Machine‐learning models for shoulder rehabilitation exercises classification using a wearable system
Purpose The objective of this study is to train and test machine‐learning (ML) models to automatically classify shoulder rehabilitation exercises. Methods The cohort included both healthy and patients with rotator‐cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, fol...
Saved in:
| Published in | Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA Vol. 33; no. 4; pp. 1452 - 1458 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Germany
John Wiley and Sons Inc
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0942-2056 1433-7347 1433-7347 |
| DOI | 10.1002/ksa.12431 |
Cover
| Abstract | Purpose
The objective of this study is to train and test machine‐learning (ML) models to automatically classify shoulder rehabilitation exercises.
Methods
The cohort included both healthy and patients with rotator‐cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto‐inertial sensors. Six supervised machine‐learning models (k‐Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross‐validation method, with different combinations of outer and inner folds.
Results
A total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1‐score of 89.89%.
Conclusion
The results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home‐based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient‐driven sensor positioning.
Level of Evidence
Level III. |
|---|---|
| AbstractList | The objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises.
The cohort included both healthy and patients with rotator-cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto-inertial sensors. Six supervised machine-learning models (k-Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross-validation method, with different combinations of outer and inner folds.
A total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1-score of 89.89%.
The results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home-based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient-driven sensor positioning.
Level III. The objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises.PURPOSEThe objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises.The cohort included both healthy and patients with rotator-cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto-inertial sensors. Six supervised machine-learning models (k-Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross-validation method, with different combinations of outer and inner folds.METHODSThe cohort included both healthy and patients with rotator-cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto-inertial sensors. Six supervised machine-learning models (k-Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross-validation method, with different combinations of outer and inner folds.A total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1-score of 89.89%.RESULTSA total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1-score of 89.89%.The results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home-based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient-driven sensor positioning.CONCLUSIONThe results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home-based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient-driven sensor positioning.Level III.LEVEL OF EVIDENCELevel III. Purpose The objective of this study is to train and test machine‐learning (ML) models to automatically classify shoulder rehabilitation exercises. Methods The cohort included both healthy and patients with rotator‐cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto‐inertial sensors. Six supervised machine‐learning models (k‐Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross‐validation method, with different combinations of outer and inner folds. Results A total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1‐score of 89.89%. Conclusion The results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home‐based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient‐driven sensor positioning. Level of Evidence Level III. |
| Author | Longo, Umile Giuseppe Carnevale, Arianna Mancuso, Matilde Schena, Emiliano Sassi, Martina Pecchia, Leandro |
| AuthorAffiliation | 1 Fondazione Policlinico Universitario Campus Bio‐Medico di Roma Rome Italy 2 Department of Engineering, Unit of Intelligent Health Technologies, Sustainable Design Management and Assessment Università Campus Bio‐Medico di Roma Rome Italy 3 Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering Università Campus Bio‐Medico di Roma Rome Italy 4 Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery Università Campus Bio‐Medico di Roma Rome Italy |
| AuthorAffiliation_xml | – name: 3 Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering Università Campus Bio‐Medico di Roma Rome Italy – name: 4 Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery Università Campus Bio‐Medico di Roma Rome Italy – name: 1 Fondazione Policlinico Universitario Campus Bio‐Medico di Roma Rome Italy – name: 2 Department of Engineering, Unit of Intelligent Health Technologies, Sustainable Design Management and Assessment Università Campus Bio‐Medico di Roma Rome Italy |
| Author_xml | – sequence: 1 givenname: Martina orcidid: 0009-0008-3702-8839 surname: Sassi fullname: Sassi, Martina organization: Università Campus Bio‐Medico di Roma – sequence: 2 givenname: Arianna orcidid: 0000-0003-4543-1149 surname: Carnevale fullname: Carnevale, Arianna organization: Fondazione Policlinico Universitario Campus Bio‐Medico di Roma – sequence: 3 givenname: Matilde orcidid: 0009-0008-5789-1058 surname: Mancuso fullname: Mancuso, Matilde organization: Fondazione Policlinico Universitario Campus Bio‐Medico di Roma – sequence: 4 givenname: Emiliano orcidid: 0000-0002-9696-1265 surname: Schena fullname: Schena, Emiliano organization: Università Campus Bio‐Medico di Roma – sequence: 5 givenname: Leandro orcidid: 0000-0002-7900-5415 surname: Pecchia fullname: Pecchia, Leandro organization: Università Campus Bio‐Medico di Roma – sequence: 6 givenname: Umile Giuseppe orcidid: 0000-0003-4063-9821 surname: Longo fullname: Longo, Umile Giuseppe email: g.longo@policlinicocampus.it organization: Università Campus Bio‐Medico di Roma |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39154254$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKeFBS-AsqRIae3YTpwVqir-RBELYG05zk3H4NiDb8IwOx6BZ-RJcMnwK2BlS_c759jnHpGDEAMQcpfRU0ZpdfYOzSmrBGc3yIoJzsuGi-aArGgrqrKisj4kR4hvKc1X0d4ih7xlUlRSrMjwwti1C_Dl02cPJgUXroox9uCxGGIqcB1n30MqEqxN57ybzORiKOAjJOsQsLDeILrB2WUw47WDKbbZzHQeCtzhBONtcnMwHuHO_jwmbx4_en3xtLx8-eTZxfllaYVSrKxtw4aulb2qKFVWUF6zATouBUjVKcVtK2vaNZZLkGDlIKHm0Pe97FQlmeLH5MHiO4eN2W2N93qT3GjSTjOqr8vSuSz9rawMP1zgzdyN0FsIUzI_BdE4_fskuLW-ih80Y61QrGmyw_29Q4rvZ8BJjw4teG8CxBk1zxugom6kzOi9X8N-pHxfRQbOFsCmiJhg0Hbfds52_q_vP_lD8b-_7t23zsPu36B-_up8UXwF3vu7eA |
| CitedBy_id | crossref_primary_10_1016_j_jbiomech_2025_112643 |
| Cites_doi | 10.3390/s21144744 10.2196/21374 10.1258/jtt.2010.100317 10.2196/24402 10.1093/bioinformatics/btaa046 10.1186/1471-2474-8-123 10.1109/JBHI.2020.2999902 10.3390/s21165479 10.1007/s00167-022-07181-2 10.14257/ijsh.2013.7.5.38 10.1007/s00167-022-07233-7 10.1007/s00167-022-07298-4 10.1007/s00167-023-07338-7 10.1093/bioinformatics/btm344 10.1007/s00167-007-0340-x 10.1177/02692155221083496 10.1016/j.gaitpost.2019.03.008 10.1186/1743-0003-2-2 10.1055/s-0040-1713685 10.3390/s16050605 10.1186/s12891-019-2930-4 10.1088/1361-6579/aacfd9 10.1016/j.jse.2015.12.018 10.1093/rheumatology/ken011 10.1007/s00167-022-07239-1 10.1007/s00167-021-06741-2 10.26355/eurrev_202101_24619 10.1016/j.eswa.2021.115222 10.1371/journal.pdig.0000175 10.3109/09638288.2014.907364 10.1007/s00167-022-07155-4 10.1109/ACCESS.2022.3186444 10.1007/s00167-022-06896-6 10.1371/journal.pone.0216961 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy. 2024 The Author(s). Knee Surgery, Sports Traumatology, Arthroscopy published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy. – notice: 2024 The Author(s). Knee Surgery, Sports Traumatology, Arthroscopy published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/ksa.12431 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley - Revues - OpenAccess url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | ML: SHOULDER EXERCISE CLASSIFICATION |
| EISSN | 1433-7347 |
| EndPage | 1458 |
| ExternalDocumentID | 10.1002/ksa.12431 PMC11948177 39154254 10_1002_ksa_12431 KSA12431 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Italian Ministry of Health in the framework of RICERCA FINALIZZATA 2016 funderid: N° PE‐2016‐02364894 – fundername: ODIN – fundername: European Union's Horizon 2020 research and innovation programme funderid: N° 101017331 – fundername: European Union's Horizon 2020 research and innovation programme grantid: N° 101017331 – fundername: Italian Ministry of Health in the framework of RICERCA FINALIZZATA 2016 grantid: N° PE-2016-02364894 – fundername: Italian Ministry of Health in the framework of RICERCA FINALIZZATA 2016 grantid: N° PE‐2016‐02364894 |
| GroupedDBID | --- -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1OC 1SB 203 24P 28- 29L 29~ 2J2 2JY 2KG 2KM 2LR 2P1 2QV 2VQ 2~H 30V 36B 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAHQN AAIAL AAIPD AAJBT AAJKR AAMMB AAMNL AANXM AANZL AARHV AARTL AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABBBX ABBXA ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABQWH ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACSTC ACUDM ADBBV ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFGJ AEFIE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEYWJ AEZWR AFEXP AFFPM AFHIU AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGHNM AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGXDD AGYGG AGYKE AHAVH AHBTC AHBYD AHIZS AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIDQK AIDYY AIIXL AILAN AITGF AITYG AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DCZOG DDRTE DL5 DNIVK DPUIP DU5 DXH EBD EBLON EBS EIOEI EJD EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HGLYW HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LH4 LLZTM M1P M4Y MA- MEWTI N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO PT5 PUEGO Q2X QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDH SDM SHX SISQX SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SUPJJ SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW WXSBR YLTOR Z45 ZMTXR ZOVNA ~EX AAYXX CITATION 2JN ABMOR ACZOJ ALIPV CGR CUY CVF ECM EIF NPM RIG 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4881-6c71fb95d82008c40361feb354e58b883c9560b7c35e5ec5f5e63eddd5b825183 |
| IEDL.DBID | UNPAY |
| ISSN | 0942-2056 1433-7347 |
| IngestDate | Sun Oct 26 04:10:48 EDT 2025 Tue Sep 30 17:04:49 EDT 2025 Thu Oct 02 10:28:24 EDT 2025 Fri Apr 25 03:26:12 EDT 2025 Sat Oct 25 05:06:14 EDT 2025 Thu Apr 24 22:54:54 EDT 2025 Thu Sep 25 07:33:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | wearable sensors classification machine learning shoulder rehabilitation exercises |
| Language | English |
| License | Attribution http://creativecommons.org/licenses/by/4.0 2024 The Author(s). Knee Surgery, Sports Traumatology, Arthroscopy published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4881-6c71fb95d82008c40361feb354e58b883c9560b7c35e5ec5f5e63eddd5b825183 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7900-5415 0000-0002-9696-1265 0000-0003-4543-1149 0009-0008-5789-1058 0009-0008-3702-8839 0000-0003-4063-9821 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/ksa.12431 |
| PMID | 39154254 |
| PQID | 3094046755 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1002_ksa_12431 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11948177 proquest_miscellaneous_3094046755 pubmed_primary_39154254 crossref_citationtrail_10_1002_ksa_12431 crossref_primary_10_1002_ksa_12431 wiley_primary_10_1002_ksa_12431_KSA12431 |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Hoboken |
| PublicationTitle | Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA |
| PublicationTitleAlternate | Knee Surg Sports Traumatol Arthrosc |
| PublicationYear | 2025 |
| Publisher | John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley and Sons Inc |
| References | 2023; 31 2021; 25 2021; 9 2021; 8 2015; 37 2021; 21 2013; 3 2019; 70 2019; 14 2021; 182 2020; 59 2020; 36 2023; 2 2011; 17 2013; 7 2016; 16 2007; 15 2018; 39 2019; 20 2007; 8 2009; 145 2022; 36 2020; 24 2022; 30 2022; 10 2005; 2 2007; 23 2016; 25 2007; 47 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 Maffulli N. (e_1_2_12_23_1) 2013; 3 Brennan D.M. (e_1_2_12_7_1) 2009; 145 e_1_2_12_20_1 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_26_1 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – volume: 8 year: 2007 article-title: The roman bridge: a “double pulley—suture bridges” technique for rotator cuff repair publication-title: BMC Musculoskeletal Disorders – volume: 14 year: 2019 article-title: The effectiveness of surgical vs conservative interventions on pain and function in patients with shoulder impingement syndrome. A systematic review and meta‐analysis publication-title: PLoS One – volume: 70 start-page: 211 year: 2019 end-page: 217 article-title: Adherence monitoring of rehabilitation exercise with inertial sensors: a clinical validation study publication-title: Gait & Posture – volume: 30 start-page: 3917 year: 2022 end-page: 3923 article-title: The development and deployment of machine learning models publication-title: Knee Surgery, Sports Traumatology, Arthroscopy – volume: 37 start-page: 1 year: 2015 end-page: 8 article-title: Conservative treatment or surgery for shoulder impingement: systematic review and meta‐analysis publication-title: Disability and Rehabilitation – volume: 25 start-page: 609 year: 2021 end-page: 619 article-title: Conservative management vs. surgical repair in degenerative rotator cuff tears: a systematic review and meta‐analysis publication-title: European Review for Medical and Pharmacological Sciences – volume: 31 start-page: 1196 year: 2023 end-page: 1202 article-title: Supervised machine learning and associated algorithms: applications in orthopedic surgery publication-title: Knee Surgery, Sports Traumatology, Arthroscopy – volume: 21 year: 2021 article-title: Wearable movement sensors for rehabilitation: from technology to clinical practice publication-title: Sensors – volume: 24 start-page: 2452 year: 2020 end-page: 2460 article-title: Evaluation of machine learning models for classifying upper extremity exercises using inertial measurement unit‐based kinematic data publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 31 start-page: 1635 year: 2023 end-page: 1643 article-title: A practical guide to the development and deployment of deep learning models for the orthopedic surgeon: part II publication-title: Knee Surgery, Sports Traumatology, Arthroscopy – volume: 182 year: 2021 article-title: Nested cross‐validation when selecting classifiers is overzealous for most practical applications publication-title: Expert Systems with Applications – volume: 15 start-page: 1482 year: 2007 end-page: 1485 article-title: Arthroscopic management of calcific tendinitis of the subscapularis tendon publication-title: Knee Surgery, Sports Traumatology, Arthroscopy – volume: 17 start-page: 25 year: 2011 end-page: 30 article-title: Patients' experiences of telerehabilitation at home after shoulder joint replacement publication-title: Journal of Telemedicine and Telecare – volume: 10 start-page: 68915 year: 2022 end-page: 68921 article-title: Multiclass classification performance curve publication-title: IEEE Access – volume: 36 start-page: 715 year: 2022 end-page: 725 article-title: Effectiveness of physical therapy given by telerehabilitation on pain and disability of individuals with shoulder pain: a systematic review publication-title: Clinical Rehabilitation – volume: 7 start-page: 395 year: 2013 end-page: 404 article-title: Intelligent shoulder joint home‐based self‐rehabilitation monitoring system publication-title: International Journal of Smart Home – volume: 3 start-page: 173 year: 2013 end-page: 189 article-title: The genetics of sports injuries and athletic performance publication-title: Muscles, Ligaments and Tendons Journal – volume: 23 start-page: 2507 year: 2007 end-page: 2517 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 8 year: 2021 article-title: Adherence patterns and dose response of physiotherapy for rotator cuff pathology: longitudinal cohort study publication-title: JMIR Rehabilitation and Assistive Technologies – volume: 31 start-page: 376 year: 2023 end-page: 381 article-title: Unsupervised machine learning methods and emerging applications in healthcare publication-title: Knee Surgery, Sports Traumatology, Arthroscopy – volume: 39 year: 2018 article-title: Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch publication-title: Physiological Measurement – volume: 2 year: 2005 article-title: Advances in wearable technology and applications in physical medicine and rehabilitation publication-title: Journal of NeuroEngineering and Rehabilitation – volume: 30 start-page: 361 year: 2022 end-page: 364 article-title: Artificial intelligence and machine learning: an introduction for orthopaedic surgeons publication-title: Knee Surgery, Sports Traumatology, Arthroscopy – volume: 31 start-page: 382 year: 2023 end-page: 389 article-title: A practical guide to the development and deployment of deep learning models for the Orthopedic surgeon: part I publication-title: Knee Surgery, Sports Traumatology, Arthroscopy – volume: 25 start-page: 521 year: 2016 end-page: 535 article-title: The American Society of Shoulder and Elbow Therapists' consensus statement on rehabilitation following arthroscopic rotator cuff repair publication-title: Journal of Shoulder and Elbow Surgery – volume: 59 start-page: e90 year: 2020 end-page: e99 article-title: Health‐enabling technologies for telerehabilitation of the shoulder: a feasibility and user acceptance study publication-title: Methods of Information in Medicine – volume: 9 year: 2021 article-title: Upper‐limb motion recognition based on hybrid feature selection: algorithm development and validation publication-title: JMIR mHealth and uHealth – volume: 16 year: 2016 article-title: Quaternion‐based gesture recognition using wireless wearable motion capture sensors publication-title: Sensors – volume: 2 year: 2023 article-title: Sensor‐based telerehabilitation system increases patient adherence after knee surgery publication-title: PLoS Digital Health – volume: 145 start-page: 231 year: 2009 end-page: 248 article-title: Telerehabilitation: enabling the remote delivery of healthcare, rehabilitation, and self management publication-title: Studies in Health Technology and Informatics – volume: 30 start-page: 753 year: 2022 end-page: 757 article-title: Machine learning and conventional statistics: making sense of the differences publication-title: Knee Surgery, Sports Traumatology, Arthroscopy – volume: 20 start-page: 546 year: 2019 article-title: Wearable systems for shoulder kinematics assessment: a systematic review publication-title: BMC Musculoskeletal Disorders – volume: 31 start-page: 2615 year: 2023 end-page: 2623 article-title: Machine learning model successfully identifies important clinical features for predicting outpatients with rotator cuff tears publication-title: Knee Surgery, Sports Traumatology, Arthroscopy – volume: 47 start-page: 390 year: 2007 end-page: 391 article-title: Conservative management for tendinopathy: is there enough scientific evidence? publication-title: Rheumatology – volume: 21 year: 2021 article-title: Recognizing physical activities for spinal cord injury rehabilitation using wearable sensors publication-title: Sensors – volume: 36 start-page: 3093 year: 2020 end-page: 3098 article-title: Consensus features nested cross‐validation publication-title: Bioinformatics – ident: e_1_2_12_32_1 doi: 10.3390/s21144744 – ident: e_1_2_12_8_1 doi: 10.2196/21374 – ident: e_1_2_12_12_1 doi: 10.1258/jtt.2010.100317 – ident: e_1_2_12_21_1 doi: 10.2196/24402 – ident: e_1_2_12_29_1 doi: 10.1093/bioinformatics/btaa046 – ident: e_1_2_12_14_1 doi: 10.1186/1471-2474-8-123 – ident: e_1_2_12_17_1 doi: 10.1109/JBHI.2020.2999902 – ident: e_1_2_12_4_1 doi: 10.3390/s21165479 – ident: e_1_2_12_30_1 doi: 10.1007/s00167-022-07181-2 – ident: e_1_2_12_28_1 doi: 10.14257/ijsh.2013.7.5.38 – ident: e_1_2_12_11_1 doi: 10.1007/s00167-022-07233-7 – ident: e_1_2_12_20_1 doi: 10.1007/s00167-022-07298-4 – ident: e_1_2_12_26_1 doi: 10.1007/s00167-023-07338-7 – ident: e_1_2_12_33_1 doi: 10.1093/bioinformatics/btm344 – ident: e_1_2_12_13_1 doi: 10.1007/s00167-007-0340-x – ident: e_1_2_12_16_1 doi: 10.1177/02692155221083496 – ident: e_1_2_12_5_1 doi: 10.1016/j.gaitpost.2019.03.008 – ident: e_1_2_12_6_1 doi: 10.1186/1743-0003-2-2 – ident: e_1_2_12_35_1 doi: 10.1055/s-0040-1713685 – ident: e_1_2_12_3_1 doi: 10.3390/s16050605 – ident: e_1_2_12_10_1 doi: 10.1186/s12891-019-2930-4 – ident: e_1_2_12_9_1 doi: 10.1088/1361-6579/aacfd9 – ident: e_1_2_12_36_1 doi: 10.1016/j.jse.2015.12.018 – volume: 3 start-page: 173 year: 2013 ident: e_1_2_12_23_1 article-title: The genetics of sports injuries and athletic performance publication-title: Muscles, Ligaments and Tendons Journal – ident: e_1_2_12_22_1 doi: 10.1093/rheumatology/ken011 – ident: e_1_2_12_27_1 doi: 10.1007/s00167-022-07239-1 – volume: 145 start-page: 231 year: 2009 ident: e_1_2_12_7_1 article-title: Telerehabilitation: enabling the remote delivery of healthcare, rehabilitation, and self management publication-title: Studies in Health Technology and Informatics – ident: e_1_2_12_24_1 doi: 10.1007/s00167-021-06741-2 – ident: e_1_2_12_15_1 doi: 10.26355/eurrev_202101_24619 – ident: e_1_2_12_37_1 doi: 10.1016/j.eswa.2021.115222 – ident: e_1_2_12_18_1 doi: 10.1371/journal.pdig.0000175 – ident: e_1_2_12_34_1 doi: 10.3109/09638288.2014.907364 – ident: e_1_2_12_31_1 doi: 10.1007/s00167-022-07155-4 – ident: e_1_2_12_2_1 doi: 10.1109/ACCESS.2022.3186444 – ident: e_1_2_12_19_1 doi: 10.1007/s00167-022-06896-6 – ident: e_1_2_12_25_1 doi: 10.1371/journal.pone.0216961 |
| SSID | ssj0005649 |
| Score | 2.453897 |
| Snippet | Purpose
The objective of this study is to train and test machine‐learning (ML) models to automatically classify shoulder rehabilitation exercises.
Methods
The... The objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises. The cohort included... The objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises.PURPOSEThe objective... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1452 |
| SubjectTerms | Adult Algorithms Case-Control Studies classification Exercise Therapy - classification Exercise Therapy - methods Female Humans Machine Learning Male Middle Aged rehabilitation exercises Rotator Cuff Injuries - rehabilitation Shoulder Wearable Electronic Devices wearable sensors |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC5EwfUiPnY1vmjdPXjJOp2kMz14ElFEGRFcwVvodLpVHKJMZhi8-RP8jf4SqzoPCa7iLSGVJkl1dX2VrvoK4I_iJuiZLPZjDJf9SEjt92Krfc6t4ugQskxRoNg_j0-uotNrcT0F-3UtTMkP0fxwI8tw6zUZuEqLvXfS0PtC_UXnRDXUMxxxDE3vILp4z--IS-zbo_oTPKtphTrBXnNr2xl9QJgfEyV_jPNH9TRRg0EbzDpvdLwA8xWMZAel3hdhyuRLMNuvNsqXwfZdkqR5fX6p-kLcMNf0pmCIUllxS52tzZANW0TdrG7AVDBNqJrSiMoLlB5_wxSb4GBUbMVKBuifcHV89O_wxK9aKvgaLZX7se5ym_ZEJinvQUfov7jFeFpERshUylBTvJR2dSiMMFpYYeLQZFkmUqpxleEvmM4fcrMKDP0aSnc6xmBgG3akQiBno8zyWFgrlfFgt_62ia5eg9peDJKSKTlIUA2JU4MHO43oY0my8T-h7VpBCZoA7Wuo3DyMiyQkDkBc8IXwYKVUWDMM8d_jshR5IFuqbASIXrt9Jb-7dTTbnBOTTbfrwe9G61893q6bD59LJGeXB-5g7fui6zAXUMNhlyq0AdOj4dhsIgoapVtutr8BJsUFag priority: 102 providerName: Wiley-Blackwell |
| Title | Machine‐learning models for shoulder rehabilitation exercises classification using a wearable system |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fksa.12431 https://www.ncbi.nlm.nih.gov/pubmed/39154254 https://www.proquest.com/docview/3094046755 https://pubmed.ncbi.nlm.nih.gov/PMC11948177 https://doi.org/10.1002/ksa.12431 |
