NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice
Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD⁺) and its effect on mitochondrial activity as a pivotal swi...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 352; no. 6292; pp. 1436 - 1443 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
17.06.2016
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aaf2693 |
Cover
Abstract | Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD⁺) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD⁺ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmdmdx/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD⁺ may reprogram dysfunctional SCs and improve life span in mammals. |
---|---|
AbstractList | Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD⁺) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD⁺ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmdmdx/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD⁺ may reprogram dysfunctional SCs and improve life span in mammals. The oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) is critical for mitochondrial function, and its supplementation can lead to increased longevity. Zhang et al. found that feeding the NAD+ precursor nicotinamide riboside (NR) to aging mice protected them from muscle degeneration (see the Perspective by Guarente). NR treatment enhanced muscle function and also protected mice from the loss of muscle stem cells. The treatment was similarly protective of neural and melanocyte stem cells, which may have contributed to the extended life span of the NR-treated animals. Science, this issue p. 1436; see also p. 1396 Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD+ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmdmdx/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD+ may reprogram dysfunctional SCs and improve life span in mammals. The oxidized form of cellular nicotinamide adenine dinucleotide (NAD + ) is critical for mitochondrial function, and its supplementation can lead to increased longevity. Zhang et al. found that feeding the NAD + precursor nicotinamide riboside (NR) to aging mice protected them from muscle degeneration (see the Perspective by Guarente). NR treatment enhanced muscle function and also protected mice from the loss of muscle stem cells. The treatment was similarly protective of neural and melanocyte stem cells, which may have contributed to the extended life span of the NR-treated animals. Science , this issue p. 1436 ; see also p. 1396 A dietary supplement protects muscle stem cells and increases mouse longevity. Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD + ) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD + precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn- Dmd mdx /J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD + may reprogram dysfunctional SCs and improve life span in mammals. Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals. Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals.Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals. A dietary supplement protects aging muscleThe oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) is critical for mitochondrial function, and its supplementation can lead to increased longevity. Zhang et al. found that feeding the NAD+ precursor nicotinamide riboside (NR) to aging mice protected them from muscle degeneration (see the Perspective by Guarente). NR treatment enhanced muscle function and also protected mice from the loss of muscle stem cells. The treatment was similarly protective of neural and melanocyte stem cells, which may have contributed to the extended life span of the NR-treated animals.Science, this issue p. 1436; see also p. 1396 Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD+ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmdmdx/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD+ may reprogram dysfunctional SCs and improve life span in mammals. |
Author | Schoonjans, Kristina Wang, Xu Gariani, Karim D'Amico, Davide Aebersold, Ruedi Auwerx, Johan Wu, Yibo Zhang, Hongbo Lutolf, Matthias P. Menzies, Keir J. Ryu, Dongryeol Luan, Peiling Ropelle, Eduardo R. |
Author_xml | – sequence: 1 givenname: Hongbo surname: Zhang fullname: Zhang, Hongbo – sequence: 2 givenname: Dongryeol surname: Ryu fullname: Ryu, Dongryeol – sequence: 3 givenname: Yibo surname: Wu fullname: Wu, Yibo – sequence: 4 givenname: Karim surname: Gariani fullname: Gariani, Karim – sequence: 5 givenname: Xu surname: Wang fullname: Wang, Xu – sequence: 6 givenname: Peiling surname: Luan fullname: Luan, Peiling – sequence: 7 givenname: Davide surname: D'Amico fullname: D'Amico, Davide – sequence: 8 givenname: Eduardo R. surname: Ropelle fullname: Ropelle, Eduardo R. – sequence: 9 givenname: Matthias P. surname: Lutolf fullname: Lutolf, Matthias P. – sequence: 10 givenname: Ruedi surname: Aebersold fullname: Aebersold, Ruedi – sequence: 11 givenname: Kristina surname: Schoonjans fullname: Schoonjans, Kristina – sequence: 12 givenname: Keir J. surname: Menzies fullname: Menzies, Keir J. – sequence: 13 givenname: Johan surname: Auwerx fullname: Auwerx, Johan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27127236$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAUha0KVAbadVdFlrphE_BPYsdLRFuohGDTLqvoxrkRHiX2YCeVuuxr9XH6JHWYKZVYwMqS_Z3rc885JHs-eCTkHWennAt1lqxDb_EUoBfKyFdkxZmpCiOY3CMrxqQqaqarA3KY0pqx_Gbka3IgNBdaSLUi32_OP_759ZtG3Aw4ueCpGzcx_MBERzcFexd8Fx0MFHxH04QjtTgMtJ-9faCXa_R3kE0kOrgeadpAHuKz3OIbst_DkPDt7jwi3z5_-npxVVzfXn65OL8ubFnrqQBb17K1rQIUquuRS2VsV2qpgbVQIQfRSdBGZKZVvNSlQmU6YD0a22fuiJxs52br9zOmqRldWoyCxzCnhteiqriRVfkyqo2u81dMZfTDE3Qd5ujzIgtlhC6lXAYe76i5HbFrNtGNEH82_zLOwNkWsDGkFLF_RDhrlhabXYvNrsWsqJ4orJtgyXuK4IZndO-3unWaQvzvJAem81ryL5Goruk |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1089_ars_2017_7145 crossref_primary_10_1007_s11357_021_00403_4 crossref_primary_10_1016_j_stem_2020_05_002 crossref_primary_10_3233_JAD_200116 crossref_primary_10_1016_j_freeradbiomed_2023_09_019 crossref_primary_10_1016_j_cmet_2023_12_007 crossref_primary_10_14814_phy2_14139 crossref_primary_10_1093_jn_nxab193 crossref_primary_10_1016_j_jbc_2022_102615 crossref_primary_10_3390_antiox12061230 crossref_primary_10_1038_s41598_020_69675_8 crossref_primary_10_1083_jcb_201708099 crossref_primary_10_1111_febs_17345 crossref_primary_10_3389_fmolb_2022_890402 crossref_primary_10_1038_s41392_022_01211_8 crossref_primary_10_1155_2023_4985726 crossref_primary_10_1097_BOR_0000000000000737 crossref_primary_10_1016_j_arr_2020_101154 crossref_primary_10_1016_j_bbadis_2020_165849 crossref_primary_10_1016_j_chembiol_2017_12_008 crossref_primary_10_1074_jbc_RA118_006756 crossref_primary_10_1016_j_arr_2018_05_006 crossref_primary_10_1111_acel_13048 crossref_primary_10_1002_1873_3468_14865 crossref_primary_10_1007_s10741_024_10439_1 crossref_primary_10_1101_gad_349066_121 crossref_primary_10_1016_j_jff_2024_106114 crossref_primary_10_1038_s41467_019_13694_1 crossref_primary_10_31857_S0026898423060095 crossref_primary_10_1016_j_arr_2022_101702 crossref_primary_10_3389_fnut_2022_868640 crossref_primary_10_1074_jbc_RA119_009035 crossref_primary_10_18632_oncotarget_27882 crossref_primary_10_1016_j_bmcl_2021_128048 crossref_primary_10_1016_j_arr_2020_101188 crossref_primary_10_1016_j_tibs_2017_06_005 crossref_primary_10_1152_physrev_00020_2018 crossref_primary_10_3390_cells11162607 crossref_primary_10_1021_acs_jmedchem_7b01254 crossref_primary_10_1111_acel_13256 crossref_primary_10_3389_fphys_2018_01290 crossref_primary_10_1152_physrev_00044_2022 crossref_primary_10_1038_s12276_022_00841_w crossref_primary_10_1089_ars_2017_7120 crossref_primary_10_3390_ph16081134 crossref_primary_10_1111_acel_13030 crossref_primary_10_1016_j_molmed_2017_08_001 crossref_primary_10_1155_2020_9503562 crossref_primary_10_1007_s00018_016_2431_7 crossref_primary_10_1101_cshperspect_a041193 crossref_primary_10_1371_journal_pone_0170930 crossref_primary_10_1038_srep46208 crossref_primary_10_1038_s41392_020_00354_w crossref_primary_10_3389_fmolb_2021_686412 crossref_primary_10_1038_ncomms13103 crossref_primary_10_1089_rej_2017_2037 crossref_primary_10_1016_j_mehy_2019_109306 crossref_primary_10_53065_kaznmu_2022_16_11_012 crossref_primary_10_1007_s10522_020_09887_7 crossref_primary_10_1113_EP087887 crossref_primary_10_3389_fimmu_2023_1158455 crossref_primary_10_1007_s00018_018_2931_8 crossref_primary_10_1016_j_isci_2024_111656 crossref_primary_10_1002_jcsm_12601 crossref_primary_10_1152_ajpcell_00946_2024 crossref_primary_10_3389_fphar_2024_1436597 crossref_primary_10_1016_j_mce_2016_11_003 crossref_primary_10_1016_j_cmet_2018_02_011 crossref_primary_10_2174_0929867324666170801095850 crossref_primary_10_1038_s41388_023_02592_y crossref_primary_10_1016_j_molmet_2022_101583 crossref_primary_10_3390_medicina57121387 crossref_primary_10_1042_BST20190033 crossref_primary_10_3389_fnmol_2017_00377 crossref_primary_10_3389_fcell_2022_966531 crossref_primary_10_1089_ars_2017_7350 crossref_primary_10_26599_FSHW_2024_9250071 crossref_primary_10_1038_s41467_024_44808_z crossref_primary_10_1038_s41467_024_49092_5 crossref_primary_10_1016_j_lfs_2023_122342 crossref_primary_10_1016_j_mce_2016_11_013 crossref_primary_10_1186_s12967_020_02454_1 crossref_primary_10_3390_ijms24010137 crossref_primary_10_1101_gad_293266_116 crossref_primary_10_1038_s12276_023_01059_0 crossref_primary_10_1038_s41419_020_03289_w crossref_primary_10_1038_s41582_019_0244_7 crossref_primary_10_1007_s10522_025_10205_2 crossref_primary_10_1038_s43587_022_00174_3 crossref_primary_10_1111_febs_15182 crossref_primary_10_1038_s42255_021_00483_8 crossref_primary_10_1016_j_biocel_2019_105635 crossref_primary_10_1089_scd_2017_0066 crossref_primary_10_1016_j_bcp_2022_114946 crossref_primary_10_1016_j_tem_2024_08_004 crossref_primary_10_1016_j_bbrep_2024_101715 crossref_primary_10_3389_fevo_2022_866130 crossref_primary_10_1007_s11357_023_00913_3 crossref_primary_10_1074_jbc_R116_771915 crossref_primary_10_1016_j_cmet_2020_04_008 crossref_primary_10_1111_acel_13223 crossref_primary_10_3390_nu15061494 crossref_primary_10_3390_ijms23031067 crossref_primary_10_1016_j_jbc_2024_107878 crossref_primary_10_1016_j_xcrm_2023_101342 crossref_primary_10_37349_eds_2025_100881 crossref_primary_10_1038_s41419_023_06192_2 crossref_primary_10_1007_s10456_021_09797_3 crossref_primary_10_1038_s41419_024_07078_7 crossref_primary_10_1249_JES_0000000000000153 crossref_primary_10_1007_s12640_019_00064_4 crossref_primary_10_1016_j_apsb_2021_08_007 crossref_primary_10_1016_j_molmet_2023_101816 crossref_primary_10_3343_alm_2018_38_5_395 crossref_primary_10_7554_eLife_81926 crossref_primary_10_31083_j_rcm2403082 crossref_primary_10_1186_s13287_016_0452_7 crossref_primary_10_3390_ph13080164 crossref_primary_10_1016_j_nut_2021_111189 crossref_primary_10_3390_antiox11091637 crossref_primary_10_1038_s42255_019_0161_5 crossref_primary_10_1186_s12864_020_06827_0 crossref_primary_10_1093_gerona_glad106 crossref_primary_10_1016_j_ejphar_2019_01_036 crossref_primary_10_1002_advs_202204190 crossref_primary_10_1038_s42255_022_00652_3 crossref_primary_10_1038_s41467_020_20760_6 crossref_primary_10_1002_iub_2585 crossref_primary_10_1113_JP278752 crossref_primary_10_1080_19420889_2017_1356956 crossref_primary_10_1186_s13287_021_02194_z crossref_primary_10_1016_j_cmet_2018_03_016 crossref_primary_10_3389_fcell_2019_00323 crossref_primary_10_1111_acel_13686 crossref_primary_10_1155_2019_4617801 crossref_primary_10_1016_j_stem_2017_04_011 crossref_primary_10_1038_nrn_2017_42 crossref_primary_10_3803_EnM_2020_405 crossref_primary_10_1016_j_arr_2020_101107 crossref_primary_10_3390_cimb45120596 crossref_primary_10_1016_j_mad_2020_111308 crossref_primary_10_3390_ijms21207704 crossref_primary_10_1016_j_stem_2021_02_011 crossref_primary_10_1016_j_jnutbio_2023_109310 crossref_primary_10_3390_ijms21051607 crossref_primary_10_1155_2020_2692794 crossref_primary_10_14336_AD_2024_1019 crossref_primary_10_1038_s41586_024_08329_5 crossref_primary_10_1002_smll_202309487 crossref_primary_10_1007_s10522_017_9732_6 crossref_primary_10_1042_BST20180420 crossref_primary_10_1016_j_celrep_2025_115265 crossref_primary_10_1016_j_molmet_2022_101560 crossref_primary_10_1002_mco2_62 crossref_primary_10_1016_j_tem_2017_02_004 crossref_primary_10_1021_acs_analchem_8b05663 crossref_primary_10_3390_ijms241512453 crossref_primary_10_1016_j_tcb_2020_04_004 crossref_primary_10_1016_j_tma_2019_11_002 crossref_primary_10_1042_BST20180417 crossref_primary_10_1186_s13287_025_04242_4 crossref_primary_10_1016_j_cmet_2016_09_013 crossref_primary_10_1096_fj_202001826R crossref_primary_10_1016_j_isci_2021_103118 crossref_primary_10_1038_s41422_018_0043_5 crossref_primary_10_1007_s00018_024_05164_9 crossref_primary_10_3389_fphys_2024_1397442 crossref_primary_10_1002_cpmo_47 crossref_primary_10_1016_j_mad_2020_111334 crossref_primary_10_1038_s41591_018_0138_z crossref_primary_10_1007_s13238_020_00755_1 crossref_primary_10_1016_j_biopha_2024_116133 crossref_primary_10_3390_nu14153130 crossref_primary_10_3390_metabo11090636 crossref_primary_10_1089_scd_2021_0347 crossref_primary_10_1016_j_exphem_2019_11_006 crossref_primary_10_1126_scitranslmed_aaw1868 crossref_primary_10_3390_ijms24119652 crossref_primary_10_1016_j_biocel_2016_07_026 crossref_primary_10_1002_1878_0261_12928 crossref_primary_10_1016_j_nantod_2022_101454 crossref_primary_10_1111_acel_12793 crossref_primary_10_1111_acel_12798 crossref_primary_10_1007_s00394_019_02089_z crossref_primary_10_1016_j_neubiorev_2018_09_014 crossref_primary_10_1155_2019_6387357 crossref_primary_10_3390_antiox10020254 crossref_primary_10_1016_j_biopha_2018_04_036 crossref_primary_10_1016_j_mehy_2017_10_005 crossref_primary_10_3390_biom14121556 crossref_primary_10_1002_bmc_4205 crossref_primary_10_1016_j_cmet_2016_09_004 crossref_primary_10_1038_s41467_023_37595_6 crossref_primary_10_1167_iovs_65_1_14 crossref_primary_10_1186_s12970_021_00442_4 crossref_primary_10_1038_s43587_021_00098_4 crossref_primary_10_3389_fphar_2022_888247 crossref_primary_10_1210_clinem_dgad027 crossref_primary_10_3390_biom11071044 crossref_primary_10_1016_j_jid_2018_05_033 crossref_primary_10_1038_nrm_2017_110 crossref_primary_10_1172_JCI185054 crossref_primary_10_1016_j_cell_2016_07_031 crossref_primary_10_1016_j_tma_2020_08_002 crossref_primary_10_1038_s41573_019_0016_5 crossref_primary_10_15252_embj_2020106825 crossref_primary_10_15252_embj_2019103420 crossref_primary_10_3390_ijms22031391 crossref_primary_10_3390_ijms24087389 crossref_primary_10_4252_wjsc_v13_i7_737 crossref_primary_10_1021_jacs_2c12336 crossref_primary_10_1016_j_jnutbio_2023_109296 crossref_primary_10_1186_s13287_021_02339_0 crossref_primary_10_1007_s11064_022_03610_3 crossref_primary_10_1016_j_jid_2020_11_018 crossref_primary_10_1177_0963689717735407 crossref_primary_10_1038_s41598_022_18272_y crossref_primary_10_1093_gerona_gly034 crossref_primary_10_1007_s00294_019_00972_0 crossref_primary_10_3390_cancers16173085 crossref_primary_10_1002_eji_202451093 crossref_primary_10_1038_s42003_020_01514_y crossref_primary_10_1177_00220345211070222 crossref_primary_10_14336_AD_2024_1188 crossref_primary_10_1111_acel_13965 crossref_primary_10_1016_j_ejcb_2023_151289 crossref_primary_10_1177_2632010X221106986 crossref_primary_10_1002_med_21559 crossref_primary_10_1038_s42255_018_0015_6 crossref_primary_10_1089_rej_2018_2138 crossref_primary_10_3390_molecules26175123 crossref_primary_10_3389_fcvm_2023_1212174 crossref_primary_10_1016_j_cmet_2017_11_002 crossref_primary_10_1016_j_cmet_2018_05_011 crossref_primary_10_3390_nu13103435 crossref_primary_10_7759_cureus_20042 crossref_primary_10_1002_jcb_30522 crossref_primary_10_1089_scd_2019_0278 crossref_primary_10_1161_CIRCULATIONAHA_120_051171 crossref_primary_10_1021_acs_biochem_8b00306 crossref_primary_10_1096_fj_202101462R crossref_primary_10_4235_agmr_20_0092 crossref_primary_10_1093_nar_gkac1136 crossref_primary_10_3143_geriatrics_57_213 crossref_primary_10_15252_emmm_202012860 crossref_primary_10_1126_science_aaf9794 crossref_primary_10_1038_s41581_019_0216_6 crossref_primary_10_1111_bph_14585 crossref_primary_10_1016_j_hemonc_2017_08_001 crossref_primary_10_1007_s00018_019_03430_9 crossref_primary_10_1089_rej_2017_1980 crossref_primary_10_1093_nutrit_nuad084 crossref_primary_10_5483_BMBRep_2023_0040 crossref_primary_10_1089_scd_2020_0149 crossref_primary_10_1161_CIRCRESAHA_118_312204 crossref_primary_10_1016_j_celrep_2018_10_036 crossref_primary_10_1038_s41580_024_00752_w crossref_primary_10_29219_fnr_v63_3419 crossref_primary_10_3389_fmolb_2023_906606 crossref_primary_10_3390_cells10010128 crossref_primary_10_1161_CIRCRESAHA_118_312208 crossref_primary_10_1089_ars_2024_0620 crossref_primary_10_3390_ijms25126321 crossref_primary_10_1007_s11154_021_09686_6 crossref_primary_10_1007_s11357_020_00282_1 crossref_primary_10_1042_BSR20211005 crossref_primary_10_1038_ncomms12948 crossref_primary_10_1038_s41573_020_0067_7 crossref_primary_10_1002_jcsm_13026 crossref_primary_10_15252_embj_201797135 crossref_primary_10_47855_jal9020_2023_2_2 crossref_primary_10_1016_j_jbc_2025_108248 crossref_primary_10_1021_acs_biochem_7b01185 crossref_primary_10_1038_ni_3754 crossref_primary_10_3389_fcell_2020_00138 crossref_primary_10_1002_stem_3152 crossref_primary_10_1038_s41422_018_0051_5 crossref_primary_10_1016_j_tma_2018_12_003 crossref_primary_10_1111_febs_14663 crossref_primary_10_1186_s12929_019_0527_8 crossref_primary_10_1242_dev_143420 crossref_primary_10_1016_j_cca_2021_01_012 crossref_primary_10_1152_ajpheart_00409_2017 crossref_primary_10_1038_emm_2017_74 crossref_primary_10_3389_fimmu_2021_621744 crossref_primary_10_1038_s43587_024_00758_1 crossref_primary_10_3389_fpubh_2023_1287421 crossref_primary_10_3389_fphys_2016_00599 crossref_primary_10_1038_s43587_021_00143_2 crossref_primary_10_7554_eLife_34836 crossref_primary_10_1016_j_cell_2016_07_050 crossref_primary_10_1002_jsfa_13513 crossref_primary_10_1016_j_stem_2020_01_005 crossref_primary_10_3389_fcell_2021_688789 crossref_primary_10_3390_ijms23031748 crossref_primary_10_1111_jne_12512 crossref_primary_10_1038_s41583_018_0091_3 crossref_primary_10_1093_gerona_glaa059 crossref_primary_10_1016_j_arr_2024_102512 crossref_primary_10_1038_cr_2016_80 crossref_primary_10_3389_fcell_2022_831273 crossref_primary_10_1042_CS20181022 crossref_primary_10_1016_j_jbc_2022_102037 crossref_primary_10_1016_j_pharmthera_2019_04_002 crossref_primary_10_1186_s13395_020_00249_y crossref_primary_10_1016_j_cophys_2018_03_011 crossref_primary_10_1126_science_abf9566 crossref_primary_10_4093_dmj_2022_0244 crossref_primary_10_1007_s40610_021_00143_6 crossref_primary_10_1111_bph_15477 crossref_primary_10_1093_lifemedi_lnac045 crossref_primary_10_3390_cells12202494 crossref_primary_10_1111_jne_12508 crossref_primary_10_3390_cells7120238 crossref_primary_10_3389_fnut_2021_717343 crossref_primary_10_7554_eLife_32638 crossref_primary_10_3390_ijms241311114 crossref_primary_10_1016_j_stem_2022_07_009 crossref_primary_10_4236_scd_2018_82002 crossref_primary_10_1016_j_cmet_2019_01_018 crossref_primary_10_1186_s40170_018_0186_3 crossref_primary_10_1002_cti2_1091 crossref_primary_10_1134_S0026893323060080 crossref_primary_10_1038_s41580_022_00510_w crossref_primary_10_3390_cells13211799 crossref_primary_10_1007_s11926_018_0724_6 crossref_primary_10_1016_j_freeradbiomed_2020_05_003 crossref_primary_10_3233_NHA_170001 crossref_primary_10_1083_jcb_201804083 crossref_primary_10_1002_advs_202004632 crossref_primary_10_14336_AD_2016_1022 crossref_primary_10_3389_fphys_2021_696018 crossref_primary_10_1002_hep_30622 crossref_primary_10_3390_ijms241210098 crossref_primary_10_1007_s10517_023_05947_3 crossref_primary_10_1002_cphc_201601146 crossref_primary_10_1073_pnas_1720673115 crossref_primary_10_3390_molecules28166078 crossref_primary_10_1093_jas_skac203 crossref_primary_10_1096_fj_202000111RR crossref_primary_10_3390_ijms26052276 crossref_primary_10_1016_j_bcp_2017_05_016 crossref_primary_10_1146_annurev_nutr_071816_064916 crossref_primary_10_1002_jcp_26014 crossref_primary_10_3390_ijms25126793 crossref_primary_10_3390_ijms222011117 crossref_primary_10_3390_metabo14060341 crossref_primary_10_1111_trf_15556 crossref_primary_10_1002_med_22034 crossref_primary_10_1016_j_psj_2020_12_024 crossref_primary_10_1111_cns_14030 crossref_primary_10_1093_humupd_dmac042 crossref_primary_10_3390_biomedicines9091092 crossref_primary_10_12677_ACM_2024_143814 crossref_primary_10_1172_jci_insight_178048 crossref_primary_10_14336_AD_2017_0315 crossref_primary_10_4093_dmj_2022_0416 crossref_primary_10_1007_s12640_017_9795_9 crossref_primary_10_1007_s40778_018_0128_6 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_1039_C7RA00505A crossref_primary_10_1371_journal_pone_0300787 crossref_primary_10_3390_biom12010039 crossref_primary_10_1016_j_stemcr_2019_09_003 crossref_primary_10_3390_clinpract13040076 crossref_primary_10_1021_acs_joc_7b02749 crossref_primary_10_1016_j_stem_2022_06_004 crossref_primary_10_1093_ageing_afac156 crossref_primary_10_1111_eci_13334 crossref_primary_10_1016_j_exger_2020_110972 crossref_primary_10_1111_acel_13060 crossref_primary_10_1016_j_tcb_2023_10_003 crossref_primary_10_1002_bab_2713 crossref_primary_10_3390_ijms232314739 crossref_primary_10_1007_s00018_023_05070_6 crossref_primary_10_3389_fphys_2020_00063 crossref_primary_10_3389_fendo_2018_00702 crossref_primary_10_3389_fcell_2022_820520 crossref_primary_10_1002_fft2_350 crossref_primary_10_2139_ssrn_3979179 crossref_primary_10_1016_j_expneurol_2023_114479 crossref_primary_10_1016_j_celrep_2019_07_043 crossref_primary_10_1016_j_jbc_2021_100855 crossref_primary_10_1186_s13578_022_00796_5 crossref_primary_10_1016_j_heliyon_2023_e19505 crossref_primary_10_1093_gerona_gly256 crossref_primary_10_3390_ijms21207580 crossref_primary_10_14336_AD_2019_0820 crossref_primary_10_1016_j_exger_2023_112109 crossref_primary_10_1111_acel_14165 crossref_primary_10_1186_s13619_023_00158_7 crossref_primary_10_1016_j_jff_2017_07_033 crossref_primary_10_1002_adhm_202402785 crossref_primary_10_1016_j_jaci_2023_09_030 crossref_primary_10_1056_NEJMra1703366 crossref_primary_10_7554_eLife_16351 crossref_primary_10_1021_acsami_2c12971 crossref_primary_10_1016_j_heares_2025_109182 crossref_primary_10_1016_j_tifs_2018_07_020 crossref_primary_10_1038_s41580_019_0204_5 crossref_primary_10_3389_fcell_2021_793088 crossref_primary_10_1016_j_stem_2019_02_012 crossref_primary_10_1038_nature25143 crossref_primary_10_1073_pnas_2011226118 crossref_primary_10_1016_j_exger_2022_111889 crossref_primary_10_1038_s41580_020_00313_x crossref_primary_10_1016_j_mad_2021_111525 crossref_primary_10_1016_j_mad_2020_111254 crossref_primary_10_1038_s43587_022_00309_6 crossref_primary_10_2217_rme_2017_0128 crossref_primary_10_1016_j_gendis_2021_04_001 crossref_primary_10_1016_j_molmed_2019_04_006 crossref_primary_10_1038_s41419_024_07062_1 crossref_primary_10_3177_jnsv_69_184 crossref_primary_10_3389_fcell_2023_1128534 crossref_primary_10_1210_endocr_bqab079 crossref_primary_10_1080_1028415X_2019_1637504 crossref_primary_10_1016_j_neuropharm_2017_12_027 crossref_primary_10_1016_j_arr_2022_101833 crossref_primary_10_1016_j_tibs_2016_05_008 crossref_primary_10_1016_j_cub_2017_04_030 crossref_primary_10_1093_ajcn_nqy132 crossref_primary_10_1016_j_mad_2021_111545 crossref_primary_10_3233_BPL_170044 crossref_primary_10_1007_s11427_022_2161_3 crossref_primary_10_1016_j_mad_2020_111246 crossref_primary_10_1016_j_ymthe_2020_03_003 crossref_primary_10_3390_nu16213577 crossref_primary_10_1016_j_fbio_2024_103859 crossref_primary_10_1126_science_aam7935 crossref_primary_10_3390_nu15132851 crossref_primary_10_1016_j_tibs_2022_03_008 crossref_primary_10_1161_CIRCULATIONAHA_121_056589 crossref_primary_10_1038_s41392_021_00646_9 crossref_primary_10_1016_j_coph_2018_05_007 crossref_primary_10_1097_QAD_0000000000003334 crossref_primary_10_1002_hep_32658 crossref_primary_10_1038_s41467_021_22863_0 crossref_primary_10_1111_febs_16352 crossref_primary_10_3389_fendo_2022_935106 crossref_primary_10_1016_j_molcel_2018_10_023 crossref_primary_10_1111_cpr_13796 crossref_primary_10_1186_s13287_018_0857_6 crossref_primary_10_1016_j_jacbts_2023_09_014 crossref_primary_10_12688_f1000research_11437_1 crossref_primary_10_1038_s43587_024_00674_4 crossref_primary_10_1093_sleepadvances_zpad044 crossref_primary_10_18632_aging_101993 crossref_primary_10_1007_s10495_021_01683_z crossref_primary_10_1002_cbin_11691 crossref_primary_10_1016_j_bcp_2024_116556 crossref_primary_10_1016_j_mad_2021_111567 crossref_primary_10_1126_science_aax0860 crossref_primary_10_1186_s40169_016_0104_7 crossref_primary_10_1093_jn_nxaa190 crossref_primary_10_1155_2020_8819627 crossref_primary_10_3390_children10050837 crossref_primary_10_1016_j_ejmech_2023_115258 crossref_primary_10_1089_ars_2023_0354 crossref_primary_10_1007_s10522_020_09864_0 crossref_primary_10_1182_blood_2023022004 crossref_primary_10_1089_ars_2017_7228 crossref_primary_10_1155_2017_2309034 crossref_primary_10_1186_s12967_023_04286_1 crossref_primary_10_1016_j_mad_2021_111569 crossref_primary_10_1016_j_arr_2021_101528 crossref_primary_10_1515_teb_2024_0030 crossref_primary_10_1016_j_conb_2016_11_006 crossref_primary_10_1084_jem_20161066 crossref_primary_10_3390_biom10020330 crossref_primary_10_1016_j_fbio_2023_103126 crossref_primary_10_15252_embr_202254721 crossref_primary_10_1089_ars_2017_7479 crossref_primary_10_3390_ijms21186670 crossref_primary_10_1016_j_arr_2022_101636 crossref_primary_10_18632_aging_103954 crossref_primary_10_1016_j_celrep_2020_107964 