Impaired oxygen extraction in metabolic myopathies: Detection and quantification by near-infrared spectroscopy

Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O2 extraction, low maximal aerobic power, and reduced exercise tolerance. Non‐invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 wi...

Full description

Saved in:
Bibliographic Details
Published inMuscle & nerve Vol. 35; no. 4; pp. 510 - 520
Main Authors Grassi, Bruno, Marzorati, Mauro, Lanfranconi, Francesca, Ferri, Alessandra, Longaretti, Miriam, Stucchi, Andrea, Vago, Paola, Marconi, Claudio, Morandi, Lucia
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2007
Wiley
Subjects
Online AccessGet full text
ISSN0148-639X
1097-4598
DOI10.1002/mus.20708

Cover

Abstract Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O2 extraction, low maximal aerobic power, and reduced exercise tolerance. Non‐invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient‐controls, P‐CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O2 uptake (V̇O2) and vastus lateralis oxygenation indices (by near‐infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Δ[deoxy(Hb + Mb)]) were considered an index of O2 extraction. Δ[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 ± 12.0%) and McA (18.7 ± 7.3) than in P‐CTRL (62.4 ± 3.9) and CTRL (71.3 ± 3.9) subjects. V̇O2 peak and Δ[deoxy(Hb + Mb)] peak were linearly related (r2 = 0.83). In these patients, NIRS is a tool to detect and quantify non‐invasively the metabolic impairment, which may be useful in the follow‐up of patients and in the assessment of therapies and interventions. Muscle Nerve, 2006
AbstractList Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O2 extraction, low maximal aerobic power, and reduced exercise tolerance. Non‐invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient‐controls, P‐CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O2 uptake (V̇O2) and vastus lateralis oxygenation indices (by near‐infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Δ[deoxy(Hb + Mb)]) were considered an index of O2 extraction. Δ[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 ± 12.0%) and McA (18.7 ± 7.3) than in P‐CTRL (62.4 ± 3.9) and CTRL (71.3 ± 3.9) subjects. V̇O2 peak and Δ[deoxy(Hb + Mb)] peak were linearly related (r2 = 0.83). In these patients, NIRS is a tool to detect and quantify non‐invasively the metabolic impairment, which may be useful in the follow‐up of patients and in the assessment of therapies and interventions. Muscle Nerve, 2006
Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O 2 extraction, low maximal aerobic power, and reduced exercise tolerance. Non‐invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient‐controls, P‐CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O 2 uptake (V̇O 2 ) and vastus lateralis oxygenation indices (by near‐infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Δ[deoxy(Hb + Mb)]) were considered an index of O 2 extraction. Δ[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 ± 12.0%) and McA (18.7 ± 7.3) than in P‐CTRL (62.4 ± 3.9) and CTRL (71.3 ± 3.9) subjects. V̇O 2 peak and Δ[deoxy(Hb + Mb)] peak were linearly related ( r 2 = 0.83). In these patients, NIRS is a tool to detect and quantify non‐invasively the metabolic impairment, which may be useful in the follow‐up of patients and in the assessment of therapies and interventions. Muscle Nerve, 2006
Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O(2) extraction, low maximal aerobic power, and reduced exercise tolerance. Non-invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient-controls, P-CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O(2) uptake (VO(2)) and vastus lateralis oxygenation indices (by near-infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Delta[deoxy(Hb + Mb)]) were considered an index of O(2) extraction. Delta[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 +/- 12.0%) and McA (18.7 +/- 7.3) than in P-CTRL (62.4 +/- 3.9) and CTRL (71.3 +/- 3.9) subjects. VO(2) peak and Delta[deoxy(Hb + Mb)] peak were linearly related (r(2) = 0.83). In these patients, NIRS is a tool to detect and quantify non-invasively the metabolic impairment, which may be useful in the follow-up of patients and in the assessment of therapies and interventions.Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O(2) extraction, low maximal aerobic power, and reduced exercise tolerance. Non-invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient-controls, P-CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O(2) uptake (VO(2)) and vastus lateralis oxygenation indices (by near-infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Delta[deoxy(Hb + Mb)]) were considered an index of O(2) extraction. Delta[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 +/- 12.0%) and McA (18.7 +/- 7.3) than in P-CTRL (62.4 +/- 3.9) and CTRL (71.3 +/- 3.9) subjects. VO(2) peak and Delta[deoxy(Hb + Mb)] peak were linearly related (r(2) = 0.83). In these patients, NIRS is a tool to detect and quantify non-invasively the metabolic impairment, which may be useful in the follow-up of patients and in the assessment of therapies and interventions.
Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O(2) extraction, low maximal aerobic power, and reduced exercise tolerance. Non-invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient-controls, P-CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O(2) uptake (VO(2)) and vastus lateralis oxygenation indices (by near-infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Delta[deoxy(Hb + Mb)]) were considered an index of O(2) extraction. Delta[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 +/- 12.0%) and McA (18.7 +/- 7.3) than in P-CTRL (62.4 +/- 3.9) and CTRL (71.3 +/- 3.9) subjects. VO(2) peak and Delta[deoxy(Hb + Mb)] peak were linearly related (r(2) = 0.83). In these patients, NIRS is a tool to detect and quantify non-invasively the metabolic impairment, which may be useful in the follow-up of patients and in the assessment of therapies and interventions.
Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O2 extraction, low maximal aerobic power, and reduced exercise tolerance. Non-invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient-controls, P-CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O2 uptake (O2) and vastus lateralis oxygenation indices (by near-infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin ([deoxy(Hb + Mb)]) were considered an index of O2 extraction. [deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 ± 12.0%) and McA (18.7 ± 7.3) than in P-CTRL (62.4 ± 3.9) and CTRL (71.3 ± 3.9) subjects. O2 peak and [deoxy(Hb + Mb)] peak were linearly related (r2 = 0.83). In these patients, NIRS is a tool to detect and quantify non-invasively the metabolic impairment, which may be useful in the follow-up of patients and in the assessment of therapies and interventions. Muscle Nerve, 2006.
