Impaired oxygen extraction in metabolic myopathies: Detection and quantification by near-infrared spectroscopy
Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O2 extraction, low maximal aerobic power, and reduced exercise tolerance. Non‐invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 wi...
Saved in:
Published in | Muscle & nerve Vol. 35; no. 4; pp. 510 - 520 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2007
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0148-639X 1097-4598 |
DOI | 10.1002/mus.20708 |
Cover
Abstract | Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O2 extraction, low maximal aerobic power, and reduced exercise tolerance. Non‐invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient‐controls, P‐CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O2 uptake (V̇O2) and vastus lateralis oxygenation indices (by near‐infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Δ[deoxy(Hb + Mb)]) were considered an index of O2 extraction. Δ[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 ± 12.0%) and McA (18.7 ± 7.3) than in P‐CTRL (62.4 ± 3.9) and CTRL (71.3 ± 3.9) subjects. V̇O2 peak and Δ[deoxy(Hb + Mb)] peak were linearly related (r2 = 0.83). In these patients, NIRS is a tool to detect and quantify non‐invasively the metabolic impairment, which may be useful in the follow‐up of patients and in the assessment of therapies and interventions. Muscle Nerve, 2006 |
---|---|
AbstractList | Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O2 extraction, low maximal aerobic power, and reduced exercise tolerance. Non‐invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient‐controls, P‐CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O2 uptake (V̇O2) and vastus lateralis oxygenation indices (by near‐infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Δ[deoxy(Hb + Mb)]) were considered an index of O2 extraction. Δ[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 ± 12.0%) and McA (18.7 ± 7.3) than in P‐CTRL (62.4 ± 3.9) and CTRL (71.3 ± 3.9) subjects. V̇O2 peak and Δ[deoxy(Hb + Mb)] peak were linearly related (r2 = 0.83). In these patients, NIRS is a tool to detect and quantify non‐invasively the metabolic impairment, which may be useful in the follow‐up of patients and in the assessment of therapies and interventions. Muscle Nerve, 2006 Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O 2 extraction, low maximal aerobic power, and reduced exercise tolerance. Non‐invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient‐controls, P‐CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O 2 uptake (V̇O 2 ) and vastus lateralis oxygenation indices (by near‐infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Δ[deoxy(Hb + Mb)]) were considered an index of O 2 extraction. Δ[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 ± 12.0%) and McA (18.7 ± 7.3) than in P‐CTRL (62.4 ± 3.9) and CTRL (71.3 ± 3.9) subjects. V̇O 2 peak and Δ[deoxy(Hb + Mb)] peak were linearly related ( r 2 = 0.83). In these patients, NIRS is a tool to detect and quantify non‐invasively the metabolic impairment, which may be useful in the follow‐up of patients and in the assessment of therapies and interventions. Muscle Nerve, 2006 Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O(2) extraction, low maximal aerobic power, and reduced exercise tolerance. Non-invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient-controls, P-CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O(2) uptake (VO(2)) and vastus lateralis oxygenation indices (by near-infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Delta[deoxy(Hb + Mb)]) were considered an index of O(2) extraction. Delta[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 +/- 12.0%) and McA (18.7 +/- 7.3) than in P-CTRL (62.4 +/- 3.9) and CTRL (71.3 +/- 3.9) subjects. VO(2) peak and Delta[deoxy(Hb + Mb)] peak were linearly related (r(2) = 0.83). In these patients, NIRS is a tool to detect and quantify non-invasively the metabolic impairment, which may be useful in the follow-up of patients and in the assessment of therapies and interventions.Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O(2) extraction, low maximal aerobic power, and reduced exercise tolerance. Non-invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient-controls, P-CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O(2) uptake (VO(2)) and vastus lateralis oxygenation indices (by near-infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Delta[deoxy(Hb + Mb)]) were considered an index of O(2) extraction. Delta[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 +/- 12.0%) and McA (18.7 +/- 7.3) than in P-CTRL (62.4 +/- 3.9) and CTRL (71.3 +/- 3.9) subjects. VO(2) peak and Delta[deoxy(Hb + Mb)] peak were linearly related (r(2) = 0.83). In these patients, NIRS is a tool to detect and quantify non-invasively the metabolic impairment, which may be useful in the follow-up of patients and in the assessment of therapies and interventions. Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O(2) extraction, low maximal aerobic power, and reduced exercise tolerance. Non-invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient-controls, P-CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O(2) uptake (VO(2)) and vastus lateralis oxygenation indices (by near-infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin (Delta[deoxy(Hb + Mb)]) were considered an index of O(2) extraction. Delta[deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 +/- 12.0%) and McA (18.7 +/- 7.3) than in P-CTRL (62.4 +/- 3.9) and CTRL (71.3 +/- 3.9) subjects. VO(2) peak and Delta[deoxy(Hb + Mb)] peak were linearly related (r(2) = 0.83). In these patients, NIRS is a tool to detect and quantify non-invasively the metabolic impairment, which may be useful in the follow-up of patients and in the assessment of therapies and interventions. Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O2 extraction, low maximal aerobic power, and reduced exercise tolerance. Non-invasive tools are needed to quantify the metabolic impairment. Six patients with MM, 6 with McA, 25 with symptoms of metabolic myopathy but negative biopsy (patient-controls, P-CTRL) and 20 controls (CTRL) underwent an incremental cycloergometric test. Pulmonary O2 uptake (O2) and vastus lateralis oxygenation indices (by near-infrared spectroscopy, NIRS) were determined. Concentration changes of deoxygenated hemoglobin and myoglobin ([deoxy(Hb + Mb)]) were considered an index of O2 extraction. [deoxy(Hb + Mb)] peak (percent limb ischemia) was lower in MM (25.3 ± 12.0%) and McA (18.7 ± 7.3) than in P-CTRL (62.4 ± 3.9) and CTRL (71.3 ± 3.9) subjects. O2 peak and [deoxy(Hb + Mb)] peak were linearly related (r2 = 0.83). In these patients, NIRS is a tool to detect and quantify non-invasively the metabolic impairment, which may be useful in the follow-up of patients and in the assessment of therapies and interventions. Muscle Nerve, 2006. |
Author | Stucchi, Andrea Marconi, Claudio Grassi, Bruno Vago, Paola Lanfranconi, Francesca Marzorati, Mauro Morandi, Lucia Ferri, Alessandra Longaretti, Miriam |
Author_xml | – sequence: 1 givenname: Bruno surname: Grassi fullname: Grassi, Bruno email: bruno.grassi@unimi.it organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy – sequence: 2 givenname: Mauro surname: Marzorati fullname: Marzorati, Mauro organization: Institute of Bioimaging and Molecular Physiology, CNR, Segrate (MI), Italy – sequence: 3 givenname: Francesca surname: Lanfranconi fullname: Lanfranconi, Francesca organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy – sequence: 4 givenname: Alessandra surname: Ferri fullname: Ferri, Alessandra organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy – sequence: 5 givenname: Miriam surname: Longaretti fullname: Longaretti, Miriam organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy – sequence: 6 givenname: Andrea surname: Stucchi fullname: Stucchi, Andrea organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy – sequence: 7 givenname: Paola surname: Vago fullname: Vago, Paola organization: Department of Science and Biomedical Technologies, University of Milan, LITA-Via Fratelli Cervi 93, I-20090 Segrate (MI), Italy – sequence: 8 givenname: Claudio surname: Marconi fullname: Marconi, Claudio organization: Institute of Bioimaging and Molecular Physiology, CNR, Segrate (MI), Italy – sequence: 9 givenname: Lucia surname: Morandi fullname: Morandi, Lucia organization: Department of Neuromuscular Diseases, Neurological Institute Carlo Besta, Milan, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18633087$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17143893$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0V1v1SAYB3BiZtzZ5oVfwPTGJV50461AvVvOdC7OmahT7wilVNEWOqDx9NvLeZlLTNQrEvj9H-B5DsCe884A8ATBEwQhPh2meIIhh-IBWCBY85JWtdgDC4ioKBmpv-yDgxi_QwiRYPwR2EccUSJqsgDuchiVDaYt_Gr-alxhVikonax3hXXFYJJqfG91Mcx-VOmbNfFFcW6S2RLl2uJ2Ui7Zzmq12WrmwhkVSuu6oNaF45hx8FH7cT4CDzvVR_N4tx6Cm1cvPy5fl1fvLi6XZ1elpkKIkrYCV4hrTBkyjBFSca5aBLsKYtyRmlCF8_M1Z7SpNCcECdox1bYUNXR9cgiOt3XH4G8nE5McbNSm75UzfoqSQ8oorv4PMWSUUoYzfLqDUzOYVo7BDirM8q6VGTzbARW16vPnnbbx3on8DSh4ds-3TueexGC6ewLlepxy2Nybx5nt6R9W27Rpcx6S7f-V-Gl7M_-9tHx78-EuUW4TNiaz-p1Q4YdknPBKfr6-kJ-W9D1cciHfkF9OBb_e |
CODEN | MUNEDE |
CitedBy_id | crossref_primary_10_3390_jcm12103571 crossref_primary_10_1152_japplphysiol_00703_2018 crossref_primary_10_3390_a15120444 crossref_primary_10_1117_1_2805437 crossref_primary_10_1007_s00520_017_4036_6 crossref_primary_10_1111_cpf_12796 crossref_primary_10_1152_japplphysiol_01063_2013 crossref_primary_10_1016_j_nmd_2017_03_002 crossref_primary_10_1186_1471_2377_13_52 crossref_primary_10_1080_14779072_2021_2009802 crossref_primary_10_1093_brain_awr293 crossref_primary_10_1155_2013_154327 crossref_primary_10_1186_s12967_015_0527_8 crossref_primary_10_1002_j_2617_1619_2018_tb00002_x crossref_primary_10_1152_japplphysiol_00166_2018 crossref_primary_10_1152_japplphysiol_00060_2014 crossref_primary_10_1016_j_resp_2013_09_007 crossref_primary_10_1142_S1793545811001514 