Voltage compartmentalization in dendritic spines in vivo
Dendritic spines are small protrusions that cover the dendrites of most neurons in the brain. Their electrical properties are still controversially discussed. Cornejo et al . used an array of techniques to investigate the degree of voltage attenuation by dendritic spine necks in pyramidal neurons of...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 375; no. 6576; pp. 82 - 86 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
07.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abg0501 |
Cover
Abstract | Dendritic spines are small protrusions that cover the dendrites of most neurons in the brain. Their electrical properties are still controversially discussed. Cornejo
et al
. used an array of techniques to investigate the degree of voltage attenuation by dendritic spine necks in pyramidal neurons of the mouse neocortex. Spines not only synchronously depolarized in response to backpropagating action potentials, but local and transient depolarization also occurred. Isolated depolarization in individual spines reflected localized synaptic activation. A significant voltage gradient between dendritic spine and dendrite indicated that spines may constitute elementary electric compartments. The spine neck resistance is thus not negligible and may substantially contribute to the regulation of synaptic efficacy in the central nervous system. —PRS
Dendritic spines in mouse pyramidal neurons are elementary voltage compartments.
Dendritic spines mediate most excitatory neurotransmission in the nervous system, so their function must be critical for the brain. Spines are biochemical compartments but might also electrically modify synaptic potentials. Using two-photon microscopy and a genetically encoded voltage indicator, we measured membrane potentials in spines and dendrites from pyramidal neurons in the somatosensory cortex of mice during spontaneous activity and sensory stimulation. Spines and dendrites were depolarized together during action potentials, but, during subthreshold and resting potentials, spines often experienced different voltages than parent dendrites, even activating independently. Spine voltages remained compartmentalized after two-photon optogenetic activation of individual spine heads. We conclude that spines are elementary voltage compartments. The regulation of voltage compartmentalization could be important for synaptic function and plasticity, dendritic integration, and disease states. |
---|---|
AbstractList | Dendritic spines’ electrical function?Dendritic spines are small protrusions that cover the dendrites of most neurons in the brain. Their electrical properties are still controversially discussed. Cornejo et al. used an array of techniques to investigate the degree of voltage attenuation by dendritic spine necks in pyramidal neurons of the mouse neocortex. Spines not only synchronously depolarized in response to backpropagating action potentials, but local and transient depolarization also occurred. Isolated depolarization in individual spines reflected localized synaptic activation. A significant voltage gradient between dendritic spine and dendrite indicated that spines may constitute elementary electric compartments. The spine neck resistance is thus not negligible and may substantially contribute to the regulation of synaptic efficacy in the central nervous system. —PRSDendritic spines mediate most excitatory neurotransmission in the nervous system, so their function must be critical for the brain. Spines are biochemical compartments but might also electrically modify synaptic potentials. Using two-photon microscopy and a genetically encoded voltage indicator, we measured membrane potentials in spines and dendrites from pyramidal neurons in the somatosensory cortex of mice during spontaneous activity