Author Stucchi, Andrea
Marconi, Claudio
Grassi, Bruno
Vago, Paola
Lanfranconi, Francesca
Marzorati, Mauro
Morandi, Lucia
Ferri, Alessandra
Longaretti, Miriam
Author_xml – sequence: 1
  givenname: Bruno
  surname: Grassi
  fullname: Grassi, Bruno
  email: bruno.grassi@unimi.it
  organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy
– sequence: 2
  givenname: Mauro
  surname: Marzorati
  fullname: Marzorati, Mauro
  organization: Institute of Bioimaging and Molecular Physiology, CNR, Segrate (MI), Italy
– sequence: 3
  givenname: Francesca
  surname: Lanfranconi
  fullname: Lanfranconi, Francesca
  organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy
– sequence: 4
  givenname: Alessandra
  surname: Ferri
  fullname: Ferri, Alessandra
  organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy
– sequence: 5
  givenname: Miriam
  surname: Longaretti
  fullname: Longaretti, Miriam
  organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy
– sequence: 6
  givenname: Andrea
  surname: Stucchi
  fullname: Stucchi, Andrea
  organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy
– sequence: 7
  givenname: Paola
  surname: Vago
  fullname: Vago, Paola
  organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy
– sequence: 8
  givenname: Claudio
  surname: Marconi
  fullname: Marconi, Claudio
  organization: Institute of Bioimaging and Molecular Physiology, CNR, Segrate (MI), Italy
– sequence: 9
  givenname: Lucia
  surname: Morandi
  fullname: Morandi, Lucia
  organization: Department of Neuromuscular Diseases, Neurological Institute Carlo Besta, Milan, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18633087$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17143893$$D View this record in MEDLINE/PubMed
BookMark eNqF0V1v1SAYB3BiZtzZ5oVfwPTGJV50461AvVvOdC7OmahT7wilVNEWOqDx9NvLeZlLTNQrEvj9H-B5DsCe884A8ATBEwQhPh2meIIhh-IBWCBY85JWtdgDC4ioKBmpv-yDgxi_QwiRYPwR2EccUSJqsgDuchiVDaYt_Gr-alxhVikonax3hXXFYJJqfG91Mcx-VOmbNfFFcW6S2RLl2uJ2Ui7Zzmq12WrmwhkVSuu6oNaF45hx8FH7cT4CDzvVR_N4tx6Cm1cvPy5fl1fvLi6XZ1elpkKIkrYCV4hrTBkyjBFSca5aBLsKYtyRmlCF8_M1Z7SpNCcECdox1bYUNXR9cgiOt3XH4G8nE5McbNSm75UzfoqSQ8oorv4PMWSUUoYzfLqDUzOYVo7BDirM8q6VGTzbARW16vPnnbbx3on8DSh4ds-3TueexGC6ewLlepxy2Nybx5nt6R9W27Rpcx6S7f-V-Gl7M_-9tHx78-EuUW4TNiaz-p1Q4YdknPBKfr6-kJ-W9D1cciHfkF9OBb_e
CODEN MUNEDE
CitedBy_id crossref_primary_10_3390_jcm12103571
crossref_primary_10_1152_japplphysiol_00703_2018
crossref_primary_10_3390_a15120444
crossref_primary_10_1117_1_2805437
crossref_primary_10_1007_s00520_017_4036_6
crossref_primary_10_1111_cpf_12796
crossref_primary_10_1152_japplphysiol_01063_2013
crossref_primary_10_1016_j_nmd_2017_03_002
crossref_primary_10_1186_1471_2377_13_52
crossref_primary_10_1080_14779072_2021_2009802
crossref_primary_10_1093_brain_awr293
crossref_primary_10_1155_2013_154327
crossref_primary_10_1186_s12967_015_0527_8
crossref_primary_10_1002_j_2617_1619_2018_tb00002_x
crossref_primary_10_1152_japplphysiol_00166_2018
crossref_primary_10_1152_japplphysiol_00060_2014
crossref_primary_10_1016_j_resp_2013_09_007
crossref_primary_10_1142_S1793545811001514
crossref_primary_10_1152_ajpheart_00479_2010
crossref_primary_10_1366_14_07604
crossref_primary_10_1016_j_ddmod_2009_07_001
crossref_primary_10_3390_jcm8101641
crossref_primary_10_1183_23120541_00449_2021
crossref_primary_10_1016_j_nmd_2015_10_004
crossref_primary_10_1002_acn3_51353
crossref_primary_10_1016_j_ejvs_2009_06_011
crossref_primary_10_1152_ajpregu_00001_2011
crossref_primary_10_3390_muscles3040033
crossref_primary_10_1007_s00520_021_06178_w
crossref_primary_10_1371_journal_pone_0199756
crossref_primary_10_1016_j_nmd_2012_10_017
crossref_primary_10_1371_journal_pone_0220192
crossref_primary_10_1249_MSS_0000000000002056
crossref_primary_10_1249_MSS_0b013e31823e6579
crossref_primary_10_1016_j_cophys_2019_05_011
crossref_primary_10_1007_s00421_011_2183_x
crossref_primary_10_1016_j_cca_2016_02_009
crossref_primary_10_1007_s00421_010_1609_1
crossref_primary_10_1016_j_semarthrit_2018_08_002
crossref_primary_10_1152_japplphysiol_00782_2009
crossref_primary_10_3109_17482968_2011_601463
crossref_primary_10_1016_j_clinph_2017_10_034
crossref_primary_10_1016_j_ergon_2009_02_004
crossref_primary_10_3390_app9152952
crossref_primary_10_1007_s00784_016_1912_2
crossref_primary_10_1007_s10072_019_04178_7
crossref_primary_10_1152_japplphysiol_01225_2007
crossref_primary_10_1007_s00421_016_3468_x
crossref_primary_10_1371_journal_pone_0099282
crossref_primary_10_1002_mus_21758
crossref_primary_10_1016_j_jpeds_2019_01_022
crossref_primary_10_1212_CON_0000000000001182
crossref_primary_10_1002_mus_23505
crossref_primary_10_1016_j_pmr_2008_10_011
crossref_primary_10_1249_MSS_0000000000002521