crossref_primary_10_1152_ajpheart_00479_2010 crossref_primary_10_1366_14_07604 crossref_primary_10_1016_j_ddmod_2009_07_001 crossref_primary_10_3390_jcm8101641 crossref_primary_10_1183_23120541_00449_2021 crossref_primary_10_1016_j_nmd_2015_10_004 crossref_primary_10_1002_acn3_51353 crossref_primary_10_1016_j_ejvs_2009_06_011 crossref_primary_10_1152_ajpregu_00001_2011 crossref_primary_10_3390_muscles3040033 crossref_primary_10_1007_s00520_021_06178_w crossref_primary_10_1371_journal_pone_0199756 crossref_primary_10_1016_j_nmd_2012_10_017 crossref_primary_10_1371_journal_pone_0220192 crossref_primary_10_1249_MSS_0000000000002056 crossref_primary_10_1249_MSS_0b013e31823e6579 crossref_primary_10_1016_j_cophys_2019_05_011 crossref_primary_10_1007_s00421_011_2183_x crossref_primary_10_1016_j_cca_2016_02_009 crossref_primary_10_1007_s00421_010_1609_1 crossref_primary_10_1016_j_semarthrit_2018_08_002 crossref_primary_10_1152_japplphysiol_00782_2009 crossref_primary_10_3109_17482968_2011_601463 crossref_primary_10_1016_j_clinph_2017_10_034 crossref_primary_10_1016_j_ergon_2009_02_004 crossref_primary_10_3390_app9152952 crossref_primary_10_1007_s00784_016_1912_2 crossref_primary_10_1007_s10072_019_04178_7 crossref_primary_10_1152_japplphysiol_01225_2007 crossref_primary_10_1007_s00421_016_3468_x crossref_primary_10_1371_journal_pone_0099282 crossref_primary_10_1002_mus_21758 crossref_primary_10_1016_j_jpeds_2019_01_022 crossref_primary_10_1212_CON_0000000000001182 crossref_primary_10_1002_mus_23505 crossref_primary_10_1016_j_pmr_2008_10_011 crossref_primary_10_1249_MSS_0000000000002521 crossref_primary_10_1080_10790268_2020_1798137 crossref_primary_10_1089_ham_2017_0028 crossref_primary_10_1038_s41598_020_65770_y crossref_primary_10_1152_japplphysiol_00885_2015 crossref_primary_10_1016_j_nmd_2012_04_011 crossref_primary_10_3390_nu14091886 crossref_primary_10_1002_mus_22251 crossref_primary_10_1016_j_ergon_2009_02_002 crossref_primary_10_1098_rsta_2011_0298 crossref_primary_10_1371_journal_pone_0147691 crossref_primary_10_1007_s00421_011_2136_4 crossref_primary_10_3389_fphys_2018_01036 crossref_primary_10_1038_s41598_017_02811_z crossref_primary_10_1113_JP278930 crossref_primary_10_1152_japplphysiol_01627_2011 crossref_primary_10_1007_s00421_022_05095_y crossref_primary_10_1152_japplphysiol_00196_2021 crossref_primary_10_1016_j_ncl_2007_11_010 crossref_primary_10_1113_expphysiol_2011_064303 crossref_primary_10_1080_02701367_2022_2159309 crossref_primary_10_1152_japplphysiol_01380_2010 crossref_primary_10_3389_fphys_2020_00350 crossref_primary_10_14814_phy2_13065 crossref_primary_10_1038_s42003_022_04303_x crossref_primary_10_1249_MSS_0b013e3181aae96b crossref_primary_10_1249_MSS_0000000000003529 crossref_primary_10_1249_MSS_0000000000000334 crossref_primary_10_1249_MSS_0000000000001546 |
Cites_doi | 10.1117/12.263747 10.1152/japplphysiol.00956.2002 10.1117/12.268963 10.1046/j.1365-201x.2001.00842.x 10.1016/j.mito.2004.07.011 10.1249/01.mss.0000177446.97671.2a 10.1139/h04-031 10.1152/japplphysiol.00695.2002 10.1034/j.1600-0838.2001.110404.x 10.1002/mus.10077 10.2165/00007256-199927010-00003 10.1002/ana.410170216 10.1113/eph8702456 10.1002/(SICI)1097-4598(199905)22:5<621::AID-MUS11>3.0.CO;2-D 10.1002/ana.20881 10.1002/1531-8249(199910)46:4<667::AID-ANA19>3.0.CO;2-D 10.1016/S0005-2728(98)00113-3 10.1002/ana.410360603 10.1152/jappl.2000.88.1.315 10.1212/WNL.49.3.837 10.1002/mus.10104 10.1016/0925-4439(95)00060-H 10.1249/00005768-198205000-00012 10.1002/ana.10027 10.1002/ana.410360606 10.1212/WNL.50.4.1055 10.1152/jappl.1986.61.2.391 10.1212/WNL.48.5.1238 10.1093/brain/awg028 10.1249/01.mss.0000177341.89478.06 10.1111/j.0954-6820.1969.tb07314.x |
ContentType | Journal Article |
Copyright | Copyright © 2006 Wiley Periodicals, Inc. 2007 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2006 Wiley Periodicals, Inc. – notice: 2007 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7U7 C1K 7X8 |
DOI | 10.1002/mus.20708 |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Toxicology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-4598 |
EndPage | 520 |
ExternalDocumentID | 17143893 18633087 10_1002_mus_20708 MUS20708 ark_67375_WNG_VC4R0C78_K |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Telethon‐UILDM funderid: GUP030534 – fundername: Telethon grantid: GUP030534 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1CY 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC FYBCS G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWD RWI WRC WUP YCJ AAYXX CITATION 08R AAUGY AAVGM ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IQODW ZA5 CGR CUY CVF ECM EIF NPM 7U7 C1K 7X8 |
ID | FETCH-LOGICAL-c4888-4d82517c2461e6633577ad10f5022f3934a2893c764b5c733184f6add41b42893 |
IEDL.DBID | DR2 |
ISSN | 0148-639X |
IngestDate | Thu Jul 10 21:47:43 EDT 2025 Fri Jul 11 07:58:09 EDT 2025 Fri May 30 11:00:59 EDT 2025 Sun Oct 22 16:04:59 EDT 2023 Wed Oct 01 01:21:21 EDT 2025 Thu Apr 24 22:51:08 EDT 2025 Wed Jan 22 16:41:48 EST 2025 Sun Sep 21 06:19:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Human Nervous system diseases Oxygen Glycogenosis V Mac Ardle Deficiency Tolerance Cardiovascular disease Metabolic diseases Lower limb ischemia Enzymopathy Congenital disease Genetic disease Psychosis Vascular disease Striated muscle disease Mitochondria Biopsy Negative symptom Carbohydrate Mitochondrial myopathy Oxygenation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4888-4d82517c2461e6633577ad10f5022f3934a2893c764b5c733184f6add41b42893 |
Notes | istex:7499FFFE373BDBA4E11CFB559746FA00B8B29149 ark:/67375/WNG-VC4R0C78-K Telethon-UILDM - No. GUP030534 ArticleID:MUS20708 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17143893 |
PQID | 20644462 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_70464259 proquest_miscellaneous_20644462 pubmed_primary_17143893 pascalfrancis_primary_18633087 crossref_primary_10_1002_mus_20708 crossref_citationtrail_10_1002_mus_20708 wiley_primary_10_1002_mus_20708_MUS20708 istex_primary_ark_67375_WNG_VC4R0C78_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2007 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: April 2007 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Muscle & nerve |
PublicationTitleAlternate | Muscle Nerve |
PublicationYear | 2007 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Taivassalo T, De Stefano N, Argov Z, Matthews PM, Chen J, Genge A, et al. Effects of aerobic training in patients with mitochondrial myopathies. Neurology 1998; 50: 1055-1060. Linderholm H, Muller R, Ringqvist R, Sornas R. Hereditary abnormal muscle metabolism with hyperkinetic circulation during exercise. Acta Med Scand 1969; 185: 153-166. Tarnopolski M. Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion 2004; 4: 529-542. Haller RG, Lewis SF, Cook JD, Blomqvist CG. Myophosphorylase deficiency impairs muscle oxidative metabolism. Ann Neurol 1985; 17: 196-199. Taivassalo T, Abbott A, Wyrick P, Haller RG. Venous oxygen levels during aerobic forearm exercise: an index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol 2002; 51: 38-44. DiMauro S, Bonilla E, Davidson M, Hirano M, Schon EA. Mitochondria in neuromuscular disorders. Biochim Biophys Acta 1998; 1366: 199-210. Tarnopolski M, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 2005; 37: 2086-2093. Vladutiu GD. Laboratory diagnosis of metabolic myopathies. Muscle Nerve 2002; 25: 649-663. Shiga T, Yamamoto K, Tanabe K, Nakase Y, Chance B. Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter. J Biomed Optics 1997; 2: 154-161. Matsushita K, Homma S, Okada E. Influence of adipose tissue on muscle oxygenation measurements with NIRS instrument. Proc Soc Photo-Opt Instrum Eng 1998; 3194: 116-120. Kowalchuck JM, Rossiter HB, Ward SA, Whipp BJ. The effect of resistive breathing on leg muscle oxygenation using near-infrared spectroscopy during exercise in men. Exp Physiol 2002; 87: 601-611. Boushel R, Langberg H, Olesen J, Gonzales-Alonso J, Bülow J, Kjær M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 2001; 11: 213-222. Ferrari M, Mottola L, Quaresima V. Principles, technique and limitations of near-infrared spectroscopy. Can J Appl Physiol 2004; 29: 463-487. Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, et al. Muscle oxygenation and gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 2003; 95: 149-158. DeLorey DS, Kowalchuck J, Paterson DH. Relationship between O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 2003; 95: 113-120. Bartram C, Edwards RHT, Beynon RJ. McArdle's disease: muscle glycogen phosphorylase deficiency. Biochim Biophys Acta 1995; 1272: 1-13. Haller RG. Oxygen utilization and delivery in metabolic myopathies. Ann Neurol 1994; 36: 811-813. McCully KK, Hamaoka T. Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev 2000; 28: 123-127. Sobreira C, Hirano M, Shanske S, Keller RK, Haller RG, Davidson E, et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology 1997; 48: 1238-1243. van Beekvelt MCP, van Engelen BGM, Wevers RA, Colier WNJM. Quantitative near-infrared spectroscopy discriminates between mitochondrial myopathies and normal muscle. Ann Neurol 1999; 46: 667-670. Lewis SF, Haller RG. The pathophysiology of McArdle's disease: clues to regulation in exercise and fatigue. J Appl Physiol 1986; 61: 391-401. Rowell LB. Human circulation. Regulation during physical stress. Oxford, UK: Oxford University Press; 1986. Larsson N-G, Oldfors A. Mitochondrial myopathies. Acta Physiol Scand 2001; 171: 385-393. Wariar R, Gaffke JN, Haller RG, Bertocci LA. A modular NIRS system for clinical measurements of impaired skeletal muscle oxygenation. J Appl Physiol 2000; 88: 315-325. Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 2003; 126: 413-423. Abe K, Matsuo Y, Kadekawa J, Iuone S, Yanajahara Y. Measurement of tissue oxygen consumption in patients with mitochondrial myopathy by non-invasive tissue oximetry. Neurology 1997; 49: 837-841. Bank W, Chance B. An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry. Ann Neurol 1994; 36: 830-837. Lynch DR, Lech G, Farmer JM, Balcer LJ, Bank W, Chance B, et al. Near infrared muscle spectroscopy in patients with Friedreich's ataxia. Muscle Nerve 2002; 25: 664-673. Mancini DM. Application of near infrared spectroscopy to the evaluation of exercise performance and limitations in patients with heart failure. J Biomed Optics 1997; 2: 22-30. Haller RG, Wyrick P, Taivassalo T, Vissing J. Aerobic conditioning: an effective therapy in McArdle's disease. Ann Neurol 2006; 59: 922-928. Warburton DER, Haykowsky MJF, Quinney HA, Humen DP, Teo KK. Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part I: conventional techniques. Sports Med 1999; 1: 23-41. McCully KK, Chance B, Giger U. In vivo determination of altered hemoglobin saturation in dogs with M-type phosphofructokinase deficiency. Muscle Nerve 1999; 22: 621-627. Taivassalo T, Haller RG. Exercise and training in mitochondrial myopathies. Med Sci Sports Exerc 2005; 37: 2094-2101. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-381. 1982; 14 2000; 28 2004; 29 2002; 51 1997; 48 2000; 88 2006; 59 2004; 4 1999; 46 1998; 3194 1999; 22 1997; 49 1997; 2 1999; 1 2003; 95 1969; 185 1985; 17 2002; 25 1995; 1272 1986; 61 2000 2001; 171 2002; 87 1986 1994; 36 1998; 50 2001; 11 2005; 37 2003; 126 1998; 1366 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 McCully KK (e_1_2_7_23_2) 2000; 28 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 Haller RG (e_1_2_7_13_2) 2000 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_30_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 Matsushita K (e_1_2_7_21_2) 1998; 3194 Rowell LB (e_1_2_7_24_2) 1986 |
References_xml | – reference: Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-381. – reference: McCully KK, Chance B, Giger U. In vivo determination of altered hemoglobin saturation in dogs with M-type phosphofructokinase deficiency. Muscle Nerve 1999; 22: 621-627. – reference: Taivassalo T, De Stefano N, Argov Z, Matthews PM, Chen J, Genge A, et al. Effects of aerobic training in patients with mitochondrial myopathies. Neurology 1998; 50: 1055-1060. – reference: van Beekvelt MCP, van Engelen BGM, Wevers RA, Colier WNJM. Quantitative near-infrared spectroscopy discriminates between mitochondrial myopathies and normal muscle. Ann Neurol 1999; 46: 667-670. – reference: Abe K, Matsuo Y, Kadekawa J, Iuone S, Yanajahara Y. Measurement of tissue oxygen consumption in patients with mitochondrial myopathy by non-invasive tissue oximetry. Neurology 1997; 49: 837-841. – reference: Shiga T, Yamamoto K, Tanabe K, Nakase Y, Chance B. Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter. J Biomed Optics 1997; 2: 154-161. – reference: Taivassalo T, Abbott A, Wyrick P, Haller RG. Venous oxygen levels during aerobic forearm exercise: an index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol 2002; 51: 38-44. – reference: Tarnopolski M, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 2005; 37: 2086-2093. – reference: Matsushita K, Homma S, Okada E. Influence of adipose tissue on muscle oxygenation measurements with NIRS instrument. Proc Soc Photo-Opt Instrum Eng 1998; 3194: 116-120. – reference: Tarnopolski M. Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion 2004; 4: 529-542. – reference: Kowalchuck JM, Rossiter HB, Ward SA, Whipp BJ. The effect of resistive breathing on leg muscle oxygenation using near-infrared spectroscopy during exercise in men. Exp Physiol 2002; 87: 601-611. – reference: McCully KK, Hamaoka T. Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev 2000; 28: 123-127. – reference: Haller RG, Wyrick P, Taivassalo T, Vissing J. Aerobic conditioning: an effective therapy in McArdle's disease. Ann Neurol 2006; 59: 922-928. – reference: Vladutiu GD. Laboratory diagnosis of metabolic myopathies. Muscle Nerve 2002; 25: 649-663. – reference: Rowell LB. Human circulation. Regulation during physical stress. Oxford, UK: Oxford University Press; 1986. – reference: Linderholm H, Muller R, Ringqvist R, Sornas R. Hereditary abnormal muscle metabolism with hyperkinetic circulation during exercise. Acta Med Scand 1969; 185: 153-166. – reference: Boushel R, Langberg H, Olesen J, Gonzales-Alonso J, Bülow J, Kjær M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 2001; 11: 213-222. – reference: Warburton DER, Haykowsky MJF, Quinney HA, Humen DP, Teo KK. Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part I: conventional techniques. Sports Med 1999; 1: 23-41. – reference: Haller RG. Oxygen utilization and delivery in metabolic myopathies. Ann Neurol 1994; 36: 811-813. – reference: Lynch DR, Lech G, Farmer JM, Balcer LJ, Bank W, Chance B, et al. Near infrared muscle spectroscopy in patients with Friedreich's ataxia. Muscle Nerve 2002; 25: 664-673. – reference: Larsson N-G, Oldfors A. Mitochondrial myopathies. Acta Physiol Scand 2001; 171: 385-393. – reference: Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 2003; 126: 413-423. – reference: Wariar R, Gaffke JN, Haller RG, Bertocci LA. A modular NIRS system for clinical measurements of impaired skeletal muscle oxygenation. J Appl Physiol 2000; 88: 315-325. – reference: Bartram C, Edwards RHT, Beynon RJ. McArdle's disease: muscle glycogen phosphorylase deficiency. Biochim Biophys Acta 1995; 1272: 1-13. – reference: Mancini DM. Application of near infrared spectroscopy to the evaluation of exercise performance and limitations in patients with heart failure. J Biomed Optics 1997; 2: 22-30. – reference: Taivassalo T, Haller RG. Exercise and training in mitochondrial myopathies. Med Sci Sports Exerc 2005; 37: 2094-2101. – reference: Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, et al. Muscle oxygenation and gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 2003; 95: 149-158. – reference: Ferrari M, Mottola L, Quaresima V. Principles, technique and limitations of near-infrared spectroscopy. Can J Appl Physiol 2004; 29: 463-487. – reference: Lewis SF, Haller RG. The pathophysiology of McArdle's disease: clues to regulation in exercise and fatigue. J Appl Physiol 1986; 61: 391-401. – reference: Bank W, Chance B. An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry. Ann Neurol 1994; 36: 830-837. – reference: Sobreira C, Hirano M, Shanske S, Keller RK, Haller RG, Davidson E, et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology 1997; 48: 1238-1243. – reference: Haller RG, Lewis SF, Cook JD, Blomqvist CG. Myophosphorylase deficiency impairs muscle oxidative metabolism. Ann Neurol 1985; 17: 196-199. – reference: DeLorey DS, Kowalchuck J, Paterson DH. Relationship between O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 2003; 95: 113-120. – reference: DiMauro S, Bonilla E, Davidson M, Hirano M, Schon EA. Mitochondria in neuromuscular disorders. Biochim Biophys Acta 1998; 1366: 199-210. – volume: 51 start-page: 38 year: 2002 end-page: 44 article-title: Venous oxygen levels during aerobic forearm exercise: an index of impaired oxidative metabolism in mitochondrial myopathy publication-title: Ann Neurol – volume: 1272 start-page: 1 year: 1995 end-page: 13 article-title: McArdle's disease: muscle glycogen phosphorylase deficiency publication-title: Biochim Biophys Acta – start-page: 271 year: 2000 end-page: 281 – volume: 28 start-page: 123 year: 2000 end-page: 127 article-title: Near‐infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? publication-title: Exerc Sport Sci Rev – volume: 36 start-page: 830 year: 1994 end-page: 837 article-title: An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry publication-title: Ann Neurol – volume: 2 start-page: 154 year: 1997 end-page: 161 article-title: Study of an algorithm based on model experiments and diffusion theory for a portable tissue oximeter publication-title: J Biomed Optics – volume: 25 start-page: 649 year: 2002 end-page: 663 article-title: Laboratory diagnosis of metabolic myopathies publication-title: Muscle Nerve – volume: 37 start-page: 2086 year: 2005 end-page: 2093 article-title: Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options publication-title: Med Sci Sports Exerc – volume: 49 start-page: 837 year: 1997 end-page: 841 article-title: Measurement of tissue oxygen consumption in patients with mitochondrial myopathy by non‐invasive tissue oximetry publication-title: Neurology – volume: 36 start-page: 811 year: 1994 end-page: 813 article-title: Oxygen utilization and delivery in metabolic myopathies publication-title: Ann Neurol – volume: 95 start-page: 113 year: 2003 end-page: 120 article-title: Relationship between O uptake kinetics and muscle deoxygenation during moderate‐intensity exercise publication-title: J Appl Physiol – volume: 61 start-page: 391 year: 1986 end-page: 401 article-title: The pathophysiology of McArdle's disease: clues to regulation in exercise and fatigue publication-title: J Appl Physiol – volume: 87 start-page: 601 year: 2002 end-page: 611 article-title: The effect of resistive breathing on leg muscle oxygenation using near‐infrared spectroscopy during exercise in men publication-title: Exp Physiol – volume: 2 start-page: 22 year: 1997 end-page: 30 article-title: Application of near infrared spectroscopy to the evaluation of exercise performance and limitations in patients with heart failure publication-title: J Biomed Optics – volume: 126 start-page: 413 year: 2003 end-page: 423 article-title: The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients publication-title: Brain – volume: 3194 start-page: 116 year: 1998 end-page: 120 article-title: Influence of adipose tissue on muscle oxygenation measurements with NIRS instrument publication-title: Proc Soc Photo‐Opt Instrum Eng – volume: 4 start-page: 529 year: 2004 end-page: 542 article-title: Exercise testing as a diagnostic entity in mitochondrial myopathies publication-title: Mitochondrion – volume: 95 start-page: 149 year: 2003 end-page: 158 article-title: Muscle oxygenation and gas exchange kinetics during cycling exercise on‐transitions in humans publication-title: J Appl Physiol – volume: 88 start-page: 315 year: 2000 end-page: 325 article-title: A modular NIRS system for clinical measurements