Machine learning: applications of artificial intelligence to imaging and diagnosis

Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying architecture and algorithms and growth in the size of datasets have led to increasing computer competence across a range of fields. These include...

Full description

Saved in:
Bibliographic Details
Published inBiophysical reviews Vol. 11; no. 1; pp. 111 - 118
Main Authors Nichols, James A., Herbert Chan, Hsien W., Baker, Matthew A. B.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1867-2450
1867-2469
1867-2469
DOI10.1007/s12551-018-0449-9

Cover

Abstract Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying architecture and algorithms and growth in the size of datasets have led to increasing computer competence across a range of fields. These include driving a vehicle, language translation, chatbots and beyond human performance at complex board games such as Go. Here, we review the fundamentals and algorithms behind machine learning and highlight specific approaches to learning and optimisation. We then summarise the applications of ML to medicine. In particular, we showcase recent diagnostic performances, and caveats, in the fields of dermatology, radiology, pathology and general microscopy.
AbstractList Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying architecture and algorithms and growth in the size of datasets have led to increasing computer competence across a range of fields. These include driving a vehicle, language translation, chatbots and beyond human performance at complex board games such as Go. Here, we review the fundamentals and algorithms behind machine learning and highlight specific approaches to learning and optimisation. We then summarise the applications of ML to medicine. In particular, we showcase recent diagnostic performances, and caveats, in the fields of dermatology, radiology, pathology and general microscopy.Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying architecture and algorithms and growth in the size of datasets have led to increasing computer competence across a range of fields. These include driving a vehicle, language translation, chatbots and beyond human performance at complex board games such as Go. Here, we review the fundamentals and algorithms behind machine learning and highlight specific approaches to learning and optimisation. We then summarise the applications of ML to medicine. In particular, we showcase recent diagnostic performances, and caveats, in the fields of dermatology, radiology, pathology and general microscopy.
Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying architecture and algorithms and growth in the size of datasets have led to increasing computer competence across a range of fields. These include driving a vehicle, language translation, chatbots and beyond human performance at complex board games such as Go. Here, we review the fundamentals and algorithms behind machine learning and highlight specific approaches to learning and optimisation. We then summarise the applications of ML to medicine. In particular, we showcase recent diagnostic performances, and caveats, in the fields of dermatology, radiology, pathology and general microscopy.
Author Baker, Matthew A. B.
Herbert Chan, Hsien W.
Nichols, James A.
Author_xml – sequence: 1
  givenname: James A.
  surname: Nichols
  fullname: Nichols, James A.
  organization: Laboratoire Jacques-Louis Lions, Sorbonne Université
– sequence: 2
  givenname: Hsien W.
  surname: Herbert Chan
  fullname: Herbert Chan, Hsien W.
  organization: Centenary Institute, The University of Sydney, Department of Dermatology, Royal Prince Alfred Hospital
– sequence: 3
  givenname: Matthew A. B.
  orcidid: 0000-0002-5839-6904
  surname: Baker
  fullname: Baker, Matthew A. B.
  email: matthew.baker@unsw.edu.au
  organization: School of Biotechnology and Biomolecular Sciences, University of New South Wales
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30182201$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rFTEUxYNU7B_9AG4k4MbNaHInmUlcCKW0KlQE0XW4Ly8zTclLxmRG6bc3z_dstaC4SuCe3-Hcc4_JQUzREfKUs5ecsf5V4SAlbxhXDRNCN_oBOeKq6xsQnT64_Ut2SI5LuWasE6DkI3LYVgSA8SPy6QPaKx8dDQ5z9HF8TXGagrc4-xQLTQPFPPvBW4-B-ji7EPzoonV0TtRvcKwMxbima49jTMWXx-ThgKG4J_v3hHy5OP989q65_Pj2_dnpZWOFUrrhEga3kkxjzxnqdpBykC3vgK24kNvogkM7gAUQ21nv-t6Bs5ZphWvE9oTAzneJE958xxDMlGuifGM4M9uCzK4gU7c124KMrtCbHTQtq41bWxfnjHdgQm_-nER_Zcb0zXSt4q0U1eDF3iCnr4srs9n4YmsrGF1aigGmtdJcKqjS5_ek12nJsXZigCsBvO1AVtWz3xPdRvl1oyrodwKbUynZDcb6-ed5akAf_rksv0f-T0H7VkvVxtHlu9B_h34Ah8jEUw
CitedBy_id crossref_primary_10_1042_BST20200746
crossref_primary_10_1080_1553118X_2024_2447019
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105796
crossref_primary_10_1016_j_eprac_2023_03_002
crossref_primary_10_1016_j_nlm_2025_108035
crossref_primary_10_1007_s12600_022_00993_5
crossref_primary_10_1016_j_ad_2019_01_014
crossref_primary_10_1016_j_amjoto_2024_104220
crossref_primary_10_1186_s43591_024_00107_4
crossref_primary_10_3390_publications11010005
crossref_primary_10_1007_s13555_020_00372_0
crossref_primary_10_1016_j_jse_2020_02_022
crossref_primary_10_1016_j_carbon_2024_119772
crossref_primary_10_1007_s40620_023_01573_4
crossref_primary_10_1097_QAD_0000000000004082
crossref_primary_10_1364_OE_531818
crossref_primary_10_1007_s11912_021_01054_6
crossref_primary_10_3389_fpsyt_2024_1436006
crossref_primary_10_1111_bjh_16868
crossref_primary_10_3389_fpsyg_2021_663922
crossref_primary_10_3233_XST_221356
crossref_primary_10_2147_OPTH_S438127
crossref_primary_10_1007_s12178_022_09738_7
crossref_primary_10_1038_s41698_024_00617_7
crossref_primary_10_1109_ACCESS_2020_2974008
crossref_primary_10_1111_cmi_13349
crossref_primary_10_29333_pr_14145
crossref_primary_10_1007_s10741_020_10052_y
crossref_primary_10_1042_BST20180391
crossref_primary_10_1016_j_jocn_2025_111073
crossref_primary_10_1615_IntJMultCompEng_2022044133
crossref_primary_10_1016_j_asej_2022_102084
crossref_primary_10_3390_life14050557
crossref_primary_10_1590_1809_4430_eng_agric_v43n2e20220193_2023
crossref_primary_10_2478_amns_2024_2164
crossref_primary_10_1055_s_0044_1785482
crossref_primary_10_1093_noajnl_vdad134
crossref_primary_10_1016_j_ctro_2022_02_007
crossref_primary_10_1093_nar_gkad225
crossref_primary_10_1016_j_compfluid_2024_106270
crossref_primary_10_1016_j_jormas_2020_12_006
crossref_primary_10_1016_j_watres_2024_121145
crossref_primary_10_34133_icomputing_0095
crossref_primary_10_2139_ssrn_4490221
crossref_primary_10_3390_genes13101738
crossref_primary_10_1016_j_techfore_2023_122721
crossref_primary_10_3390_data9060074
crossref_primary_10_1016_j_eujim_2025_102434
crossref_primary_10_3390_diagnostics10070466
crossref_primary_10_1016_j_semcancer_2021_04_013
crossref_primary_10_3390_s24154852
crossref_primary_10_1177_0024363920922690
crossref_primary_10_54976_tjfdm_1407059
crossref_primary_10_3233_JAD_230525
crossref_primary_10_1002_med_21995
crossref_primary_10_1371_journal_pone_0312537
crossref_primary_10_1016_j_cjca_2024_04_014
crossref_primary_10_1016_j_eswa_2022_117099
crossref_primary_10_1007_s10896_023_00573_z
crossref_primary_10_1016_j_heliyon_2024_e26298
crossref_primary_10_2196_48544
crossref_primary_10_2174_1573405619666230217100130
crossref_primary_10_62347_YQHQ1079
crossref_primary_10_1007_s42979_024_03155_y
crossref_primary_10_1002_jcla_23641
crossref_primary_10_1038_s41598_021_85157_x
crossref_primary_10_3389_fbioe_2023_1205009
crossref_primary_10_1186_s12960_023_00833_5
crossref_primary_10_1016_j_jtcvs_2023_09_027
crossref_primary_10_1016_j_irbm_2023_100795
crossref_primary_10_1016_j_chest_2020_02_079
crossref_primary_10_1007_s12551_019_00500_x
crossref_primary_10_1111_opo_13315
crossref_primary_10_1136_bjo_2023_324923
crossref_primary_10_3390_diagnostics10080558
crossref_primary_10_1038_s41598_024_59811_z
crossref_primary_10_1080_23311916_2024_2370900
crossref_primary_10_1007_s00431_024_05925_5
crossref_primary_10_1177_20539517231210269
crossref_primary_10_1016_j_ucl_2023_07_002
crossref_primary_10_1109_ACCESS_2022_3154405
crossref_primary_10_1016_j_jhevol_2021_103071
crossref_primary_10_1515_psr_2022_0121
crossref_primary_10_1007_s00417_023_06052_x
crossref_primary_10_3390_informatics7030023
crossref_primary_10_1016_j_clindermatol_2024_06_017
crossref_primary_10_1016_j_cmpb_2024_108541
crossref_primary_10_1080_21681163_2025_2474438
crossref_primary_10_1007_s00330_023_10509_2
crossref_primary_10_1007_s11786_021_00517_0
crossref_primary_10_5005_jp_journals_10024_3386
crossref_primary_10_1016_j_iotech_2021_100028
crossref_primary_10_1039_D1DT01754C
crossref_primary_10_3389_fcvm_2023_1331142
crossref_primary_10_3390_diagnostics12122901
crossref_primary_10_35378_gujs_1446469
crossref_primary_10_1259_bjro_20190037
crossref_primary_10_1111_ajd_13405
crossref_primary_10_1016_j_artmed_2023_102589
crossref_primary_10_1148_radiol_232746
crossref_primary_10_1097_RCT_0000000000001401
crossref_primary_10_12688_wellcomeopenres_14867_2
crossref_primary_10_1002_adma_202301449
crossref_primary_10_12688_wellcomeopenres_14867_1
crossref_primary_10_1016_j_matpr_2021_11_558
crossref_primary_10_3390_electronics11040610
crossref_primary_10_1186_s40478_023_01691_x
crossref_primary_10_2196_27850
crossref_primary_10_1088_1755_1315_988_3_032085
crossref_primary_10_3389_fpsyg_2022_971044
crossref_primary_10_3390_electronics11101661
crossref_primary_10_1016_j_matpr_2023_07_121
crossref_primary_10_1016_j_ijpe_2023_109123
crossref_primary_10_1016_S1473_3099_23_00367_5
crossref_primary_10_25259_IJDVL_725_2021
crossref_primary_10_2174_0929867328666210405114938
crossref_primary_10_3390_diagnostics14040380
crossref_primary_10_1080_23746149_2020_1742584
crossref_primary_10_1186_s12903_024_04786_6
crossref_primary_10_3390_ecm1040035
crossref_primary_10_1080_14737159_2020_1816466
crossref_primary_10_1093_dmfr_twae018
crossref_primary_10_1007_s12551_019_00529_y
crossref_primary_10_2147_VHRM_S279337
crossref_primary_10_3389_fneur_2019_00869
crossref_primary_10_1007_s41024_024_00541_0
crossref_primary_10_1002_asi_24388
crossref_primary_10_1200_GO_21_00393
crossref_primary_10_1016_j_eswa_2023_122778
crossref_primary_10_1016_j_adengl_2020_03_005
crossref_primary_10_1038_s41746_024_01412_1
crossref_primary_10_31083_j_rcm2308256
crossref_primary_10_1021_acs_chemrestox_0c00316
crossref_primary_10_1016_j_caeai_2023_100162
crossref_primary_10_3390_brainsci13030408
crossref_primary_10_3390_jcm12083018
crossref_primary_10_1007_s11831_024_10148_w
crossref_primary_10_14814_phy2_70146
crossref_primary_10_1080_09540091_2024_2435654
crossref_primary_10_2174_1574887115666200621183459
crossref_primary_10_1111_jocd_15565
crossref_primary_10_1016_j_physleta_2024_130065
crossref_primary_10_1016_j_bpj_2021_05_011
crossref_primary_10_1111_srt_13377
crossref_primary_10_3390_app131810072
crossref_primary_10_1002_lsm_23414
crossref_primary_10_1016_j_csbj_2020_11_007
crossref_primary_10_1002_jum_15427
crossref_primary_10_3389_fpubh_2023_1110088
crossref_primary_10_1088_1742_6596_2162_1_012019
crossref_primary_10_1016_j_acra_2025_02_002
crossref_primary_10_61186_ijbc_15_3_42
crossref_primary_10_3389_fcell_2022_1069248
crossref_primary_10_2106_JBJS_21_01305
crossref_primary_10_3390_fermentation9040394
crossref_primary_10_3390_plants8070236
crossref_primary_10_1186_s12859_021_04261_x
crossref_primary_10_1007_s10409_021_01144_5
crossref_primary_10_1038_s42256_020_0146_9
crossref_primary_10_1053_j_sart_2023_02_004
crossref_primary_10_1002_pssa_202200740
crossref_primary_10_3390_computers12090174
crossref_primary_10_3390_app10196881
crossref_primary_10_1007_s00296_021_04916_1
crossref_primary_10_3390_jpm13020204
crossref_primary_10_1016_j_ijcard_2024_132315
crossref_primary_10_1016_j_aanat_2024_152355
crossref_primary_10_1097_SCS_0000000000006069
crossref_primary_10_3390_math10162939
crossref_primary_10_1080_22797254_2023_2173659
crossref_primary_10_1109_ACCESS_2024_3472044
crossref_primary_10_29337_ijdh_32
crossref_primary_10_1142_S266131822150016X
crossref_primary_10_2459_JCM_0000000000001431
crossref_primary_10_1016_j_redare_2020_11_010
crossref_primary_10_1016_j_heliyon_2023_e19411
crossref_primary_10_3390_ijtm1030016
crossref_primary_10_1007_s11042_024_18937_y
crossref_primary_10_1016_j_xops_2024_100689
crossref_primary_10_1016_j_arth_2023_03_039
crossref_primary_10_3390_fi14120356
crossref_primary_10_3390_diagnostics13061060
crossref_primary_10_1016_j_clindermatol_2023_12_019
crossref_primary_10_1186_s12929_023_00926_2
crossref_primary_10_1002_btm2_70002
crossref_primary_10_1038_s41467_021_22518_0
crossref_primary_10_1186_s12880_021_00656_7
crossref_primary_10_1007_s11042_022_12801_7
crossref_primary_10_1016_j_envpol_2024_123386
crossref_primary_10_1097_BPO_0000000000002294
crossref_primary_10_36676_jrps_v14_i5_1434
crossref_primary_10_3390_s23031467
crossref_primary_10_1080_20961790_2022_2034714
crossref_primary_10_1016_j_susoc_2021_04_003
crossref_primary_10_1016_j_clindermatol_2021_03_011
crossref_primary_10_2196_31142
crossref_primary_10_1055_a_2208_6487
crossref_primary_10_1007_s10462_021_10121_0
crossref_primary_10_1097_MNM_0000000000001547
crossref_primary_10_2196_64284
crossref_primary_10_1016_j_redar_2020_11_017
crossref_primary_10_1016_j_mcpdig_2023_11_003
crossref_primary_10_1016_j_survophthal_2024_09_003
crossref_primary_10_1186_s42836_022_00118_7
crossref_primary_10_1136_military_2024_002682
crossref_primary_10_1186_s13040_024_00367_z
crossref_primary_10_3390_jpm9030044
crossref_primary_10_1097_MD_0000000000035564
crossref_primary_10_1088_2040_8986_ac4870
crossref_primary_10_1063_5_0254068
crossref_primary_10_1186_s13018_023_03837_y
crossref_primary_10_1177_23821205241284719
crossref_primary_10_2196_23415
Cites_doi 10.1214/12-AOS1000
10.1007/s11263-015-0816-y
10.5201/ipol.2015.35
10.1109/CVPR.2016.308
10.1016/j.patrec.2005.10.010
10.1093/bioinformatics/btx180
10.1016/j.media.2017.07.005
10.1007/BF00058655
10.1038/nature24270
10.1371/journal.pbio.1002340
10.1038/nature21056
10.1007/978-0-387-84858-7
10.1038/323533a0
10.1001/jama.2017.14585
10.1038/srep26286
10.1007/978-3-7908-2604-3_16
10.1001/jama.2016.17216
10.1109/TKDE.2009.191
10.1001/jama.2017.7797
10.1016/j.protcy.2014.09.007
10.1148/rg.2017170077
10.1007/978-3-642-35289-8
10.1145/1656274.1656278
10.1038/nmeth.2019
10.1109/CVPRW.2009.5206848
10.1186/s40679-015-0010-x
10.1067/mod.2000.109031
10.1016/j.jaad.2017.08.016
10.1145/2783258.2788613
ContentType Journal Article
Copyright International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s12551-018-0449-9
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1867-2469
EndPage 118
ExternalDocumentID oai:pubmedcentral.nih.gov:6381354
PMC6381354
30182201
10_1007_s12551_018_0449_9
Genre Journal Article
Review
GrantInformation_xml – fundername: University of New South Wales (AU)
  grantid: Scientia Research Fellowship
– fundername: ;
  grantid: Scientia Research Fellowship
GroupedDBID -5F
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
203
29~
2JY
2KG
2~H
30V
4.4
406
408
409
40D
40E
67N
6NX
8TC
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AOIJS
AUKKA
AXYYD
BA0
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HG6
HLICF
HMJXF
HQYDN
HRMNR
HYE
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
N9A
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OAM
OK1
PT4
QOR
QOS
R89
RLLFE
ROL
RPM
RSV
S27
S3A
S3B
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7U
Z83
ZMTXR
ZOVNA
~A9
2VQ
AAAVM
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABULA
ACSTC
AEBTG
AEKMD
AEZWR
AFDZB
AFHIU
AFLOW
AFOHR
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CAG
CITATION
COF
EN4
HF~
HZ~
O9-
S1Z
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4889-152feb509a710a93f55f531620b14518674123f2c224f55f7e77e2ecc098adaa3
IEDL.DBID U2A
ISSN 1867-2450
1867-2469
IngestDate Sun Oct 26 04:13:58 EDT 2025
Thu Aug 21 18:21:42 EDT 2025
Thu Sep 04 17:41:12 EDT 2025
Tue Oct 07 13:50:46 EDT 2025
Mon Jul 21 06:06:32 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Wed Oct 01 03:35:57 EDT 2025
Fri Feb 21 02:33:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Computer vision
Microscopy
Dermatology
Imaging
Machine learning
Radiology
Artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4889-152feb509a710a93f55f531620b14518674123f2c224f55f7e77e2ecc098adaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5839-6904
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6381354
PMID 30182201
PQID 2184213625
PQPubID 2043958
PageCount 8
ParticipantIDs unpaywall_primary_10_1007_s12551_018_0449_9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6381354
proquest_miscellaneous_2099891582
proquest_journals_2184213625
pubmed_primary_30182201
crossref_citationtrail_10_1007_s12551_018_0449_9
crossref_primary_10_1007_s12551_018_0449_9
springer_journals_10_1007_s12551_018_0449_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Feb
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-Feb
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Biophysical reviews
PublicationTitleAbbrev Biophys Rev
PublicationTitleAlternate Biophys Rev
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Breiman (CR4) 1996; 24
Arganda-Carreras, Kaynig, Rueden, Eliceiri, Schindelin, Cardona, Seung (CR1) 2017; 33
Silver (CR26) 2017; 550
Russakovsky, Deng, Su, Krause, Satheesh, Ma (CR24) 2015; 115
CR18
CR17
CR16
CR15
CR13
CR12
Litjens, Kooi, Bejnordi, Arindra, Setio, Ciompi (CR19) 2017; 42
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR28) 2014; 15
Spontón, Cardelino (CR27) 2015; 5
Fawcett (CR11) 2006; 27
CR3
Parker (CR22) 1985
CR6
CR5
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (CR10) 2017; 542
CR8
CR7
CR29
CR9
CR25
Rumelhart, Hinton, Williams (CR23) 1986; 323
Hastie, Tibshirani, Friedman (CR14) 2009
CR21
CR20
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (CR30) 2015
Belevich, Joensuu, Kumar, Vihinen, Jokitalo (CR2) 2016; 14
O Russakovsky (449_CR24) 2015; 115
449_CR18
449_CR17
449_CR16
449_CR15
449_CR13
449_CR12
A Esteva (449_CR10) 2017; 542
G Litjens (449_CR19) 2017; 42
T Fawcett (449_CR11) 2006; 27
449_CR3
DE Rumelhart (449_CR23) 1986; 323
C Szegedy (449_CR30) 2015
T Hastie (449_CR14) 2009
H Spontón (449_CR27) 2015; 5
I Belevich (449_CR2) 2016; 14
449_CR29
L Breiman (449_CR4) 1996; 24
449_CR25
449_CR9
449_CR21
N Srivastava (449_CR28) 2014; 15
449_CR8
449_CR20
449_CR7
I Arganda-Carreras (449_CR1) 2017; 33
449_CR6
449_CR5
DB Parker (449_CR22) 1985
D Silver (449_CR26) 2017; 550
References_xml – volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR28
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
  doi: 10.1214/12-AOS1000
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  end-page: 252
  ident: CR24
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– ident: CR18
– volume: 5
  start-page: 90
  year: 2015
  end-page: 123
  ident: CR27
  article-title: A review of classic edge detectors
  publication-title: IPOL
  doi: 10.5201/ipol.2015.35
– year: 2015
  ident: CR30
  publication-title: Rethinking the inception architecture for computer vision
  doi: 10.1109/CVPR.2016.308
– ident: CR16
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  end-page: 874
  ident: CR11
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 33
  start-page: 2424
  issue: 15
  year: 2017
  end-page: 2426
  ident: CR1
  article-title: Trainable Weka segmentation: a machine learning tool for microscopy pixel classification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx180
– ident: CR12
– year: 1985
  ident: CR22
  publication-title: Learning-logic: casting the cortex of the human brain in silicon
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR19
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– ident: CR6
– ident: CR29
– ident: CR8
– ident: CR25
– ident: CR21
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  ident: CR4
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  end-page: 359
  ident: CR26
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– ident: CR3
– ident: CR15
– volume: 14
  start-page: 1
  issue: 1
  year: 2016
  end-page: 13
  ident: CR2
  article-title: Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002340
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  end-page: 118
  ident: CR10
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: CR17
– ident: CR13
– ident: CR9
– ident: CR5
– ident: CR7
– year: 2009
  ident: CR14
  publication-title: The elements of statistical learning
  doi: 10.1007/978-0-387-84858-7
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  end-page: 536
  ident: CR23
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: CR20
– ident: 449_CR9
  doi: 10.1001/jama.2017.14585
– ident: 449_CR18
  doi: 10.1038/srep26286
– volume: 15
  start-page: 1929
  year: 2014
  ident: 449_CR28
  publication-title: J Mach Learn Res
  doi: 10.1214/12-AOS1000
– volume: 5
  start-page: 90
  year: 2015
  ident: 449_CR27
  publication-title: IPOL
  doi: 10.5201/ipol.2015.35
– ident: 449_CR3
  doi: 10.1007/978-3-7908-2604-3_16
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 449_CR10
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 14
  start-page: 1
  issue: 1
  year: 2016
  ident: 449_CR2
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002340
– ident: 449_CR12
  doi: 10.1001/jama.2016.17216
– volume: 42
  start-page: 60
  year: 2017
  ident: 449_CR19
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 449_CR24
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– ident: 449_CR21
  doi: 10.1109/TKDE.2009.191
– ident: 449_CR5
  doi: 10.1001/jama.2017.7797
– ident: 449_CR16
  doi: 10.1016/j.protcy.2014.09.007
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 449_CR11
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– ident: 449_CR7
  doi: 10.1148/rg.2017170077
– ident: 449_CR17
  doi: 10.1007/978-3-642-35289-8
– volume-title: Rethinking the inception architecture for computer vision
  year: 2015
  ident: 449_CR30
  doi: 10.1109/CVPR.2016.308
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 449_CR23
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  ident: 449_CR26
  publication-title: Nature
  doi: 10.1038/nature24270
– ident: 449_CR13
  doi: 10.1145/1656274.1656278
– ident: 449_CR25
  doi: 10.1038/nmeth.2019
– ident: 449_CR8
  doi: 10.1109/CVPRW.2009.5206848
– ident: 449_CR29
  doi: 10.1186/s40679-015-0010-x
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 449_CR4
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– volume-title: The elements of statistical learning
  year: 2009
  ident: 449_CR14
  doi: 10.1007/978-0-387-84858-7
– ident: 449_CR15
  doi: 10.1067/mod.2000.109031
– volume-title: Learning-logic: casting the cortex of the human brain in silicon
  year: 1985
  ident: 449_CR22
– ident: 449_CR20
  doi: 10.1016/j.jaad.2017.08.016
– volume: 33
  start-page: 2424
  issue: 15
  year: 2017
  ident: 449_CR1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx180
– ident: 449_CR6
  doi: 10.1145/2783258.2788613
SSID ssj0064285
Score 2.5917792
SecondaryResourceType review_article
Snippet Machine learning (ML) is a form of artificial intelligence which is placed to transform the twenty-first century. Rapid, recent progress in its underlying...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111
SubjectTerms Algorithms
Artificial intelligence
Biochemistry
Biological and Medical Physics
Biological Techniques
Biomedical and Life Sciences
Biophysics
Cell Biology
Dermatology
Diagnostic systems
Human performance
Language translation
Learning algorithms
Life Sciences
Machine learning
Membrane Biology
Nanotechnology
Radiology
Review
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_sSWl98Ls2frFCnyo5k9xusuublIoISpEe2Kewu9ltg3e5Q-8o-tc7my_vFBTfDnaT3GRmMr9hfjsD8E1QqYxgyo-yWPg01taXlFPfsIxbyROdWXca-eIyPuvT82t2vQBhcxamJO1rlXeLwbBb5P9KbuV4qI8antgRGkzYY_QDLMYM4XcHFvuXv07-uMSKo9NHtJzKWv-ORVPJLI_LIX52yTP3A0qFL-Zj0QuA-ZIn2RZLl-DTtBjL-_9yMJiJR6crcNVIUtFQbrrTierqh2dNHt8l6ios1-iUnFRLa7BginX4WM2rvN-Aq4uSemlIPWvi7zGZLYCTkSXurlVTCpLPdPskkxHJh-VEJCKLjGQVwy-_24T-6c_fP878eiiDr6ljRGG8t0YhzJCITaToWcYs-nEcBcoN_cXXTjEY2kgjNnBriUkSE6GhBILLTMreF-gUo8J8BRJqoyUP3VFbSTE15RYTZmu1skwHmisPgkY9qa47lrvBGYP0qdey02iKGk2dRlPhwff2knHVruO1zbuNztPac-9Sl_JGIYZ15sFBu4w-5wopsjCjKe5BWM1FyHjkwVZlIu3T8IOJmCsIPUjmjKfd4Pp5z6-g7su-3rW6PThszOzpb70ixGFriW-LvP2u3TvwGSURFUl9FzqT26nZQww2Ufu11z0CRNUrzw
  priority: 102
  providerName: Unpaywall
Title Machine learning: applications of artificial intelligence to imaging and diagnosis
URI https://link.springer.com/article/10.1007/s12551-018-0449-9
https://www.ncbi.nlm.nih.gov/pubmed/30182201
https://www.proquest.com/docview/2184213625
https://www.proquest.com/docview/2099891582
https://pubmed.ncbi.nlm.nih.gov/PMC6381354
https://www.ncbi.nlm.nih.gov/pmc/articles/6381354
UnpaywallVersion submittedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1867-2469
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064285
  issn: 1867-2450
  databaseCode: AFBBN
  dateStart: 20090301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1867-2469
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0064285
  issn: 1867-2450
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1867-2469
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064285
  issn: 1867-2450
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1867-2469
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064285
  issn: 1867-2450
  databaseCode: U2A
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-qUqwPpVata62k4JMS2N1LbhPfDvGDFkWKB_q0ZLOJHpx74t1R_O87s193h6L0cUk2u5lJMr9hJr8B2NfCZE7LjMd5V3PRtZ4boQR3MlfeqMTmnm4jX1x2z_vi1428qe9xj5ts9yYkWZ7Us8tuiH7J9VU8FEJzvQQrkti8cBH3415z_BKeprxFImrjsZBtKPO1IRaN0QuE-TJRso2WrsHqtHg0z3_NcDhnkE6_wOcaSbJepfp1-OCKr_Cxqi35vAF_Lso0ScfquhB3R2w-WM1GntGqqQgk2GCOmZNNRmzwUFYvYqbIWV5l4w3Gm9A_Pbk-Pud1AQVuBWUvoW32LkNIYBBHGN3xUnrcc904zKhAL0pIoOHysUU7Tm2JSxIXo1JDrUxuTGcLlotR4baBRdZZoyK6FmsEupHKo3Prvc28tKFVWQBhI8nU1uziVORimM54kUn4KQo_JeGnOoCD9pXHilrjrc67jXrSepeNU3JP4whNsAzgZ9uM-4OCHqZwoyn2QQisdCRVHMC3Spvt1_BwQ3wURgEkC3puOxD39mJLMbgvObjx2Io6UgRw2KyI2W-9MYnDdtG8P-Wd_xr7O3zCmegqoXwXlidPU_cD8dIk24OV3tnt75O9cp_gU__yqnf7D7SfDrI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB61VBVwQH3CAm1dqaciS7sbO2tzixAobQmHikjcVl6vTSOFDSKJEP-emX0lURCoZ3sfnvF4PmtmvgH4oYXJnJYZj_Ou5qJrPTdCCe5krrxRic09VSMPLrr9ofh9Ja_qOu5pk-3ehCTLk3pR7Ibol66-iodCaK5fwxviryLC_GHca45fwtOUt0hEbTwWsg1lPvWKVWe0hjDXEyXbaOk2bM6LW_Nwb8bjJYd09g52aiTJepXq38MrV3yAt1VvyYeP8HdQpkk6VveFuD5my8FqNvGMdk1FIMFGS8ycbDZho5uyexEzRc7yKhtvNP0Ew7PTy5M-rxsocCsoewl9s3cZQgKDOMLojpfSo8114zCjBr0oIYGOy8cW_TiNJS5JXIxKDbUyuTGdz7BRTAq3ByyyzhoVUVmsEXiNVB4vt97bzEsbWpUFEDaSTG3NLk5NLsbpgheZhJ-i8FMSfqoD-Nk-cltRazw3-bBRT1pb2TSl62kcoQuWAXxvh9E-KOhhCjeZ4xyEwEpHUsUB7FbabL-GhxviozAKIFnRczuBuLdXR4rRv5KDG4-tqCNFAEfNjlj81jOLOGo3zctL3v-vd3-Dzf7l4Dw9_3Xx5wC2cFW6Si4_hI3Z3dx9Qew0y76WtvIIlTMOWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZaxsxEB6alOZ4KD1ybI5WhTw1CO-uJa-Ut5DWpEdCKTHkbdFqpdbgrE1sE_LvM-M9bJOSkmdpD41mNN8wo28AjrQwmdMy43He0Vx0rOdGKMGdzJU3KrG5p9vIF5ed8574fi2vqz6n47ravU5JlncaiKWpmLRGuW_NL74hEqYwWPFQCM31CrwUxJOACt2LT-ujmLA11TASaRuPhWzSmv96xbJjeoQ2HxdNNpnTTVifFiNzf2cGgwXn1H0DrytUyU5LNXgLL1zxDl6VfSbv38Pvi1nJpGNVj4g_J2wxcc2GnpEGlWQSrL_A0skmQ9a_mXUyYqbIWV5W5vXHW9Drfr06O-dVMwVuBVUyoZ_2LkN4YBBTGN32Unq0v04cZtSsFyWEAmz72KJPp7HEJYmLcYNDrUxuTHsbVoth4XaBRdZZoyK6ImsEhpTKY6Drvc28tKFVWQBhLcnUVkzj1PBikM45kkn4KQo_JeGnOoDPzSOjkmbjqckH9faklcWNUwpV4wjdsQzgUzOMtkIJEFO44RTnIBxWOpIqDmCn3M3ma3jQIVYKowCSpX1uJhAP9_JI0f874-PGIyxqSxHAca0R8996YhHHjdL8f8l7z3r3R1j79aWb_vx2-WMfNnBRuqwzP4DVye3UHSKMmmQfZqbyAPtQEpY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_sSWl98Ls2frFCnyo5k9xusuublIoISpEe2Kewu9ltg3e5Q-8o-tc7my_vFBTfDnaT3GRmMr9hfjsD8E1QqYxgyo-yWPg01taXlFPfsIxbyROdWXca-eIyPuvT82t2vQBhcxamJO1rlXeLwbBb5P9KbuV4qI8antgRGkzYY_QDLMYM4XcHFvuXv07-uMSKo9NHtJzKWv-ORVPJLI_LIX52yTP3A0qFL-Zj0QuA-ZIn2RZLl-DTtBjL-_9yMJiJR6crcNVIUtFQbrrTierqh2dNHt8l6ios1-iUnFRLa7BginX4WM2rvN-Aq4uSemlIPWvi7zGZLYCTkSXurlVTCpLPdPskkxHJh-VEJCKLjGQVwy-_24T-6c_fP878eiiDr6ljRGG8t0YhzJCITaToWcYs-nEcBcoN_cXXTjEY2kgjNnBriUkSE6GhBILLTMreF-gUo8J8BRJqoyUP3VFbSTE15RYTZmu1skwHmisPgkY9qa47lrvBGYP0qdey02iKGk2dRlPhwff2knHVruO1zbuNztPac-9Sl_JGIYZ15sFBu4w-5wopsjCjKe5BWM1FyHjkwVZlIu3T8IOJmCsIPUjmjKfd4Pp5z6-g7su-3rW6PThszOzpb70ixGFriW-LvP2u3TvwGSURFUl9FzqT26nZQww2Ufu11z0CRNUrzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning%3A+applications+of+artificial+intelligence+to+imaging+and+diagnosis&rft.jtitle=Biophysical+reviews&rft.au=Nichols%2C+James+A&rft.au=Chan%2C+Hsien+W+Herbert&rft.au=Baker%2C+Matthew+A+B&rft.date=2019-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1867-2450&rft.eissn=1867-2469&rft.volume=11&rft.issue=1&rft.spage=111&rft.epage=118&rft_id=info:doi/10.1007%2Fs12551-018-0449-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2450&client=summon