crossref_primary_10_1080_10790268_2020_1798137
crossref_primary_10_1089_ham_2017_0028
crossref_primary_10_1038_s41598_020_65770_y
crossref_primary_10_1152_japplphysiol_00885_2015
crossref_primary_10_1016_j_nmd_2012_04_011
crossref_primary_10_3390_nu14091886
crossref_primary_10_1002_mus_22251
crossref_primary_10_1016_j_ergon_2009_02_002
crossref_primary_10_1098_rsta_2011_0298
crossref_primary_10_1371_journal_pone_0147691
crossref_primary_10_1007_s00421_011_2136_4
crossref_primary_10_3389_fphys_2018_01036
crossref_primary_10_1038_s41598_017_02811_z
crossref_primary_10_1113_JP278930
crossref_primary_10_1152_japplphysiol_01627_2011
crossref_primary_10_1007_s00421_022_05095_y
crossref_primary_10_1152_japplphysiol_00196_2021
crossref_primary_10_1016_j_ncl_2007_11_010
crossref_primary_10_1113_expphysiol_2011_064303
crossref_primary_10_1080_02701367_2022_2159309
crossref_primary_10_1152_japplphysiol_01380_2010
crossref_primary_10_3389_fphys_2020_00350
crossref_primary_10_14814_phy2_13065
crossref_primary_10_1038_s42003_022_04303_x
crossref_primary_10_1249_MSS_0b013e3181aae96b
crossref_primary_10_1249_MSS_0000000000003529
crossref_primary_10_1249_MSS_0000000000000334
crossref_primary_10_1249_MSS_0000000000001546
Cites_doi 10.1117/12.263747
10.1152/japplphysiol.00956.2002
10.1117/12.268963
10.1046/j.1365-201x.2001.00842.x
10.1016/j.mito.2004.07.011
10.1249/01.mss.0000177446.97671.2a
10.1139/h04-031
10.1152/japplphysiol.00695.2002
10.1034/j.1600-0838.2001.110404.x
10.1002/mus.10077
10.2165/00007256-199927010-00003
10.1002/ana.410170216
10.1113/eph8702456
10.1002/(SICI)1097-4598(199905)22:5<621::AID-MUS11>3.0.CO;2-D
10.1002/ana.20881
10.1002/1531-8249(199910)46:4<667::AID-ANA19>3.0.CO;2-D
10.1016/S0005-2728(98)00113-3
10.1002/ana.410360603
10.1152/jappl.2000.88.1.315
10.1212/WNL.49.3.837
10.1002/mus.10104
10.1016/0925-4439(95)00060-H
10.1249/00005768-198205000-00012
10.1002/ana.10027
10.1002/ana.410360606
10.1212/WNL.50.4.1055
10.1152/jappl.1986.61.2.391
10.1212/WNL.48.5.1238
10.1093/brain/awg028
10.1249/01.mss.0000177341.89478.06
10.1111/j.0954-6820.1969.tb07314.x
ContentType Journal Article
Copyright Copyright © 2006 Wiley Periodicals, Inc.
2007 INIST-CNRS
Copyright_xml – notice: Copyright © 2006 Wiley Periodicals, Inc.
– notice: 2007 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7U7
C1K
7X8
DOI 10.1002/mus.20708
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Toxicology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-4598
EndPage 520
ExternalDocumentID 17143893
18633087
10_1002_mus_20708
MUS20708
ark_67375_WNG_VC4R0C78_K
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Telethon‐UILDM
  funderid: GUP030534
– fundername: Telethon
  grantid: GUP030534
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWD
RWI
WRC
WUP
YCJ
AAYXX
CITATION
08R
AAUGY
AAVGM
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
7U7
C1K
7X8
ID FETCH-LOGICAL-c4888-4d82517c2461e6633577ad10f5022f3934a2893c764b5c733184f6add41b42893
IEDL.DBID DR2
ISSN 0148-639X
IngestDate Thu Jul 10 21:47:43 EDT 2025
Fri Jul 11 07:58:09 EDT 2025
Fri May 30 11:00:59 EDT 2025
Sun Oct 22 16:04:59 EDT 2023
Wed Oct 01 01:21:21 EDT 2025
Thu Apr 24 22:51:08 EDT 2025
Wed Jan 22 16:41:48 EST 2025
Sun Sep 21 06:19:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Human
Nervous system diseases
Oxygen
Glycogenosis V Mac Ardle
Deficiency
Tolerance
Cardiovascular disease
Metabolic diseases
Lower limb ischemia
Enzymopathy
Congenital disease
Genetic disease
Psychosis
Vascular disease
Striated muscle disease
Mitochondria
Biopsy
Negative symptom
Carbohydrate
Mitochondrial myopathy
Oxygenation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4888-4d82517c2461e6633577ad10f5022f3934a2893c764b5c733184f6add41b42893
Notes istex:7499FFFE373BDBA4E11CFB559746FA00B8B29149
ark:/67375/WNG-VC4R0C78-K
Telethon-UILDM - No. GUP030534
ArticleID:MUS20708
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17143893
PQID 20644462
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_70464259
proquest_miscellaneous_20644462
pubmed_primary_17143893
pascalfrancis_primary_18633087
crossref_primary_10_1002_mus_20708
crossref_citationtrail_10_1002_mus_20708
wiley_primary_10_1002_mus_20708_MUS20708
istex_primary_ark_67375_WNG_VC4R0C78_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2007
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: April 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Muscle & nerve
PublicationTitleAlternate Muscle Nerve
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Taivassalo T, De Stefano N, Argov Z, Matthews PM, Chen J, Genge A, et al. Effects of aerobic training in patients with mitochondrial myopathies. Neurology 1998; 50: 1055-1060.
Linderholm H, Muller R, Ringqvist R, Sornas R. Hereditary abnormal muscle metabolism with hyperkinetic circulation during exercise. Acta Med Scand 1969; 185: 153-166.
Tarnopolski M. Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion 2004; 4: 529-542.
Haller RG, Lewis SF, Cook JD, Blomqvist CG. Myophosphorylase deficiency impairs muscle oxidative metabolism. Ann Neurol 1985; 17: 196-199.
Taivassalo T, Abbott A, Wyrick P, Haller RG. Venous oxygen levels during aerobic forearm exercise: an index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol 2002; 51: 38-44.
DiMauro S, Bonilla E, Davidson M, Hirano M, Schon EA. Mitochondria in neuromuscular disorders. Biochim Biophys Acta 1998; 1366: 199-210.
Tarnopolski M, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 2005; 37: 2086-2093.
Vladutiu GD. Laboratory diagnosis of metabolic myopathies. Muscle Nerve 2002; 25: 649-663.
Shiga T, Yamamoto K, Tanabe K, Nakase Y, Chance B. Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter. J Biomed Optics 1997; 2: 154-161.
Matsushita K, Homma S, Okada E. Influence of adipose tissue on muscle oxygenation measurements with NIRS instrument. Proc Soc Photo-Opt Instrum Eng 1998; 3194: 116-120.
Kowalchuck JM, Rossiter HB, Ward SA, Whipp BJ. The effect of resistive breathing on leg muscle oxygenation using near-infrared spectroscopy during exercise in men. Exp Physiol 2002; 87: 601-611.
Boushel R, Langberg H, Olesen J, Gonzales-Alonso J, Bülow J, Kjær M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 2001; 11: 213-222.
Ferrari M, Mottola L, Quaresima V. Principles, technique and limitations of near-infrared spectroscopy. Can J Appl Physiol 2004; 29: 463-487.
Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, et al. Muscle oxygenation and gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 2003; 95: 149-158.
DeLorey DS, Kowalchuck J, Paterson DH. Relationship between O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 2003; 95: 113-120.
Bartram C, Edwards RHT, Beynon RJ. McArdle's disease: muscle glycogen phosphorylase deficiency. Biochim Biophys Acta 1995; 1272: 1-13.
Haller RG. Oxygen utilization and delivery in metabolic myopathies. Ann Neurol 1994; 36: 811-813.
McCully KK, Hamaoka T. Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev 2000; 28: 123-127.
Sobreira C, Hirano M, Shanske S, Keller RK, Haller RG, Davidson E, et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology 1997; 48: 1238-1243.
van Beekvelt MCP, van Engelen BGM, Wevers RA, Colier WNJM. Quantitative near-infrared spectroscopy discriminates between mitochondrial myopathies and normal muscle. Ann Neurol 1999; 46: 667-670.
Lewis SF, Haller RG. The pathophysiology of McArdle's disease: clues to regulation in exercise and fatigue. J Appl Physiol 1986; 61: 391-401.
Rowell LB. Human circulation. Regulation during physical stress. Oxford, UK: Oxford University Press; 1986.
Larsson N-G, Oldfors A. Mitochondrial myopathies. Acta Physiol Scand 2001; 171: 385-393.
Wariar R, Gaffke JN, Haller RG, Bertocci LA. A modular NIRS system for clinical measurements of impaired skeletal muscle oxygenation. J Appl Physiol 2000; 88: 315-325.
Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 2003; 126: 413-423.
Abe K, Matsuo Y, Kadekawa J, Iuone S, Yanajahara Y. Measurement of tissue oxygen consumption in patients with mitochondrial myopathy by non-invasive tissue oximetry. Neurology 1997; 49: 837-841.
Bank W, Chance B. An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry. Ann Neurol 1994; 36: 830-837.
Lynch DR, Lech G, Farmer JM, Balcer LJ, Bank W, Chance B, et al. Near infrared muscle spectroscopy in patients with Friedreich's ataxia. Muscle Nerve 2002; 25: 664-673.
Mancini DM. Application of near infrared spectroscopy to the evaluation of exercise performance and limitations in patients with heart failure. J Biomed Optics 1997; 2: 22-30.
Haller RG, Wyrick P, Taivassalo T, Vissing J. Aerobic conditioning: an effective therapy in McArdle's disease. Ann Neurol 2006; 59: 922-928.
Warburton DER, Haykowsky MJF, Quinney HA, Humen DP, Teo KK. Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part I: conventional techniques. Sports Med 1999; 1: 23-41.
McCully KK, Chance B, Giger U. In vivo determination of altered hemoglobin saturation in dogs with M-type phosphofructokinase deficiency. Muscle Nerve 1999; 22: 621-627.
Taivassalo T, Haller RG. Exercise and training in mitochondrial myopathies. Med Sci Sports Exerc 2005; 37: 2094-2101.
Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-381.
1982; 14
2000; 28
2004; 29
2002; 51
1997; 48
2000; 88
2006; 59
2004; 4
1999; 46
1998; 3194
1999; 22
1997; 49
1997; 2
1999; 1
2003; 95
1969; 185
1985; 17
2002; 25
1995; 1272
1986; 61
2000
2001; 171
2002; 87
1986
1994; 36
1998; 50
2001; 11
2005; 37
2003; 126
1998; 1366
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
McCully KK (e_1_2_7_23_2) 2000; 28
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
Haller RG (e_1_2_7_13_2) 2000
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_30_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
Matsushita K (e_1_2_7_21_2) 1998; 3194
Rowell LB (e_1_2_7_24_2) 1986
References_xml – reference: Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-381.
– reference: McCully KK, Chance B, Giger U. In vivo determination of altered hemoglobin saturation in dogs with M-type phosphofructokinase deficiency. Muscle Nerve 1999; 22: 621-627.
– reference: Taivassalo T, De Stefano N, Argov Z, Matthews PM, Chen J, Genge A, et al. Effects of aerobic training in patients with mitochondrial myopathies. Neurology 1998; 50: 1055-1060.
– reference: van Beekvelt MCP, van Engelen BGM, Wevers RA, Colier WNJM. Quantitative near-infrared spectroscopy discriminates between mitochondrial myopathies and normal muscle. Ann Neurol 1999; 46: 667-670.
– reference: Abe K, Matsuo Y, Kadekawa J, Iuone S, Yanajahara Y. Measurement of tissue oxygen consumption in patients with mitochondrial myopathy by non-invasive tissue oximetry. Neurology 1997; 49: 837-841.
– reference: Shiga T, Yamamoto K, Tanabe K, Nakase Y, Chance B. Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter. J Biomed Optics 1997; 2: 154-161.
– reference: Taivassalo T, Abbott A, Wyrick P, Haller RG. Venous oxygen levels during aerobic forearm exercise: an index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol 2002; 51: 38-44.
– reference: Tarnopolski M, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 2005; 37: 2086-2093.
– reference: Matsushita K, Homma S, Okada E. Influence of adipose tissue on muscle oxygenation measurements with NIRS instrument. Proc Soc Photo-Opt Instrum Eng 1998; 3194: 116-120.
– reference: Tarnopolski M. Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion 2004; 4: 529-542.
– reference: Kowalchuck JM, Rossiter HB, Ward SA, Whipp BJ. The effect of resistive breathing on leg muscle oxygenation using near-infrared spectroscopy during exercise in men. Exp Physiol 2002; 87: 601-611.
– reference: McCully KK, Hamaoka T. Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev 2000; 28: 123-127.
– reference: Haller RG, Wyrick P, Taivassalo T, Vissing J. Aerobic conditioning: an effective therapy in McArdle's disease. Ann Neurol 2006; 59: 922-928.
– reference: Vladutiu GD. Laboratory diagnosis of metabolic myopathies. Muscle Nerve 2002; 25: 649-663.
– reference: Rowell LB. Human circulation. Regulation during physical stress. Oxford, UK: Oxford University Press; 1986.
– reference: Linderholm H, Muller R, Ringqvist R, Sornas R. Hereditary abnormal muscle metabolism with hyperkinetic circulation during exercise. Acta Med Scand 1969; 185: 153-166.
– reference: Boushel R, Langberg H, Olesen J, Gonzales-Alonso J, Bülow J, Kjær M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 2001; 11: 213-222.
– reference: Warburton DER, Haykowsky MJF, Quinney HA, Humen DP, Teo KK. Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part I: conventional techniques. Sports Med 1999; 1: 23-41.
– reference: Haller RG. Oxygen utilization and delivery in metabolic myopathies. Ann Neurol 1994; 36: 811-813.
– reference: Lynch DR, Lech G, Farmer JM, Balcer LJ, Bank W, Chance B, et al. Near infrared muscle spectroscopy in patients with Friedreich's ataxia. Muscle Nerve 2002; 25: 664-673.
– reference: Larsson N-G, Oldfors A. Mitochondrial myopathies. Acta Physiol Scand 2001; 171: 385-393.
– reference: Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 2003; 126: 413-423.
– reference: Wariar R, Gaffke JN, Haller RG, Bertocci LA. A modular NIRS system for clinical measurements of impaired skeletal muscle oxygenation. J Appl Physiol 2000; 88: 315-325.
– reference: Bartram C, Edwards RHT, Beynon RJ. McArdle's disease: muscle glycogen phosphorylase deficiency. Biochim Biophys Acta 1995; 1272: 1-13.
– reference: Mancini DM. Application of near infrared spectroscopy to the evaluation of exercise performance and limitations in patients with heart failure. J Biomed Optics 1997; 2: 22-30.
– reference: Taivassalo T, Haller RG. Exercise and training in mitochondrial myopathies. Med Sci Sports Exerc 2005; 37: 2094-2101.
– reference: Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, et al. Muscle oxygenation and gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 2003; 95: 149-158.
– reference: Ferrari M, Mottola L, Quaresima V. Principles, technique and limitations of near-infrared spectroscopy. Can J Appl Physiol 2004; 29: 463-487.
– reference: Lewis SF, Haller RG. The pathophysiology of McArdle's disease: clues to regulation in exercise and fatigue. J Appl Physiol 1986; 61: 391-401.
– reference: Bank W, Chance B. An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry. Ann Neurol 1994; 36: 830-837.
– reference: Sobreira C, Hirano M, Shanske S, Keller RK, Haller RG, Davidson E, et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology 1997; 48: 1238-1243.
– reference: Haller RG, Lewis SF, Cook JD, Blomqvist CG. Myophosphorylase deficiency impairs muscle oxidative metabolism. Ann Neurol 1985; 17: 196-199.
– reference: DeLorey DS, Kowalchuck J, Paterson DH. Relationship between O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 2003; 95: 113-120.
– reference: DiMauro S, Bonilla E, Davidson M, Hirano M, Schon EA. Mitochondria in neuromuscular disorders. Biochim Biophys Acta 1998; 1366: 199-210.