and sensory stimulation. Spines and dendrites were depolarized together during action potentials, but, during subthreshold and resting potentials, spines often experienced different voltages than parent dendrites, even activating independently. Spine voltages remained compartmentalized after two-photon optogenetic activation of individual spine heads. We conclude that spines are elementary voltage compartments. The regulation of voltage compartmentalization could be important for synaptic function and plasticity, dendritic integration, and disease states. Dendritic spines mediate most excitatory neurotransmission in the nervous system, so their function must be critical for the brain. Spines are biochemical compartments but might also electrically modify synaptic potentials. Using two-photon microscopy and a genetically encoded voltage indicator, we measured membrane potentials in spines and dendrites from pyramidal neurons in the somatosensory cortex of mice during spontaneous activity and sensory stimulation. Spines and dendrites were depolarized together during action potentials, but, during subthreshold and resting potentials, spines often experienced different voltages than parent dendrites, even activating independently. Spine voltages remained compartmentalized after two-photon optogenetic activation of individual spine heads. We conclude that spines are elementary voltage compartments. The regulation of voltage compartmentalization could be important for synaptic function and plasticity, dendritic integration, and disease states. Dendritic spines mediate most excitatory neurotransmission in the nervous system, so their function must be critical for the brain. Spines are biochemical compartments but might also electrically modify synaptic potentials. Using two-photon microscopy and a genetically encoded voltage indicator, we measured membrane potentials in spines and dendrites from pyramidal neurons in the somatosensory cortex of mice during spontaneous activity and sensory stimulation. Spines and dendrites were depolarized together during action potentials, but, during subthreshold and resting potentials, spines often experienced different voltages than parent dendrites, even activating independently. Spine voltages remained compartmentalized after two-photon optogenetic activation of individual spine heads. We conclude that spines are elementary voltage compartments. The regulation of voltage compartmentalization could be important for synaptic function and plasticity, dendritic integration, and disease states.Dendritic spines mediate most excitatory neurotransmission in the nervous system, so their function must be critical for the brain. Spines are biochemical compartments but might also electrically modify synaptic potentials. Using two-photon microscopy and a genetically encoded voltage indicator, we measured membrane potentials in spines and dendrites from pyramidal neurons in the somatosensory cortex of mice during spontaneous activity and sensory stimulation. Spines and dendrites were depolarized together during action potentials, but, during subthreshold and resting potentials, spines often experienced different voltages than parent dendrites, even activating independently. Spine voltages remained compartmentalized after two-photon optogenetic activation of individual spine heads. We conclude that spines are elementary voltage compartments. The regulation of voltage compartmentalization could be important for synaptic function and plasticity, dendritic integration, and disease states. Dendritic spines are small protrusions that cover the dendrites of most neurons in the brain. Their electrical properties are still controversially discussed. Cornejo et al . used an array of techniques to investigate the degree of voltage attenuation by dendritic spine necks in pyramidal neurons of the mouse neocortex. Spines not only synchronously depolarized in response to backpropagating action potentials, but local and transient depolarization also occurred. Isolated depolarization in individual spines reflected localized synaptic activation. A significant voltage gradient between dendritic spine and dendrite indicated that spines may constitute elementary electric compartments. The spine neck resistance is thus not negligible and may substantially contribute to the regulation of synaptic efficacy in the central nervous system. —PRS Dendritic spines in mouse pyramidal neurons are elementary voltage compartments. Dendritic spines mediate most excitatory neurotransmission in the nervous system, so their function must be critical for the brain. Spines are biochemical compartments but might also electrically modify synaptic potentials. Using two-photon microscopy and a genetically encoded voltage indicator, we measured membrane potentials in spines and dendrites from pyramidal neurons in the somatosensory cortex of mice during spontaneous activity and sensory stimulation. Spines and dendrites were depolarized together during action potentials, but, during subthreshold and resting potentials, spines often experienced different voltages than parent dendrites, even activating independently. Spine voltages remained compartmentalized after two-photon optogenetic activation of individual spine heads. We conclude that spines are elementary voltage compartments. The regulation of voltage compartmentalization could be important for synaptic function and plasticity, dendritic integration, and disease states. |
Author | Yuste, Rafael Cornejo, Victor Hugo Ofer, Netanel |
Author_xml | – sequence: 1 givenname: Victor Hugo orcidid: 0000-0002-6742-7557 surname: Cornejo fullname: Cornejo, Victor Hugo organization: Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA – sequence: 2 givenname: Netanel orcidid: 0000-0002-7244-2348 surname: Ofer fullname: Ofer, Netanel organization: Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA – sequence: 3 givenname: Rafael orcidid: 0000-0003-4206-497X surname: Yuste fullname: Yuste, Rafael organization: Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34762487$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLAzEUhYMotj7W7qTgxs3ozWuabAQRX1Bwo25DJpOpKTNJTaYF_fWmWkULrgK553w5uWcPbfvgLUJHGM4wJuV5Ms56Y890NQUOeAsNMUheSAJ0Gw0BaFkIGPMB2ktpBpBnku6iAWXjkjAxHiLxHNpeT-3IhG6uY99Z3-vWveveBT9yflRbX0fXOzNKc-dtWt0t3TIcoJ1Gt8kers999HRz_Xh1V0webu-vLieFyfy-aKzQuKkaTiyubAmMNByEZFUjuKgJEZQzLjFlBleS1VBpDtpgww0VUMqK7qOLL-58UXW2Njlf1K2aR9fp-KaCdurvxLsXNQ1LlR8hIEgGnK4BMbwubOpV55Kxbau9DYukCJdjJgVnLEtPNqSzsIg-f0-RMucRJeUr4PHvRD9RvpeaBfxLYGJIKdpGGdd_LjQHdK3CoFblqXV5al1e9p1v-L7R_zk-APc6n6g |
CitedBy_id | crossref_primary_10_3390_biomedicines10081859 crossref_primary_10_1021_acschemneuro_4c00849 crossref_primary_10_1038_s41592_024_02458_5 crossref_primary_10_1177_10738584231185530 crossref_primary_10_1186_s10194_022_01474_0 crossref_primary_10_1002_advs_202404166 crossref_primary_10_1038_s41467_021_27444_9 crossref_primary_10_7554_eLife_96144 crossref_primary_10_1016_j_neures_2022_04_005 crossref_primary_10_1111_ejn_16484 crossref_primary_10_1111_bph_16317 crossref_primary_10_1038_s42003_024_06342_y crossref_primary_10_1038_s41467_025_56289_9 crossref_primary_10_1016_j_conb_2023_102706 crossref_primary_10_2183_pjab_99_018 crossref_primary_10_1093_cercor_bhae312 crossref_primary_10_3389_fncel_2022_916626 crossref_primary_10_1016_j_tics_2022_08_012 crossref_primary_10_1007_s11431_022_2165_3 crossref_primary_10_1016_j_bpj_2023_10_008 crossref_primary_10_1038_s41583_023_00742_5 crossref_primary_10_12688_f1000research_146327_2 crossref_primary_10_12688_f1000research_146327_1 crossref_primary_10_3389_fnins_2022_827284 crossref_primary_10_1002_advs_202307938 crossref_primary_10_1021_acsnano_4c07379 crossref_primary_10_3389_fncel_2022_1031389 crossref_primary_10_1117_1_NPh_11_2_024307 crossref_primary_10_3902_jnns_30_189 crossref_primary_10_1016_j_neures_2024_06_004 crossref_primary_10_1016_j_neuron_2024_08_019 crossref_primary_10_1186_s12974_023_02756_3 crossref_primary_10_3389_fninf_2022_1032538 crossref_primary_10_1016_j_celrep_2022_111943 crossref_primary_10_3389_fncel_2023_1173694 crossref_primary_10_1016_j_pharmthera_2024_108741 crossref_primary_10_1038_s41598_023_39985_8 crossref_primary_10_3389_fnins_2022_859803 crossref_primary_10_3788_CJL221482 crossref_primary_10_1007_s12035_022_02976_3 crossref_primary_10_1093_cercor_bhac195 crossref_primary_10_1016_j_chaos_2023_113554 crossref_primary_10_1002_glia_24343 crossref_primary_10_1038_s41467_023_36889_z crossref_primary_10_1371_journal_pcbi_1012531 crossref_primary_10_1117_1_NPh_11_3_033406 crossref_primary_10_1146_annurev_biophys_072123_124954 crossref_primary_10_1016_j_cell_2024_07_036 crossref_primary_10_1038_s41467_024_53074_y crossref_primary_10_1523_ENEURO_0039_22_2022 crossref_primary_10_1016_j_isci_2023_106182 crossref_primary_10_1117_1_NPh_11_3_033405 crossref_primary_10_1523_JNEUROSCI_0365_24_2024 crossref_primary_10_1073_pnas_2306950120 crossref_primary_10_1002_cne_25430 crossref_primary_10_1007_s10827_024_00864_4 crossref_primary_10_1111_jnc_15608 crossref_primary_10_1117_1_NPh_12_S1_S14608 crossref_primary_10_1039_D2NR03475A crossref_primary_10_1016_j_neuron_2023_11_018 crossref_primary_10_1089_bioe_2022_0017 crossref_primary_10_3390_bios13060648 crossref_primary_10_1038_s41467_024_49192_2 crossref_primary_10_1111_bpa_13222 crossref_primary_10_3390_ijms25021285 |
Cites_doi | 10.1038/nature08947 10.1016/S0896-6273(00)80635-2 10.1016/j.neuron.2013.04.017 10.1038/nn1698 10.1101/334706 10.1098/rspb.1983.0051 10.1093/cercor/bhs320 10.1109/83.650848 10.1038/nature07842 10.1038/nn.4323 10.1016/0896-6273(94)90457-X 10.1126/science.275.5297.209 10.1073/pnas.0608755103 10.1016/j.neuron.2011.07.024 10.1038/nmeth.2836 10.1007/s10827-019-00725-5 10.1016/j.neuron.2011.02.040 10.1146/annurev-neuro-062111-150455 10.1002/aja.1001270402 10.1126/science.272.5262.716 10.1038/nature11554 10.1038/nn.3682 10.1038/nnano.2016.268 10.1016/j.tins.2003.11.008 10.1016/j.celrep.2017.07.012 10.1038/nn.3709 10.1038/nn.3532 10.1126/science.1589781 10.1523/JNEUROSCI.13-02-00413.1993 10.1126/science.1195797 10.1126/science.186.4169.1126 10.1126/science.1114816 10.1111/j.1469-7793.1997.605ba.x 10.7551/mitpress/9780262013505.001.0001 10.1016/j.cell.2019.11.004 10.1113/jphysiol.2004.072678 10.1016/j.neuron.2017.09.012 10.1523/JNEUROSCI.5847-08.2009 10.1146/annurev.neuro.28.061604.135703 10.1152/jn.1988.60.2.499 10.1152/physrev.00019.2019 10.1038/nature10193 10.1073/pnas.0609225103 10.1073/pnas.1321869111 10.1038/1831592a0 10.1038/nature12354 10.1186/2190-8567-1-10 10.1016/j.celrep.2018.12.088 10.1186/s12915-019-0682-0 10.1371/journal.pbio.1000190 10.1073/pnas.0705282104 10.1146/annurev.ne.17.030194.002013 10.1016/S0896-6273(03)00714-1 10.1038/nmeth.2249 10.1073/pnas.0510092103 10.1016/j.isci.2020.101363 10.1038/375682a0 10.1523/ENEURO.0050-15.2016 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abg0501 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 86 |
ExternalDocumentID | PMC8942082 34762487 10_1126_science_abg0501 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH115900 – fundername: NINDS NIH HHS grantid: R34 NS116740 – fundername: NEI NIH HHS grantid: R01 EY011787 – fundername: NINDS NIH HHS grantid: R01 NS110422 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 AEUPB CGR CUY CVF ECM EIF ESX GX1 IGG NPM OK1 PKN UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c487t-fe8a1fbf52e1be6042f50894bf858d22835459134c1b94d0ba50ac1c5c38069b3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:07:40 EDT 2025 Sun Sep 28 10:45:58 EDT 2025 Fri Jul 25 19:20:02 EDT 2025 Wed Feb 19 02:26:29 EST 2025 Tue Jul 01 02:24:08 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6576 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-fe8a1fbf52e1be6042f50894bf858d22835459134c1b94d0ba50ac1c5c38069b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: Conceptualization: V.H.C., R.Y.; Methodology: V.H.C., R.Y.; Software: V.H.C., N.O.; Formal analysis: V.H.C., N.O.; Investigation: V.H.C.; Writing – original draft: V.H.C., R.Y.; Writing – review and editing: V.H.C., N.O., R.Y.; Visualization: V.H.C.; Supervision: R.Y.; Project administration: R.Y.; Funding acquisition: R.Y. |
ORCID | 0000-0002-7244-2348 0000-0002-6742-7557 0000-0003-4206-497X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8942082 |
PMID | 34762487 |
PQID | 2638086352 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8942082 proquest_miscellaneous_2597498544 proquest_journals_2638086352 pubmed_primary_34762487 crossref_citationtrail_10_1126_science_abg0501 crossref_primary_10_1126_science_abg0501 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-07 |
PublicationDateYYYYMMDD | 2022-01-07 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_3_50_2 Ramon y Cajal S. (e_1_3_3_2_2) 1888; 1 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 Rose C. R. (e_1_3_3_37_2) 1999; 439 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_45_2 doi: 10.1038/nature08947 – ident: e_1_3_3_50_2 doi: 10.1016/S0896-6273(00)80635-2 – ident: e_1_3_3_36_2 doi: 10.1016/j.neuron.2013.04.017 – ident: e_1_3_3_12_2 doi: 10.1038/nn1698 – ident: e_1_3_3_61_2 doi: 10.1101/334706 – ident: e_1_3_3_15_2 doi: 10.1098/rspb.1983.0051 – ident: e_1_3_3_22_2 doi: 10.1093/cercor/bhs320 – ident: e_1_3_3_54_2 – ident: e_1_3_3_60_2 doi: 10.1109/83.650848 – ident: e_1_3_3_10_2 doi: 10.1038/nature07842 – ident: e_1_3_3_47_2 doi: 10.1038/nn.4323 – ident: e_1_3_3_14_2 – ident: e_1_3_3_42_2 doi: 10.1016/0896-6273(94)90457-X – ident: e_1_3_3_9_2 doi: 10.1126/science.275.5297.209 – ident: e_1_3_3_28_2 doi: 10.1073/pnas.0608755103 – ident: e_1_3_3_53_2 doi: 10.1016/j.neuron.2011.07.024 – ident: e_1_3_3_40_2 doi: 10.1038/nmeth.2836 – ident: e_1_3_3_52_2 doi: 10.1007/s10827-019-00725-5 – ident: e_1_3_3_64_2 doi: 10.1016/j.neuron.2011.02.040 – ident: e_1_3_3_19_2 doi: 10.1146/annurev-neuro-062111-150455 – ident: e_1_3_3_6_2 doi: 10.1002/aja.1001270402 – ident: e_1_3_3_25_2 doi: 10.1126/science.272.5262.716 – volume: 439 start-page: 201 year: 1999 ident: e_1_3_3_37_2 article-title: Two-photon Na+ imaging in spines and fine dendrites of central neurons publication-title: Pflugers Arch. – ident: e_1_3_3_30_2 doi: 10.1038/nature11554 – ident: e_1_3_3_31_2 doi: 10.1038/nn.3682 – ident: e_1_3_3_33_2 doi: 10.1038/nnano.2016.268 – ident: e_1_3_3_18_2 doi: 10.1016/j.tins.2003.11.008 – ident: e_1_3_3_23_2 doi: 10.1016/j.celrep.2017.07.012 – ident: e_1_3_3_34_2 doi: 10.1038/nn.3709 – ident: e_1_3_3_59_2 doi: 10.1038/nn.3532 – ident: e_1_3_3_13_2 – ident: e_1_3_3_16_2 doi: 10.1126/science.1589781 – ident: e_1_3_3_41_2 doi: 10.1523/JNEUROSCI.13-02-00413.1993 – ident: e_1_3_3_65_2 doi: 10.1126/science.1195797 – ident: e_1_3_3_56_2 doi: 10.1126/science.186.4169.1126 – ident: e_1_3_3_26_2 doi: 10.1126/science.1114816 – ident: e_1_3_3_43_2 doi: 10.1111/j.1469-7793.1997.605ba.x – ident: e_1_3_3_5_2 doi: 10.7551/mitpress/9780262013505.001.0001 – ident: e_1_3_3_35_2 doi: 10.1016/j.cell.2019.11.004 – ident: e_1_3_3_44_2 doi: 10.1113/jphysiol.2004.072678 – ident: e_1_3_3_58_2 doi: 10.1016/j.neuron.2017.09.012 – ident: e_1_3_3_38_2 doi: 10.1523/JNEUROSCI.5847-08.2009 – ident: e_1_3_3_55_2 doi: 10.1146/annurev.neuro.28.061604.135703 – ident: e_1_3_3_48_2 doi: 10.1152/jn.1988.60.2.499 – ident: e_1_3_3_63_2 doi: 10.1152/physrev.00019.2019 – ident: e_1_3_3_17_2 – ident: e_1_3_3_8_2 doi: 10.1038/nature10193 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.0609225103 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.1321869111 – ident: e_1_3_3_3_2 doi: 10.1038/1831592a0 – ident: e_1_3_3_46_2 doi: 10.1038/nature12354 – ident: e_1_3_3_51_2 doi: 10.1186/2190-8567-1-10 – ident: e_1_3_3_57_2 doi: 10.1016/j.celrep.2018.12.088 – ident: e_1_3_3_20_2 doi: 10.1186/s12915-019-0682-0 – ident: e_1_3_3_29_2 doi: 10.1371/journal.pbio.1000190 – volume: 1 start-page: 1 year: 1888 ident: e_1_3_3_2_2 article-title: Estructura de los centros nerviosos de las aves publication-title: Rev. Trim. Histol. Norm. Patol. – ident: e_1_3_3_49_2 doi: 10.1073/pnas.0705282104 – ident: e_1_3_3_4_2 doi: 10.1146/annurev.ne.17.030194.002013 – ident: e_1_3_3_11_2 doi: 10.1016/S0896-6273(03)00714-1 – ident: e_1_3_3_39_2 doi: 10.1038/nmeth.2249 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.0510092103 – ident: e_1_3_3_62_2 doi: 10.1016/j.isci.2020.101363 – ident: e_1_3_3_7_2 doi: 10.1038/375682a0 – ident: e_1_3_3_24_2 doi: 10.1523/ENEURO.0050-15.2016 |
SSID | ssj0009593 |
Score | 2.6013305 |
Snippet | Dendritic spines are small protrusions that cover the dendrites of most neurons in the brain. Their electrical properties are still controversially discussed.... Dendritic spines mediate most excitatory neurotransmission in the nervous system, so their function must be critical for the brain. Spines are biochemical... Dendritic spines’ electrical function?Dendritic spines are small protrusions that cover the dendrites of most neurons in the brain. Their electrical properties... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 82 |
SubjectTerms | Action Potentials Anatomy Animals Brain Central nervous system Cerebral cortex Compartments Dendrites Dendritic plasticity Dendritic spines Dendritic Spines - physiology Dendritic structure Depolarization Electrical properties Genetic code Membrane Potentials Mice Neocortex Nervous system Neurons Neurotransmission Optogenetics Patch-Clamp Techniques Photons Pyramidal cells Pyramidal Cells - physiology Sensory stimulation Somatosensory cortex Somatosensory Cortex - cytology Somatosensory Cortex - physiology Spine Synapses - physiology Synaptic plasticity Synaptic Potentials Synaptic strength Voltage Voltage indicators |
Title | Voltage compartmentalization in dendritic spines in vivo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34762487 https://www.proquest.com/docview/2638086352 https://www.proquest.com/docview/2597498544 https://pubmed.ncbi.nlm.nih.gov/PMC8942082 |
Volume | 375 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgK1AviJZHAwUFiUNRlVXixE5y3BaqFYceUFuVU2Q7dllUklU3W6n8esaxYxzaSsAlWtmOo_U3Hs-M54HQe06pSGqSRZTXIsqkohFPszwqecwFSzBVrHeQPabz0-zzOTn3Iq51dEnHp-LnnXEl_4MqtAGuOkr2H5B1k0ID_AZ84QkIw_OvMD5rLzvtc2McyTuTp98GVho316buSxnsr5bavV23XS-uW18iHTY3SJru9sbDzLkhzoyzwOA7YF_zDAmH7VUjv_eW17OFvgrYn68vWmfEVYY2jiVIo9K5dXxdr0x9vi9MDd771gaBcW-DMOekNHwz1iUfcZz6jDU1NVEsBVGS-5zSlBy6zcC9kpNyyvhFTIyxw4Nz-aPHE0iK4swe1-Oc2UPXQ7SBc5CpJmhjdvDx4GiUjtkmevJCqIbvbaLHwwxjceWWDvKnK60nm5w8RU-sUhHODIVsoQey2UaPTJnRm220ZcFahXs2y_iHZ6iwxBPeRTzhogkd8YSGeHSbJp7n6PTo08nhPLJlNCIBf6CLlCxYorgiWCZcUuDSCqTyMuOqIEWt0x-BFK0dMETCy6yOOSMxE4kgIi1iWvL0BZo0bSN3UAgtqSA59FEOkj7mTFAQqOM6ZUSljAZoOqxWJWyOeV3q5LLqdU1MK7vSlV3pAO25F5Ymvcr9Q3eH5a_sHlxVGI4PUMpBiwjQO9cNHFJfewE5t2sYo3XmsiBZFqCXBi33rQHmAOUjHN0AnX193NMsvvVZ2GEFMcjPr-6d8zXa_L1XdtGku1rLNyDBdvytJcdf8kChWQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voltage+compartmentalization+in+dendritic+spines+in+vivo&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Cornejo%2C+Victor+Hugo&rft.au=Ofer%2C+Netanel&rft.au=Yuste%2C+Rafael&rft.date=2022-01-07&rft.eissn=1095-9203&rft.volume=375&rft.issue=6576&rft.spage=82&rft_id=info:doi/10.1126%2Fscience.abg0501&rft_id=info%3Apmid%2F34762487&rft.externalDocID=34762487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |