Super-resolution reconstruction of neonatal brain magnetic resonance images via residual structured sparse representation

•Borrowing high-frequency information from toddler images in the form of dictionaries.•Incorporating a parameterized nonconvex regularization into super-resolution modeling.•Introducing a two-layer representation strategy to solve the problem of the discrepancies between test and training images.•Ex...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 55; pp. 76 - 87
Main Authors Zhang, Yongqin, Yap, Pew-Thian, Chen, Geng, Lin, Weili, Wang, Li, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8431
1361-8423
DOI10.1016/j.media.2019.04.010

Cover

Abstract •Borrowing high-frequency information from toddler images in the form of dictionaries.•Incorporating a parameterized nonconvex regularization into super-resolution modeling.•Introducing a two-layer representation strategy to solve the problem of the discrepancies between test and training images.•Exploiting image nonlocal self-similarity for enhancing structured sparse representation. [Display omitted] Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel method for super-resolution reconstruction of neonate images with the help of toddler images, using residual-structured sparse representation with convex regularization. Specifically, we introduce a two-layer image representation, consisting of a base layer and a detail layer, to cater to signal variation across scanners and sites. The base layer consists of the smoothed version of the image obtained via Gaussian filtering. The detail layer is the difference between the original image and the base layer. High-frequency details in the detail layer are borrowed across subjects for super-resolution reconstruction. Experimental results on T1 and T2 images demonstrate that the proposed algorithm can recover fine anatomical structures, and generally outperform the state-of-the-art methods both qualitatively and quantitatively.
AbstractList Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel method for super-resolution reconstruction of neonate images with the help of toddler images, using residual-structured sparse representation with convex regularization. Specifically, we introduce a two-layer image representation, consisting of a base layer and a detail layer, to cater to signal variation across scanners and sites. The base layer consists of the smoothed version of the image obtained via Gaussian filtering. The detail layer is the difference between the original image and the base layer. High-frequency details in the detail layer are borrowed across subjects for super-resolution reconstruction. Experimental results on T1 and T2 images demonstrate that the proposed algorithm can recover fine anatomical structures, and generally outperform the state-of-the-art methods both qualitatively and quantitatively.
Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel method for super-resolution reconstruction of neonate images with the help of toddler images, using residual-structured sparse representation with convex regularization. Specifically, we introduce a two-layer image representation, consisting of a base layer and a detail layer, to cater to signal variation across scanners and sites. The base layer consists of the smoothed version of the image obtained via Gaussian filtering. The detail layer is the difference between the original image and the base layer. High-frequency details in the detail layer are borrowed across subjects for super-resolution reconstruction. Experimental results on T1 and T2 images demonstrate that the proposed algorithm can recover fine anatomical structures, and generally outperform the state-of-the-art methods both qualitatively and quantitatively.Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel method for super-resolution reconstruction of neonate images with the help of toddler images, using residual-structured sparse representation with convex regularization. Specifically, we introduce a two-layer image representation, consisting of a base layer and a detail layer, to cater to signal variation across scanners and sites. The base layer consists of the smoothed version of the image obtained via Gaussian filtering. The detail layer is the difference between the original image and the base layer. High-frequency details in the detail layer are borrowed across subjects for super-resolution reconstruction. Experimental results on T1 and T2 images demonstrate that the proposed algorithm can recover fine anatomical structures, and generally outperform the state-of-the-art methods both qualitatively and quantitatively.
•Borrowing high-frequency information from toddler images in the form of dictionaries.•Incorporating a parameterized nonconvex regularization into super-resolution modeling.•Introducing a two-layer representation strategy to solve the problem of the discrepancies between test and training images.•Exploiting image nonlocal self-similarity for enhancing structured sparse representation. [Display omitted] Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel method for super-resolution reconstruction of neonate images with the help of toddler images, using residual-structured sparse representation with convex regularization. Specifically, we introduce a two-layer image representation, consisting of a base layer and a detail layer, to cater to signal variation across scanners and sites. The base layer consists of the smoothed version of the image obtained via Gaussian filtering. The detail layer is the difference between the original image and the base layer. High-frequency details in the detail layer are borrowed across subjects for super-resolution reconstruction. Experimental results on T1 and T2 images demonstrate that the proposed algorithm can recover fine anatomical structures, and generally outperform the state-of-the-art methods both qualitatively and quantitatively.
Author Shen, Dinggang
Chen, Geng
Wang, Li
Yap, Pew-Thian
Lin, Weili
Zhang, Yongqin
AuthorAffiliation a School of Information Science and Technology, Northwest University, Xi’an 710127, China
c Department of Brain and Cognitive Engineering, Korea University, Seoul 136713, South Korea
b Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA
AuthorAffiliation_xml – name: b Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA
– name: c Department of Brain and Cognitive Engineering, Korea University, Seoul 136713, South Korea
– name: a School of Information Science and Technology, Northwest University, Xi’an 710127, China
Author_xml – sequence: 1
  givenname: Yongqin
  surname: Zhang
  fullname: Zhang, Yongqin
  organization: School of Information Science and Technology, Northwest University, Xi’an 710127, China
– sequence: 2
  givenname: Pew-Thian
  orcidid: 0000-0003-1489-2102
  surname: Yap
  fullname: Yap, Pew-Thian
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA
– sequence: 3
  givenname: Geng
  orcidid: 0000-0001-8350-6581
  surname: Chen
  fullname: Chen, Geng
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA
– sequence: 4
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA
– sequence: 5
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA
– sequence: 6
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31029865$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URH_gCZBQJDZsEmzH4yQLkKqKFqRKLIC15djXxaOMHexk0Lw9N00p0AWwcux7ztHJZ5-SoxADEPKc0YpRJl9vqx1YrytOWVdRUVFGH5ETVktWtoLXR_ffbHNMTnPeUkobIegTclwzyrtWbk7I4dM8QioT5DjMk4-hSGBiyFOaze02uiJADHrSQ9En7UOx0zcBJm-KxRR0MFB4PINc7L1eDr2dUbxGzAlskUedMuBoxCmESS_JT8ljp4cMz-7WM_Ll8t3ni_fl9cerDxfn16URbTOVhoMx4KSA3vHaSilo27u6t8w5AGqcgFZrbV0joNZW9sKylkPf087qDpVnRKy5cxj14bseBjUmLJwOilG1kFRbdUtSLSQVFQpJou3tahvnHqcGayf9yxq1V39Ogv-qbuJeNUid1gIDXt0FpPhthjypnc8GhkEjzzkrzplsmo2kHUpfPpBu45wCUkHVpm43vJUcVS9-b3Rf5edloqBbBSbFnBM4ZfzKGgv64R-_Wz_w_h-kN6sL8AL3HpLKxgO-COvxGU3KRv9X_w8u3OLJ
CitedBy_id crossref_primary_10_1080_21681163_2022_2113436
crossref_primary_10_1016_j_mehy_2019_109433
crossref_primary_10_1016_j_bspc_2022_104177
crossref_primary_10_1016_j_compbiomed_2024_108500
crossref_primary_10_1016_j_mehy_2019_109413
crossref_primary_10_1016_j_bspc_2025_107777
crossref_primary_10_1016_j_mri_2019_05_023
crossref_primary_10_1016_j_compbiomed_2022_105522
crossref_primary_10_1016_j_neucom_2020_09_086
crossref_primary_10_3390_jcm8111976
crossref_primary_10_1016_j_ultras_2020_106283
crossref_primary_10_1109_JBHI_2019_2945373
crossref_primary_10_1186_s12880_024_01201_y
crossref_primary_10_1016_j_neunet_2022_02_008
crossref_primary_10_26634_jaim_1_2_19281
crossref_primary_10_3389_fnins_2022_830143
crossref_primary_10_1007_s00521_022_07806_0
Cites_doi 10.1109/TPAMI.2015.2439281
10.1007/978-3-030-00928-1_11
10.1109/MSP.2007.914728
10.1016/j.media.2010.04.005
10.1109/TIP.2015.2440751
10.1016/j.neuroimage.2012.05.042
10.1523/JNEUROSCI.3339-06.2007
10.1016/j.media.2012.07.007
10.1109/TCYB.2017.2786161
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TSP.2015.2502551
10.1016/j.media.2017.11.003
10.1109/TIP.2005.851684
10.1137/040616024
10.1007/s11432-014-5258-6
10.1016/j.neucom.2017.12.056
10.1109/TIP.2010.2095871
10.1007/s00041-008-9045-x
10.1016/j.media.2011.08.004
10.1109/TIP.2003.819861
10.1109/TIP.2012.2208977
10.1109/ISBI.2017.7950500
10.1137/080716542
10.1109/TIP.2012.2235847
10.1016/j.compeleceng.2018.03.037
10.1002/mrm.21391
10.1109/TGRS.2017.2778191
10.1007/s10915-008-9214-8
10.1145/1276377.1276496
10.1016/j.sigpro.2016.05.002
10.1109/TIP.2007.909319
10.1109/TGRS.2016.2585201
10.1049/iet-cvi.2015.0047
10.1214/15-AOS1380
10.1109/42.816070
10.1049/iet-cvi.2013.0230
10.1016/j.ins.2013.08.002
10.1109/TIP.2010.2050625
10.1109/TIP.2015.2414877
10.1198/016214508000000337
10.1109/TIP.2011.2176743
10.1016/j.media.2010.05.010
10.1109/TMI.2015.2437894
10.1109/TIP.2015.2431435
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Jul 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Jul 2019
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.media.2019.04.010
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 87
ExternalDocumentID oai:pubmedcentral.nih.gov:7136034
PMC7136034
31029865
10_1016_j_media_2019_04_010
S136184151830481X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIMH NIH HHS
  grantid: U01 MH110274
– fundername: NIMH NIH HHS
  grantid: R21 MH108914
– fundername: NIMH NIH HHS
  grantid: R01 MH100217
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c487t-c2eccef64ebf23d66408bf3bd1ffee0cf4e8aaadf74e3ad6b4d182ebb09da9bf3
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
1361-8431
IngestDate Wed Oct 29 12:01:45 EDT 2025
Tue Sep 30 16:29:25 EDT 2025
Sat Sep 27 20:29:28 EDT 2025
Tue Oct 07 06:46:15 EDT 2025
Wed Feb 19 02:30:53 EST 2025
Wed Oct 29 21:22:22 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Fri Feb 23 02:28:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sparse representation
68-10
62-35
Magnetic resonance imaging
Convex optimization
Dictionary learning
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-c2eccef64ebf23d66408bf3bd1ffee0cf4e8aaadf74e3ad6b4d182ebb09da9bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8350-6581
0000-0003-1489-2102
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7136034
PMID 31029865
PQID 2253852862
PQPubID 2045428
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_media_2019_04_010
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7136034
proquest_miscellaneous_2216775609
proquest_journals_2253852862
pubmed_primary_31029865
crossref_citationtrail_10_1016_j_media_2019_04_010
crossref_primary_10_1016_j_media_2019_04_010
elsevier_sciencedirect_doi_10_1016_j_media_2019_04_010
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Shi, Cheng, Wang, Yap, Shen (bib0031) 2015; 34
Wang, Bovik, Sheikh, Simoncelli (bib0038) 2004; 13
Marquina, Osher (bib0026) 2008; 37
Lustig, Donoho, Santos, Pauly (bib0023) 2008; 25
Zhang, Liu, Li, Guo (bib0048) 2014; 259
Liu, Yao, Li (bib0021) 2016; 44
Yao, Xu, Huang, Huang (bib0055) 2018; 44
Gao, Bruce (bib0013) 1997; 7
Tibshirani (bib0036) 1996; 58
Zhang, Liu, Yang, Guo (bib0049) 2015; 24
Krishnan, Fergus (bib0018) 2009
Fang, Yi, Zhang, Xie (bib0011) 2015; 9
Hou, Zhou, Jiao (bib0015) 2018; 56
Manjon, Coupe, Buades, Fonov, Collins, Robles (bib0024) 2010; 14
Mao, Shen, Yang (bib0025) 2016
Su, Xing, Kong, Xie, Zhang, Yang (bib0033) 2015
Zhang, Gao, Tao, Li (bib0044) 2012; 21
Zhu, Yao, Xu, Huang, Zhang (bib0056) 2018; 289
Fattal (bib0012) 2007; 26
Buades, Coll, Morel (bib0005) 2005; 4
.
Yu, Sapiro, Mallat (bib0042) 2012; 21
Bayram (bib0002) 2016; 64
Dong, Zhang, Shi, Li (bib0010) 2013; 22
Aly, Dubois (bib0001) 2005; 14
Chen, Y., Shi, F., Christodoulou, A. G., Xie, Y., Zhou, Z., Li, D., 2018a. Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. arXiv
Pham, Ducournau, Fablet, Rousseau (bib0028) 2017
Xiao, Li, Liu, Shaw, Zhang (bib0039) 2014; 8
Zhang, Zhan, Metaxas (bib0046) 2012; 16
Park, Casella (bib0027) 2008; 103
Ledig, Theis, Huszar, Caballero, Aitken, Tejani, Totz, Wang, Shi (bib0019) 2017
Huang, Siu, Liu (bib0016) 2015; 24
Pham, C.H., Fablet, R., Rousseau, F., 2017b. Multi-scale brain MRI super-resolution using deep 3D convolutional networks.
Gilmore, Lin, Prastawa, Looney, Vetsa, Knickmeyer, Evans, Smith, Hamer, Lieberman, Gerig (bib0014) 2007; 27
Lehmann, Gonner, Spitzer (bib0020) 1999; 18
Shi, Wang, Dai, Gilmore, Lin, Shen (bib0032) 2012; 62
Tuia, Flamary, Barlaud (bib0037) 2016; 54
Zhang, Shi, Cheng, Wang, Yap, Shen (bib0047) 2019; 49
Chen, Xie, Zhou, Shi, Christodoulou, Li (bib0008) 2018
Candes, Wakin, Boyd (bib0006) 2008; 14
Dong, Loy, He, Tang (bib0009) 2016; 38
Sun, Xu, Shum (bib0034) 2011; 20
Tai, Yang, Liu (bib0035) 2017
Beck, Teboulle (bib0003) 2009; 2
Yan, Xu, Yang, Nguyen (bib0040) 2015; 24
Yang, Wright, Huang, Ma (bib0041) 2010; 19
Zhang, Xiao, Li, Shi, Xie (bib0050) 2015; 58
Lustig, Donoho, Pauly (bib0022) 2007; 58
Jiang, Yang, Wu, Liu, Ahmad, Sangaiah, Jeon (bib0017) 2018; 67
Zhang, Zhan, Dewan, Huang, Metaxas, Zhou (bib0045) 2012; 16
Rousseau, Initiative (bib0030) 2010; 14
Yue, Shen, Li, Yuan, Zhang, Zhang (bib0043) 2016; 128
Bioucas-Dias, Figueiredo (bib0004) 2007; 16
Buades (10.1016/j.media.2019.04.010_bib0005) 2005; 4
Aly (10.1016/j.media.2019.04.010_bib0001) 2005; 14
Xiao (10.1016/j.media.2019.04.010_bib0039) 2014; 8
Zhang (10.1016/j.media.2019.04.010_bib0045) 2012; 16
Zhang (10.1016/j.media.2019.04.010_bib0049) 2015; 24
Rousseau (10.1016/j.media.2019.04.010_bib0030) 2010; 14
Candes (10.1016/j.media.2019.04.010_bib0006) 2008; 14
Beck (10.1016/j.media.2019.04.010_bib0003) 2009; 2
Dong (10.1016/j.media.2019.04.010_bib0009) 2016; 38
Yao (10.1016/j.media.2019.04.010_bib0055) 2018; 44
Wang (10.1016/j.media.2019.04.010_bib0038) 2004; 13
Sun (10.1016/j.media.2019.04.010_bib0034) 2011; 20
Yue (10.1016/j.media.2019.04.010_bib0043) 2016; 128
Marquina (10.1016/j.media.2019.04.010_bib0026) 2008; 37
Fang (10.1016/j.media.2019.04.010_bib0011) 2015; 9
Lustig (10.1016/j.media.2019.04.010_bib0023) 2008; 25
Zhang (10.1016/j.media.2019.04.010_bib0046) 2012; 16
Shi (10.1016/j.media.2019.04.010_bib0032) 2012; 62
Mao (10.1016/j.media.2019.04.010_bib0025) 2016
Gilmore (10.1016/j.media.2019.04.010_bib0014) 2007; 27
Krishnan (10.1016/j.media.2019.04.010_bib0018) 2009
Huang (10.1016/j.media.2019.04.010_bib0016) 2015; 24
10.1016/j.media.2019.04.010_bib0007
Park (10.1016/j.media.2019.04.010_bib0027) 2008; 103
Zhu (10.1016/j.media.2019.04.010_bib0056) 2018; 289
Su (10.1016/j.media.2019.04.010_bib0033) 2015
Zhang (10.1016/j.media.2019.04.010_bib0050) 2015; 58
Chen (10.1016/j.media.2019.04.010_bib0008) 2018
Lehmann (10.1016/j.media.2019.04.010_bib0020) 1999; 18
Bayram (10.1016/j.media.2019.04.010_bib0002) 2016; 64
Ledig (10.1016/j.media.2019.04.010_bib0019) 2017
Yang (10.1016/j.media.2019.04.010_bib0041) 2010; 19
Tai (10.1016/j.media.2019.04.010_bib0035) 2017
Manjon (10.1016/j.media.2019.04.010_bib0024) 2010; 14
Zhang (10.1016/j.media.2019.04.010_bib0047) 2019; 49
Yu (10.1016/j.media.2019.04.010_bib0042) 2012; 21
Zhang (10.1016/j.media.2019.04.010_bib0048) 2014; 259
Pham (10.1016/j.media.2019.04.010_bib0028) 2017
Yan (10.1016/j.media.2019.04.010_bib0040) 2015; 24
Fattal (10.1016/j.media.2019.04.010_bib0012) 2007; 26
Jiang (10.1016/j.media.2019.04.010_bib0017) 2018; 67
Liu (10.1016/j.media.2019.04.010_bib0021) 2016; 44
Hou (10.1016/j.media.2019.04.010_bib0015) 2018; 56
Shi (10.1016/j.media.2019.04.010_bib0031) 2015; 34
Gao (10.1016/j.media.2019.04.010_bib0013) 1997; 7
Zhang (10.1016/j.media.2019.04.010_bib0044) 2012; 21
Bioucas-Dias (10.1016/j.media.2019.04.010_bib0004) 2007; 16
Dong (10.1016/j.media.2019.04.010_bib0010) 2013; 22
Lustig (10.1016/j.media.2019.04.010_bib0022) 2007; 58
Tibshirani (10.1016/j.media.2019.04.010_bib0036) 1996; 58
10.1016/j.media.2019.04.010_bib0029
Tuia (10.1016/j.media.2019.04.010_bib0037) 2016; 54
References_xml – start-page: 105
  year: 2017
  end-page: 114
  ident: bib0019
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 24
  start-page: 2797
  year: 2015
  end-page: 2810
  ident: bib0049
  article-title: Image super-resolution based on structure-modulated sparse representation
  publication-title: IEEE Trans. Image Process.
– volume: 8
  start-page: 358
  year: 2014
  end-page: 364
  ident: bib0039
  article-title: Hierarchical tone mapping based on image colour appearance model
  publication-title: IET Comput. Vis.
– volume: 14
  start-page: 784
  year: 2010
  end-page: 792
  ident: bib0024
  article-title: Non-local MRI upsampling
  publication-title: Med. Image Anal.
– volume: 16
  start-page: 1385
  year: 2012
  end-page: 1396
  ident: bib0046
  article-title: Deformable segmentation via sparse representation and dictionary learning
  publication-title: Med. Image Anal.
– volume: 16
  start-page: 265
  year: 2012
  end-page: 277
  ident: bib0045
  article-title: Towards robust and effective shape modeling: sparse shape composition
  publication-title: Med. Image Anal.
– start-page: 197
  year: 2017
  end-page: 200
  ident: bib0028
  article-title: Brain MRI super-resolution using deep 3D convolutional networks
  publication-title: IEEE International Symposium on Biomedical Imaging
– volume: 19
  start-page: 2861
  year: 2010
  end-page: 2873
  ident: bib0041
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0036
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 7
  year: 1997
  ident: bib0013
  article-title: Waveshrink with firm shrinkage
  publication-title: Stat. Sin.
– start-page: 2802
  year: 2016
  end-page: 2810
  ident: bib0025
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
  publication-title: Advances in Neural Information Processing Systems
– volume: 18
  start-page: 1049
  year: 1999
  end-page: 1075
  ident: bib0020
  article-title: Survey: interpolation methods in medical image processing
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  start-page: 1529
  year: 2011
  end-page: 1542
  ident: bib0034
  article-title: Gradient profile prior and its applications in image super-resolution and enhancement
  publication-title: IEEE Trans. Image Process.
– volume: 16
  start-page: 2992
  year: 2007
  end-page: 3004
  ident: bib0004
  article-title: A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 67
  start-page: 252
  year: 2018
  end-page: 266
  ident: bib0017
  article-title: Medical images fusion by using weighted least squares filter and sparse representation
  publication-title: Comput. Electr. Eng.
– reference: Chen, Y., Shi, F., Christodoulou, A. G., Xie, Y., Zhou, Z., Li, D., 2018a. Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. arXiv:
– start-page: 383
  year: 2015
  end-page: 390
  ident: bib0033
  article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders
  publication-title: MICCAI
– start-page: 1
  year: 2017
  end-page: 9
  ident: bib0035
  article-title: Image super-resolution via deep recursive residual network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 58
  start-page: 1
  year: 2015
  end-page: 15
  ident: bib0050
  article-title: Learning block-structured incoherent dictionaries for sparse representation
  publication-title: Sci. China Inf. Sci.
– volume: 37
  start-page: 367
  year: 2008
  end-page: 382
  ident: bib0026
  article-title: Image super-resolution by TV-regularization and bregman iteration
  publication-title: J. Sci. Comput.
– volume: 27
  start-page: 1255
  year: 2007
  end-page: 1260
  ident: bib0014
  article-title: Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain
  publication-title: J. Neurosci.
– start-page: 739
  year: 2018
  end-page: 742
  ident: bib0008
  article-title: Brain MRI super resolution using 3D deep densely connected neural networks
  publication-title: IEEE International Symposium on Biomedical Imaging
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0038
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 3232
  year: 2015
  end-page: 3245
  ident: bib0016
  article-title: Fast image interpolation via random forests
  publication-title: IEEE Trans. Image Process.
– volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  ident: bib0009
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 44
  start-page: 14
  year: 2018
  end-page: 27
  ident: bib0055
  article-title: An efficient algorithm for dynamic MRI using low-rank and total variation regularizations
  publication-title: Med. Image Anal.
– volume: 34
  start-page: 2459
  year: 2015
  end-page: 2466
  ident: bib0031
  article-title: LRTV: MR Image super-resolution with low-rank and total variation regularizations
  publication-title: IEEE Trans. Med. Imaging
– volume: 14
  start-page: 1647
  year: 2005
  end-page: 1659
  ident: bib0001
  article-title: Image up-sampling using total-variation regularization with a new observation model
  publication-title: IEEE Trans. Image Process.
– volume: 103
  start-page: 681
  year: 2008
  end-page: 686
  ident: bib0027
  article-title: The Bayesian lasso
  publication-title: J. Am. Stat. Assoc.
– volume: 56
  start-page: 2312
  year: 2018
  end-page: 2327
  ident: bib0015
  article-title: Adaptive super-resolution for remote sensing images based on sparse representation with global joint dictionary model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 4
  start-page: 490
  year: 2005
  end-page: 530
  ident: bib0005
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Model. Simul.
– volume: 25
  start-page: 72
  year: 2008
  end-page: 82
  ident: bib0023
  article-title: Compressed sensing MRI
  publication-title: IEEE Signal Process. Mag.
– volume: 44
  start-page: 629
  year: 2016
  end-page: 659
  ident: bib0021
  article-title: Global solutions to folded concave penalized nonconvex learning
  publication-title: Ann. Stat.
– volume: 26
  start-page: 95
  year: 2007
  ident: bib0012
  article-title: Image upsampling via imposed edge statistics
  publication-title: ACM Trans. Graph.
– volume: 9
  start-page: 937
  year: 2015
  end-page: 942
  ident: bib0011
  article-title: Tone mapping based on fast image decomposition and multi-layer fusion
  publication-title: IET Comput. Vis.
– volume: 21
  start-page: 4544
  year: 2012
  end-page: 4556
  ident: bib0044
  article-title: Single image super-resolution with non-local means and steering kernel regression
  publication-title: IEEE Trans. Image Process.
– volume: 289
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0056
  article-title: A simple primal-dual algorithm for nuclear norm and total variation regularization
  publication-title: Neurocomputing
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: bib0003
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– volume: 49
  start-page: 662
  year: 2019
  end-page: 674
  ident: bib0047
  article-title: Longitudinally guided super-resolution of neonatal brain magnetic resonance images
  publication-title: IEEE Trans. Cybern.
– reference: Pham, C.H., Fablet, R., Rousseau, F., 2017b. Multi-scale brain MRI super-resolution using deep 3D convolutional networks.
– volume: 21
  start-page: 2481
  year: 2012
  end-page: 2499
  ident: bib0042
  article-title: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity
  publication-title: IEEE Trans. Image Process.
– volume: 14
  start-page: 594
  year: 2010
  end-page: 605
  ident: bib0030
  article-title: A non-local approach for image super-resolution using intermodality priors
  publication-title: Med. Image Anal.
– volume: 54
  start-page: 6470
  year: 2016
  end-page: 6480
  ident: bib0037
  article-title: Nonconvex regularization in remote sensing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: bib0022
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
– volume: 259
  start-page: 128
  year: 2014
  end-page: 141
  ident: bib0048
  article-title: Joint image denoising using adaptive principal component analysis and self-similarity
  publication-title: Inf. Sci.
– volume: 64
  start-page: 1597
  year: 2016
  end-page: 1608
  ident: bib0002
  article-title: On the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penalty
  publication-title: IEEE Trans. Signal Process.
– volume: 62
  start-page: 1975
  year: 2012
  end-page: 1986
  ident: bib0032
  article-title: Label: pediatric brain extraction using learning-based meta-algorithm
  publication-title: Neuroimage
– volume: 14
  start-page: 877
  year: 2008
  end-page: 905
  ident: bib0006
  article-title: Enhancing sparsity by reweighted l(1) minimization
  publication-title: J. Fourier Anal. Appl.
– volume: 24
  start-page: 3187
  year: 2015
  end-page: 3202
  ident: bib0040
  article-title: Single image superresolution based on gradient profile sharpness
  publication-title: IEEE Trans. Image Process.
– reference: .
– volume: 22
  start-page: 1618
  year: 2013
  end-page: 1628
  ident: bib0010
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
– start-page: 1033
  year: 2009
  end-page: 1041
  ident: bib0018
  article-title: Fast image deconvolution using hyper-Laplacian priors
  publication-title: Advances in Neural Information Processing Systems
– volume: 128
  start-page: 389
  year: 2016
  end-page: 408
  ident: bib0043
  article-title: Image super-resolution: the techniques, applications, and future
  publication-title: Signal Process.
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  ident: 10.1016/j.media.2019.04.010_bib0009
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– ident: 10.1016/j.media.2019.04.010_bib0007
  doi: 10.1007/978-3-030-00928-1_11
– start-page: 105
  year: 2017
  ident: 10.1016/j.media.2019.04.010_bib0019
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
– volume: 25
  start-page: 72
  issue: 2
  year: 2008
  ident: 10.1016/j.media.2019.04.010_bib0023
  article-title: Compressed sensing MRI
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914728
– volume: 14
  start-page: 594
  issue: 4
  year: 2010
  ident: 10.1016/j.media.2019.04.010_bib0030
  article-title: A non-local approach for image super-resolution using intermodality priors
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.04.005
– volume: 24
  start-page: 3232
  issue: 10
  year: 2015
  ident: 10.1016/j.media.2019.04.010_bib0016
  article-title: Fast image interpolation via random forests
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2440751
– volume: 62
  start-page: 1975
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2019.04.010_bib0032
  article-title: Label: pediatric brain extraction using learning-based meta-algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.042
– volume: 27
  start-page: 1255
  issue: 6
  year: 2007
  ident: 10.1016/j.media.2019.04.010_bib0014
  article-title: Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3339-06.2007
– start-page: 1033
  year: 2009
  ident: 10.1016/j.media.2019.04.010_bib0018
  article-title: Fast image deconvolution using hyper-Laplacian priors
– volume: 16
  start-page: 1385
  issue: 7
  year: 2012
  ident: 10.1016/j.media.2019.04.010_bib0046
  article-title: Deformable segmentation via sparse representation and dictionary learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.07.007
– volume: 49
  start-page: 662
  issue: 2
  year: 2019
  ident: 10.1016/j.media.2019.04.010_bib0047
  article-title: Longitudinally guided super-resolution of neonatal brain magnetic resonance images
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2786161
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.media.2019.04.010_bib0036
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 64
  start-page: 1597
  issue: 6
  year: 2016
  ident: 10.1016/j.media.2019.04.010_bib0002
  article-title: On the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penalty
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2502551
– volume: 44
  start-page: 14
  year: 2018
  ident: 10.1016/j.media.2019.04.010_bib0055
  article-title: An efficient algorithm for dynamic MRI using low-rank and total variation regularizations
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.11.003
– volume: 14
  start-page: 1647
  issue: 10
  year: 2005
  ident: 10.1016/j.media.2019.04.010_bib0001
  article-title: Image up-sampling using total-variation regularization with a new observation model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.851684
– volume: 7
  issue: 4
  year: 1997
  ident: 10.1016/j.media.2019.04.010_bib0013
  article-title: Waveshrink with firm shrinkage
  publication-title: Stat. Sin.
– start-page: 2802
  year: 2016
  ident: 10.1016/j.media.2019.04.010_bib0025
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
– volume: 4
  start-page: 490
  issue: 2
  year: 2005
  ident: 10.1016/j.media.2019.04.010_bib0005
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/040616024
– volume: 58
  start-page: 1
  issue: 10
  year: 2015
  ident: 10.1016/j.media.2019.04.010_bib0050
  article-title: Learning block-structured incoherent dictionaries for sparse representation
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-014-5258-6
– volume: 289
  start-page: 1
  year: 2018
  ident: 10.1016/j.media.2019.04.010_bib0056
  article-title: A simple primal-dual algorithm for nuclear norm and total variation regularization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.056
– volume: 20
  start-page: 1529
  issue: 6
  year: 2011
  ident: 10.1016/j.media.2019.04.010_bib0034
  article-title: Gradient profile prior and its applications in image super-resolution and enhancement
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2095871
– volume: 14
  start-page: 877
  issue: 5–6
  year: 2008
  ident: 10.1016/j.media.2019.04.010_bib0006
  article-title: Enhancing sparsity by reweighted l(1) minimization
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9045-x
– volume: 16
  start-page: 265
  issue: 1
  year: 2012
  ident: 10.1016/j.media.2019.04.010_bib0045
  article-title: Towards robust and effective shape modeling: sparse shape composition
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2011.08.004
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.media.2019.04.010_bib0038
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– start-page: 197
  year: 2017
  ident: 10.1016/j.media.2019.04.010_bib0028
  article-title: Brain MRI super-resolution using deep 3D convolutional networks
– volume: 21
  start-page: 4544
  issue: 11
  year: 2012
  ident: 10.1016/j.media.2019.04.010_bib0044
  article-title: Single image super-resolution with non-local means and steering kernel regression
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2208977
– ident: 10.1016/j.media.2019.04.010_bib0029
  doi: 10.1109/ISBI.2017.7950500
– start-page: 1
  year: 2017
  ident: 10.1016/j.media.2019.04.010_bib0035
  article-title: Image super-resolution via deep recursive residual network
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.media.2019.04.010_bib0003
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 22
  start-page: 1618
  issue: 4
  year: 2013
  ident: 10.1016/j.media.2019.04.010_bib0010
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2235847
– volume: 67
  start-page: 252
  year: 2018
  ident: 10.1016/j.media.2019.04.010_bib0017
  article-title: Medical images fusion by using weighted least squares filter and sparse representation
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2018.03.037
– volume: 58
  start-page: 1182
  issue: 6
  year: 2007
  ident: 10.1016/j.media.2019.04.010_bib0022
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21391
– volume: 56
  start-page: 2312
  issue: 4
  year: 2018
  ident: 10.1016/j.media.2019.04.010_bib0015
  article-title: Adaptive super-resolution for remote sensing images based on sparse representation with global joint dictionary model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2778191
– volume: 37
  start-page: 367
  issue: 3
  year: 2008
  ident: 10.1016/j.media.2019.04.010_bib0026
  article-title: Image super-resolution by TV-regularization and bregman iteration
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-008-9214-8
– volume: 26
  start-page: 95
  issue: 3
  year: 2007
  ident: 10.1016/j.media.2019.04.010_bib0012
  article-title: Image upsampling via imposed edge statistics
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1276377.1276496
– start-page: 383
  year: 2015
  ident: 10.1016/j.media.2019.04.010_bib0033
  article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders
– volume: 128
  start-page: 389
  year: 2016
  ident: 10.1016/j.media.2019.04.010_bib0043
  article-title: Image super-resolution: the techniques, applications, and future
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.05.002
– volume: 16
  start-page: 2992
  issue: 12
  year: 2007
  ident: 10.1016/j.media.2019.04.010_bib0004
  article-title: A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.909319
– volume: 54
  start-page: 6470
  issue: 11
  year: 2016
  ident: 10.1016/j.media.2019.04.010_bib0037
  article-title: Nonconvex regularization in remote sensing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2585201
– volume: 9
  start-page: 937
  issue: 6
  year: 2015
  ident: 10.1016/j.media.2019.04.010_bib0011
  article-title: Tone mapping based on fast image decomposition and multi-layer fusion
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2015.0047
– volume: 44
  start-page: 629
  issue: 2
  year: 2016
  ident: 10.1016/j.media.2019.04.010_bib0021
  article-title: Global solutions to folded concave penalized nonconvex learning
  publication-title: Ann. Stat.
  doi: 10.1214/15-AOS1380
– volume: 18
  start-page: 1049
  issue: 11
  year: 1999
  ident: 10.1016/j.media.2019.04.010_bib0020
  article-title: Survey: interpolation methods in medical image processing
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.816070
– volume: 8
  start-page: 358
  issue: 4
  year: 2014
  ident: 10.1016/j.media.2019.04.010_bib0039
  article-title: Hierarchical tone mapping based on image colour appearance model
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2013.0230
– volume: 259
  start-page: 128
  year: 2014
  ident: 10.1016/j.media.2019.04.010_bib0048
  article-title: Joint image denoising using adaptive principal component analysis and self-similarity
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.08.002
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  ident: 10.1016/j.media.2019.04.010_bib0041
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2050625
– volume: 24
  start-page: 3187
  issue: 10
  year: 2015
  ident: 10.1016/j.media.2019.04.010_bib0040
  article-title: Single image superresolution based on gradient profile sharpness
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2414877
– start-page: 739
  year: 2018
  ident: 10.1016/j.media.2019.04.010_bib0008
  article-title: Brain MRI super resolution using 3D deep densely connected neural networks
– volume: 103
  start-page: 681
  issue: 482
  year: 2008
  ident: 10.1016/j.media.2019.04.010_bib0027
  article-title: The Bayesian lasso
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214508000000337
– volume: 21
  start-page: 2481
  issue: 5
  year: 2012
  ident: 10.1016/j.media.2019.04.010_bib0042
  article-title: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2176743
– volume: 14
  start-page: 784
  issue: 6
  year: 2010
  ident: 10.1016/j.media.2019.04.010_bib0024
  article-title: Non-local MRI upsampling
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.05.010
– volume: 34
  start-page: 2459
  issue: 12
  year: 2015
  ident: 10.1016/j.media.2019.04.010_bib0031
  article-title: LRTV: MR Image super-resolution with low-rank and total variation regularizations
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2437894
– volume: 24
  start-page: 2797
  issue: 9
  year: 2015
  ident: 10.1016/j.media.2019.04.010_bib0049
  article-title: Image super-resolution based on structure-modulated sparse representation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2431435
SSID ssj0007440
Score 2.3783767
Snippet •Borrowing high-frequency information from toddler images in the form of dictionaries.•Incorporating a parameterized nonconvex regularization into...
Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 76
SubjectTerms Algorithms
Brain
Convex optimization
Dictionary learning
Image filters
Image reconstruction
Image resolution
Magnetic resonance imaging
Neonates
Newborn babies
Preschool children
Regularization
Representations
Resonance
Scanners
Signal to noise ratio
Sparse representation
Spatial discrimination
Spatial resolution
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrcTjwKO8AgUZiSPZ5uF1kmOFqCqkVghYqZws2xnDwm662t2Ayq9n7DhRS1FFb048tmL5sz0Tz3wD8Dovkjq3uY6LDJEMlKSmJVVVscgMbX60oISnLz46FodT_v5kcrIFaR8L4532jZ6Nm_li3My-ed_K5cLs9X5ie2RViSTnN2BbTEj9HsH29PjD_pcuviqNS-6zFoSyT-8Wynnasw55_y4fmeF8uyrPdepCaP99Ml3WPC87UN5qm6U6-6Xm83On08E9-NiPq3NK-TFuN3psfv9F-Xitgd-Hu0FXZftd1QPYwmYH7pxjMNyBm0fhbv4hnH1ql7iKyXwPaGbe2B4IatmpZQ26n_XUp3aZKdhCfW1cECVzjRzzB7IZvcM1-zlT7qWPFGNdF-0Ka0b732qNzFNx9mFTzSOYHrz7_PYwDokdYkP20SY2GQEHreCobZbXQvCk1ASYOrUWMTGWY6mUqm3BMVe10LwmMwi1TqpaVST5GEbNaYNPgVUTa2gabGmQcyorUZPCVBZVIghqmEeQ9ZMqTWA9d8k35rJ3b_suPRKkQ4JMuCQkRPBmaLTsSD-uFhc9WmTQWzp9RNKxdHXD3R5bMmwda0kbbF5OMrI0I3g1VNOidzc5iuapdTKpKApSVqsInnRQHD6U9PWsKsUkguICSAcBRyh-sYbg5onFA8IiiAc4_8_4n11T_jncdk-d0_MujAhE-IJUu41-GRbzH-_DUUk
  priority: 102
  providerName: Unpaywall
Title Super-resolution reconstruction of neonatal brain magnetic resonance images via residual structured sparse representation
URI https://dx.doi.org/10.1016/j.media.2019.04.010
https://www.ncbi.nlm.nih.gov/pubmed/31029865
https://www.proquest.com/docview/2253852862
https://www.proquest.com/docview/2216775609
https://pubmed.ncbi.nlm.nih.gov/PMC7136034
https://www.ncbi.nlm.nih.gov/pmc/articles/7136034
UnpaywallVersion submittedVersion
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VReJxqKBAcSnVInHExPFu1vYxVJTwaIRUgsLJWntnISi4UdKAeuG3M7N-0KioQpycrGcte-exM_bMNwDPZBJZ6WQRJjEiBSiRJZXKslDHJRk_Uijt4YtPxno0UW-ng-kWHLW1MJxW2dj-2qZ7a92M9JrV7C1ms95pX3KzEtqxUsmgJ1OuYFcJdzF48etPmgcD4NW1V_2QqVvkIZ_j5aszOL8r83inXEb7993pqvd5NYny1rpamIufZj6_tEMd34WdxrUUw_ru78EWVrtw5xLg4C7cPGk-pd-Hi9P1ApchRduN8AkfG3d4suLMiQr53Tpds-BGEuK7-VJxzaPgSQzUgWJGY7gSP2aGB31hl6gvsV6iFWSulisUHjmzrXKqHsDk-NXHo1HY9GEISwpnzsMyJj6j0woLF0urtYrSgvhr-84hRqVTmBpjrEsUSmN1oSxFLVgUUWZNRpQPYbs6q_ARiGzgSloxl5aoFP022pJ_kyZZpEkyUAYQt-uflw1IOffKmOdtNtq33DMtZ6blkcqJaQE87yYtaoyO68l1y9h8Q9Ry2kWun3jQikHeaPoqJ3so00FMgWEAT7vTpKP84cUQn9ZM09dJQr5lFsBeLTXdjZJ7HWepHgSQbMhTR8D435tnqtlXjwOekFBHUgUQdpL3L8-__7_P_xhu8786WfkAtkma8Am5ZOfFode5Q7gxfPNuNKbj65fvPw3pOBl_GH7-DfqxPzY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlE4ICivQAEjcSRsNnac5IgqqgW6vbSV9mY5ybgELelqtwvqhd_OjPOgq6IKcYvsseV4Hp5JZj4DvJVpVEknizCNESlAiSpSqTwPdVyS8SOF0h6-eHqkJ6fq8yyZbcF-XwvDaZWd7W9turfWXcuo283Roq5Hx2PJl5XQiZVJBj2Z3YLbKolTjsDe__qT58EIeG3x1Thk8h56yCd5-fIMTvDKPeAp19H-_Xi67n5ez6LcWTcLe_nTzudXjqiDB3C_8y3Fh3b5D2ELm124dwVxcBfuTLt_6Y_g8ni9wGVI4XYnfcIHxwOgrDh3okH-uE5zFnyThPhuzxouehQ8iJE6UNTUhivxo7bc6Cu7RDvFeomVIHu1XKHw0Jl9mVPzGE4PPp7sT8LuIoawpHjmIixjYjQ6rbBwsay0VlFWEIOrsXOIUekUZtbayqUKpa10oSoKW7AooryyOVE-ge3mvMFnIPLElbRjLitRKXq2uiIHJ0vzSJNooAwg7vfflB1KOV-WMTd9Oto345lmmGkmUoaYFsC7YdCiBem4mVz3jDUbsmboGLl54F4vBqZT9ZUhgyizJKbIMIA3QzcpKf95scSnNdOMdZqSc5kH8LSVmmGh5F_HeaaTANINeRoIGAB8s6epv3og8JSEOpIqgHCQvH95_-f_-_6vYWdyMj00h5-OvryAu9zTZi7vwTZJFr4k_-yieOX17zcVjz2M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrcTjwKO8AgUZiSPZ5uF1kmOFqCqkVghYqZws2xnDwm662t2Ayq9n7DhRS1FFb048tmL5sz0Tz3wD8Dovkjq3uY6LDJEMlKSmJVVVscgMbX60oISnLz46FodT_v5kcrIFaR8L4532jZ6Nm_li3My-ed_K5cLs9X5ie2RViSTnN2BbTEj9HsH29PjD_pcuviqNS-6zFoSyT-8Wynnasw55_y4fmeF8uyrPdepCaP99Ml3WPC87UN5qm6U6-6Xm83On08E9-NiPq3NK-TFuN3psfv9F-Xitgd-Hu0FXZftd1QPYwmYH7pxjMNyBm0fhbv4hnH1ql7iKyXwPaGbe2B4IatmpZQ26n_XUp3aZKdhCfW1cECVzjRzzB7IZvcM1-zlT7qWPFGNdF-0Ka0b732qNzFNx9mFTzSOYHrz7_PYwDokdYkP20SY2GQEHreCobZbXQvCk1ASYOrUWMTGWY6mUqm3BMVe10LwmMwi1TqpaVST5GEbNaYNPgVUTa2gabGmQcyorUZPCVBZVIghqmEeQ9ZMqTWA9d8k35rJ3b_suPRKkQ4JMuCQkRPBmaLTsSD-uFhc9WmTQWzp9RNKxdHXD3R5bMmwda0kbbF5OMrI0I3g1VNOidzc5iuapdTKpKApSVqsInnRQHD6U9PWsKsUkguICSAcBRyh-sYbg5onFA8IiiAc4_8_4n11T_jncdk-d0_MujAhE-IJUu41-GRbzH-_DUUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-resolution+reconstruction+of+neonatal+brain+magnetic+resonance+images+via+residual+structured+sparse+representation&rft.jtitle=Medical+image+analysis&rft.au=Zhang%2C+Yongqin&rft.au=Yap%2C+Pew-Thian&rft.au=Chen%2C+Geng&rft.au=Lin%2C+Weili&rft.date=2019-07-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=55&rft.spage=76&rft_id=info:doi/10.1016%2Fj.media.2019.04.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon