Machine‐learning models for shoulder rehabilitation exercises classification using a wearable system

Purpose The objective of this study is to train and test machine‐learning (ML) models to automatically classify shoulder rehabilitation exercises. Methods The cohort included both healthy and patients with rotator‐cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, fol...

Full description

Saved in:
Bibliographic Details
Published inKnee surgery, sports traumatology, arthroscopy : official journal of the ESSKA Vol. 33; no. 4; pp. 1452 - 1458
Main Authors Sassi, Martina, Carnevale, Arianna, Mancuso, Matilde, Schena, Emiliano, Pecchia, Leandro, Longo, Umile Giuseppe
Format Journal Article
LanguageEnglish
Published Germany John Wiley and Sons Inc 01.04.2025
Subjects
Online AccessGet full text
ISSN0942-2056
1433-7347
1433-7347
DOI10.1002/ksa.12431

Cover

Abstract Purpose The objective of this study is to train and test machine‐learning (ML) models to automatically classify shoulder rehabilitation exercises. Methods The cohort included both healthy and patients with rotator‐cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto‐inertial sensors. Six supervised machine‐learning models (k‐Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross‐validation method, with different combinations of outer and inner folds. Results A total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1‐score of 89.89%. Conclusion The results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home‐based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient‐driven sensor positioning. Level of Evidence Level III.
AbstractList The objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises. The cohort included both healthy and patients with rotator-cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto-inertial sensors. Six supervised machine-learning models (k-Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross-validation method, with different combinations of outer and inner folds. A total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1-score of 89.89%. The results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home-based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient-driven sensor positioning. Level III.
The objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises.PURPOSEThe objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises.The cohort included both healthy and patients with rotator-cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto-inertial sensors. Six supervised machine-learning models (k-Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross-validation method, with different combinations of outer and inner folds.METHODSThe cohort included both healthy and patients with rotator-cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto-inertial sensors. Six supervised machine-learning models (k-Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross-validation method, with different combinations of outer and inner folds.A total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1-score of 89.89%.RESULTSA total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1-score of 89.89%.The results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home-based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient-driven sensor positioning.CONCLUSIONThe results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home-based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient-driven sensor positioning.Level III.LEVEL OF EVIDENCELevel III.
Purpose The objective of this study is to train and test machine‐learning (ML) models to automatically classify shoulder rehabilitation exercises. Methods The cohort included both healthy and patients with rotator‐cuff (RC) tears. All participants performed six shoulder rehabilitation exercises, following guidelines developed by the American Society of Shoulder and Elbow Therapists. Each exercise was repeated six times, while wearing a wearable system equipped with three magneto‐inertial sensors. Six supervised machine‐learning models (k‐Nearest Neighbours, Support Vector Machine, Decision Tree, Random Forest (RF), Logistic Regression and Adaptive Boosting) were trained for the classification. The algorithms' ability to accurately classify exercise activities was evaluated using the nested cross‐validation method, with different combinations of outer and inner folds. Results A total of 19 healthy subjects and 17 patients with complete RC tears were enroled in the study. The highest classification performances were achieved by the RF classifier, with an accuracy of 89.91% and an F1‐score of 89.89%. Conclusion The results of this study highlight the feasibility and effectiveness of using wearable sensors and ML algorithms to accurately classify shoulder rehabilitation exercises. These findings suggest promising prospects for implementing the proposed wearable system in remote home‐based monitoring scenarios. The ease of setup and modularity of the system reduce user burden enabling patient‐driven sensor positioning. Level of Evidence Level III.
Author Longo, Umile Giuseppe
Carnevale, Arianna
Mancuso, Matilde
Schena, Emiliano
Sassi, Martina
Pecchia, Leandro
AuthorAffiliation 1 Fondazione Policlinico Universitario Campus Bio‐Medico di Roma Rome Italy
2 Department of Engineering, Unit of Intelligent Health Technologies, Sustainable Design Management and Assessment Università Campus Bio‐Medico di Roma Rome Italy
3 Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering Università Campus Bio‐Medico di Roma Rome Italy
4 Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery Università Campus Bio‐Medico di Roma Rome Italy
AuthorAffiliation_xml – name: 3 Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering Università Campus Bio‐Medico di Roma Rome Italy
– name: 4 Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery Università Campus Bio‐Medico di Roma Rome Italy
– name: 1 Fondazione Policlinico Universitario Campus Bio‐Medico di Roma Rome Italy
– name: 2 Department of Engineering, Unit of Intelligent Health Technologies, Sustainable Design Management and Assessment Università Campus Bio‐Medico di Roma Rome Italy
Author_xml – sequence: 1
  givenname: Martina
  orcidid: 0009-0008-3702-8839
  surname: Sassi
  fullname: Sassi, Martina
  organization: Università Campus Bio‐Medico di Roma
– sequence: 2
  givenname: Arianna
  orcidid: 0000-0003-4543-1149
  surname: Carnevale
  fullname: Carnevale, Arianna
  organization: Fondazione Policlinico Universitario Campus Bio‐Medico di Roma
– sequence: 3
  givenname: Matilde
  orcidid: 0009-0008-5789-1058
  surname: Mancuso
  fullname: Mancuso, Matilde
  organization: Fondazione Policlinico Universitario Campus Bio‐Medico di Roma
– sequence: 4
  givenname: Emiliano
  orcidid: 0000-0002-9696-1265
  surname: Schena
  fullname: Schena, Emiliano
  organization: Università Campus Bio‐Medico di Roma
– sequence: 5
  givenname: Leandro
  orcidid: 0000-0002-7900-5415
  surname: Pecchia
  fullname: Pecchia, Leandro
  organization: Università Campus Bio‐Medico di Roma
– sequence: 6
  givenname: Umile Giuseppe
  orcidid: 0000-0003-4063-9821
  surname: Longo
  fullname: Longo, Umile Giuseppe
  email: g.longo@policlinicocampus.it
  organization: Università Campus Bio‐Medico di Roma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39154254$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFBS-AsqRIae3YTpwVqir-RBELYG05zk3H4NiDb8IwOx6BZ-RJcMnwK2BlS_c759jnHpGDEAMQcpfRU0ZpdfYOzSmrBGc3yIoJzsuGi-aArGgrqrKisj4kR4hvKc1X0d4ih7xlUlRSrMjwwti1C_Dl02cPJgUXroox9uCxGGIqcB1n30MqEqxN57ybzORiKOAjJOsQsLDeILrB2WUw47WDKbbZzHQeCtzhBONtcnMwHuHO_jwmbx4_en3xtLx8-eTZxfllaYVSrKxtw4aulb2qKFVWUF6zATouBUjVKcVtK2vaNZZLkGDlIKHm0Pe97FQlmeLH5MHiO4eN2W2N93qT3GjSTjOqr8vSuSz9rawMP1zgzdyN0FsIUzI_BdE4_fskuLW-ih80Y61QrGmyw_29Q4rvZ8BJjw4teG8CxBk1zxugom6kzOi9X8N-pHxfRQbOFsCmiJhg0Hbfds52_q_vP_lD8b-_7t23zsPu36B-_up8UXwF3vu7eA
CitedBy_id crossref_primary_10_1016_j_jbiomech_2025_112643
Cites_doi 10.3390/s21144744
10.2196/21374
10.1258/jtt.2010.100317
10.2196/24402
10.1093/bioinformatics/btaa046
10.1186/1471-2474-8-123
10.1109/JBHI.2020.2999902
10.3390/s21165479
10.1007/s00167-022-07181-2
10.14257/ijsh.2013.7.5.38
10.1007/s00167-022-07233-7
10.1007/s00167-022-07298-4
10.1007/s00167-023-07338-7
10.1093/bioinformatics/btm344
10.1007/s00167-007-0340-x
10.1177/02692155221083496
10.1016/j.gaitpost.2019.03.008
10.1186/1743-0003-2-2
10.1055/s-0040-1713685
10.3390/s16050605
10.1186/s12891-019-2930-4
10.1088/1361-6579/aacfd9
10.1016/j.jse.2015.12.018
10.1093/rheumatology/ken011
10.1007/s00167-022-07239-1
10.1007/s00167-021-06741-2
10.26355/eurrev_202101_24619
10.1016/j.eswa.2021.115222
10.1371/journal.pdig.0000175
10.3109/09638288.2014.907364
10.1007/s00167-022-07155-4
10.1109/ACCESS.2022.3186444
10.1007/s00167-022-06896-6
10.1371/journal.pone.0216961
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy.
2024 The Author(s). Knee Surgery, Sports Traumatology, Arthroscopy published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy.
– notice: 2024 The Author(s). Knee Surgery, Sports Traumatology, Arthroscopy published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/ksa.12431
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley - Revues - OpenAccess
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate ML: SHOULDER EXERCISE CLASSIFICATION
EISSN 1433-7347
EndPage 1458
ExternalDocumentID 10.1002/ksa.12431
PMC11948177
39154254
10_1002_ksa_12431
KSA12431
Genre article
Journal Article
GrantInformation_xml – fundername: Italian Ministry of Health in the framework of RICERCA FINALIZZATA 2016
  funderid: N° PE‐2016‐02364894
– fundername: ODIN
– fundername: European Union's Horizon 2020 research and innovation programme
  funderid: N° 101017331
– fundername: European Union's Horizon 2020 research and innovation programme
  grantid: N° 101017331
– fundername: Italian Ministry of Health in the framework of RICERCA FINALIZZATA 2016
  grantid: N° PE-2016-02364894
– fundername: Italian Ministry of Health in the framework of RICERCA FINALIZZATA 2016
  grantid: N° PE‐2016‐02364894
GroupedDBID ---
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1OC
1SB
203
24P
28-
29L
29~
2J2
2JY
2KG
2KM
2LR
2P1
2QV
2VQ
2~H
30V
36B
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAHQN
AAIAL
AAIPD
AAJBT
AAJKR
AAMMB
AAMNL
AANXM
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABBBX
ABBXA
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABQWH
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACSTC
ACUDM
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFGJ
AEFIE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEYWJ
AEZWR
AFEXP
AFFPM
AFHIU
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGHNM
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGXDD
AGYGG
AGYKE
AHAVH
AHBTC
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIDQK
AIDYY
AIIXL
AILAN
AITGF
AITYG
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DCZOG
DDRTE
DL5
DNIVK
DPUIP
DU5
DXH
EBD
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HGLYW
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LH4
LLZTM
M1P
M4Y
MA-
MEWTI
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PT5
PUEGO
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SDM
SHX
SISQX
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SUPJJ
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
WXSBR
YLTOR
Z45
ZMTXR
ZOVNA
~EX
AAYXX
CITATION
2JN
ABMOR
ACZOJ
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4881-6c71fb95d82008c40361feb354e58b883c9560b7c35e5ec5f5e63eddd5b825183
IEDL.DBID UNPAY
ISSN 0942-2056
1433-7347
IngestDate Sun Oct 26 04:10:48 EDT 2025
Tue Sep 30 17:04:49 EDT 2025
Thu Oct 02 10:28:24 EDT 2025
Fri Apr 25 03:26:12 EDT 2025
Sat Oct 25 05:06:14 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Thu Sep 25 07:33:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords wearable sensors
classification
machine learning
shoulder
rehabilitation exercises
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2024 The Author(s). Knee Surgery, Sports Traumatology, Arthroscopy published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4881-6c71fb95d82008c40361feb354e58b883c9560b7c35e5ec5f5e63eddd5b825183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7900-5415
0000-0002-9696-1265
0000-0003-4543-1149
0009-0008-5789-1058
0009-0008-3702-8839
0000-0003-4063-9821
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/ksa.12431
PMID 39154254
PQID 3094046755
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1002_ksa_12431
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11948177
proquest_miscellaneous_3094046755
pubmed_primary_39154254
crossref_citationtrail_10_1002_ksa_12431
crossref_primary_10_1002_ksa_12431
wiley_primary_10_1002_ksa_12431_KSA12431
PublicationCentury 2000
PublicationDate April 2025
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
PublicationTitleAlternate Knee Surg Sports Traumatol Arthrosc
PublicationYear 2025
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2023; 31
2021; 25
2021; 9
2021; 8
2015; 37
2021; 21
2013; 3
2019; 70
2019; 14
2021; 182
2020; 59
2020; 36
2023; 2
2011; 17
2013; 7
2016; 16
2007; 15
2018; 39
2019; 20
2007; 8
2009; 145
2022; 36
2020; 24
2022; 30
2022; 10
2005; 2
2007; 23
2016; 25
2007; 47
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
Maffulli N. (e_1_2_12_23_1) 2013; 3
Brennan D.M. (e_1_2_12_7_1) 2009; 145
e_1_2_12_20_1
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 8
  year: 2007
  article-title: The roman bridge: a “double pulley—suture bridges” technique for rotator cuff repair
  publication-title: BMC Musculoskeletal Disorders
– volume: 14
  year: 2019
  article-title: The effectiveness of surgical vs conservative interventions on pain and function in patients with shoulder impingement syndrome. A systematic review and meta‐analysis
  publication-title: PLoS One
– volume: 70
  start-page: 211
  year: 2019
  end-page: 217
  article-title: Adherence monitoring of rehabilitation exercise with inertial sensors: a clinical validation study
  publication-title: Gait & Posture
– volume: 30
  start-page: 3917
  year: 2022
  end-page: 3923
  article-title: The development and deployment of machine learning models
  publication-title: Knee Surgery, Sports Traumatology, Arthroscopy
– volume: 37
  start-page: 1
  year: 2015
  end-page: 8
  article-title: Conservative treatment or surgery for shoulder impingement: systematic review and meta‐analysis
  publication-title: Disability and Rehabilitation
– volume: 25
  start-page: 609
  year: 2021
  end-page: 619
  article-title: Conservative management vs. surgical repair in degenerative rotator cuff tears: a systematic review and meta‐analysis
  publication-title: European Review for Medical and Pharmacological Sciences
– volume: 31
  start-page: 1196
  year: 2023
  end-page: 1202
  article-title: Supervised machine learning and associated algorithms: applications in orthopedic surgery
  publication-title: Knee Surgery, Sports Traumatology, Arthroscopy
– volume: 21
  year: 2021
  article-title: Wearable movement sensors for rehabilitation: from technology to clinical practice
  publication-title: Sensors
– volume: 24
  start-page: 2452
  year: 2020
  end-page: 2460
  article-title: Evaluation of machine learning models for classifying upper extremity exercises using inertial measurement unit‐based kinematic data
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 31
  start-page: 1635
  year: 2023
  end-page: 1643
  article-title: A practical guide to the development and deployment of deep learning models for the orthopedic surgeon: part II
  publication-title: Knee Surgery, Sports Traumatology, Arthroscopy
– volume: 182
  year: 2021
  article-title: Nested cross‐validation when selecting classifiers is overzealous for most practical applications
  publication-title: Expert Systems with Applications
– volume: 15
  start-page: 1482
  year: 2007
  end-page: 1485
  article-title: Arthroscopic management of calcific tendinitis of the subscapularis tendon
  publication-title: Knee Surgery, Sports Traumatology, Arthroscopy
– volume: 17
  start-page: 25
  year: 2011
  end-page: 30
  article-title: Patients' experiences of telerehabilitation at home after shoulder joint replacement
  publication-title: Journal of Telemedicine and Telecare
– volume: 10
  start-page: 68915
  year: 2022
  end-page: 68921
  article-title: Multiclass classification performance curve
  publication-title: IEEE Access
– volume: 36
  start-page: 715
  year: 2022
  end-page: 725
  article-title: Effectiveness of physical therapy given by telerehabilitation on pain and disability of individuals with shoulder pain: a systematic review
  publication-title: Clinical Rehabilitation
– volume: 7
  start-page: 395
  year: 2013
  end-page: 404
  article-title: Intelligent shoulder joint home‐based self‐rehabilitation monitoring system
  publication-title: International Journal of Smart Home
– volume: 3
  start-page: 173
  year: 2013
  end-page: 189
  article-title: The genetics of sports injuries and athletic performance
  publication-title: Muscles, Ligaments and Tendons Journal
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 8
  year: 2021
  article-title: Adherence patterns and dose response of physiotherapy for rotator cuff pathology: longitudinal cohort study
  publication-title: JMIR Rehabilitation and Assistive Technologies
– volume: 31
  start-page: 376
  year: 2023
  end-page: 381
  article-title: Unsupervised machine learning methods and emerging applications in healthcare
  publication-title: Knee Surgery, Sports Traumatology, Arthroscopy
– volume: 39
  year: 2018
  article-title: Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch
  publication-title: Physiological Measurement
– volume: 2
  year: 2005
  article-title: Advances in wearable technology and applications in physical medicine and rehabilitation
  publication-title: Journal of NeuroEngineering and Rehabilitation
– volume: 30
  start-page: 361
  year: 2022
  end-page: 364
  article-title: Artificial intelligence and machine learning: an introduction for orthopaedic surgeons
  publication-title: Knee Surgery, Sports Traumatology, Arthroscopy
– volume: 31
  start-page: 382
  year: 2023
  end-page: 389
  article-title: A practical guide to the development and deployment of deep learning models for the Orthopedic surgeon: part I
  publication-title: Knee Surgery, Sports Traumatology, Arthroscopy
– volume: 25
  start-page: 521
  year: 2016
  end-page: 535
  article-title: The American Society of Shoulder and Elbow Therapists' consensus statement on rehabilitation following arthroscopic rotator cuff repair
  publication-title: Journal of Shoulder and Elbow Surgery
– volume: 59
  start-page: e90
  year: 2020
  end-page: e99
  article-title: Health‐enabling technologies for telerehabilitation of the shoulder: a feasibility and user acceptance study
  publication-title: Methods of Information in Medicine
– volume: 9
  year: 2021
  article-title: Upper‐limb motion recognition based on hybrid feature selection: algorithm development and validation
  publication-title: JMIR mHealth and uHealth
– volume: 16
  year: 2016
  article-title: Quaternion‐based gesture recognition using wireless wearable motion capture sensors
  publication-title: Sensors
– volume: 2
  year: 2023
  article-title: Sensor‐based telerehabilitation system increases patient adherence after knee surgery
  publication-title: PLoS Digital Health
– volume: 145
  start-page: 231
  year: 2009
  end-page: 248
  article-title: Telerehabilitation: enabling the remote delivery of healthcare, rehabilitation, and self management
  publication-title: Studies in Health Technology and Informatics
– volume: 30
  start-page: 753
  year: 2022
  end-page: 757
  article-title: Machine learning and conventional statistics: making sense of the differences
  publication-title: Knee Surgery, Sports Traumatology, Arthroscopy
– volume: 20
  start-page: 546
  year: 2019
  article-title: Wearable systems for shoulder kinematics assessment: a systematic review
  publication-title: BMC Musculoskeletal Disorders
– volume: 31
  start-page: 2615
  year: 2023
  end-page: 2623
  article-title: Machine learning model successfully identifies important clinical features for predicting outpatients with rotator cuff tears
  publication-title: Knee Surgery, Sports Traumatology, Arthroscopy
– volume: 47
  start-page: 390
  year: 2007
  end-page: 391
  article-title: Conservative management for tendinopathy: is there enough scientific evidence?
  publication-title: Rheumatology
– volume: 21
  year: 2021
  article-title: Recognizing physical activities for spinal cord injury rehabilitation using wearable sensors
  publication-title: Sensors
– volume: 36
  start-page: 3093
  year: 2020
  end-page: 3098
  article-title: Consensus features nested cross‐validation
  publication-title: Bioinformatics
– ident: e_1_2_12_32_1
  doi: 10.3390/s21144744
– ident: e_1_2_12_8_1
  doi: 10.2196/21374
– ident: e_1_2_12_12_1
  doi: 10.1258/jtt.2010.100317
– ident: e_1_2_12_21_1
  doi: 10.2196/24402
– ident: e_1_2_12_29_1
  doi: 10.1093/bioinformatics/btaa046
– ident: e_1_2_12_14_1
  doi: 10.1186/1471-2474-8-123
– ident: e_1_2_12_17_1
  doi: 10.1109/JBHI.2020.2999902
– ident: e_1_2_12_4_1
  doi: 10.3390/s21165479
– ident: e_1_2_12_30_1
  doi: 10.1007/s00167-022-07181-2
– ident: e_1_2_12_28_1
  doi: 10.14257/ijsh.2013.7.5.38
– ident: e_1_2_12_11_1
  doi: 10.1007/s00167-022-07233-7
– ident: e_1_2_12_20_1
  doi: 10.1007/s00167-022-07298-4
– ident: e_1_2_12_26_1
  doi: 10.1007/s00167-023-07338-7
– ident: e_1_2_12_33_1
  doi: 10.1093/bioinformatics/btm344
– ident: e_1_2_12_13_1
  doi: 10.1007/s00167-007-0340-x
– ident: e_1_2_12_16_1
  doi: 10.1177/02692155221083496
– ident: e_1_2_12_5_1
  doi: 10.1016/j.gaitpost.2019.03.008
– ident: e_1_2_12_6_1
  doi: 10.1186/1743-0003-2-2
– ident: e_1_2_12_35_1
  doi: 10.1055/s-0040-1713685
– ident: e_1_2_12_3_1
  doi: 10.3390/s16050605
– ident: e_1_2_12_10_1
  doi: 10.1186/s12891-019-2930-4
– ident: e_1_2_12_9_1
  doi: 10.1088/1361-6579/aacfd9
– ident: e_1_2_12_36_1
  doi: 10.1016/j.jse.2015.12.018
– volume: 3
  start-page: 173
  year: 2013
  ident: e_1_2_12_23_1
  article-title: The genetics of sports injuries and athletic performance
  publication-title: Muscles, Ligaments and Tendons Journal
– ident: e_1_2_12_22_1
  doi: 10.1093/rheumatology/ken011
– ident: e_1_2_12_27_1
  doi: 10.1007/s00167-022-07239-1
– volume: 145
  start-page: 231
  year: 2009
  ident: e_1_2_12_7_1
  article-title: Telerehabilitation: enabling the remote delivery of healthcare, rehabilitation, and self management
  publication-title: Studies in Health Technology and Informatics
– ident: e_1_2_12_24_1
  doi: 10.1007/s00167-021-06741-2
– ident: e_1_2_12_15_1
  doi: 10.26355/eurrev_202101_24619
– ident: e_1_2_12_37_1
  doi: 10.1016/j.eswa.2021.115222
– ident: e_1_2_12_18_1
  doi: 10.1371/journal.pdig.0000175
– ident: e_1_2_12_34_1
  doi: 10.3109/09638288.2014.907364
– ident: e_1_2_12_31_1
  doi: 10.1007/s00167-022-07155-4
– ident: e_1_2_12_2_1
  doi: 10.1109/ACCESS.2022.3186444
– ident: e_1_2_12_19_1
  doi: 10.1007/s00167-022-06896-6
– ident: e_1_2_12_25_1
  doi: 10.1371/journal.pone.0216961
SSID ssj0005649
Score 2.453897
Snippet Purpose The objective of this study is to train and test machine‐learning (ML) models to automatically classify shoulder rehabilitation exercises. Methods The...
The objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises. The cohort included...
The objective of this study is to train and test machine-learning (ML) models to automatically classify shoulder rehabilitation exercises.PURPOSEThe objective...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1452
SubjectTerms Adult
Algorithms
Case-Control Studies
classification
Exercise Therapy - classification
Exercise Therapy - methods
Female
Humans
Machine Learning
Male
Middle Aged
rehabilitation exercises
Rotator Cuff Injuries - rehabilitation
Shoulder
Wearable Electronic Devices
wearable sensors
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC5EwfUiPnY1vmjdPXjJOp2kMz14ElFEGRFcwVvodLpVHKJMZhi8-RP8jf4SqzoPCa7iLSGVJkl1dX2VrvoK4I_iJuiZLPZjDJf9SEjt92Krfc6t4ugQskxRoNg_j0-uotNrcT0F-3UtTMkP0fxwI8tw6zUZuEqLvXfS0PtC_UXnRDXUMxxxDE3vILp4z--IS-zbo_oTPKtphTrBXnNr2xl9QJgfEyV_jPNH9TRRg0EbzDpvdLwA8xWMZAel3hdhyuRLMNuvNsqXwfZdkqR5fX6p-kLcMNf0pmCIUllxS52tzZANW0TdrG7AVDBNqJrSiMoLlB5_wxSb4GBUbMVKBuifcHV89O_wxK9aKvgaLZX7se5ym_ZEJinvQUfov7jFeFpERshUylBTvJR2dSiMMFpYYeLQZFkmUqpxleEvmM4fcrMKDP0aSnc6xmBgG3akQiBno8zyWFgrlfFgt_62ia5eg9peDJKSKTlIUA2JU4MHO43oY0my8T-h7VpBCZoA7Wuo3DyMiyQkDkBc8IXwYKVUWDMM8d_jshR5IFuqbASIXrt9Jb-7dTTbnBOTTbfrwe9G61893q6bD59LJGeXB-5g7fui6zAXUMNhlyq0AdOj4dhsIgoapVtutr8BJsUFag
  priority: 102
  providerName: Wiley-Blackwell
Title Machine‐learning models for shoulder rehabilitation exercises classification using a wearable system
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fksa.12431
https://www.ncbi.nlm.nih.gov/pubmed/39154254
https://www.proquest.com/docview/3094046755
https://pubmed.ncbi.nlm.nih.gov/PMC11948177
https://doi.org/10.1002/ksa.12431
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-7347
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005649
  issn: 0942-2056
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-7347
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005649
  issn: 0942-2056
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB7RRWq5tPSXtAWZtgcu2a7jOPEeVxUItVqE1K5ET5Hj2FCxCmizK9Se-gg8I0_SGSfZEqColyiSx1ZsjzPfyDPfAHzQ3EZDWyRhgu5yGEtlwmHiTMi50xwNQlFochTHB8n-JP58JI9WYLvNhene30cfTyvdRxNEmdKriUS43YPVycHh6Lvn0KPUkoGsM4iECFMRpy170PW-XZtzC0jejod8tCjP9c8LPZ12Mas3OntP_qbu1LEmp_3FPO-bXzeYHO-dzzo8biAnG9U68hRWbPkMHo6bS_Xn4MY-oNJe_b5sakgcM18gp2KIaFl1QlWw7YzNOqTerC3WVDFDCJxCjuoGCqU_Zppd4GCUmMVqtugXMNnb_fZpP2zKL4QGTzUPE5Nylw9loShGwsRo67hD31vGVqpcKWHIt8pTI6SV1kgnbSJsURQyp3xYJV5Crzwr7QYwtIEoPRhYi06wGCiNoM_FheOJdE5pG8BOu0GZaaZBJTKmWc2qHGW4bplftwDeLUXPa0KOu4S2213O8LjQHYgu7dmiygTxBaJxkDKAV_WuL4chrnz8hcUBqI4-LAWIirvbUv448ZTcnBPrTZoG8H6pOvd93o5Xqn9LZF--jvzL6_8a8A2sRVSX2EcUvYXefLawmwiW5vkWPIjiQ3xOotFWc3T-AFqJE68
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hkEovCOiD8Cju48AlZZ3EXq_EBVVF28KiSgWJW-Q4NlRdhdVmV4gbP4HfyC9hxnmgiLbqLZEnVpKxPd_YM98AfNLcRgOby1CiuxwmQplwIJ0JOXeao0HIc02O4uhUDs-T7xfiYgEOmlyYih-i3XCjmeHXa5rgtCG9_8Qa-rvUn9E6URL1UiK5JNcrSn48BXjICvwOKAEF7xpeoV603z7atUbPIObzSMnleTHRtzd6PO6iWW-OjlZhpcaR7LBS_Bos2GIdXozqk_JX4EY-StI-3N3XhSEuma96UzKEqay8otLWdsqmHaZu1lRgKpkhWE1xRFUDxcdfMs1usDPKtmIVBfRrOD_6evZlGNY1FUKDU5WH0vS5ywYiVxT4YBI0YNyhQy0SK1SmVGzIYcr6JhZWWCOcsDK2eZ6LjJJcVfwGFovrwm4AQ8OG0r2etejZxj2lEcm5JHdcCueUtgHsNf82NfVnUN2LcVpRJUcpqiH1agjgQys6qVg2_iT0vlFQinOADjZ0Ya_nZRoTCSCu-EIE8LZSWNsNEeDjupQEoDqqbAWIX7vbUvy68jzbnBOVTb8fwMdW6_96vT0_Hv4ukR7_PPQXm_8vugvLw7PRSXry7fR4C15GVH3Yxw1tw-JsOrc7CIlm2Ts_8h8BOs4I1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hkGgvFX2S0of7OHBJWW_irFfigtquaOkipBaJW-TYY6i6CqsNK8StP6G_sb-EGeeBItqqt0SZWEnG4_kmnvkG4K2ROByjy-KMwuU4VdrG48zbWEpvJDkE5wwHitPDbP84_XyiTlZgt62Fqfkhuh9ubBlhvWYDx7nzOzesoT8q8468ExdRr6WKPCHzOqdHNwkeWQ1-x1yAQmctr9BguNPd2vdGtyDm7UzJO8tybq4uzWzWR7PBHU024F6DI8Verfj7sILlA1ifNjvlD8FPQ5Yk_v75q2kMcSpC15tKEEwV1Rm3tsaFWPSYukXbgakSlmE15xHVFzg__lQYcUmDcbWVqCmgH8Hx5OO39_tx01MhtmSqMs7sSPpirJzmxAebkgOTngJqlaLShdaJ5YCpGNlEoUKrvMIsQeecKrjIVSePYbU8L3ETBDk2kh4MECmyTQbaEJLzqfMyU95rgxFst982t81rcN-LWV5TJQ9zUkMe1BDB6050XrNs_EnoVaugnGyANzZMiefLKk-YBJBWfKUieFIrrBuGCfBpXUoj0D1VdgLMr92_Un4_CzzbUjKVzWgUwZtO6_96vO0wH_4ukR983QsHT_9f9CWsH32Y5F8-HR5swd0hNx8OaUPPYPViscTnhIguihdh4l8D6wgIZQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB6hRWp76Q-lNP2ToRy4ZFmv48R7XFVFqGgREqwEp8hxbECsAtrsCrWnPkKfkSdhxkmWphTELZInVmyPM99oZr4B2NTc9gc2j8MY3eUwksqEg9iZkHOnORqEPNfkKI72491x9ONYHi_BelML047f97cvSt1FE0SV0suxRLjdgeXx_sHwxHPoUWlJT1YVREKEiYiShj3o73fbNucekLyfD_l8Xlzpn9d6MmljVm90dl7dle5UuSYX3fks65pf_zA5Prqe1_CyhpxsWOnIG1iyxQo8G9VB9bfgRj6h0t78_lP3kDhlvkFOyRDRsvKMumDbKZu2SL1Z06ypZIYQOKUcVQOUSn_KNLvGyagwi1Vs0asw3vl-9G03rNsvhAZvNQ9jk3CXDWSuKEfCRGjruEPfW0ZWqkwpYci3yhIjpJXWSCdtLGye5zKjelgl3kGnuCzse2BoA1G617MWnWDRUxpBn4tyx2PpnNI2gK3mgFJTL4NaZEzSilW5n-K-pX7fAthYiF5VhBz_E1pvTjnF60IxEF3Yy3mZCuILROMgZQBr1akvpiGufPyFRQGolj4sBIiKuz1SnJ95Sm7OifUmSQL4ulCdxz5vyyvVwxLp3uHQP3x40oQf4UWf-hL7jKJP0JlN5_YzgqVZ9qW-LreAChHv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine%E2%80%90learning+models+for+shoulder+rehabilitation+exercises+classification+using+a+wearable+system&rft.jtitle=Knee+surgery%2C+sports+traumatology%2C+arthroscopy+%3A+official+journal+of+the+ESSKA&rft.au=Sassi%2C+Martina&rft.au=Carnevale%2C+Arianna&rft.au=Mancuso%2C+Matilde&rft.au=Schena%2C+Emiliano&rft.date=2025-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0942-2056&rft.eissn=1433-7347&rft.volume=33&rft.issue=4&rft.spage=1452&rft.epage=1458&rft_id=info:doi/10.1002%2Fksa.12431&rft_id=info%3Apmid%2F39154254&rft.externalDocID=PMC11948177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-2056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-2056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-2056&client=summon