| UnpaywallVersion | publishedVersion |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7347 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005649 issn: 0942-2056 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7347 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005649 issn: 0942-2056 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB7RRWq5tPSXtAWZtgcu2a7jOPEeVxUItVqE1K5ET5Hj2FCxCmizK9Se-gg8I0_SGSfZEqColyiSx1ZsjzPfyDPfAHzQ3EZDWyRhgu5yGEtlwmHiTMi50xwNQlFochTHB8n-JP58JI9WYLvNhene30cfTyvdRxNEmdKriUS43YPVycHh6Lvn0KPUkoGsM4iECFMRpy170PW-XZtzC0jejod8tCjP9c8LPZ12Mas3OntP_qbu1LEmp_3FPO-bXzeYHO-dzzo8biAnG9U68hRWbPkMHo6bS_Xn4MY-oNJe_b5sakgcM18gp2KIaFl1QlWw7YzNOqTerC3WVDFDCJxCjuoGCqU_Zppd4GCUmMVqtugXMNnb_fZpP2zKL4QGTzUPE5Nylw9loShGwsRo67hD31vGVqpcKWHIt8pTI6SV1kgnbSJsURQyp3xYJV5Crzwr7QYwtIEoPRhYi06wGCiNoM_FheOJdE5pG8BOu0GZaaZBJTKmWc2qHGW4bplftwDeLUXPa0KOu4S2213O8LjQHYgu7dmiygTxBaJxkDKAV_WuL4chrnz8hcUBqI4-LAWIirvbUv448ZTcnBPrTZoG8H6pOvd93o5Xqn9LZF--jvzL6_8a8A2sRVSX2EcUvYXefLawmwiW5vkWPIjiQ3xOotFWc3T-AFqJE68 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hkEovCOiD8Cju48AlZZ3EXq_EBVVF28KiSgWJW-Q4NlRdhdVmV4gbP4HfyC9hxnmgiLbqLZEnVpKxPd_YM98AfNLcRgOby1CiuxwmQplwIJ0JOXeao0HIc02O4uhUDs-T7xfiYgEOmlyYih-i3XCjmeHXa5rgtCG9_8Qa-rvUn9E6URL1UiK5JNcrSn48BXjICvwOKAEF7xpeoV603z7atUbPIObzSMnleTHRtzd6PO6iWW-OjlZhpcaR7LBS_Bos2GIdXozqk_JX4EY-StI-3N3XhSEuma96UzKEqay8otLWdsqmHaZu1lRgKpkhWE1xRFUDxcdfMs1usDPKtmIVBfRrOD_6evZlGNY1FUKDU5WH0vS5ywYiVxT4YBI0YNyhQy0SK1SmVGzIYcr6JhZWWCOcsDK2eZ6LjJJcVfwGFovrwm4AQ8OG0r2etejZxj2lEcm5JHdcCueUtgHsNf82NfVnUN2LcVpRJUcpqiH1agjgQys6qVg2_iT0vlFQinOADjZ0Ya_nZRoTCSCu-EIE8LZSWNsNEeDjupQEoDqqbAWIX7vbUvy68jzbnBOVTb8fwMdW6_96vT0_Hv4ukR7_PPQXm_8vugvLw7PRSXry7fR4C15GVH3Yxw1tw-JsOrc7CIlm2Ts_8h8BOs4I1g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hkGgvFX2S0of7OHBJWW_irFfigtquaOkipBaJW-TYY6i6CqsNK8StP6G_sb-EGeeBItqqt0SZWEnG4_kmnvkG4K2ROByjy-KMwuU4VdrG48zbWEpvJDkE5wwHitPDbP84_XyiTlZgt62Fqfkhuh9ubBlhvWYDx7nzOzesoT8q8468ExdRr6WKPCHzOqdHNwkeWQ1-x1yAQmctr9BguNPd2vdGtyDm7UzJO8tybq4uzWzWR7PBHU024F6DI8Verfj7sILlA1ifNjvlD8FPQ5Yk_v75q2kMcSpC15tKEEwV1Rm3tsaFWPSYukXbgakSlmE15xHVFzg__lQYcUmDcbWVqCmgH8Hx5OO39_tx01MhtmSqMs7sSPpirJzmxAebkgOTngJqlaLShdaJ5YCpGNlEoUKrvMIsQeecKrjIVSePYbU8L3ETBDk2kh4MECmyTQbaEJLzqfMyU95rgxFst982t81rcN-LWV5TJQ9zUkMe1BDB6050XrNs_EnoVaugnGyANzZMiefLKk-YBJBWfKUieFIrrBuGCfBpXUoj0D1VdgLMr92_Un4_CzzbUjKVzWgUwZtO6_96vO0wH_4ukR983QsHT_9f9CWsH32Y5F8-HR5swd0hNx8OaUPPYPViscTnhIguihdh4l8D6wgIZQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB6hRWp76Q-lNP2ToRy4ZFmv48R7XFVFqGgREqwEp8hxbECsAtrsCrWnPkKfkSdhxkmWphTELZInVmyPM99oZr4B2NTc9gc2j8MY3eUwksqEg9iZkHOnORqEPNfkKI72491x9ONYHi_BelML047f97cvSt1FE0SV0suxRLjdgeXx_sHwxHPoUWlJT1YVREKEiYiShj3o73fbNucekLyfD_l8Xlzpn9d6MmljVm90dl7dle5UuSYX3fks65pf_zA5Prqe1_CyhpxsWOnIG1iyxQo8G9VB9bfgRj6h0t78_lP3kDhlvkFOyRDRsvKMumDbKZu2SL1Z06ypZIYQOKUcVQOUSn_KNLvGyagwi1Vs0asw3vl-9G03rNsvhAZvNQ9jk3CXDWSuKEfCRGjruEPfW0ZWqkwpYci3yhIjpJXWSCdtLGye5zKjelgl3kGnuCzse2BoA1G617MWnWDRUxpBn4tyx2PpnNI2gK3mgFJTL4NaZEzSilW5n-K-pX7fAthYiF5VhBz_E1pvTjnF60IxEF3Yy3mZCuILROMgZQBr1akvpiGufPyFRQGolj4sBIiKuz1SnJ95Sm7OifUmSQL4ulCdxz5vyyvVwxLp3uHQP3x40oQf4UWf-hL7jKJP0JlN5_YzgqVZ9qW-LreAChHv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine%E2%80%90learning+models+for+shoulder+rehabilitation+exercises+classification+using+a+wearable+system&rft.jtitle=Knee+surgery%2C+sports+traumatology%2C+arthroscopy+%3A+official+journal+of+the+ESSKA&rft.au=Sassi%2C+Martina&rft.au=Carnevale%2C+Arianna&rft.au=Mancuso%2C+Matilde&rft.au=Schena%2C+Emiliano&rft.date=2025-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0942-2056&rft.eissn=1433-7347&rft.volume=33&rft.issue=4&rft.spage=1452&rft.epage=1458&rft_id=info:doi/10.1002%2Fksa.12431&rft_id=info%3Apmid%2F39154254&rft.externalDocID=PMC11948177 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-2056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-2056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-2056&client=summon |