Super-resolution reconstruction of neonatal brain magnetic resonance images via residual structured sparse representation
•Borrowing high-frequency information from toddler images in the form of dictionaries.•Incorporating a parameterized nonconvex regularization into super-resolution modeling.•Introducing a two-layer representation strategy to solve the problem of the discrepancies between test and training images.•Ex...
Saved in:
| Published in | Medical image analysis Vol. 55; pp. 76 - 87 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.07.2019
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1361-8415 1361-8423 1361-8431 1361-8423 |
| DOI | 10.1016/j.media.2019.04.010 |
Cover
| Abstract | •Borrowing high-frequency information from toddler images in the form of dictionaries.•Incorporating a parameterized nonconvex regularization into super-resolution modeling.•Introducing a two-layer representation strategy to solve the problem of the discrepancies between test and training images.•Exploiting image nonlocal self-similarity for enhancing structured sparse representation.
[Display omitted]
Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel method for super-resolution reconstruction of neonate images with the help of toddler images, using residual-structured sparse representation with convex regularization. Specifically, we introduce a two-layer image representation, consisting of a base layer and a detail layer, to cater to signal variation across scanners and sites. The base layer consists of the smoothed version of the image obtained via Gaussian filtering. The detail layer is the difference between the original image and the base layer. High-frequency details in the detail layer are borrowed across subjects for super-resolution reconstruction. Experimental results on T1 and T2 images demonstrate that the proposed algorithm can recover fine anatomical structures, and generally outperform the state-of-the-art methods both qualitatively and quantitatively. |
|---|---|
| AbstractList | Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel method for super-resolution reconstruction of neonate images with the help of toddler images, using residual-structured sparse representation with convex regularization. Specifically, we introduce a two-layer image representation, consisting of a base layer and a detail layer, to cater to signal variation across scanners and sites. The base layer consists of the smoothed version of the image obtained via Gaussian filtering. The detail layer is the difference between the original image and the base layer. High-frequency details in the detail layer are borrowed across subjects for super-resolution reconstruction. Experimental results on T1 and T2 images demonstrate that the proposed algorithm can recover fine anatomical structures, and generally outperform the state-of-the-art methods both qualitatively and quantitatively. Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel method for super-resolution reconstruction of neonate images with the help of toddler images, using residual-structured sparse representation with convex regularization. Specifically, we introduce a two-layer image representation, consisting of a base layer and a detail layer, to cater to signal variation across scanners and sites. The base layer consists of the smoothed version of the image obtained via Gaussian filtering. The detail layer is the difference between the original image and the base layer. High-frequency details in the detail layer are borrowed across subjects for super-resolution reconstruction. Experimental results on T1 and T2 images demonstrate that the proposed algorithm can recover fine anatomical structures, and generally outperform the state-of-the-art methods both qualitatively and quantitatively.Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel method for super-resolution reconstruction of neonate images with the help of toddler images, using residual-structured sparse representation with convex regularization. Specifically, we introduce a two-layer image representation, consisting of a base layer and a detail layer, to cater to signal variation across scanners and sites. The base layer consists of the smoothed version of the image obtained via Gaussian filtering. The detail layer is the difference between the original image and the base layer. High-frequency details in the detail layer are borrowed across subjects for super-resolution reconstruction. Experimental results on T1 and T2 images demonstrate that the proposed algorithm can recover fine anatomical structures, and generally outperform the state-of-the-art methods both qualitatively and quantitatively. •Borrowing high-frequency information from toddler images in the form of dictionaries.•Incorporating a parameterized nonconvex regularization into super-resolution modeling.•Introducing a two-layer representation strategy to solve the problem of the discrepancies between test and training images.•Exploiting image nonlocal self-similarity for enhancing structured sparse representation. [Display omitted] Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel method for super-resolution reconstruction of neonate images with the help of toddler images, using residual-structured sparse representation with convex regularization. Specifically, we introduce a two-layer image representation, consisting of a base layer and a detail layer, to cater to signal variation across scanners and sites. The base layer consists of the smoothed version of the image obtained via Gaussian filtering. The detail layer is the difference between the original image and the base layer. High-frequency details in the detail layer are borrowed across subjects for super-resolution reconstruction. Experimental results on T1 and T2 images demonstrate that the proposed algorithm can recover fine anatomical structures, and generally outperform the state-of-the-art methods both qualitatively and quantitatively. |
| Author | Shen, Dinggang Chen, Geng Wang, Li Yap, Pew-Thian Lin, Weili Zhang, Yongqin |
| AuthorAffiliation | a School of Information Science and Technology, Northwest University, Xi’an 710127, China c Department of Brain and Cognitive Engineering, Korea University, Seoul 136713, South Korea b Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA |
| AuthorAffiliation_xml | – name: b Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA – name: c Department of Brain and Cognitive Engineering, Korea University, Seoul 136713, South Korea – name: a School of Information Science and Technology, Northwest University, Xi’an 710127, China |
| Author_xml | – sequence: 1 givenname: Yongqin surname: Zhang fullname: Zhang, Yongqin organization: School of Information Science and Technology, Northwest University, Xi’an 710127, China – sequence: 2 givenname: Pew-Thian orcidid: 0000-0003-1489-2102 surname: Yap fullname: Yap, Pew-Thian organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA – sequence: 3 givenname: Geng orcidid: 0000-0001-8350-6581 surname: Chen fullname: Chen, Geng organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA – sequence: 4 givenname: Weili surname: Lin fullname: Lin, Weili organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA – sequence: 5 givenname: Li surname: Wang fullname: Wang, Li organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA – sequence: 6 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27514, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31029865$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAUhS1URH_gCZBQJDZsEmzH4yQLkKqKFqRKLIC15djXxaOMHexk0Lw9N00p0AWwcux7ztHJZ5-SoxADEPKc0YpRJl9vqx1YrytOWVdRUVFGH5ETVktWtoLXR_ffbHNMTnPeUkobIegTclwzyrtWbk7I4dM8QioT5DjMk4-hSGBiyFOaze02uiJADHrSQ9En7UOx0zcBJm-KxRR0MFB4PINc7L1eDr2dUbxGzAlskUedMuBoxCmESS_JT8ljp4cMz-7WM_Ll8t3ni_fl9cerDxfn16URbTOVhoMx4KSA3vHaSilo27u6t8w5AGqcgFZrbV0joNZW9sKylkPf087qDpVnRKy5cxj14bseBjUmLJwOilG1kFRbdUtSLSQVFQpJou3tahvnHqcGayf9yxq1V39Ogv-qbuJeNUid1gIDXt0FpPhthjypnc8GhkEjzzkrzplsmo2kHUpfPpBu45wCUkHVpm43vJUcVS9-b3Rf5edloqBbBSbFnBM4ZfzKGgv64R-_Wz_w_h-kN6sL8AL3HpLKxgO-COvxGU3KRv9X_w8u3OLJ |
| CitedBy_id | crossref_primary_10_1080_21681163_2022_2113436 crossref_primary_10_1016_j_mehy_2019_109433 crossref_primary_10_1016_j_bspc_2022_104177 crossref_primary_10_1016_j_compbiomed_2024_108500 crossref_primary_10_1016_j_mehy_2019_109413 crossref_primary_10_1016_j_bspc_2025_107777 crossref_primary_10_1016_j_mri_2019_05_023 crossref_primary_10_1016_j_compbiomed_2022_105522 crossref_primary_10_1016_j_neucom_2020_09_086 crossref_primary_10_3390_jcm8111976 crossref_primary_10_1016_j_ultras_2020_106283 crossref_primary_10_1109_JBHI_2019_2945373 crossref_primary_10_1186_s12880_024_01201_y crossref_primary_10_1016_j_neunet_2022_02_008 crossref_primary_10_26634_jaim_1_2_19281 crossref_primary_10_3389_fnins_2022_830143 crossref_primary_10_1007_s00521_022_07806_0 |
| Cites_doi | 10.1109/TPAMI.2015.2439281 10.1007/978-3-030-00928-1_11 10.1109/MSP.2007.914728 10.1016/j.media.2010.04.005 10.1109/TIP.2015.2440751 10.1016/j.neuroimage.2012.05.042 10.1523/JNEUROSCI.3339-06.2007 10.1016/j.media.2012.07.007 10.1109/TCYB.2017.2786161 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TSP.2015.2502551 10.1016/j.media.2017.11.003 10.1109/TIP.2005.851684 10.1137/040616024 10.1007/s11432-014-5258-6 10.1016/j.neucom.2017.12.056 10.1109/TIP.2010.2095871 10.1007/s00041-008-9045-x 10.1016/j.media.2011.08.004 10.1109/TIP.2003.819861 10.1109/TIP.2012.2208977 10.1109/ISBI.2017.7950500 10.1137/080716542 10.1109/TIP.2012.2235847 10.1016/j.compeleceng.2018.03.037 10.1002/mrm.21391 10.1109/TGRS.2017.2778191 10.1007/s10915-008-9214-8 10.1145/1276377.1276496 10.1016/j.sigpro.2016.05.002 10.1109/TIP.2007.909319 10.1109/TGRS.2016.2585201 10.1049/iet-cvi.2015.0047 10.1214/15-AOS1380 10.1109/42.816070 10.1049/iet-cvi.2013.0230 10.1016/j.ins.2013.08.002 10.1109/TIP.2010.2050625 10.1109/TIP.2015.2414877 10.1198/016214508000000337 10.1109/TIP.2011.2176743 10.1016/j.media.2010.05.010 10.1109/TMI.2015.2437894 10.1109/TIP.2015.2431435 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. Copyright Elsevier BV Jul 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Jul 2019 |
| DBID | AAYXX CITATION NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.media.2019.04.010 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| EndPage | 87 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7136034 PMC7136034 31029865 10_1016_j_media_2019_04_010 S136184151830481X |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIMH NIH HHS grantid: U01 MH110274 – fundername: NIMH NIH HHS grantid: R21 MH108914 – fundername: NIMH NIH HHS grantid: R01 MH100217 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c487t-c2eccef64ebf23d66408bf3bd1ffee0cf4e8aaadf74e3ad6b4d182ebb09da9bf3 |
| IEDL.DBID | .~1 |
| ISSN | 1361-8415 1361-8423 1361-8431 |
| IngestDate | Wed Oct 29 12:01:45 EDT 2025 Tue Sep 30 16:29:25 EDT 2025 Sat Sep 27 20:29:28 EDT 2025 Tue Oct 07 06:46:15 EDT 2025 Wed Feb 19 02:30:53 EST 2025 Wed Oct 29 21:22:22 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Fri Feb 23 02:28:18 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sparse representation 68-10 62-35 Magnetic resonance imaging Convex optimization Dictionary learning |
| Language | English |
| License | Copyright © 2019 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c487t-c2eccef64ebf23d66408bf3bd1ffee0cf4e8aaadf74e3ad6b4d182ebb09da9bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8350-6581 0000-0003-1489-2102 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7136034 |
| PMID | 31029865 |
| PQID | 2253852862 |
| PQPubID | 2045428 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_media_2019_04_010 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7136034 proquest_miscellaneous_2216775609 proquest_journals_2253852862 pubmed_primary_31029865 crossref_citationtrail_10_1016_j_media_2019_04_010 crossref_primary_10_1016_j_media_2019_04_010 elsevier_sciencedirect_doi_10_1016_j_media_2019_04_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Shi, Cheng, Wang, Yap, Shen (bib0031) 2015; 34 Wang, Bovik, Sheikh, Simoncelli (bib0038) 2004; 13 Marquina, Osher (bib0026) 2008; 37 Lustig, Donoho, Santos, Pauly (bib0023) 2008; 25 Zhang, Liu, Li, Guo (bib0048) 2014; 259 Liu, Yao, Li (bib0021) 2016; 44 Yao, Xu, Huang, Huang (bib0055) 2018; 44 Gao, Bruce (bib0013) 1997; 7 Tibshirani (bib0036) 1996; 58 Zhang, Liu, Yang, Guo (bib0049) 2015; 24 Krishnan, Fergus (bib0018) 2009 Fang, Yi, Zhang, Xie (bib0011) 2015; 9 Hou, Zhou, Jiao (bib0015) 2018; 56 Manjon, Coupe, Buades, Fonov, Collins, Robles (bib0024) 2010; 14 Mao, Shen, Yang (bib0025) 2016 Su, Xing, Kong, Xie, Zhang, Yang (bib0033) 2015 Zhang, Gao, Tao, Li (bib0044) 2012; 21 Zhu, Yao, Xu, Huang, Zhang (bib0056) 2018; 289 Fattal (bib0012) 2007; 26 Buades, Coll, Morel (bib0005) 2005; 4 . Yu, Sapiro, Mallat (bib0042) 2012; 21 Bayram (bib0002) 2016; 64 Dong, Zhang, Shi, Li (bib0010) 2013; 22 Aly, Dubois (bib0001) 2005; 14 Chen, Y., Shi, F., Christodoulou, A. G., Xie, Y., Zhou, Z., Li, D., 2018a. Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. arXiv Pham, Ducournau, Fablet, Rousseau (bib0028) 2017 Xiao, Li, Liu, Shaw, Zhang (bib0039) 2014; 8 Zhang, Zhan, Metaxas (bib0046) 2012; 16 Park, Casella (bib0027) 2008; 103 Ledig, Theis, Huszar, Caballero, Aitken, Tejani, Totz, Wang, Shi (bib0019) 2017 Huang, Siu, Liu (bib0016) 2015; 24 Pham, C.H., Fablet, R., Rousseau, F., 2017b. Multi-scale brain MRI super-resolution using deep 3D convolutional networks. Gilmore, Lin, Prastawa, Looney, Vetsa, Knickmeyer, Evans, Smith, Hamer, Lieberman, Gerig (bib0014) 2007; 27 Lehmann, Gonner, Spitzer (bib0020) 1999; 18 Shi, Wang, Dai, Gilmore, Lin, Shen (bib0032) 2012; 62 Tuia, Flamary, Barlaud (bib0037) 2016; 54 Zhang, Shi, Cheng, Wang, Yap, Shen (bib0047) 2019; 49 Chen, Xie, Zhou, Shi, Christodoulou, Li (bib0008) 2018 Candes, Wakin, Boyd (bib0006) 2008; 14 Dong, Loy, He, Tang (bib0009) 2016; 38 Sun, Xu, Shum (bib0034) 2011; 20 Tai, Yang, Liu (bib0035) 2017 Beck, Teboulle (bib0003) 2009; 2 Yan, Xu, Yang, Nguyen (bib0040) 2015; 24 Yang, Wright, Huang, Ma (bib0041) 2010; 19 Zhang, Xiao, Li, Shi, Xie (bib0050) 2015; 58 Lustig, Donoho, Pauly (bib0022) 2007; 58 Jiang, Yang, Wu, Liu, Ahmad, Sangaiah, Jeon (bib0017) 2018; 67 Zhang, Zhan, Dewan, Huang, Metaxas, Zhou (bib0045) 2012; 16 Rousseau, Initiative (bib0030) 2010; 14 Yue, Shen, Li, Yuan, Zhang, Zhang (bib0043) 2016; 128 Bioucas-Dias, Figueiredo (bib0004) 2007; 16 Buades (10.1016/j.media.2019.04.010_bib0005) 2005; 4 Aly (10.1016/j.media.2019.04.010_bib0001) 2005; 14 Xiao (10.1016/j.media.2019.04.010_bib0039) 2014; 8 Zhang (10.1016/j.media.2019.04.010_bib0045) 2012; 16 Zhang (10.1016/j.media.2019.04.010_bib0049) 2015; 24 Rousseau (10.1016/j.media.2019.04.010_bib0030) 2010; 14 Candes (10.1016/j.media.2019.04.010_bib0006) 2008; 14 Beck (10.1016/j.media.2019.04.010_bib0003) 2009; 2 Dong (10.1016/j.media.2019.04.010_bib0009) 2016; 38 Yao (10.1016/j.media.2019.04.010_bib0055) 2018; 44 Wang (10.1016/j.media.2019.04.010_bib0038) 2004; 13 Sun (10.1016/j.media.2019.04.010_bib0034) 2011; 20 Yue (10.1016/j.media.2019.04.010_bib0043) 2016; 128 Marquina (10.1016/j.media.2019.04.010_bib0026) 2008; 37 Fang (10.1016/j.media.2019.04.010_bib0011) 2015; 9 Lustig (10.1016/j.media.2019.04.010_bib0023) 2008; 25 Zhang (10.1016/j.media.2019.04.010_bib0046) 2012; 16 Shi (10.1016/j.media.2019.04.010_bib0032) 2012; 62 Mao (10.1016/j.media.2019.04.010_bib0025) 2016 Gilmore (10.1016/j.media.2019.04.010_bib0014) 2007; 27 Krishnan (10.1016/j.media.2019.04.010_bib0018) 2009 Huang (10.1016/j.media.2019.04.010_bib0016) 2015; 24 10.1016/j.media.2019.04.010_bib0007 Park (10.1016/j.media.2019.04.010_bib0027) 2008; 103 Zhu (10.1016/j.media.2019.04.010_bib0056) 2018; 289 Su (10.1016/j.media.2019.04.010_bib0033) 2015 Zhang (10.1016/j.media.2019.04.010_bib0050) 2015; 58 Chen (10.1016/j.media.2019.04.010_bib0008) 2018 Lehmann (10.1016/j.media.2019.04.010_bib0020) 1999; 18 Bayram (10.1016/j.media.2019.04.010_bib0002) 2016; 64 Ledig (10.1016/j.media.2019.04.010_bib0019) 2017 Yang (10.1016/j.media.2019.04.010_bib0041) 2010; 19 Tai (10.1016/j.media.2019.04.010_bib0035) 2017 Manjon (10.1016/j.media.2019.04.010_bib0024) 2010; 14 Zhang (10.1016/j.media.2019.04.010_bib0047) 2019; 49 Yu (10.1016/j.media.2019.04.010_bib0042) 2012; 21 Zhang (10.1016/j.media.2019.04.010_bib0048) 2014; 259 Pham (10.1016/j.media.2019.04.010_bib0028) 2017 Yan (10.1016/j.media.2019.04.010_bib0040) 2015; 24 Fattal (10.1016/j.media.2019.04.010_bib0012) 2007; 26 Jiang (10.1016/j.media.2019.04.010_bib0017) 2018; 67 Liu (10.1016/j.media.2019.04.010_bib0021) 2016; 44 Hou (10.1016/j.media.2019.04.010_bib0015) 2018; 56 Shi (10.1016/j.media.2019.04.010_bib0031) 2015; 34 Gao (10.1016/j.media.2019.04.010_bib0013) 1997; 7 Zhang (10.1016/j.media.2019.04.010_bib0044) 2012; 21 Bioucas-Dias (10.1016/j.media.2019.04.010_bib0004) 2007; 16 Dong (10.1016/j.media.2019.04.010_bib0010) 2013; 22 Lustig (10.1016/j.media.2019.04.010_bib0022) 2007; 58 Tibshirani (10.1016/j.media.2019.04.010_bib0036) 1996; 58 10.1016/j.media.2019.04.010_bib0029 Tuia (10.1016/j.media.2019.04.010_bib0037) 2016; 54 |
| References_xml | – start-page: 105 year: 2017 end-page: 114 ident: bib0019 article-title: Photo-realistic single image super-resolution using a generative adversarial network publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 24 start-page: 2797 year: 2015 end-page: 2810 ident: bib0049 article-title: Image super-resolution based on structure-modulated sparse representation publication-title: IEEE Trans. Image Process. – volume: 8 start-page: 358 year: 2014 end-page: 364 ident: bib0039 article-title: Hierarchical tone mapping based on image colour appearance model publication-title: IET Comput. Vis. – volume: 14 start-page: 784 year: 2010 end-page: 792 ident: bib0024 article-title: Non-local MRI upsampling publication-title: Med. Image Anal. – volume: 16 start-page: 1385 year: 2012 end-page: 1396 ident: bib0046 article-title: Deformable segmentation via sparse representation and dictionary learning publication-title: Med. Image Anal. – volume: 16 start-page: 265 year: 2012 end-page: 277 ident: bib0045 article-title: Towards robust and effective shape modeling: sparse shape composition publication-title: Med. Image Anal. – start-page: 197 year: 2017 end-page: 200 ident: bib0028 article-title: Brain MRI super-resolution using deep 3D convolutional networks publication-title: IEEE International Symposium on Biomedical Imaging – volume: 19 start-page: 2861 year: 2010 end-page: 2873 ident: bib0041 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans. Image Process. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0036 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B – volume: 7 year: 1997 ident: bib0013 article-title: Waveshrink with firm shrinkage publication-title: Stat. Sin. – start-page: 2802 year: 2016 end-page: 2810 ident: bib0025 article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections publication-title: Advances in Neural Information Processing Systems – volume: 18 start-page: 1049 year: 1999 end-page: 1075 ident: bib0020 article-title: Survey: interpolation methods in medical image processing publication-title: IEEE Trans. Med. Imaging – volume: 20 start-page: 1529 year: 2011 end-page: 1542 ident: bib0034 article-title: Gradient profile prior and its applications in image super-resolution and enhancement publication-title: IEEE Trans. Image Process. – volume: 16 start-page: 2992 year: 2007 end-page: 3004 ident: bib0004 article-title: A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration publication-title: IEEE Trans. Image Process. – volume: 67 start-page: 252 year: 2018 end-page: 266 ident: bib0017 article-title: Medical images fusion by using weighted least squares filter and sparse representation publication-title: Comput. Electr. Eng. – reference: Chen, Y., Shi, F., Christodoulou, A. G., Xie, Y., Zhou, Z., Li, D., 2018a. Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. arXiv: – start-page: 383 year: 2015 end-page: 390 ident: bib0033 article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders publication-title: MICCAI – start-page: 1 year: 2017 end-page: 9 ident: bib0035 article-title: Image super-resolution via deep recursive residual network publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 58 start-page: 1 year: 2015 end-page: 15 ident: bib0050 article-title: Learning block-structured incoherent dictionaries for sparse representation publication-title: Sci. China Inf. Sci. – volume: 37 start-page: 367 year: 2008 end-page: 382 ident: bib0026 article-title: Image super-resolution by TV-regularization and bregman iteration publication-title: J. Sci. Comput. – volume: 27 start-page: 1255 year: 2007 end-page: 1260 ident: bib0014 article-title: Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain publication-title: J. Neurosci. – start-page: 739 year: 2018 end-page: 742 ident: bib0008 article-title: Brain MRI super resolution using 3D deep densely connected neural networks publication-title: IEEE International Symposium on Biomedical Imaging – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0038 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 24 start-page: 3232 year: 2015 end-page: 3245 ident: bib0016 article-title: Fast image interpolation via random forests publication-title: IEEE Trans. Image Process. – volume: 38 start-page: 295 year: 2016 end-page: 307 ident: bib0009 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 44 start-page: 14 year: 2018 end-page: 27 ident: bib0055 article-title: An efficient algorithm for dynamic MRI using low-rank and total variation regularizations publication-title: Med. Image Anal. – volume: 34 start-page: 2459 year: 2015 end-page: 2466 ident: bib0031 article-title: LRTV: MR Image super-resolution with low-rank and total variation regularizations publication-title: IEEE Trans. Med. Imaging – volume: 14 start-page: 1647 year: 2005 end-page: 1659 ident: bib0001 article-title: Image up-sampling using total-variation regularization with a new observation model publication-title: IEEE Trans. Image Process. – volume: 103 start-page: 681 year: 2008 end-page: 686 ident: bib0027 article-title: The Bayesian lasso publication-title: J. Am. Stat. Assoc. – volume: 56 start-page: 2312 year: 2018 end-page: 2327 ident: bib0015 article-title: Adaptive super-resolution for remote sensing images based on sparse representation with global joint dictionary model publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 4 start-page: 490 year: 2005 end-page: 530 ident: bib0005 article-title: A review of image denoising algorithms, with a new one publication-title: Multiscale Model. Simul. – volume: 25 start-page: 72 year: 2008 end-page: 82 ident: bib0023 article-title: Compressed sensing MRI publication-title: IEEE Signal Process. Mag. – volume: 44 start-page: 629 year: 2016 end-page: 659 ident: bib0021 article-title: Global solutions to folded concave penalized nonconvex learning publication-title: Ann. Stat. – volume: 26 start-page: 95 year: 2007 ident: bib0012 article-title: Image upsampling via imposed edge statistics publication-title: ACM Trans. Graph. – volume: 9 start-page: 937 year: 2015 end-page: 942 ident: bib0011 article-title: Tone mapping based on fast image decomposition and multi-layer fusion publication-title: IET Comput. Vis. – volume: 21 start-page: 4544 year: 2012 end-page: 4556 ident: bib0044 article-title: Single image super-resolution with non-local means and steering kernel regression publication-title: IEEE Trans. Image Process. – volume: 289 start-page: 1 year: 2018 end-page: 12 ident: bib0056 article-title: A simple primal-dual algorithm for nuclear norm and total variation regularization publication-title: Neurocomputing – volume: 2 start-page: 183 year: 2009 end-page: 202 ident: bib0003 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. – volume: 49 start-page: 662 year: 2019 end-page: 674 ident: bib0047 article-title: Longitudinally guided super-resolution of neonatal brain magnetic resonance images publication-title: IEEE Trans. Cybern. – reference: Pham, C.H., Fablet, R., Rousseau, F., 2017b. Multi-scale brain MRI super-resolution using deep 3D convolutional networks. – volume: 21 start-page: 2481 year: 2012 end-page: 2499 ident: bib0042 article-title: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity publication-title: IEEE Trans. Image Process. – volume: 14 start-page: 594 year: 2010 end-page: 605 ident: bib0030 article-title: A non-local approach for image super-resolution using intermodality priors publication-title: Med. Image Anal. – volume: 54 start-page: 6470 year: 2016 end-page: 6480 ident: bib0037 article-title: Nonconvex regularization in remote sensing publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 58 start-page: 1182 year: 2007 end-page: 1195 ident: bib0022 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn. Reson. Med. – volume: 259 start-page: 128 year: 2014 end-page: 141 ident: bib0048 article-title: Joint image denoising using adaptive principal component analysis and self-similarity publication-title: Inf. Sci. – volume: 64 start-page: 1597 year: 2016 end-page: 1608 ident: bib0002 article-title: On the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penalty publication-title: IEEE Trans. Signal Process. – volume: 62 start-page: 1975 year: 2012 end-page: 1986 ident: bib0032 article-title: Label: pediatric brain extraction using learning-based meta-algorithm publication-title: Neuroimage – volume: 14 start-page: 877 year: 2008 end-page: 905 ident: bib0006 article-title: Enhancing sparsity by reweighted l(1) minimization publication-title: J. Fourier Anal. Appl. – volume: 24 start-page: 3187 year: 2015 end-page: 3202 ident: bib0040 article-title: Single image superresolution based on gradient profile sharpness publication-title: IEEE Trans. Image Process. – reference: . – volume: 22 start-page: 1618 year: 2013 end-page: 1628 ident: bib0010 article-title: Nonlocally centralized sparse representation for image restoration publication-title: IEEE Trans. Image Process. – start-page: 1033 year: 2009 end-page: 1041 ident: bib0018 article-title: Fast image deconvolution using hyper-Laplacian priors publication-title: Advances in Neural Information Processing Systems – volume: 128 start-page: 389 year: 2016 end-page: 408 ident: bib0043 article-title: Image super-resolution: the techniques, applications, and future publication-title: Signal Process. – volume: 38 start-page: 295 issue: 2 year: 2016 ident: 10.1016/j.media.2019.04.010_bib0009 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – ident: 10.1016/j.media.2019.04.010_bib0007 doi: 10.1007/978-3-030-00928-1_11 – start-page: 105 year: 2017 ident: 10.1016/j.media.2019.04.010_bib0019 article-title: Photo-realistic single image super-resolution using a generative adversarial network – volume: 25 start-page: 72 issue: 2 year: 2008 ident: 10.1016/j.media.2019.04.010_bib0023 article-title: Compressed sensing MRI publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2007.914728 – volume: 14 start-page: 594 issue: 4 year: 2010 ident: 10.1016/j.media.2019.04.010_bib0030 article-title: A non-local approach for image super-resolution using intermodality priors publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.04.005 – volume: 24 start-page: 3232 issue: 10 year: 2015 ident: 10.1016/j.media.2019.04.010_bib0016 article-title: Fast image interpolation via random forests publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2440751 – volume: 62 start-page: 1975 issue: 3 year: 2012 ident: 10.1016/j.media.2019.04.010_bib0032 article-title: Label: pediatric brain extraction using learning-based meta-algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.042 – volume: 27 start-page: 1255 issue: 6 year: 2007 ident: 10.1016/j.media.2019.04.010_bib0014 article-title: Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3339-06.2007 – start-page: 1033 year: 2009 ident: 10.1016/j.media.2019.04.010_bib0018 article-title: Fast image deconvolution using hyper-Laplacian priors – volume: 16 start-page: 1385 issue: 7 year: 2012 ident: 10.1016/j.media.2019.04.010_bib0046 article-title: Deformable segmentation via sparse representation and dictionary learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.07.007 – volume: 49 start-page: 662 issue: 2 year: 2019 ident: 10.1016/j.media.2019.04.010_bib0047 article-title: Longitudinally guided super-resolution of neonatal brain magnetic resonance images publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2786161 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.media.2019.04.010_bib0036 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 64 start-page: 1597 issue: 6 year: 2016 ident: 10.1016/j.media.2019.04.010_bib0002 article-title: On the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penalty publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2502551 – volume: 44 start-page: 14 year: 2018 ident: 10.1016/j.media.2019.04.010_bib0055 article-title: An efficient algorithm for dynamic MRI using low-rank and total variation regularizations publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.11.003 – volume: 14 start-page: 1647 issue: 10 year: 2005 ident: 10.1016/j.media.2019.04.010_bib0001 article-title: Image up-sampling using total-variation regularization with a new observation model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.851684 – volume: 7 issue: 4 year: 1997 ident: 10.1016/j.media.2019.04.010_bib0013 article-title: Waveshrink with firm shrinkage publication-title: Stat. Sin. – start-page: 2802 year: 2016 ident: 10.1016/j.media.2019.04.010_bib0025 article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections – volume: 4 start-page: 490 issue: 2 year: 2005 ident: 10.1016/j.media.2019.04.010_bib0005 article-title: A review of image denoising algorithms, with a new one publication-title: Multiscale Model. Simul. doi: 10.1137/040616024 – volume: 58 start-page: 1 issue: 10 year: 2015 ident: 10.1016/j.media.2019.04.010_bib0050 article-title: Learning block-structured incoherent dictionaries for sparse representation publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-014-5258-6 – volume: 289 start-page: 1 year: 2018 ident: 10.1016/j.media.2019.04.010_bib0056 article-title: A simple primal-dual algorithm for nuclear norm and total variation regularization publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.056 – volume: 20 start-page: 1529 issue: 6 year: 2011 ident: 10.1016/j.media.2019.04.010_bib0034 article-title: Gradient profile prior and its applications in image super-resolution and enhancement publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2095871 – volume: 14 start-page: 877 issue: 5–6 year: 2008 ident: 10.1016/j.media.2019.04.010_bib0006 article-title: Enhancing sparsity by reweighted l(1) minimization publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9045-x – volume: 16 start-page: 265 issue: 1 year: 2012 ident: 10.1016/j.media.2019.04.010_bib0045 article-title: Towards robust and effective shape modeling: sparse shape composition publication-title: Med. Image Anal. doi: 10.1016/j.media.2011.08.004 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.media.2019.04.010_bib0038 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – start-page: 197 year: 2017 ident: 10.1016/j.media.2019.04.010_bib0028 article-title: Brain MRI super-resolution using deep 3D convolutional networks – volume: 21 start-page: 4544 issue: 11 year: 2012 ident: 10.1016/j.media.2019.04.010_bib0044 article-title: Single image super-resolution with non-local means and steering kernel regression publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2208977 – ident: 10.1016/j.media.2019.04.010_bib0029 doi: 10.1109/ISBI.2017.7950500 – start-page: 1 year: 2017 ident: 10.1016/j.media.2019.04.010_bib0035 article-title: Image super-resolution via deep recursive residual network – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 10.1016/j.media.2019.04.010_bib0003 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 22 start-page: 1618 issue: 4 year: 2013 ident: 10.1016/j.media.2019.04.010_bib0010 article-title: Nonlocally centralized sparse representation for image restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2235847 – volume: 67 start-page: 252 year: 2018 ident: 10.1016/j.media.2019.04.010_bib0017 article-title: Medical images fusion by using weighted least squares filter and sparse representation publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.03.037 – volume: 58 start-page: 1182 issue: 6 year: 2007 ident: 10.1016/j.media.2019.04.010_bib0022 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21391 – volume: 56 start-page: 2312 issue: 4 year: 2018 ident: 10.1016/j.media.2019.04.010_bib0015 article-title: Adaptive super-resolution for remote sensing images based on sparse representation with global joint dictionary model publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2778191 – volume: 37 start-page: 367 issue: 3 year: 2008 ident: 10.1016/j.media.2019.04.010_bib0026 article-title: Image super-resolution by TV-regularization and bregman iteration publication-title: J. Sci. Comput. doi: 10.1007/s10915-008-9214-8 – volume: 26 start-page: 95 issue: 3 year: 2007 ident: 10.1016/j.media.2019.04.010_bib0012 article-title: Image upsampling via imposed edge statistics publication-title: ACM Trans. Graph. doi: 10.1145/1276377.1276496 – start-page: 383 year: 2015 ident: 10.1016/j.media.2019.04.010_bib0033 article-title: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders – volume: 128 start-page: 389 year: 2016 ident: 10.1016/j.media.2019.04.010_bib0043 article-title: Image super-resolution: the techniques, applications, and future publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.05.002 – volume: 16 start-page: 2992 issue: 12 year: 2007 ident: 10.1016/j.media.2019.04.010_bib0004 article-title: A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.909319 – volume: 54 start-page: 6470 issue: 11 year: 2016 ident: 10.1016/j.media.2019.04.010_bib0037 article-title: Nonconvex regularization in remote sensing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2585201 – volume: 9 start-page: 937 issue: 6 year: 2015 ident: 10.1016/j.media.2019.04.010_bib0011 article-title: Tone mapping based on fast image decomposition and multi-layer fusion publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2015.0047 – volume: 44 start-page: 629 issue: 2 year: 2016 ident: 10.1016/j.media.2019.04.010_bib0021 article-title: Global solutions to folded concave penalized nonconvex learning publication-title: Ann. Stat. doi: 10.1214/15-AOS1380 – volume: 18 start-page: 1049 issue: 11 year: 1999 ident: 10.1016/j.media.2019.04.010_bib0020 article-title: Survey: interpolation methods in medical image processing publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.816070 – volume: 8 start-page: 358 issue: 4 year: 2014 ident: 10.1016/j.media.2019.04.010_bib0039 article-title: Hierarchical tone mapping based on image colour appearance model publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2013.0230 – volume: 259 start-page: 128 year: 2014 ident: 10.1016/j.media.2019.04.010_bib0048 article-title: Joint image denoising using adaptive principal component analysis and self-similarity publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.08.002 – volume: 19 start-page: 2861 issue: 11 year: 2010 ident: 10.1016/j.media.2019.04.010_bib0041 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2050625 – volume: 24 start-page: 3187 issue: 10 year: 2015 ident: 10.1016/j.media.2019.04.010_bib0040 article-title: Single image superresolution based on gradient profile sharpness publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2414877 – start-page: 739 year: 2018 ident: 10.1016/j.media.2019.04.010_bib0008 article-title: Brain MRI super resolution using 3D deep densely connected neural networks – volume: 103 start-page: 681 issue: 482 year: 2008 ident: 10.1016/j.media.2019.04.010_bib0027 article-title: The Bayesian lasso publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214508000000337 – volume: 21 start-page: 2481 issue: 5 year: 2012 ident: 10.1016/j.media.2019.04.010_bib0042 article-title: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2176743 – volume: 14 start-page: 784 issue: 6 year: 2010 ident: 10.1016/j.media.2019.04.010_bib0024 article-title: Non-local MRI upsampling publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.05.010 – volume: 34 start-page: 2459 issue: 12 year: 2015 ident: 10.1016/j.media.2019.04.010_bib0031 article-title: LRTV: MR Image super-resolution with low-rank and total variation regularizations publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2437894 – volume: 24 start-page: 2797 issue: 9 year: 2015 ident: 10.1016/j.media.2019.04.010_bib0049 article-title: Image super-resolution based on structure-modulated sparse representation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2431435 |
| SSID | ssj0007440 |
| Score | 2.3783767 |
| Snippet | •Borrowing high-frequency information from toddler images in the form of dictionaries.•Incorporating a parameterized nonconvex regularization into... Magnetic resonance images of neonates, compared with toddlers, exhibit lower signal-to-noise ratio and spatial resolution. In this paper, we propose a novel... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 76 |
| SubjectTerms | Algorithms Brain Convex optimization Dictionary learning Image filters Image reconstruction Image resolution Magnetic resonance imaging Neonates Newborn babies Preschool children Regularization Representations Resonance Scanners Signal to noise ratio Sparse representation Spatial discrimination Spatial resolution |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrcTjwKO8AgUZiSPZ5uF1kmOFqCqkVghYqZws2xnDwm662t2Ayq9n7DhRS1FFb048tmL5sz0Tz3wD8Dovkjq3uY6LDJEMlKSmJVVVscgMbX60oISnLz46FodT_v5kcrIFaR8L4532jZ6Nm_li3My-ed_K5cLs9X5ie2RViSTnN2BbTEj9HsH29PjD_pcuviqNS-6zFoSyT-8Wynnasw55_y4fmeF8uyrPdepCaP99Ml3WPC87UN5qm6U6-6Xm83On08E9-NiPq3NK-TFuN3psfv9F-Xitgd-Hu0FXZftd1QPYwmYH7pxjMNyBm0fhbv4hnH1ql7iKyXwPaGbe2B4IatmpZQ26n_XUp3aZKdhCfW1cECVzjRzzB7IZvcM1-zlT7qWPFGNdF-0Ka0b732qNzFNx9mFTzSOYHrz7_PYwDokdYkP20SY2GQEHreCobZbXQvCk1ASYOrUWMTGWY6mUqm3BMVe10LwmMwi1TqpaVST5GEbNaYNPgVUTa2gabGmQcyorUZPCVBZVIghqmEeQ9ZMqTWA9d8k35rJ3b_suPRKkQ4JMuCQkRPBmaLTsSD-uFhc9WmTQWzp9RNKxdHXD3R5bMmwda0kbbF5OMrI0I3g1VNOidzc5iuapdTKpKApSVqsInnRQHD6U9PWsKsUkguICSAcBRyh-sYbg5onFA8IiiAc4_8_4n11T_jncdk-d0_MujAhE-IJUu41-GRbzH-_DUUk priority: 102 providerName: Unpaywall |
| Title | Super-resolution reconstruction of neonatal brain magnetic resonance images via residual structured sparse representation |
| URI | https://dx.doi.org/10.1016/j.media.2019.04.010 https://www.ncbi.nlm.nih.gov/pubmed/31029865 https://www.proquest.com/docview/2253852862 https://www.proquest.com/docview/2216775609 https://pubmed.ncbi.nlm.nih.gov/PMC7136034 https://www.ncbi.nlm.nih.gov/pmc/articles/7136034 |
| UnpaywallVersion | submittedVersion |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VReJxqKBAcSnVInHExPFu1vYxVJTwaIRUgsLJWntnISi4UdKAeuG3M7N-0KioQpycrGcte-exM_bMNwDPZBJZ6WQRJjEiBSiRJZXKslDHJRk_Uijt4YtPxno0UW-ng-kWHLW1MJxW2dj-2qZ7a92M9JrV7C1ms95pX3KzEtqxUsmgJ1OuYFcJdzF48etPmgcD4NW1V_2QqVvkIZ_j5aszOL8r83inXEb7993pqvd5NYny1rpamIufZj6_tEMd34WdxrUUw_ru78EWVrtw5xLg4C7cPGk-pd-Hi9P1ApchRduN8AkfG3d4suLMiQr53Tpds-BGEuK7-VJxzaPgSQzUgWJGY7gSP2aGB31hl6gvsV6iFWSulisUHjmzrXKqHsDk-NXHo1HY9GEISwpnzsMyJj6j0woLF0urtYrSgvhr-84hRqVTmBpjrEsUSmN1oSxFLVgUUWZNRpQPYbs6q_ARiGzgSloxl5aoFP022pJ_kyZZpEkyUAYQt-uflw1IOffKmOdtNtq33DMtZ6blkcqJaQE87yYtaoyO68l1y9h8Q9Ry2kWun3jQikHeaPoqJ3so00FMgWEAT7vTpKP84cUQn9ZM09dJQr5lFsBeLTXdjZJ7HWepHgSQbMhTR8D435tnqtlXjwOekFBHUgUQdpL3L8-__7_P_xhu8786WfkAtkma8Am5ZOfFode5Q7gxfPNuNKbj65fvPw3pOBl_GH7-DfqxPzY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlE4ICivQAEjcSRsNnac5IgqqgW6vbSV9mY5ybgELelqtwvqhd_OjPOgq6IKcYvsseV4Hp5JZj4DvJVpVEknizCNESlAiSpSqTwPdVyS8SOF0h6-eHqkJ6fq8yyZbcF-XwvDaZWd7W9turfWXcuo283Roq5Hx2PJl5XQiZVJBj2Z3YLbKolTjsDe__qT58EIeG3x1Thk8h56yCd5-fIMTvDKPeAp19H-_Xi67n5ez6LcWTcLe_nTzudXjqiDB3C_8y3Fh3b5D2ELm124dwVxcBfuTLt_6Y_g8ni9wGVI4XYnfcIHxwOgrDh3okH-uE5zFnyThPhuzxouehQ8iJE6UNTUhivxo7bc6Cu7RDvFeomVIHu1XKHw0Jl9mVPzGE4PPp7sT8LuIoawpHjmIixjYjQ6rbBwsay0VlFWEIOrsXOIUekUZtbayqUKpa10oSoKW7AooryyOVE-ge3mvMFnIPLElbRjLitRKXq2uiIHJ0vzSJNooAwg7vfflB1KOV-WMTd9Oto345lmmGkmUoaYFsC7YdCiBem4mVz3jDUbsmboGLl54F4vBqZT9ZUhgyizJKbIMIA3QzcpKf95scSnNdOMdZqSc5kH8LSVmmGh5F_HeaaTANINeRoIGAB8s6epv3og8JSEOpIqgHCQvH95_-f_-_6vYWdyMj00h5-OvryAu9zTZi7vwTZJFr4k_-yieOX17zcVjz2M |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrcTjwKO8AgUZiSPZ5uF1kmOFqCqkVghYqZws2xnDwm662t2Ayq9n7DhRS1FFb048tmL5sz0Tz3wD8Dovkjq3uY6LDJEMlKSmJVVVscgMbX60oISnLz46FodT_v5kcrIFaR8L4532jZ6Nm_li3My-ed_K5cLs9X5ie2RViSTnN2BbTEj9HsH29PjD_pcuviqNS-6zFoSyT-8Wynnasw55_y4fmeF8uyrPdepCaP99Ml3WPC87UN5qm6U6-6Xm83On08E9-NiPq3NK-TFuN3psfv9F-Xitgd-Hu0FXZftd1QPYwmYH7pxjMNyBm0fhbv4hnH1ql7iKyXwPaGbe2B4IatmpZQ26n_XUp3aZKdhCfW1cECVzjRzzB7IZvcM1-zlT7qWPFGNdF-0Ka0b732qNzFNx9mFTzSOYHrz7_PYwDokdYkP20SY2GQEHreCobZbXQvCk1ASYOrUWMTGWY6mUqm3BMVe10LwmMwi1TqpaVST5GEbNaYNPgVUTa2gabGmQcyorUZPCVBZVIghqmEeQ9ZMqTWA9d8k35rJ3b_suPRKkQ4JMuCQkRPBmaLTsSD-uFhc9WmTQWzp9RNKxdHXD3R5bMmwda0kbbF5OMrI0I3g1VNOidzc5iuapdTKpKApSVqsInnRQHD6U9PWsKsUkguICSAcBRyh-sYbg5onFA8IiiAc4_8_4n11T_jncdk-d0_MujAhE-IJUu41-GRbzH-_DUUk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-resolution+reconstruction+of+neonatal+brain+magnetic+resonance+images+via+residual+structured+sparse+representation&rft.jtitle=Medical+image+analysis&rft.au=Zhang%2C+Yongqin&rft.au=Yap%2C+Pew-Thian&rft.au=Chen%2C+Geng&rft.au=Lin%2C+Weili&rft.date=2019-07-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=55&rft.spage=76&rft_id=info:doi/10.1016%2Fj.media.2019.04.010&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |