: 1867-2450 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1867-2469 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064285 issn: 1867-2450 databaseCode: U2A dateStart: 20090301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-qUqwPpVata62k4JMS2N1LbhPfDvGDFkWKB_q0ZLOJHpx74t1R_O87s193h6L0cUk2u5lJMr9hJr8B2NfCZE7LjMd5V3PRtZ4boQR3MlfeqMTmnm4jX1x2z_vi1428qe9xj5ts9yYkWZ7Us8tuiH7J9VU8FEJzvQQrkti8cBH3415z_BKeprxFImrjsZBtKPO1IRaN0QuE-TJRso2WrsHqtHg0z3_NcDhnkE6_wOcaSbJepfp1-OCKr_Cxqi35vAF_Lso0ScfquhB3R2w-WM1GntGqqQgk2GCOmZNNRmzwUFYvYqbIWV5l4w3Gm9A_Pbk-Pud1AQVuBWUvoW32LkNIYBBHGN3xUnrcc904zKhAL0pIoOHysUU7Tm2JSxIXo1JDrUxuTGcLlotR4baBRdZZoyK6FmsEupHKo3Prvc28tKFVWQBhI8nU1uziVORimM54kUn4KQo_JeGnOoCD9pXHilrjrc67jXrSepeNU3JP4whNsAzgZ9uM-4OCHqZwoyn2QQisdCRVHMC3Spvt1_BwQ3wURgEkC3puOxD39mJLMbgvObjx2Io6UgRw2KyI2W-9MYnDdtG8P-Wd_xr7O3zCmegqoXwXlidPU_cD8dIk24OV3tnt75O9cp_gU__yqnf7D7SfDrI | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB61VBVwQH3CAm1dqaciS7sbO2tzixAobQmHikjcVl6vTSOFDSKJEP-emX0lURCoZ3sfnvF4PmtmvgH4oYXJnJYZj_Ou5qJrPTdCCe5krrxRic09VSMPLrr9ofh9Ja_qOu5pk-3ehCTLk3pR7Ibol66-iodCaK5fwxviryLC_GHca45fwtOUt0hEbTwWsg1lPvWKVWe0hjDXEyXbaOk2bM6LW_Nwb8bjJYd09g52aiTJepXq38MrV3yAt1VvyYeP8HdQpkk6VveFuD5my8FqNvGMdk1FIMFGS8ycbDZho5uyexEzRc7yKhtvNP0Ew7PTy5M-rxsocCsoewl9s3cZQgKDOMLojpfSo8114zCjBr0oIYGOy8cW_TiNJS5JXIxKDbUyuTGdz7BRTAq3ByyyzhoVUVmsEXiNVB4vt97bzEsbWpUFEDaSTG3NLk5NLsbpgheZhJ-i8FMSfqoD-Nk-cltRazw3-bBRT1pb2TSl62kcoQuWAXxvh9E-KOhhCjeZ4xyEwEpHUsUB7FbabL-GhxviozAKIFnRczuBuLdXR4rRv5KDG4-tqCNFAEfNjlj81jOLOGo3zctL3v-vd3-Dzf7l4Dw9_3Xx5wC2cFW6Si4_hI3Z3dx9Qew0y76WtvIIlTMOWg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZaxsxEB6alOZ4KD1ybI5WhTw1CO-uJa-Ut5DWpEdCKTHkbdFqpdbgrE1sE_LvM-M9bJOSkmdpD41mNN8wo28AjrQwmdMy43He0Vx0rOdGKMGdzJU3KrG5p9vIF5ed8574fi2vqz6n47ravU5JlncaiKWpmLRGuW_NL74hEqYwWPFQCM31CrwUxJOACt2LT-ujmLA11TASaRuPhWzSmv96xbJjeoQ2HxdNNpnTTVifFiNzf2cGgwXn1H0DrytUyU5LNXgLL1zxDl6VfSbv38Pvi1nJpGNVj4g_J2wxcc2GnpEGlWQSrL_A0skmQ9a_mXUyYqbIWV5W5vXHW9Drfr06O-dVMwVuBVUyoZ_2LkN4YBBTGN32Unq0v04cZtSsFyWEAmz72KJPp7HEJYmLcYNDrUxuTHsbVoth4XaBRdZZoyK6ImsEhpTKY6Drvc28tKFVWQBhLcnUVkzj1PBikM45kkn4KQo_JeGnOoDPzSOjkmbjqckH9faklcWNUwpV4wjdsQzgUzOMtkIJEFO44RTnIBxWOpIqDmCn3M3ma3jQIVYKowCSpX1uJhAP9_JI0f874-PGIyxqSxHAca0R8996YhHHjdL8f8l7z3r3R1j79aWb_vx2-WMfNnBRuqwzP4DVye3UHSKMmmQfZqbyAPtQEpY | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_sSWl98Ls2frFCnyo5k9xusuublIoISpEe2Kewu9ltg3e5Q-8o-tc7my_vFBTfDnaT3GRmMr9hfjsD8E1QqYxgyo-yWPg01taXlFPfsIxbyROdWXca-eIyPuvT82t2vQBhcxamJO1rlXeLwbBb5P9KbuV4qI8antgRGkzYY_QDLMYM4XcHFvuXv07-uMSKo9NHtJzKWv-ORVPJLI_LIX52yTP3A0qFL-Zj0QuA-ZIn2RZLl-DTtBjL-_9yMJiJR6crcNVIUtFQbrrTierqh2dNHt8l6ios1-iUnFRLa7BginX4WM2rvN-Aq4uSemlIPWvi7zGZLYCTkSXurlVTCpLPdPskkxHJh-VEJCKLjGQVwy-_24T-6c_fP878eiiDr6ljRGG8t0YhzJCITaToWcYs-nEcBcoN_cXXTjEY2kgjNnBriUkSE6GhBILLTMreF-gUo8J8BRJqoyUP3VFbSTE15RYTZmu1skwHmisPgkY9qa47lrvBGYP0qdey02iKGk2dRlPhwff2knHVruO1zbuNztPac-9Sl_JGIYZ15sFBu4w-5wopsjCjKe5BWM1FyHjkwVZlIu3T8IOJmCsIPUjmjKfd4Pp5z6-g7su-3rW6PThszOzpb70ixGFriW-LvP2u3TvwGSURFUl9FzqT26nZQww2Ufu11z0CRNUrzw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning%3A+applications+of+artificial+intelligence+to+imaging+and+diagnosis&rft.jtitle=Biophysical+reviews&rft.au=Nichols%2C+James+A&rft.au=Chan%2C+Hsien+W+Herbert&rft.au=Baker%2C+Matthew+A+B&rft.date=2019-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1867-2450&rft.eissn=1867-2469&rft.volume=11&rft.issue=1&rft.spage=111&rft.epage=118&rft_id=info:doi/10.1007%2Fs12551-018-0449-9&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2450&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2450&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2450&client=summon |