of impaired skeletal muscle oxygenation publication-title: J Appl Physiol – volume: 14 start-page: 377 year: 1982 end-page: 381 article-title: Psychophysical bases of perceived exertion publication-title: Med Sci Sports Exerc – volume: 11 start-page: 213 year: 2001 end-page: 222 article-title: Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease publication-title: Scand J Med Sci Sports – volume: 50 start-page: 1055 year: 1998 end-page: 1060 article-title: Effects of aerobic training in patients with mitochondrial myopathies publication-title: Neurology – year: 1986 – volume: 1366 start-page: 199 year: 1998 end-page: 210 article-title: Mitochondria in neuromuscular disorders publication-title: Biochim Biophys Acta – volume: 37 start-page: 2094 year: 2005 end-page: 2101 article-title: Exercise and training in mitochondrial myopathies publication-title: Med Sci Sports Exerc – volume: 25 start-page: 664 year: 2002 end-page: 673 article-title: Near infrared muscle spectroscopy in patients with Friedreich's ataxia publication-title: Muscle Nerve – volume: 48 start-page: 1238 year: 1997 end-page: 1243 article-title: Mitochondrial encephalomyopathy with coenzyme Q deficiency publication-title: Neurology – volume: 171 start-page: 385 year: 2001 end-page: 393 article-title: Mitochondrial myopathies publication-title: Acta Physiol Scand – volume: 46 start-page: 667 year: 1999 end-page: 670 article-title: Quantitative near‐infrared spectroscopy discriminates between mitochondrial myopathies and normal muscle publication-title: Ann Neurol – volume: 22 start-page: 621 year: 1999 end-page: 627 article-title: In vivo determination of altered hemoglobin saturation in dogs with M‐type phosphofructokinase deficiency publication-title: Muscle Nerve – volume: 185 start-page: 153 year: 1969 end-page: 166 article-title: Hereditary abnormal muscle metabolism with hyperkinetic circulation during exercise publication-title: Acta Med Scand – volume: 1 start-page: 23 year: 1999 end-page: 41 article-title: Reliability and validity of measures of cardiac output during incremental to maximal aerobic exercise. Part I: conventional techniques publication-title: Sports Med – volume: 29 start-page: 463 year: 2004 end-page: 487 article-title: Principles, technique and limitations of near‐infrared spectroscopy publication-title: Can J Appl Physiol – volume: 17 start-page: 196 year: 1985 end-page: 199 article-title: Myophosphorylase deficiency impairs muscle oxidative metabolism publication-title: Ann Neurol – volume: 59 start-page: 922 year: 2006 end-page: 928 article-title: Aerobic conditioning: an effective therapy in McArdle's disease publication-title: Ann Neurol – ident: e_1_2_7_20_2 doi: 10.1117/12.263747 – ident: e_1_2_7_7_2 doi: 10.1152/japplphysiol.00956.2002 – ident: e_1_2_7_25_2 doi: 10.1117/12.268963 – ident: e_1_2_7_16_2 doi: 10.1046/j.1365-201x.2001.00842.x – ident: e_1_2_7_31_2 doi: 10.1016/j.mito.2004.07.011 – ident: e_1_2_7_29_2 doi: 10.1249/01.mss.0000177446.97671.2a – ident: e_1_2_7_9_2 doi: 10.1139/h04-031 – ident: e_1_2_7_10_2 doi: 10.1152/japplphysiol.00695.2002 – ident: e_1_2_7_6_2 doi: 10.1034/j.1600-0838.2001.110404.x – ident: e_1_2_7_19_2 doi: 10.1002/mus.10077 – ident: e_1_2_7_35_2 doi: 10.2165/00007256-199927010-00003 – ident: e_1_2_7_12_2 doi: 10.1002/ana.410170216 – ident: e_1_2_7_15_2 doi: 10.1113/eph8702456 – ident: e_1_2_7_22_2 doi: 10.1002/(SICI)1097-4598(199905)22:5<621::AID-MUS11>3.0.CO;2-D – volume: 28 start-page: 123 year: 2000 ident: e_1_2_7_23_2 article-title: Near‐infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? publication-title: Exerc Sport Sci Rev – ident: e_1_2_7_14_2 doi: 10.1002/ana.20881 – volume: 3194 start-page: 116 year: 1998 ident: e_1_2_7_21_2 article-title: Influence of adipose tissue on muscle oxygenation measurements with NIRS instrument publication-title: Proc Soc Photo‐Opt Instrum Eng – ident: e_1_2_7_33_2 doi: 10.1002/1531-8249(199910)46:4<667::AID-ANA19>3.0.CO;2-D – ident: e_1_2_7_8_2 doi: 10.1016/S0005-2728(98)00113-3 – ident: e_1_2_7_11_2 doi: 10.1002/ana.410360603 – ident: e_1_2_7_36_2 doi: 10.1152/jappl.2000.88.1.315 – ident: e_1_2_7_2_2 doi: 10.1212/WNL.49.3.837 – volume-title: Human circulation. Regulation during physical stress year: 1986 ident: e_1_2_7_24_2 – ident: e_1_2_7_34_2 doi: 10.1002/mus.10104 – ident: e_1_2_7_4_2 doi: 10.1016/0925-4439(95)00060-H – ident: e_1_2_7_5_2 doi: 10.1249/00005768-198205000-00012 – start-page: 271 volume-title: Exercise and circulation in health and disease year: 2000 ident: e_1_2_7_13_2 – ident: e_1_2_7_27_2 doi: 10.1002/ana.10027 – ident: e_1_2_7_3_2 doi: 10.1002/ana.410360606 – ident: e_1_2_7_28_2 doi: 10.1212/WNL.50.4.1055 – ident: e_1_2_7_17_2 doi: 10.1152/jappl.1986.61.2.391 – ident: e_1_2_7_26_2 doi: 10.1212/WNL.48.5.1238 – ident: e_1_2_7_30_2 doi: 10.1093/brain/awg028 – ident: e_1_2_7_32_2 doi: 10.1249/01.mss.0000177341.89478.06 – ident: e_1_2_7_18_2 doi: 10.1111/j.0954-6820.1969.tb07314.x |
SSID | ssj0001867 |
Score | 2.185613 |
Snippet | Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O2 extraction, low maximal... Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O 2 extraction, low maximal... Patients with mitochondrial myopathies (MM) or myophosphorylase deficiency (McArdle's disease, McA) show impaired capacity for O(2) extraction, low maximal... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 510 |
SubjectTerms | Adult Adult and adolescent clinical studies Aged Biological and medical sciences Diseases of striated muscles. Neuromuscular diseases Energy Metabolism - physiology Exercise - physiology Exercise Test Exercise Tolerance - physiology Female Glycogen Storage Disease Type V - diagnosis Glycogen Storage Disease Type V - metabolism Glycogen Storage Disease Type V - physiopathology Heart Rate - physiology Hemoglobins - analysis Hemoglobins - metabolism Humans Male Medical sciences Mitochondrial Myopathies - diagnosis Mitochondrial Myopathies - metabolism Mitochondrial Myopathies - physiopathology mitochondrial myopathy Muscle, Skeletal - metabolism Muscle, Skeletal - physiopathology Myoglobin - metabolism myophosphorylase deficiency near-infrared spectroscopy Neurology oxidative metabolism Oxidative Phosphorylation Oxygen Consumption - physiology Predictive Value of Tests Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Psychoses Reference Values Schizophrenia Spectroscopy, Near-Infrared - methods Spectroscopy, Near-Infrared - trends |
Title | Impaired oxygen extraction in metabolic myopathies: Detection and quantification by near-infrared spectroscopy |
URI | https://api.istex.fr/ark:/67375/WNG-VC4R0C78-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmus.20708 https://www.ncbi.nlm.nih.gov/pubmed/17143893 https://www.proquest.com/docview/20644462 https://www.proquest.com/docview/70464259 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0148-639X databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-4598 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001867 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5VRUJcaPlrTaGsEEJc3Mb2rtcppyqlFFB6KARyQFrtn6WqjRMSRyKc-gg8I0_C7G6cKKiVKm6WPPZq1t_MznpnvgF4xVRpdNlO4iQpy5hagyaVGhNzVZi24rlivo67e5qf9OjHPuuvwdumFibwQyx-uDnL8P7aGbhUk_0laehg6ti2uS_0TTLmj2jPltRRjqgtpC8WMa7C_YZVqJXuL55cWYvuuGn96XIj5QSnpwx9La4LPFfjWL8QHW_A90aFkH9ysTet1Z7-9Q-743_quAn35wEqOQyIegBrtnoId7vzI_hHMPqADgT9pCE4PqKPoHcfh-oIcl6Rga0RVpfnmgxmQ9_u2E4OyJGtbRCRlSE_pjKkKHlUEDUjFdrbn6vfiPaxS4gnvv7T8WwOR7PH0Dt-96VzEs_bNsQavUERU-PKYbl2THUWA5qMcS5N0ioZxgtl1s6oxF1epnlOFdOuZ2RByxz9LE0UdXeewHo1rOw2kBRhQ7VqK2YyXDhzqRkGgAqxlaqMMhvBm-YDCj3nNHetNS5FYGNOBc6g8DMYwcuF6CgQeVwn9NqjYCEhxxcu840z8e30vfjaoWetDi_Epwh2V2CyfGWBCrcKHsGLBjcCDdadwsjKDv1AGILSPL1ZgrvjZtyWRrAVALd8e-hWn6HeHjY3ayK6vc_-4untRXfgXvhz7fKSnsF6PZ7a5xhy1WrX29Zfk3EpQA |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VrQRcaHkbSrtCCHFxG9u7XqfiglJKSpscSgO5VCvvw1LVxklTRyI98RP4jfwSZnbjREGthLhZ8vgx629mx7sz3xDylqvC6KIZhVFUFCGzBkwqNiYUKjNNJVLFXR13p5u2e-xLn_dXyIe6FsbzQ8wX3NAynL9GA8cF6d0Fa-hggnTbAit913B_Ds1y_2RBHoVUbT6BMQthHu7XvEKNeHd-6dJstIYD-wOzI_NrGKDCd7a4LfRcjmTdVHSwTs5qJXwGysXOpFI7-uYvfsf_1XKDPJzFqPSjB9UjsmLLx-ReZ7YL_4SMDsGHgKs0FF4AAEjBwY99gQQ9L-nAVoCsy3NNB9Oh63hsr_fovq2sF8lLQ68muc9ScsCgakpLMLnfP38B4MeYE09dCShSbQ5H06ekd_DptNUOZ50bQg0OIQuZwYpYoZGszkJMk3AhchM1Cg4hQ5E0E5bDj16iRcoU19g2MmNFCq6WRYrhmWdktRyW9gWhMSCHadVU3CQwd6a55hADKoBXrBLGbUDe119Q6hmtOXbXuJSekDmWMILSjWBA3sxFR57L4zahdw4Gc4l8fIHJb4LL793P8luLnTRaIpNHAdlawsnilhko3MhEQLZr4EiwWdyIyUs7dA-CKJSl8d0SAnec4c80IM894hZ39w3rE9Db4eZuTWSn99UdvPx30W1yv33aOZbHh92jV-SBX8jGNKVNslqNJ_Y1RGCV2nKG9gcE_C1c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VrVRx4f0wj3aFEOLiNrZ3vQ6cUEpoKYlQIZAD0sr7kqo2TkgdiXDiJ_Ab-SXM7MaJgloJcbPksa1ZfzM7uzvzDSHPuHJGu3YSJ4lzMbMGTCo1JhaqMG0lcsV9HXevnx8O2LshH26QV00tTOCHWG64oWV4f40GPjFuf0UaOpoh27bAQt8tlsPqCiOikxV3FDK1hfzFIoZpeNjQCrXS_eWja5PRFo7rd0yOLC9gfFxobHFZ5LkeyPqZqHuDfG10CAkoZ3uzWu3pH3_RO_6nkjfJ9UWESl8HSN0iG7a6TbZ7izP4O2RyBB4EHKWh8H2AHwX3Pg3lEfS0oiNbA67OTzUdzce-37G9eEkPbG2DSFkZ-m1WhhwlDwuq5rQCg_v98xfAfYoZ8dQXgCLR5ngyv0sG3TefOofxom9DrMEdFDEzWA8rNFLVWYhoMi5EaZKW4xAwuKydsRKWeZkWOVNcY9PIgrkcHC1LFMM798hmNa7sA0JTwA3Tqq24yWDmzEvNIQJUAK5UZYzbiLxofqDUC1Jz7K1xLgMdcyphBKUfwYg8XYpOApPHZULPPQqWEuX0DFPfBJdf-m_l5w47aXVEIY8jsrMGk9UrC1C4VYiI7Da4kWCxeAxTVnbsPwQxKMvTqyUEnjfDujQi9wPgVm8P7eoz0NvD5mpNZG_w0V88_HfRXbL94aAr3x_1jx-Ra2EXG3OUHpPNejqzTyD8qtWON7M_YzksCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+oxygen+extraction+in+metabolic+myopathies%3A+Detection+and+quantification+by+near-infrared+spectroscopy&rft.jtitle=Muscle+%26+nerve&rft.au=Grassi%2C+Bruno&rft.au=Marzorati%2C+Mauro&rft.au=Lanfranconi%2C+Francesca&rft.au=Ferri%2C+Alessandra&rft.date=2007-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0148-639X&rft.eissn=1097-4598&rft.volume=35&rft.issue=4&rft.spage=510&rft.epage=520&rft_id=info:doi/10.1002%2Fmus.20708&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VC4R0C78_K |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-639X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-639X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-639X&client=summon |