– volume: 51
  start-page: 38
  year: 2002
  end-page: 44
  article-title: Venous oxygen levels during aerobic forearm exercise: an index of impaired oxidative metabolism in mitochondrial myopathy
  publication-title: Ann Neurol
– volume: 1272
  start-page: 1
  year: 1995
  end-page: 13
  article-title: McArdle's disease: muscle glycogen phosphorylase deficiency
  publication-title: Biochim Biophys Acta
– start-page: 271
  year: 2000
  end-page: 281
– volume: 28
  start-page: 123
  year: 2000
  end-page: 127
  article-title: Near‐infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle?
  publication-title: Exerc Sport Sci Rev
– volume: 36
  start-page: 830
  year: 1994
  end-page: 837
  article-title: An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry
  publication-title: Ann Neurol
– volume: 2
  start-page: 154
  year: 1997
  end-page: 161
  article-title: Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter
  publication-title: J Biomed Optics
– volume: 25
  start-page: 649
  year: 2002
  end-page: 663
  article-title: Laboratory diagnosis of metabolic myopathies
  publication-title: Muscle Nerve
– volume: 37
  start-page: 2086
  year: 2005
  end-page: 2093
  article-title: Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options
  publication-title: Med Sci Sports Exerc
– volume: 49
  start-page: 837
  year: 1997
  end-page: 841
  article-title: Measurement of tissue oxygen consumption in patients with mitochondrial myopathy by non‐invasive tissue oximetry
  publication-title: Neurology
– volume: 36
  start-page: 811
  year: 1994
  end-page: 813
  article-title: Oxygen utilization and delivery in metabolic myopathies
  publication-title: Ann Neurol
– volume: 95
  start-page: 113
  year: 2003
  end-page: 120
  article-title: Relationship between O uptake kinetics and muscle deoxygenation during moderate‐intensity exercise
  publication-title: J Appl Physiol
– volume: 61
  start-page: 391
  year: 1986
  end-page: 401
  article-title: The pathophysiology of McArdle's disease: clues to regulation in exercise and fatigue
  publication-title: J Appl Physiol
– volume: 87
  start-page: 601
  year: 2002
  end-page: 611
  article-title: The effect of resistive breathing on leg muscle oxygenation using near‐infrared spectroscopy during exercise in men
  publication-title: Exp Physiol
– volume: 2
  start-page: 22
  year: 1997
  end-page: 30
  article-title: Application of near infrared spectroscopy to the evaluation of exercise performance and limitations in patients with heart failure
  publication-title: J Biomed Optics
– volume: 126
  start-page: 413
  year: 2003
  end-page: 423
  article-title: The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients
  publication-title: Brain
– volume: 3194
  start-page: 116
  year: 1998
  end-page: 120
  article-title: Influence of adipose tissue on muscle oxygenation measurements with NIRS instrument
  publication-title: Proc Soc Photo‐Opt Instrum Eng
– volume: 4
  start-page: 529
  year: 2004
  end-page: 542
  article-title: Exercise testing as a diagnostic entity in mitochondrial myopathies
  publication-title: Mitochondrion
– volume: 95
  start-page: 149
  year: 2003
  end-page: 158
  article-title: Muscle oxygenation and gas exchange kinetics during cycling exercise on‐transitions in humans
  publication-title: J Appl Physiol
– volume: 88
  start-page: 315
  year: 2000
  end-page: 325
  article-title: A modular NIRS system for clinical measurements of impaired skeletal muscle oxygenation
  publication-title: J Appl Physiol
– volume: 14
  start-page: 377
  year: 1982
  end-page: 381
  article-title: Psychophysical bases of perceived exertion
  publication-title: Med Sci Sports Exerc
– volume: 11
  start-page: 213
  year: 2001
  end-page: 222
  article-title: Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease
  publication-title: Scand J Med Sci Sports
– volume: 50
  start-page: 1055
  year: 1998
  end-page: 1060
  article-title: Effects of aerobic training in patients with mitochondrial myopathies
  publication-title: Neurology
– year: 1986
– volume: 1366
  start-page: 199
  year: 1998
  end-page: 210
  article-title: Mitochondria in neuromuscular disorders
  publication-title: Biochim Biophys Acta
– volume: 37
  start-page: 2094
  year: 2005
  end-page: 2101
  article-title: Exercise and training in mitochondrial myopathies
  publication-title: Med Sci Sports Exerc
– volume: 25
  start-page: 664
  year: 2002
  end-page: 673
  article-title: Near infrared muscle spectroscopy in patients with Friedreich's ataxia
  publication-title: Muscle Nerve
– volume: 48
  start-page: 1238
  year: 1997
  end-page: 1243
  article-title: Mitochondrial encephalomyopathy with coenzyme Q deficiency
  publication-title: Neurology
– volume: 171
  start-page: 385
  year: 2001
  end-page: 393
  article-title: Mitochondrial myopathies
  publication-title: Acta Physiol Scand
– volume: 46
  start-page: 667
  year: 1999
  end-page: 670
  article-title: Quantitative near‐infrared spectroscopy discriminates between mitochondrial myopathies and normal muscle
  publication-title: Ann Neurol
– volume: 22
  start-page: 621
  year: 1999
  end-page: 627
  article-title: In vivo determination of altered hemoglobin saturation in dogs with M‐type phosphofructokinase deficiency
  publication-title: Muscle Nerve
– volume: 185
  start-page: 153
  year: 1969
  end-page: 166
  article-title: Hereditary abnormal muscle metabolism with hyperkinetic circulation during exercise
  publication-title: Acta Med Scand
– volume: 1
  start-page: 23
  year: 1999
  end-page: 41
  article-title: Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part I: conventional techniques
  publication-title: Sports Med
– volume: 29
  start-page: 463
  year: 2004
  end-page: 487
  article-title: Principles, technique and limitations of near‐infrared spectroscopy
  publication-title: Can J Appl Physiol
– volume: 17
  start-page: 196
  year: 1985
  end-page: 199
  article-title: Myophosphorylase deficiency impairs muscle oxidative metabolism
  publication-title: Ann Neurol
– volume: 59
  start-page: 922
  year: 2006
  end-page: 928
  article-title: Aerobic conditioning: an effective therapy in McArdle's disease
  publication-title: Ann Neurol
– ident: e_1_2_7_20_2
  doi: 10.1117/12.263747
– ident: e_1_2_7_7_2
  doi: 10.1152/japplphysiol.00956.2002
– ident: e_1_2_7_25_2
  doi: 10.1117/12.268963
– ident: e_1_2_7_16_2
  doi: 10.1046/j.1365-201x.2001.00842.x
– ident: e_1_2_7_31_2
  doi: 10.1016/j.mito.2004.07.011
– ident: e_1_2_7_29_2
  doi: 10.1249/01.mss.0000177446.97671.2a
– ident: e_1_2_7_9_2
  doi: 10.1139/h04-031
– ident: e_1_2_7_10_2
  doi: 10.1152/japplphysiol.00695.2002
– ident: e_1_2_7_6_2
  doi: 10.1034/j.1600-0838.2001.110404.x
– ident: e_1_2_7_19_2
  doi: 10.1002/mus.10077
– ident: e_1_2_7_35_2
  doi: 10.2165/00007256-199927010-00003
– ident: e_1_2_7_12_2
  doi: 10.1002/ana.410170216
– ident: e_1_2_7_15_2
  doi: 10.1113/eph8702456
– ident: e_1_2_7_22_2
  doi: 10.1002/(SICI)1097-4598(199905)22:5<621::AID-MUS11>3.0.CO;2-D
– volume: 28
  start-page: 123
  year: 2000
  ident: e_1_2_7_23_2
  article-title: Near‐infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle?
  publication-title: Exerc Sport Sci Rev
– ident: e_1_2_7_14_2
  doi: 10.1002/ana.20881
– volume: 3194
  start-page: 116
  year: 1998
  ident: e_1_2_7_21_2
  article-title: Influence of adipose tissue on muscle oxygenation measurements with NIRS instrument
  publication-title: Proc Soc Photo‐Opt Instrum Eng
– ident: e_1_2_7_33_2
  doi: 10.1002/1531-8249(199910)46:4<667::AID-ANA19>3.0.CO;2-D
– ident: e_1_2_7_8_2
  doi: 10.1016/S0005-2728(98)00113-3
– ident: e_1_2_7_11_2
  doi: 10.1002/ana.410360603
– ident: e_1_2_7_36_2
  doi: 10.1152/jappl.2000.88.1.315
– ident: e_1_2_7_2_2
  doi: 10.1212/WNL.49.3.837
– volume-title: Human circulation. Regulation during physical stress
  year: 1986
  ident: e_1_2_7_24_2
– ident: e_1_2_7_34_2
  doi: 10.1002/mus.10104
– ident: e_1_2_7_4_2
  doi: 10.1016/0925-4439(95)00060-H
– ident: e_1_2_7_5_2
  doi: 10.1249/00005768-198205000-00012
– start-page: 271
  volume-title: Exercise and circulation in health and disease
  year: 2000
  ident: e_1_2_7_13_2
– ident: e_1_2_7_27_2
  doi: 10.1002/ana.10027
– ident: e_1_2_7_3_2
  doi: 10.1002/ana.410360606
– ident: e_1_2_7_28_2
  doi: 10.1212/WNL.50.4.1055
– ident: e_1_2_7_17_2
  doi: 10.1152/jappl.1986.61.2.391
– ident: e_1_2_7_26_2
  doi: 10.1212/WNL.48.5.1238
– ident: e_1_2_7_30_2
  doi: 10.1093/brain/awg028
– ident: e_1_2_7_32_2
  doi: 10.1249/01.mss.0000177341.89478.06
– ident: e_1_2_7_18_2
  doi: 10.1111/j.0954-6820.1969.tb07314.x
SSID ssj0001867
Score 2.185613
Snippet Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O2 extraction, low maximal...
Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O 2 extraction, low maximal...
Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O(2) extraction, low maximal...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 510
SubjectTerms Adult
Adult and adolescent clinical studies
Aged
Biological and medical sciences
Diseases of striated muscles. Neuromuscular diseases
Energy Metabolism - physiology
Exercise - physiology
Exercise Test
Exercise Tolerance - physiology
Female
Glycogen Storage Disease Type V - diagnosis
Glycogen Storage Disease Type V - metabolism
Glycogen Storage Disease Type V - physiopathology
Heart Rate - physiology
Hemoglobins - analysis
Hemoglobins - metabolism
Humans
Male
Medical sciences
Mitochondrial Myopathies - diagnosis
Mitochondrial Myopathies - metabolism
Mitochondrial Myopathies - physiopathology
mitochondrial myopathy
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiopathology
Myoglobin - metabolism
myophosphorylase deficiency
near-infrared spectroscopy
Neurology
oxidative metabolism
Oxidative Phosphorylation
Oxygen Consumption - physiology
Predictive Value of Tests
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Psychoses
Reference Values
Schizophrenia
Spectroscopy, Near-Infrared - methods
Spectroscopy, Near-Infrared - trends
Title Impaired oxygen extraction in metabolic myopathies: Detection and quantification by near-infrared spectroscopy
URI https://api.istex.fr/ark:/67375/WNG-VC4R0C78-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmus.20708
https://www.ncbi.nlm.nih.gov/pubmed/17143893
https://www.proquest.com/docview/20644462
https://www.proquest.com/docview/70464259
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0148-639X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-4598
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001867
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5VRUJcaPlrTaGsEEJc3Mb2rtcppyqlFFB6KARyQFrtn6WqjRMSRyKc-gg8I0_C7G6cKKiVKm6WPPZq1t_MznpnvgF4xVRpdNlO4iQpy5hagyaVGhNzVZi24rlivo67e5qf9OjHPuuvwdumFibwQyx-uDnL8P7aGbhUk_0laehg6ti2uS_0TTLmj2jPltRRjqgtpC8WMa7C_YZVqJXuL55cWYvuuGn96XIj5QSnpwx9La4LPFfjWL8QHW_A90aFkH9ysTet1Z7-9Q-743_quAn35wEqOQyIegBrtnoId7vzI_hHMPqADgT9pCE4PqKPoHcfh-oIcl6Rga0RVpfnmgxmQ9_u2E4OyJGtbRCRlSE_pjKkKHlUEDUjFdrbn6vfiPaxS4gnvv7T8WwOR7PH0Dt-96VzEs_bNsQavUERU-PKYbl2THUWA5qMcS5N0ioZxgtl1s6oxF1epnlOFdOuZ2RByxz9LE0UdXeewHo1rOw2kBRhQ7VqK2YyXDhzqRkGgAqxlaqMMhvBm-YDCj3nNHetNS5FYGNOBc6g8DMYwcuF6CgQeVwn9NqjYCEhxxcu840z8e30vfjaoWetDi_Epwh2V2CyfGWBCrcKHsGLBjcCDdadwsjKDv1AGILSPL1ZgrvjZtyWRrAVALd8e-hWn6HeHjY3ayK6vc_-4untRXfgXvhz7fKSnsF6PZ7a5xhy1WrX29Zfk3EpQA
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VrQRcaHkbSrtCCHFxG9u7XqfiglJKSpscSgO5VCvvw1LVxklTRyI98RP4jfwSZnbjREGthLhZ8vgx629mx7sz3xDylqvC6KIZhVFUFCGzBkwqNiYUKjNNJVLFXR13p5u2e-xLn_dXyIe6FsbzQ8wX3NAynL9GA8cF6d0Fa-hggnTbAit913B_Ds1y_2RBHoVUbT6BMQthHu7XvEKNeHd-6dJstIYD-wOzI_NrGKDCd7a4LfRcjmTdVHSwTs5qJXwGysXOpFI7-uYvfsf_1XKDPJzFqPSjB9UjsmLLx-ReZ7YL_4SMDsGHgKs0FF4AAEjBwY99gQQ9L-nAVoCsy3NNB9Oh63hsr_fovq2sF8lLQ68muc9ScsCgakpLMLnfP38B4MeYE09dCShSbQ5H06ekd_DptNUOZ50bQg0OIQuZwYpYoZGszkJMk3AhchM1Cg4hQ5E0E5bDj16iRcoU19g2MmNFCq6WRYrhmWdktRyW9gWhMSCHadVU3CQwd6a55hADKoBXrBLGbUDe119Q6hmtOXbXuJSekDmWMILSjWBA3sxFR57L4zahdw4Gc4l8fIHJb4LL793P8luLnTRaIpNHAdlawsnilhko3MhEQLZr4EiwWdyIyUs7dA-CKJSl8d0SAnec4c80IM894hZ39w3rE9Db4eZuTWSn99UdvPx30W1yv33aOZbHh92jV-SBX8jGNKVNslqNJ_Y1RGCV2nKG9gcE_C1c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VrVRx4f0wj3aFEOLiNrZ3vQ6cUEpoKYlQIZAD0sr7kqo2TkgdiXDiJ_Ab-SXM7MaJgloJcbPksa1ZfzM7uzvzDSHPuHJGu3YSJ4lzMbMGTCo1JhaqMG0lcsV9HXevnx8O2LshH26QV00tTOCHWG64oWV4f40GPjFuf0UaOpoh27bAQt8tlsPqCiOikxV3FDK1hfzFIoZpeNjQCrXS_eWja5PRFo7rd0yOLC9gfFxobHFZ5LkeyPqZqHuDfG10CAkoZ3uzWu3pH3_RO_6nkjfJ9UWESl8HSN0iG7a6TbZ7izP4O2RyBB4EHKWh8H2AHwX3Pg3lEfS0oiNbA67OTzUdzce-37G9eEkPbG2DSFkZ-m1WhhwlDwuq5rQCg_v98xfAfYoZ8dQXgCLR5ngyv0sG3TefOofxom9DrMEdFDEzWA8rNFLVWYhoMi5EaZKW4xAwuKydsRKWeZkWOVNcY9PIgrkcHC1LFMM798hmNa7sA0JTwA3Tqq24yWDmzEvNIQJUAK5UZYzbiLxofqDUC1Jz7K1xLgMdcyphBKUfwYg8XYpOApPHZULPPQqWEuX0DFPfBJdf-m_l5w47aXVEIY8jsrMGk9UrC1C4VYiI7Da4kWCxeAxTVnbsPwQxKMvTqyUEnjfDujQi9wPgVm8P7eoz0NvD5mpNZG_w0V88_HfRXbL94aAr3x_1jx-Ra2EXG3OUHpPNejqzTyD8qtWON7M_YzksCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+oxygen+extraction+in+metabolic+myopathies%3A+Detection+and+quantification+by+near-infrared+spectroscopy&rft.jtitle=Muscle+%26+nerve&rft.au=Grassi%2C+Bruno&rft.au=Marzorati%2C+Mauro&rft.au=Lanfranconi%2C+Francesca&rft.au=Ferri%2C+Alessandra&rft.date=2007-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0148-639X&rft.eissn=1097-4598&rft.volume=35&rft.issue=4&rft.spage=510&rft.epage=520&rft_id=info:doi/10.1002%2Fmus.20708&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VC4R0C78_K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-639X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-639X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-639X&client=summon