crossref_primary_10_1007_s11427_024_2717_6 crossref_primary_10_3390_ijms20225638 crossref_primary_10_1007_s00018_019_03391_z crossref_primary_10_1016_j_molmet_2021_101165 crossref_primary_10_3389_fnins_2021_647589 crossref_primary_10_1016_j_mad_2021_111584 crossref_primary_10_1016_j_mad_2020_111288 crossref_primary_10_3390_molecules26092729 crossref_primary_10_1016_j_mad_2020_111283 crossref_primary_10_1016_j_mad_2020_111282 crossref_primary_10_3390_nu12061616 crossref_primary_10_1016_j_tcb_2021_02_006 crossref_primary_10_1172_JCI163648 crossref_primary_10_1155_2017_3165396 crossref_primary_10_2174_2666338408666210322113713 crossref_primary_10_1039_D1RA02062E crossref_primary_10_1021_acschembio_2c00773 crossref_primary_10_3389_fnins_2022_1009125 crossref_primary_10_1016_j_molmet_2021_101195 crossref_primary_10_1093_jn_nxab251 crossref_primary_10_18632_oncotarget_19948 crossref_primary_10_1038_s41556_019_0287_4 crossref_primary_10_1210_clinem_dgaa960 crossref_primary_10_3389_fphar_2020_604404 crossref_primary_10_1074_mcp_RA118_000882 crossref_primary_10_1089_aid_2019_0100 crossref_primary_10_1097_PRS_0000000000009673 crossref_primary_10_1161_CIRCRESAHA_117_311866 crossref_primary_10_3390_cells12030500 crossref_primary_10_1007_s40778_020_00180_4 crossref_primary_10_3390_cells10082040 crossref_primary_10_3390_gidisord4040031 crossref_primary_10_14336_AD_2021_1208 crossref_primary_10_1093_tas_txaa126 crossref_primary_10_1681_ASN_2016040385 crossref_primary_10_1016_j_celrep_2022_110475 crossref_primary_10_1016_j_celrep_2020_108203 crossref_primary_10_1016_j_neuron_2019_11_019 crossref_primary_10_1007_s11357_020_00311_z crossref_primary_10_1016_j_cmet_2024_12_008 crossref_primary_10_14336_AD_2021_0523 crossref_primary_10_1111_acel_14400 crossref_primary_10_1016_j_mad_2019_111194 crossref_primary_10_1186_s13287_023_03497_z crossref_primary_10_3389_fcvm_2021_716989 crossref_primary_10_1016_j_mencom_2019_01_040 crossref_primary_10_1016_j_cmet_2021_06_008 crossref_primary_10_1016_j_molmed_2017_02_005 crossref_primary_10_1186_s12979_023_00398_w crossref_primary_10_1016_j_mito_2020_07_007 crossref_primary_10_1111_acel_13328 crossref_primary_10_1021_acs_cgd_9b00423 crossref_primary_10_1111_acel_13329 crossref_primary_10_1007_s12035_024_04006_w crossref_primary_10_3389_fphys_2022_892749 crossref_primary_10_1016_j_athplu_2024_06_001 crossref_primary_10_1007_s11357_020_00211_2 crossref_primary_10_1007_s11357_019_00114_x crossref_primary_10_1038_s42255_022_00640_7 crossref_primary_10_1007_s10522_018_9769_1 crossref_primary_10_1002_stem_2970 crossref_primary_10_2174_1574888X15666200512105347 crossref_primary_10_1016_j_celrep_2020_108660 crossref_primary_10_1016_j_yexcr_2020_111913 crossref_primary_10_1186_s13045_020_00986_z crossref_primary_10_3389_fragi_2023_1172789 crossref_primary_10_3389_fimmu_2019_01469 crossref_primary_10_1038_s41580_021_00421_2 crossref_primary_10_1016_j_jmb_2019_12_036 crossref_primary_10_1128_msystems_01214_23 crossref_primary_10_1210_endrev_bnad019 crossref_primary_10_1111_brv_12866 crossref_primary_10_1038_s41467_021_26176_0 crossref_primary_10_1210_er_2017_00211 crossref_primary_10_1002_agm2_12223 crossref_primary_10_14336_AD_2020_0909 crossref_primary_10_1038_s41467_024_45823_w crossref_primary_10_15252_emmm_201809390 crossref_primary_10_1242_jcs_212977 crossref_primary_10_3389_fphar_2024_1486717 crossref_primary_10_1007_s00018_023_04771_2 crossref_primary_10_1007_s10522_022_09987_6 crossref_primary_10_1007_s12264_023_01072_3 crossref_primary_10_1242_dev_199961 crossref_primary_10_3390_biomedicines8100390 crossref_primary_10_1002_jcsm_12581 crossref_primary_10_1096_fj_202100629R crossref_primary_10_1111_acel_13301 crossref_primary_10_1111_acel_13304 crossref_primary_10_3390_cells11030468 crossref_primary_10_1016_j_biopha_2024_116481 crossref_primary_10_1089_rej_2017_1975 crossref_primary_10_1039_D4CC02650K crossref_primary_10_15252_emmm_202113943 crossref_primary_10_1038_s41419_021_03912_4 crossref_primary_10_1038_s41514_025_00192_6 crossref_primary_10_3349_ymj_2023_0131 crossref_primary_10_1016_j_arr_2025_102732 crossref_primary_10_1016_j_arr_2024_102213 crossref_primary_10_1101_gr_227181_117 crossref_primary_10_1002_bies_202000273 crossref_primary_10_1126_scitranslmed_abb0319 crossref_primary_10_1039_D0OB00134A crossref_primary_10_1016_j_bmc_2020_115824 crossref_primary_10_1186_s13395_019_0216_z crossref_primary_10_1016_j_celrep_2019_01_007 crossref_primary_10_1016_j_celrep_2020_108656 crossref_primary_10_1186_s13045_020_00864_8 crossref_primary_10_1113_JP280908 crossref_primary_10_1038_s41467_023_36543_8 crossref_primary_10_1186_s40643_022_00578_4 crossref_primary_10_1167_iovs_19_27099 crossref_primary_10_1016_j_exger_2021_111313 crossref_primary_10_1096_fj_201800090R crossref_primary_10_1007_s40266_022_00989_0 crossref_primary_10_3389_fcell_2023_1146399 crossref_primary_10_1038_s41580_022_00462_1 crossref_primary_10_1038_s41598_024_83500_6 crossref_primary_10_1002_jcsm_12558 crossref_primary_10_1016_j_ejphar_2020_173158 crossref_primary_10_18632_oncotarget_28256 crossref_primary_10_1039_C9NR05794C crossref_primary_10_1111_acel_13976 crossref_primary_10_1155_2017_9209127 crossref_primary_10_1002_cyto_a_23886 crossref_primary_10_3390_cells13171509 crossref_primary_10_1038_s41536_021_00127_1 crossref_primary_10_1016_j_bcp_2019_02_008 crossref_primary_10_1126_science_aal0092 crossref_primary_10_1016_j_cmet_2019_05_018 crossref_primary_10_1007_s11357_022_00717_x crossref_primary_10_3390_cells11132086 crossref_primary_10_3390_biology8020027 crossref_primary_10_3390_ijms20092158 crossref_primary_10_1126_science_aag1718 crossref_primary_10_1016_j_tips_2018_02_001 crossref_primary_10_1111_cpr_13191 crossref_primary_10_3390_geriatrics6020037 crossref_primary_10_1016_j_cell_2018_02_008 crossref_primary_10_1111_acel_12650 crossref_primary_10_1126_sciadv_abm1189 crossref_primary_10_1021_acs_jproteome_0c01037 crossref_primary_10_3389_fnagi_2018_00234 crossref_primary_10_1093_gerona_glad034 crossref_primary_10_1172_JCI158453 crossref_primary_10_1038_nrm_2016_71 crossref_primary_10_1038_s43587_021_00164_x crossref_primary_10_1016_j_stem_2020_09_011 crossref_primary_10_1002_jcsm_13182 crossref_primary_10_1038_s41598_019_49547_6 crossref_primary_10_3389_fnins_2020_618395 crossref_primary_10_1016_j_mad_2024_111929 crossref_primary_10_1073_pnas_1718819115 crossref_primary_10_1016_j_molcel_2017_04_006 crossref_primary_10_1002_jcp_27401 crossref_primary_10_1016_j_bbrc_2024_149590 crossref_primary_10_7554_eLife_59828 crossref_primary_10_3389_fendo_2021_774667 crossref_primary_10_1007_s10565_024_09854_9 crossref_primary_10_3389_fphys_2019_01125 crossref_primary_10_1038_s41514_021_00058_7 crossref_primary_10_1016_j_molmed_2021_06_011 crossref_primary_10_3390_cells11081283 crossref_primary_10_1261_rna_077347_120 crossref_primary_10_3390_nu17030539 crossref_primary_10_1111_acel_12756 crossref_primary_10_1016_j_stem_2018_12_014 crossref_primary_10_1016_j_mad_2024_111917 crossref_primary_10_3389_fphys_2021_702276 crossref_primary_10_1016_j_exger_2023_112204 crossref_primary_10_1016_j_tma_2021_11_003 crossref_primary_10_1111_acel_12994 crossref_primary_10_1038_nrm_2016_93 crossref_primary_10_1038_s42003_023_04613_8 crossref_primary_10_1016_j_freeradbiomed_2023_06_023 crossref_primary_10_1007_s11357_021_00388_0 crossref_primary_10_3389_fmicb_2021_746121 crossref_primary_10_1007_s11064_019_02809_1 crossref_primary_10_1364_BOE_432561 crossref_primary_10_1038_s43587_022_00191_2 crossref_primary_10_1038_s41580_018_0020_3 crossref_primary_10_1038_s41586_024_08348_2 crossref_primary_10_1080_00207454_2022_2057849 crossref_primary_10_3390_nu14132752 crossref_primary_10_1016_j_jare_2024_07_010 crossref_primary_10_3389_fcell_2016_00109 crossref_primary_10_3390_ijms222312727 crossref_primary_10_3390_ijms252413465 crossref_primary_10_1038_s43587_024_00613_3 crossref_primary_10_12688_f1000research_12120_1 crossref_primary_10_3233_JAD_181184 crossref_primary_10_5483_BMBRep_2019_52_1_290 crossref_primary_10_1097_JBR_0000000000000105 crossref_primary_10_1016_j_bbrc_2024_150346 crossref_primary_10_1111_jnc_14472 crossref_primary_10_3390_antiox11122422 crossref_primary_10_1016_j_molcel_2020_04_010 crossref_primary_10_3389_fcell_2022_1049653 crossref_primary_10_1038_s41467_025_56402_y crossref_primary_10_1002_jcsm_13398 crossref_primary_10_1097_IJG_0000000000000767 crossref_primary_10_3390_ijms24021615 crossref_primary_10_1007_s00394_019_01919_4 crossref_primary_10_1016_j_celrep_2024_114648 crossref_primary_10_4252_wjsc_v13_i10_1595 crossref_primary_10_1038_s41598_019_39419_4 crossref_primary_10_1080_15548627_2021_1975914 crossref_primary_10_3390_biomedicines10071611 crossref_primary_10_3389_fragi_2022_820215 crossref_primary_10_3390_life13041006 crossref_primary_10_1051_medsci_2023084 crossref_primary_10_1016_j_bbadis_2018_01_026 crossref_primary_10_1016_j_isci_2021_103635 crossref_primary_10_1016_j_phrs_2019_03_007 crossref_primary_10_1093_gerona_glab002 crossref_primary_10_1126_sciadv_adi6770 crossref_primary_10_1007_s11357_019_00074_2 crossref_primary_10_1016_j_cej_2024_158703 crossref_primary_10_3389_fphar_2023_1334160 crossref_primary_10_1097_j_pain_0000000000000862 crossref_primary_10_1007_s12015_020_09988_3 crossref_primary_10_1007_s00018_022_04499_5 crossref_primary_10_1172_JCI120844 crossref_primary_10_3389_fragi_2020_610406 crossref_primary_10_1016_j_exger_2018_01_018 crossref_primary_10_1172_JCI120842 crossref_primary_10_1016_j_cmet_2017_04_022 crossref_primary_10_1016_j_trecan_2017_06_001 crossref_primary_10_1177_0271678X21992625 crossref_primary_10_12688_f1000research_9846_1 crossref_primary_10_1515_hsz_2017_0209 crossref_primary_10_3390_cells12060915 crossref_primary_10_1007_s10974_019_09542_w crossref_primary_10_1016_j_arr_2023_102106 crossref_primary_10_1002_cpnc_43 crossref_primary_10_1126_scitranslmed_aaf5504 crossref_primary_10_3390_metabo12020177 crossref_primary_10_1016_j_expneurol_2020_113219 crossref_primary_10_1038_s12276_023_01041_w crossref_primary_10_1210_js_2017_00092 crossref_primary_10_1161_CIRCHEARTFAILURE_120_008170 crossref_primary_10_3390_biom9010034 crossref_primary_10_3389_fragi_2024_1452453 crossref_primary_10_1007_s00018_017_2462_8 crossref_primary_10_1039_D3SC04081J crossref_primary_10_3390_pharmaceutics13060893 crossref_primary_10_1016_j_abb_2018_10_013 crossref_primary_10_1126_sciadv_adr1538 crossref_primary_10_1016_j_arr_2018_08_003 crossref_primary_10_3892_etm_2024_12475 crossref_primary_10_3390_metabo14080424 crossref_primary_10_1016_j_meatsci_2025_109772 crossref_primary_10_1016_j_cmet_2024_02_014 crossref_primary_10_1007_s13668_023_00475_y crossref_primary_10_1165_rcmb_2016_0355TR crossref_primary_10_1038_nature23876 crossref_primary_10_3390_antiox10121939 crossref_primary_10_3389_fmed_2022_1027055 crossref_primary_10_1016_j_jvssci_2022_11_003 crossref_primary_10_1016_j_lfs_2018_09_015 crossref_primary_10_1016_j_trsl_2018_05_005 crossref_primary_10_1016_j_mehy_2018_10_019 crossref_primary_10_1111_acel_12935 crossref_primary_10_1007_s11357_023_00789_3 crossref_primary_10_1242_dev_128389 crossref_primary_10_1016_j_trecan_2017_09_002 crossref_primary_10_3390_antiox10040519 crossref_primary_10_26508_lsa_202302505 crossref_primary_10_1126_science_aan2788 crossref_primary_10_1016_j_mce_2018_01_025 crossref_primary_10_1016_j_jhep_2022_05_040 crossref_primary_10_1089_rej_2018_2077 crossref_primary_10_1111_ejn_14264 crossref_primary_10_2106_JBJS_22_00894 crossref_primary_10_1002_1873_3468_14698 crossref_primary_10_1016_j_yjmcc_2018_06_007 crossref_primary_10_1073_pnas_1902346116 crossref_primary_10_1007_s12272_024_01519_9 crossref_primary_10_1016_j_jacc_2018_12_087 crossref_primary_10_3390_ijms24032959 crossref_primary_10_1016_j_exger_2020_110841 crossref_primary_10_1186_s12014_024_09509_1 crossref_primary_10_3934_molsci_2020002 crossref_primary_10_3389_fphys_2019_01523 crossref_primary_10_1038_s41536_018_0062_3 crossref_primary_10_1089_ars_2021_0074 crossref_primary_10_1002_fft2_261 crossref_primary_10_1016_j_jare_2025_03_025 crossref_primary_10_3390_pharmaceutics15020352 crossref_primary_10_1016_j_tcb_2023_02_004 crossref_primary_10_1167_iovs_63_4_5 crossref_primary_10_1093_hmg_ddaa167 crossref_primary_10_1016_j_tma_2018_08_003 crossref_primary_10_1155_2016_3208429 crossref_primary_10_1016_j_tma_2018_08_002 crossref_primary_10_1038_s41467_018_07253_3 crossref_primary_10_1089_rej_2019_2218 crossref_primary_10_1155_2017_7941563 crossref_primary_10_1177_1535370220929287 crossref_primary_10_1016_j_molmed_2019_09_009 crossref_primary_10_3389_fcell_2024_1464815 crossref_primary_10_3390_cells12070998 crossref_primary_10_1038_s41418_021_00873_1 crossref_primary_10_3389_fphar_2021_739510 crossref_primary_10_3892_or_2017_5793 crossref_primary_10_1093_hmg_ddac115 crossref_primary_10_1186_s10020_020_0136_8 crossref_primary_10_1016_j_cell_2017_07_042 crossref_primary_10_1089_ars_2020_8070 crossref_primary_10_1146_annurev_pharmtox_010716_104908 crossref_primary_10_1038_s41598_019_46478_0 crossref_primary_10_1038_s41598_018_37489_4 crossref_primary_10_1101_gad_352277_124 crossref_primary_10_3390_nu14193889 crossref_primary_10_1038_s41392_020_00311_7 crossref_primary_10_1172_jci_insight_158314 crossref_primary_10_1016_j_jid_2019_02_005 crossref_primary_10_1016_j_cmet_2022_11_005 crossref_primary_10_3390_ijms19124108 crossref_primary_10_1016_j_omtn_2019_09_012 crossref_primary_10_3389_fimmu_2023_1231700 crossref_primary_10_3389_fphys_2020_01054 crossref_primary_10_1128_MMBR_00038_18 crossref_primary_10_1016_j_arr_2016_06_005 crossref_primary_10_3390_nu14010113 crossref_primary_10_1186_s13395_018_0154_1 crossref_primary_10_1038_s42255_024_00997_x crossref_primary_10_1111_febs_16573 crossref_primary_10_1016_j_cmet_2017_07_019 crossref_primary_10_1038_s41514_019_0040_z crossref_primary_10_1016_j_exger_2020_110888 crossref_primary_10_1016_j_cmet_2019_09_001 crossref_primary_10_1093_hmg_ddy278 crossref_primary_10_3390_ijms25031698 crossref_primary_10_1113_EP086964 crossref_primary_10_3390_nu14010101 crossref_primary_10_1172_jci_insight_167274 crossref_primary_10_1016_j_arr_2019_100940 crossref_primary_10_1016_j_molmet_2017_05_011 crossref_primary_10_3390_nu14112259 crossref_primary_10_1152_ajpheart_00039_2019 crossref_primary_10_1016_j_preteyeres_2022_101136 crossref_primary_10_1038_s42255_020_0194_9 crossref_primary_10_7759_cureus_55661 crossref_primary_10_1016_j_freeradbiomed_2020_10_001 crossref_primary_10_1016_j_mad_2024_111993 crossref_primary_10_1089_ars_2016_6782 crossref_primary_10_1093_lifemeta_load028 crossref_primary_10_1038_s41514_017_0016_9 crossref_primary_10_1038_s41514_022_00084_z crossref_primary_10_1155_2018_1941285 crossref_primary_10_1126_sciadv_abh4423 crossref_primary_10_1007_s11011_018_0346_8 crossref_primary_10_15252_embj_201695737 crossref_primary_10_1126_sciadv_add5163 crossref_primary_10_1111_acel_14027 crossref_primary_10_3389_fnins_2017_00146 crossref_primary_10_1016_j_yjmcc_2020_01_002 crossref_primary_10_1007_s11357_020_00165_5 crossref_primary_10_3390_antiox12050990 crossref_primary_10_1002_adtp_202200094 crossref_primary_10_1016_j_celrep_2021_109223 crossref_primary_10_1089_scd_2023_0065 crossref_primary_10_1530_JME_18_0085 crossref_primary_10_1038_npjamd_2016_17 crossref_primary_10_1016_j_biortech_2023_128953 crossref_primary_10_1128_msystems_00230_21 crossref_primary_10_1016_j_mcpro_2022_100276 crossref_primary_10_18632_aging_102247 crossref_primary_10_3389_fragi_2023_1202152 crossref_primary_10_3390_cells9030671 crossref_primary_10_1016_j_cels_2021_09_001 crossref_primary_10_1101_gad_351428_123 crossref_primary_10_1186_s12882_020_02006_1 crossref_primary_10_3390_cells11040710 crossref_primary_10_1016_j_jff_2023_105835 crossref_primary_10_1016_j_molmet_2019_09_013 crossref_primary_10_1016_j_isci_2022_105480 |
Cites_doi | 10.1016/j.celrep.2013.05.043 10.1128/MCB.16.3.859 10.1038/mt.2009.253 10.1016/j.cell.2013.11.037 10.1038/nm.3655 10.1038/nrm3772 10.1038/nmeth.1584 10.1126/science.1260384 10.1242/jcs.037655 10.1016/j.cmet.2014.04.002 10.1038/nm.3869 10.1007/978-1-4757-3294-8 10.1016/j.cell.2008.06.016 10.1016/S1097-2765(03)00226-0 10.1016/j.stem.2012.10.002 10.1038/298294a0 10.1007/s00335-008-9107-z 10.1016/j.cmet.2012.04.022 10.1146/annurev-pathol-011811-132450 10.1038/nm.3464 10.1002/pmic.200600625 10.1038/nmeth.2703 10.1016/S0092-8674(04)00208-9 10.1038/nature11438 10.1016/j.cmet.2015.05.023 10.1038/nm.3710 10.1038/nature13013 10.1016/j.cell.2011.06.051 10.1006/excr.2001.5166 10.1152/physrev.00043.2011 10.1038/srep03432 10.1038/nature04330 10.32614/RJ-2014-028 10.1016/j.stem.2012.04.002 10.1016/j.stem.2014.12.004 10.1016/S0960-9822(06)00261-2 10.1038/nature03260 10.1101/sqb.2011.76.010652 10.1016/j.cell.2014.07.039 10.1016/j.cell.2013.05.039 10.1093/nar/gkv1145 10.1038/nm.3465 10.1210/er.2009-0026 10.1074/mcp.O111.016717 10.1073/pnas.2135385100 10.1038/nature08466 10.1038/nm.3656 10.15252/embr.201439704 10.1126/science.1099593 10.1101/gad.1971610 10.1016/j.cmet.2011.08.014 10.1016/j.cell.2013.06.016 10.1038/nbt.2841 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Association for the Advancement of Science Copyright © 2016, American Association for the Advancement of Science. Copyright © 2016, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2016 American Association for the Advancement of Science – notice: Copyright © 2016, American Association for the Advancement of Science. – notice: Copyright © 2016, American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aaf2693 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1443 |
ExternalDocumentID | 4099327881 27127236 10_1126_science_aaf2693 24747797 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01AG043930 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O CGR CUY CVF ECM EIF GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c487t-ac883bcb6ae26dfe1369cd4737a0ba5e1a2d3a792bcbb614746e69da0fe9cf473 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Sun Sep 28 12:28:52 EDT 2025 Sun Sep 28 02:37:45 EDT 2025 Fri Jul 25 10:04:36 EDT 2025 Thu Apr 03 07:02:58 EDT 2025 Thu Apr 24 23:04:52 EDT 2025 Tue Jul 01 00:37:16 EDT 2025 Thu Jul 03 22:16:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6292 |
Language | English |
License | Copyright © 2016, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c487t-ac883bcb6ae26dfe1369cd4737a0ba5e1a2d3a792bcbb614746e69da0fe9cf473 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/126595 |
PMID | 27127236 |
PQID | 1799274334 |
PQPubID | 1256 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1825519354 proquest_miscellaneous_1797879206 proquest_journals_1799274334 pubmed_primary_27127236 crossref_primary_10_1126_science_aaf2693 crossref_citationtrail_10_1126_science_aaf2693 jstor_primary_24747797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-17 |
PublicationDateYYYYMMDD | 2016-06-17 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2016 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 Stein L. R. (e_1_3_2_24_2) 2014; 33 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 27339086 - Cell Res. 2016 Sep;26(9):971-2 27313027 - Science. 2016 Jun 17;352(6292):1396-7 27211483 - Nat Rev Mol Cell Biol. 2016 May 23;17(6):331 |
References_xml | – ident: e_1_3_2_15_2 doi: 10.1016/j.celrep.2013.05.043 – ident: e_1_3_2_33_2 doi: 10.1128/MCB.16.3.859 – ident: e_1_3_2_48_2 doi: 10.1038/mt.2009.253 – ident: e_1_3_2_21_2 doi: 10.1016/j.cell.2013.11.037 – ident: e_1_3_2_9_2 doi: 10.1038/nm.3655 – volume: 33 start-page: 1321 year: 2014 ident: e_1_3_2_24_2 article-title: Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging publication-title: EMBO J. – ident: e_1_3_2_22_2 doi: 10.1038/nrm3772 – ident: e_1_3_2_53_2 doi: 10.1038/nmeth.1584 – ident: e_1_3_2_25_2 doi: 10.1126/science.1260384 – ident: e_1_3_2_39_2 doi: 10.1242/jcs.037655 – ident: e_1_3_2_18_2 doi: 10.1016/j.cmet.2014.04.002 – ident: e_1_3_2_32_2 doi: 10.1038/nm.3869 – ident: e_1_3_2_47_2 doi: 10.1007/978-1-4757-3294-8 – ident: e_1_3_2_29_2 doi: 10.1016/j.cell.2008.06.016 – ident: e_1_3_2_40_2 doi: 10.1016/S1097-2765(03)00226-0 – ident: e_1_3_2_43_2 doi: 10.1016/j.stem.2012.10.002 – ident: e_1_3_2_31_2 doi: 10.1038/298294a0 – ident: e_1_3_2_45_2 doi: 10.1007/s00335-008-9107-z – ident: e_1_3_2_17_2 doi: 10.1016/j.cmet.2012.04.022 – ident: e_1_3_2_6_2 doi: 10.1146/annurev-pathol-011811-132450 – ident: e_1_3_2_14_2 doi: 10.1038/nm.3464 – ident: e_1_3_2_50_2 doi: 10.1002/pmic.200600625 – ident: e_1_3_2_51_2 doi: 10.1038/nmeth.2703 – ident: e_1_3_2_2_2 doi: 10.1016/S0092-8674(04)00208-9 – ident: e_1_3_2_11_2 doi: 10.1038/nature11438 – ident: e_1_3_2_44_2 doi: 10.1016/j.cmet.2015.05.023 – ident: e_1_3_2_8_2 doi: 10.1038/nm.3710 – ident: e_1_3_2_12_2 doi: 10.1038/nature13013 – ident: e_1_3_2_27_2 doi: 10.1016/j.cell.2011.06.051 – ident: e_1_3_2_36_2 doi: 10.1006/excr.2001.5166 – ident: e_1_3_2_5_2 doi: 10.1152/physrev.00043.2011 – ident: e_1_3_2_41_2 doi: 10.1038/srep03432 – ident: e_1_3_2_55_2 doi: 10.1038/nature04330 – ident: e_1_3_2_46_2 doi: 10.32614/RJ-2014-028 – ident: e_1_3_2_23_2 doi: 10.1016/j.stem.2012.04.002 – ident: e_1_3_2_26_2 doi: 10.1016/j.stem.2014.12.004 – ident: e_1_3_2_37_2 doi: 10.1016/S0960-9822(06)00261-2 – ident: e_1_3_2_10_2 doi: 10.1038/nature03260 – ident: e_1_3_2_7_2 doi: 10.1101/sqb.2011.76.010652 – ident: e_1_3_2_49_2 doi: 10.1016/j.cell.2014.07.039 – ident: e_1_3_2_4_2 doi: 10.1016/j.cell.2013.05.039 – ident: e_1_3_2_54_2 doi: 10.1093/nar/gkv1145 – ident: e_1_3_2_13_2 doi: 10.1038/nm.3465 – ident: e_1_3_2_30_2 doi: 10.1210/er.2009-0026 – ident: e_1_3_2_34_2 doi: 10.1074/mcp.O111.016717 – ident: e_1_3_2_28_2 doi: 10.1073/pnas.2135385100 – ident: e_1_3_2_38_2 doi: 10.1038/nature08466 – ident: e_1_3_2_16_2 doi: 10.1038/nm.3656 – ident: e_1_3_2_35_2 doi: 10.15252/embr.201439704 – ident: e_1_3_2_42_2 doi: 10.1126/science.1099593 – ident: e_1_3_2_3_2 doi: 10.1101/gad.1971610 – ident: e_1_3_2_20_2 doi: 10.1016/j.cmet.2011.08.014 – ident: e_1_3_2_19_2 doi: 10.1016/j.cell.2013.06.016 – ident: e_1_3_2_52_2 doi: 10.1038/nbt.2841 – reference: 27211483 - Nat Rev Mol Cell Biol. 2016 May 23;17(6):331 – reference: 27313027 - Science. 2016 Jun 17;352(6292):1396-7 – reference: 27339086 - Cell Res. 2016 Sep;26(9):971-2 |
SSID | ssj0009593 |
Score | 2.679445 |
Snippet | Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of... The oxidized form of cellular nicotinamide adenine dinucleotide (NAD + ) is critical for mitochondrial function, and its supplementation can lead to increased... The oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) is critical for mitochondrial function, and its supplementation can lead to increased... A dietary supplement protects aging muscleThe oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) is critical for mitochondrial function, and... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1436 |
SubjectTerms | Aging Animals Cellular Cellular Reprogramming Cellular Senescence - drug effects Cellular Senescence - physiology Disease Models, Animal Dystrophy Enzymes Life cycles Life span Longevity - drug effects Longevity - physiology Mathematical models Melanocytes - cytology Melanocytes - drug effects Melanocytes - physiology Mice Mice, Inbred C57BL Mice, Inbred mdx Mitochondria Mitochondria - drug effects Mitochondria - physiology Muscles Muscular Dystrophies - therapy Myoblasts, Skeletal - cytology Myoblasts, Skeletal - drug effects Myoblasts, Skeletal - physiology NAD - metabolism NAD - pharmacology Neural Stem Cells - cytology Neural Stem Cells - drug effects Neural Stem Cells - physiology Niacinamide - analogs & derivatives Niacinamide - metabolism Nicotinamide adenine dinucleotide Oxidative Stress Precursors Repressor Proteins - biosynthesis Rodents Stem cells Unfolded Protein Response - drug effects |
Title | NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice |
URI | https://www.jstor.org/stable/24747797 https://www.ncbi.nlm.nih.gov/pubmed/27127236 https://www.proquest.com/docview/1799274334 https://www.proquest.com/docview/1797879206 https://www.proquest.com/docview/1825519354 |
Volume | 352 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJiReEBsMCgMZiYehKFNqp3by2DJGxcOeNjEkpMhO7a3SmiKaPoz_i_-P88-maEWDl6hyL1aS78v57nK-Q-gdZ6wsZU1STaROc83ytJAsS_OBkpqLAlxomyB7xiYX-efL4WWv96uTtbRq5XH98859Jf-DKowBrmaX7D8gGyeFAfgN-MIREIbjvTA-G50AdGMT-Dc1tE3Woo0RqGUyhzcVNFsztV05bHS8VfPExOkTs5a1IQ1ZNdcG-GVyM9MqAf1iUx_nPiUu2K1BBYA9Gr_xdJCNyYojl1IQMgz8aZ1wQwxQTxbNlVzE7z23K2fON1fgBCxi2scXO_x1tpb8BM6960NlNrLN5t2wxYCZ9Cq3SzOoYl8J2S1ETvtmpnEkyWhXPdMh6fCQEdc6z-tbsPZYZ-0G75DevS50OlmqYyE0Ya4x42YF7j9WxpivaD0lwio_QeUneIB2CZAd1OvuaHwyPt1a7dnXlOrs1grXsGEOuYzY7b6OtXnOn6DH3lnBI8e8PdRTzT566NqX3u6jPQ_vEh_56uXvn6JvQEqc4EhJHCiJNyiJgXvYUBIbSuJASTscKIkNJbGhJJ412FDyGbo4_Xj-YZL6Fh5pDZ5wm4q6KKisJROKsKlWA8rKeppzykUmxVANBJlSwUsCMhIsRZ4zxcqpyLQqaw1yB2inWTTqBcIqy5WktJTg0edKU0l0oSisQXVel0Oa9dFxeJJV7evbmzYrN9UW9ProKJ7w3ZV22S56YKGJcgSulPOS99FhwKryimFZmSKLBCxzmvfR2_g3qG3zQEWjFisrA0slcJ39RaYAfx8crCHM89zxYH0BfEA4oezl_W_iFXq0fhEP0U77Y6Veg0Xdyjeev78B4b3PhQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAD+%2B+repletion+improves+mitochondrial+and+stem+cell+function+and+enhances+life+span+in+mice&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhang%2C+Hongbo&rft.au=Ryu%2C+Dongryeol&rft.au=Wu%2C+Yibo&rft.au=Gariani%2C+Karim&rft.date=2016-06-17&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=352&rft.issue=6292&rft.spage=1436&rft.epage=1443&rft_id=info:doi/10.1126%2Fscience.aaf2693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aaf2693 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |