NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice

Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD⁺) and its effect on mitochondrial activity as a pivotal swi...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 352; no. 6292; pp. 1436 - 1443
Main Authors Zhang, Hongbo, Ryu, Dongryeol, Wu, Yibo, Gariani, Karim, Wang, Xu, Luan, Peiling, D'Amico, Davide, Ropelle, Eduardo R., Lutolf, Matthias P., Aebersold, Ruedi, Schoonjans, Kristina, Menzies, Keir J., Auwerx, Johan
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 17.06.2016
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aaf2693

Cover

Abstract Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD⁺) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD⁺ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmdmdx/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD⁺ may reprogram dysfunctional SCs and improve life span in mammals.
AbstractList Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD⁺) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD⁺ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmdmdx/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD⁺ may reprogram dysfunctional SCs and improve life span in mammals.
The oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) is critical for mitochondrial function, and its supplementation can lead to increased longevity. Zhang et al. found that feeding the NAD+ precursor nicotinamide riboside (NR) to aging mice protected them from muscle degeneration (see the Perspective by Guarente). NR treatment enhanced muscle function and also protected mice from the loss of muscle stem cells. The treatment was similarly protective of neural and melanocyte stem cells, which may have contributed to the extended life span of the NR-treated animals. Science, this issue p. 1436; see also p. 1396 Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD+ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmdmdx/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD+ may reprogram dysfunctional SCs and improve life span in mammals.
The oxidized form of cellular nicotinamide adenine dinucleotide (NAD + ) is critical for mitochondrial function, and its supplementation can lead to increased longevity. Zhang et al. found that feeding the NAD + precursor nicotinamide riboside (NR) to aging mice protected them from muscle degeneration (see the Perspective by Guarente). NR treatment enhanced muscle function and also protected mice from the loss of muscle stem cells. The treatment was similarly protective of neural and melanocyte stem cells, which may have contributed to the extended life span of the NR-treated animals. Science , this issue p. 1436 ; see also p. 1396 A dietary supplement protects muscle stem cells and increases mouse longevity. Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD + ) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD + precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn- Dmd mdx /J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD + may reprogram dysfunctional SCs and improve life span in mammals.
Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals.
Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals.Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals.
A dietary supplement protects aging muscleThe oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) is critical for mitochondrial function, and its supplementation can lead to increased longevity. Zhang et al. found that feeding the NAD+ precursor nicotinamide riboside (NR) to aging mice protected them from muscle degeneration (see the Perspective by Guarente). NR treatment enhanced muscle function and also protected mice from the loss of muscle stem cells. The treatment was similarly protective of neural and melanocyte stem cells, which may have contributed to the extended life span of the NR-treated animals.Science, this issue p. 1436; see also p. 1396 Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD+ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmdmdx/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD+ may reprogram dysfunctional SCs and improve life span in mammals.
Author Schoonjans, Kristina
Wang, Xu
Gariani, Karim
D'Amico, Davide
Aebersold, Ruedi
Auwerx, Johan
Wu, Yibo
Zhang, Hongbo
Lutolf, Matthias P.
Menzies, Keir J.
Ryu, Dongryeol
Luan, Peiling
Ropelle, Eduardo R.
Author_xml – sequence: 1
  givenname: Hongbo
  surname: Zhang
  fullname: Zhang, Hongbo
– sequence: 2
  givenname: Dongryeol
  surname: Ryu
  fullname: Ryu, Dongryeol
– sequence: 3
  givenname: Yibo
  surname: Wu
  fullname: Wu, Yibo
– sequence: 4
  givenname: Karim
  surname: Gariani
  fullname: Gariani, Karim
– sequence: 5
  givenname: Xu
  surname: Wang
  fullname: Wang, Xu
– sequence: 6
  givenname: Peiling
  surname: Luan
  fullname: Luan, Peiling
– sequence: 7
  givenname: Davide
  surname: D'Amico
  fullname: D'Amico, Davide
– sequence: 8
  givenname: Eduardo R.
  surname: Ropelle
  fullname: Ropelle, Eduardo R.
– sequence: 9
  givenname: Matthias P.
  surname: Lutolf
  fullname: Lutolf, Matthias P.
– sequence: 10
  givenname: Ruedi
  surname: Aebersold
  fullname: Aebersold, Ruedi
– sequence: 11
  givenname: Kristina
  surname: Schoonjans
  fullname: Schoonjans, Kristina
– sequence: 12
  givenname: Keir J.
  surname: Menzies
  fullname: Menzies, Keir J.
– sequence: 13
  givenname: Johan
  surname: Auwerx
  fullname: Auwerx, Johan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27127236$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha0KVAbadVdFlrphE_BPYsdLRFuohGDTLqvoxrkRHiX2YCeVuuxr9XH6JHWYKZVYwMqS_Z3rc885JHs-eCTkHWennAt1lqxDb_EUoBfKyFdkxZmpCiOY3CMrxqQqaqarA3KY0pqx_Gbka3IgNBdaSLUi32_OP_759ZtG3Aw4ueCpGzcx_MBERzcFexd8Fx0MFHxH04QjtTgMtJ-9faCXa_R3kE0kOrgeadpAHuKz3OIbst_DkPDt7jwi3z5_-npxVVzfXn65OL8ubFnrqQBb17K1rQIUquuRS2VsV2qpgbVQIQfRSdBGZKZVvNSlQmU6YD0a22fuiJxs52br9zOmqRldWoyCxzCnhteiqriRVfkyqo2u81dMZfTDE3Qd5ujzIgtlhC6lXAYe76i5HbFrNtGNEH82_zLOwNkWsDGkFLF_RDhrlhabXYvNrsWsqJ4orJtgyXuK4IZndO-3unWaQvzvJAem81ryL5Goruk
CODEN SCIEAS
CitedBy_id crossref_primary_10_1089_ars_2017_7145
crossref_primary_10_1007_s11357_021_00403_4
crossref_primary_10_1016_j_stem_2020_05_002
crossref_primary_10_3233_JAD_200116
crossref_primary_10_1016_j_freeradbiomed_2023_09_019
crossref_primary_10_1016_j_cmet_2023_12_007
crossref_primary_10_14814_phy2_14139
crossref_primary_10_1093_jn_nxab193
crossref_primary_10_1016_j_jbc_2022_102615
crossref_primary_10_3390_antiox12061230
crossref_primary_10_1038_s41598_020_69675_8
crossref_primary_10_1083_jcb_201708099
crossref_primary_10_1111_febs_17345
crossref_primary_10_3389_fmolb_2022_890402
crossref_primary_10_1038_s41392_022_01211_8
crossref_primary_10_1155_2023_4985726
crossref_primary_10_1097_BOR_0000000000000737
crossref_primary_10_1016_j_arr_2020_101154
crossref_primary_10_1016_j_bbadis_2020_165849
crossref_primary_10_1016_j_chembiol_2017_12_008
crossref_primary_10_1074_jbc_RA118_006756
crossref_primary_10_1016_j_arr_2018_05_006
crossref_primary_10_1111_acel_13048
crossref_primary_10_1002_1873_3468_14865
crossref_primary_10_1007_s10741_024_10439_1
crossref_primary_10_1101_gad_349066_121
crossref_primary_10_1016_j_jff_2024_106114
crossref_primary_10_1038_s41467_019_13694_1
crossref_primary_10_31857_S0026898423060095
crossref_primary_10_1016_j_arr_2022_101702
crossref_primary_10_3389_fnut_2022_868640
crossref_primary_10_1074_jbc_RA119_009035
crossref_primary_10_18632_oncotarget_27882
crossref_primary_10_1016_j_bmcl_2021_128048
crossref_primary_10_1016_j_arr_2020_101188
crossref_primary_10_1016_j_tibs_2017_06_005
crossref_primary_10_1152_physrev_00020_2018
crossref_primary_10_3390_cells11162607
crossref_primary_10_1021_acs_jmedchem_7b01254
crossref_primary_10_1111_acel_13256
crossref_primary_10_3389_fphys_2018_01290
crossref_primary_10_1152_physrev_00044_2022
crossref_primary_10_1038_s12276_022_00841_w
crossref_primary_10_1089_ars_2017_7120
crossref_primary_10_3390_ph16081134
crossref_primary_10_1111_acel_13030
crossref_primary_10_1016_j_molmed_2017_08_001
crossref_primary_10_1155_2020_9503562
crossref_primary_10_1007_s00018_016_2431_7
crossref_primary_10_1101_cshperspect_a041193
crossref_primary_10_1371_journal_pone_0170930
crossref_primary_10_1038_srep46208
crossref_primary_10_1038_s41392_020_00354_w
crossref_primary_10_3389_fmolb_2021_686412
crossref_primary_10_1038_ncomms13103
crossref_primary_10_1089_rej_2017_2037
crossref_primary_10_1016_j_mehy_2019_109306
crossref_primary_10_53065_kaznmu_2022_16_11_012
crossref_primary_10_1007_s10522_020_09887_7
crossref_primary_10_1113_EP087887
crossref_primary_10_3389_fimmu_2023_1158455
crossref_primary_10_1007_s00018_018_2931_8
crossref_primary_10_1016_j_isci_2024_111656
crossref_primary_10_1002_jcsm_12601
crossref_primary_10_1152_ajpcell_00946_2024
crossref_primary_10_3389_fphar_2024_1436597
crossref_primary_10_1016_j_mce_2016_11_003
crossref_primary_10_1016_j_cmet_2018_02_011
crossref_primary_10_2174_0929867324666170801095850
crossref_primary_10_1038_s41388_023_02592_y
crossref_primary_10_1016_j_molmet_2022_101583
crossref_primary_10_3390_medicina57121387
crossref_primary_10_1042_BST20190033
crossref_primary_10_3389_fnmol_2017_00377
crossref_primary_10_3389_fcell_2022_966531
crossref_primary_10_1089_ars_2017_7350
crossref_primary_10_26599_FSHW_2024_9250071
crossref_primary_10_1038_s41467_024_44808_z
crossref_primary_10_1038_s41467_024_49092_5
crossref_primary_10_1016_j_lfs_2023_122342
crossref_primary_10_1016_j_mce_2016_11_013
crossref_primary_10_1186_s12967_020_02454_1
crossref_primary_10_3390_ijms24010137
crossref_primary_10_1101_gad_293266_116
crossref_primary_10_1038_s12276_023_01059_0
crossref_primary_10_1038_s41419_020_03289_w
crossref_primary_10_1038_s41582_019_0244_7
crossref_primary_10_1007_s10522_025_10205_2
crossref_primary_10_1038_s43587_022_00174_3
crossref_primary_10_1111_febs_15182
crossref_primary_10_1038_s42255_021_00483_8
crossref_primary_10_1016_j_biocel_2019_105635
crossref_primary_10_1089_scd_2017_0066
crossref_primary_10_1016_j_bcp_2022_114946
crossref_primary_10_1016_j_tem_2024_08_004
crossref_primary_10_1016_j_bbrep_2024_101715
crossref_primary_10_3389_fevo_2022_866130
crossref_primary_10_1007_s11357_023_00913_3
crossref_primary_10_1074_jbc_R116_771915
crossref_primary_10_1016_j_cmet_2020_04_008
crossref_primary_10_1111_acel_13223
crossref_primary_10_3390_nu15061494
crossref_primary_10_3390_ijms23031067
crossref_primary_10_1016_j_jbc_2024_107878
crossref_primary_10_1016_j_xcrm_2023_101342
crossref_primary_10_37349_eds_2025_100881
crossref_primary_10_1038_s41419_023_06192_2
crossref_primary_10_1007_s10456_021_09797_3
crossref_primary_10_1038_s41419_024_07078_7
crossref_primary_10_1249_JES_0000000000000153
crossref_primary_10_1007_s12640_019_00064_4
crossref_primary_10_1016_j_apsb_2021_08_007
crossref_primary_10_1016_j_molmet_2023_101816
crossref_primary_10_3343_alm_2018_38_5_395
crossref_primary_10_7554_eLife_81926
crossref_primary_10_31083_j_rcm2403082
crossref_primary_10_1186_s13287_016_0452_7
crossref_primary_10_3390_ph13080164
crossref_primary_10_1016_j_nut_2021_111189
crossref_primary_10_3390_antiox11091637
crossref_primary_10_1038_s42255_019_0161_5
crossref_primary_10_1186_s12864_020_06827_0
crossref_primary_10_1093_gerona_glad106
crossref_primary_10_1016_j_ejphar_2019_01_036
crossref_primary_10_1002_advs_202204190
crossref_primary_10_1038_s42255_022_00652_3
crossref_primary_10_1038_s41467_020_20760_6
crossref_primary_10_1002_iub_2585
crossref_primary_10_1113_JP278752
crossref_primary_10_1080_19420889_2017_1356956
crossref_primary_10_1186_s13287_021_02194_z
crossref_primary_10_1016_j_cmet_2018_03_016
crossref_primary_10_3389_fcell_2019_00323
crossref_primary_10_1111_acel_13686
crossref_primary_10_1155_2019_4617801
crossref_primary_10_1016_j_stem_2017_04_011
crossref_primary_10_1038_nrn_2017_42
crossref_primary_10_3803_EnM_2020_405
crossref_primary_10_1016_j_arr_2020_101107
crossref_primary_10_3390_cimb45120596
crossref_primary_10_1016_j_mad_2020_111308
crossref_primary_10_3390_ijms21207704
crossref_primary_10_1016_j_stem_2021_02_011
crossref_primary_10_1016_j_jnutbio_2023_109310
crossref_primary_10_3390_ijms21051607
crossref_primary_10_1155_2020_2692794
crossref_primary_10_14336_AD_2024_1019
crossref_primary_10_1038_s41586_024_08329_5
crossref_primary_10_1002_smll_202309487
crossref_primary_10_1007_s10522_017_9732_6
crossref_primary_10_1042_BST20180420
crossref_primary_10_1016_j_celrep_2025_115265
crossref_primary_10_1016_j_molmet_2022_101560
crossref_primary_10_1002_mco2_62
crossref_primary_10_1016_j_tem_2017_02_004
crossref_primary_10_1021_acs_analchem_8b05663
crossref_primary_10_3390_ijms241512453
crossref_primary_10_1016_j_tcb_2020_04_004
crossref_primary_10_1016_j_tma_2019_11_002
crossref_primary_10_1042_BST20180417
crossref_primary_10_1186_s13287_025_04242_4
crossref_primary_10_1016_j_cmet_2016_09_013
crossref_primary_10_1096_fj_202001826R
crossref_primary_10_1016_j_isci_2021_103118
crossref_primary_10_1038_s41422_018_0043_5
crossref_primary_10_1007_s00018_024_05164_9
crossref_primary_10_3389_fphys_2024_1397442
crossref_primary_10_1002_cpmo_47
crossref_primary_10_1016_j_mad_2020_111334
crossref_primary_10_1038_s41591_018_0138_z
crossref_primary_10_1007_s13238_020_00755_1
crossref_primary_10_1016_j_biopha_2024_116133
crossref_primary_10_3390_nu14153130
crossref_primary_10_3390_metabo11090636
crossref_primary_10_1089_scd_2021_0347
crossref_primary_10_1016_j_exphem_2019_11_006
crossref_primary_10_1126_scitranslmed_aaw1868
crossref_primary_10_3390_ijms24119652
crossref_primary_10_1016_j_biocel_2016_07_026
crossref_primary_10_1002_1878_0261_12928
crossref_primary_10_1016_j_nantod_2022_101454
crossref_primary_10_1111_acel_12793
crossref_primary_10_1111_acel_12798
crossref_primary_10_1007_s00394_019_02089_z
crossref_primary_10_1016_j_neubiorev_2018_09_014
crossref_primary_10_1155_2019_6387357
crossref_primary_10_3390_antiox10020254
crossref_primary_10_1016_j_biopha_2018_04_036
crossref_primary_10_1016_j_mehy_2017_10_005
crossref_primary_10_3390_biom14121556
crossref_primary_10_1002_bmc_4205
crossref_primary_10_1016_j_cmet_2016_09_004
crossref_primary_10_1038_s41467_023_37595_6
crossref_primary_10_1167_iovs_65_1_14
crossref_primary_10_1186_s12970_021_00442_4
crossref_primary_10_1038_s43587_021_00098_4
crossref_primary_10_3389_fphar_2022_888247
crossref_primary_10_1210_clinem_dgad027
crossref_primary_10_3390_biom11071044
crossref_primary_10_1016_j_jid_2018_05_033
crossref_primary_10_1038_nrm_2017_110
crossref_primary_10_1172_JCI185054
crossref_primary_10_1016_j_cell_2016_07_031
crossref_primary_10_1016_j_tma_2020_08_002
crossref_primary_10_1038_s41573_019_0016_5
crossref_primary_10_15252_embj_2020106825
crossref_primary_10_15252_embj_2019103420
crossref_primary_10_3390_ijms22031391
crossref_primary_10_3390_ijms24087389
crossref_primary_10_4252_wjsc_v13_i7_737
crossref_primary_10_1021_jacs_2c12336
crossref_primary_10_1016_j_jnutbio_2023_109296
crossref_primary_10_1186_s13287_021_02339_0
crossref_primary_10_1007_s11064_022_03610_3
crossref_primary_10_1016_j_jid_2020_11_018
crossref_primary_10_1177_0963689717735407
crossref_primary_10_1038_s41598_022_18272_y
crossref_primary_10_1093_gerona_gly034
crossref_primary_10_1007_s00294_019_00972_0
crossref_primary_10_3390_cancers16173085
crossref_primary_10_1002_eji_202451093
crossref_primary_10_1038_s42003_020_01514_y
crossref_primary_10_1177_00220345211070222
crossref_primary_10_14336_AD_2024_1188
crossref_primary_10_1111_acel_13965
crossref_primary_10_1016_j_ejcb_2023_151289
crossref_primary_10_1177_2632010X221106986
crossref_primary_10_1002_med_21559
crossref_primary_10_1038_s42255_018_0015_6
crossref_primary_10_1089_rej_2018_2138
crossref_primary_10_3390_molecules26175123
crossref_primary_10_3389_fcvm_2023_1212174
crossref_primary_10_1016_j_cmet_2017_11_002
crossref_primary_10_1016_j_cmet_2018_05_011
crossref_primary_10_3390_nu13103435
crossref_primary_10_7759_cureus_20042
crossref_primary_10_1002_jcb_30522
crossref_primary_10_1089_scd_2019_0278
crossref_primary_10_1161_CIRCULATIONAHA_120_051171
crossref_primary_10_1021_acs_biochem_8b00306
crossref_primary_10_1096_fj_202101462R
crossref_primary_10_4235_agmr_20_0092
crossref_primary_10_1093_nar_gkac1136
crossref_primary_10_3143_geriatrics_57_213
crossref_primary_10_15252_emmm_202012860
crossref_primary_10_1126_science_aaf9794
crossref_primary_10_1038_s41581_019_0216_6
crossref_primary_10_1111_bph_14585
crossref_primary_10_1016_j_hemonc_2017_08_001
crossref_primary_10_1007_s00018_019_03430_9
crossref_primary_10_1089_rej_2017_1980
crossref_primary_10_1093_nutrit_nuad084
crossref_primary_10_5483_BMBRep_2023_0040
crossref_primary_10_1089_scd_2020_0149
crossref_primary_10_1161_CIRCRESAHA_118_312204
crossref_primary_10_1016_j_celrep_2018_10_036
crossref_primary_10_1038_s41580_024_00752_w
crossref_primary_10_29219_fnr_v63_3419
crossref_primary_10_3389_fmolb_2023_906606
crossref_primary_10_3390_cells10010128
crossref_primary_10_1161_CIRCRESAHA_118_312208
crossref_primary_10_1089_ars_2024_0620
crossref_primary_10_3390_ijms25126321
crossref_primary_10_1007_s11154_021_09686_6
crossref_primary_10_1007_s11357_020_00282_1
crossref_primary_10_1042_BSR20211005
crossref_primary_10_1038_ncomms12948
crossref_primary_10_1038_s41573_020_0067_7
crossref_primary_10_1002_jcsm_13026
crossref_primary_10_15252_embj_201797135
crossref_primary_10_47855_jal9020_2023_2_2
crossref_primary_10_1016_j_jbc_2025_108248
crossref_primary_10_1021_acs_biochem_7b01185
crossref_primary_10_1038_ni_3754
crossref_primary_10_3389_fcell_2020_00138
crossref_primary_10_1002_stem_3152
crossref_primary_10_1038_s41422_018_0051_5
crossref_primary_10_1016_j_tma_2018_12_003
crossref_primary_10_1111_febs_14663
crossref_primary_10_1186_s12929_019_0527_8
crossref_primary_10_1242_dev_143420
crossref_primary_10_1016_j_cca_2021_01_012
crossref_primary_10_1152_ajpheart_00409_2017
crossref_primary_10_1038_emm_2017_74
crossref_primary_10_3389_fimmu_2021_621744
crossref_primary_10_1038_s43587_024_00758_1
crossref_primary_10_3389_fpubh_2023_1287421
crossref_primary_10_3389_fphys_2016_00599
crossref_primary_10_1038_s43587_021_00143_2
crossref_primary_10_7554_eLife_34836
crossref_primary_10_1016_j_cell_2016_07_050
crossref_primary_10_1002_jsfa_13513
crossref_primary_10_1016_j_stem_2020_01_005
crossref_primary_10_3389_fcell_2021_688789
crossref_primary_10_3390_ijms23031748
crossref_primary_10_1111_jne_12512
crossref_primary_10_1038_s41583_018_0091_3
crossref_primary_10_1093_gerona_glaa059
crossref_primary_10_1016_j_arr_2024_102512
crossref_primary_10_1038_cr_2016_80
crossref_primary_10_3389_fcell_2022_831273
crossref_primary_10_1042_CS20181022
crossref_primary_10_1016_j_jbc_2022_102037
crossref_primary_10_1016_j_pharmthera_2019_04_002
crossref_primary_10_1186_s13395_020_00249_y
crossref_primary_10_1016_j_cophys_2018_03_011
crossref_primary_10_1126_science_abf9566
crossref_primary_10_4093_dmj_2022_0244
crossref_primary_10_1007_s40610_021_00143_6
crossref_primary_10_1111_bph_15477
crossref_primary_10_1093_lifemedi_lnac045
crossref_primary_10_3390_cells12202494
crossref_primary_10_1111_jne_12508
crossref_primary_10_3390_cells7120238
crossref_primary_10_3389_fnut_2021_717343
crossref_primary_10_7554_eLife_32638
crossref_primary_10_3390_ijms241311114
crossref_primary_10_1016_j_stem_2022_07_009
crossref_primary_10_4236_scd_2018_82002
crossref_primary_10_1016_j_cmet_2019_01_018
crossref_primary_10_1186_s40170_018_0186_3
crossref_primary_10_1002_cti2_1091
crossref_primary_10_1134_S0026893323060080
crossref_primary_10_1038_s41580_022_00510_w
crossref_primary_10_3390_cells13211799
crossref_primary_10_1007_s11926_018_0724_6
crossref_primary_10_1016_j_freeradbiomed_2020_05_003
crossref_primary_10_3233_NHA_170001
crossref_primary_10_1083_jcb_201804083
crossref_primary_10_1002_advs_202004632
crossref_primary_10_14336_AD_2016_1022
crossref_primary_10_3389_fphys_2021_696018
crossref_primary_10_1002_hep_30622
crossref_primary_10_3390_ijms241210098
crossref_primary_10_1007_s10517_023_05947_3
crossref_primary_10_1002_cphc_201601146
crossref_primary_10_1073_pnas_1720673115
crossref_primary_10_3390_molecules28166078
crossref_primary_10_1093_jas_skac203
crossref_primary_10_1096_fj_202000111RR
crossref_primary_10_3390_ijms26052276
crossref_primary_10_1016_j_bcp_2017_05_016
crossref_primary_10_1146_annurev_nutr_071816_064916
crossref_primary_10_1002_jcp_26014
crossref_primary_10_3390_ijms25126793
crossref_primary_10_3390_ijms222011117
crossref_primary_10_3390_metabo14060341
crossref_primary_10_1111_trf_15556
crossref_primary_10_1002_med_22034
crossref_primary_10_1016_j_psj_2020_12_024
crossref_primary_10_1111_cns_14030
crossref_primary_10_1093_humupd_dmac042
crossref_primary_10_3390_biomedicines9091092
crossref_primary_10_12677_ACM_2024_143814
crossref_primary_10_1172_jci_insight_178048
crossref_primary_10_14336_AD_2017_0315
crossref_primary_10_4093_dmj_2022_0416
crossref_primary_10_1007_s12640_017_9795_9
crossref_primary_10_1007_s40778_018_0128_6
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_1039_C7RA00505A
crossref_primary_10_1371_journal_pone_0300787
crossref_primary_10_3390_biom12010039
crossref_primary_10_1016_j_stemcr_2019_09_003
crossref_primary_10_3390_clinpract13040076
crossref_primary_10_1021_acs_joc_7b02749
crossref_primary_10_1016_j_stem_2022_06_004
crossref_primary_10_1093_ageing_afac156
crossref_primary_10_1111_eci_13334
crossref_primary_10_1016_j_exger_2020_110972
crossref_primary_10_1111_acel_13060
crossref_primary_10_1016_j_tcb_2023_10_003
crossref_primary_10_1002_bab_2713
crossref_primary_10_3390_ijms232314739
crossref_primary_10_1007_s00018_023_05070_6
crossref_primary_10_3389_fphys_2020_00063
crossref_primary_10_3389_fendo_2018_00702
crossref_primary_10_3389_fcell_2022_820520
crossref_primary_10_1002_fft2_350
crossref_primary_10_2139_ssrn_3979179
crossref_primary_10_1016_j_expneurol_2023_114479
crossref_primary_10_1016_j_celrep_2019_07_043
crossref_primary_10_1016_j_jbc_2021_100855
crossref_primary_10_1186_s13578_022_00796_5
crossref_primary_10_1016_j_heliyon_2023_e19505
crossref_primary_10_1093_gerona_gly256
crossref_primary_10_3390_ijms21207580
crossref_primary_10_14336_AD_2019_0820
crossref_primary_10_1016_j_exger_2023_112109
crossref_primary_10_1111_acel_14165
crossref_primary_10_1186_s13619_023_00158_7
crossref_primary_10_1016_j_jff_2017_07_033
crossref_primary_10_1002_adhm_202402785
crossref_primary_10_1016_j_jaci_2023_09_030
crossref_primary_10_1056_NEJMra1703366
crossref_primary_10_7554_eLife_16351
crossref_primary_10_1021_acsami_2c12971
crossref_primary_10_1016_j_heares_2025_109182
crossref_primary_10_1016_j_tifs_2018_07_020
crossref_primary_10_1038_s41580_019_0204_5
crossref_primary_10_3389_fcell_2021_793088
crossref_primary_10_1016_j_stem_2019_02_012
crossref_primary_10_1038_nature25143
crossref_primary_10_1073_pnas_2011226118
crossref_primary_10_1016_j_exger_2022_111889
crossref_primary_10_1038_s41580_020_00313_x
crossref_primary_10_1016_j_mad_2021_111525
crossref_primary_10_1016_j_mad_2020_111254
crossref_primary_10_1038_s43587_022_00309_6
crossref_primary_10_2217_rme_2017_0128
crossref_primary_10_1016_j_gendis_2021_04_001
crossref_primary_10_1016_j_molmed_2019_04_006
crossref_primary_10_1038_s41419_024_07062_1
crossref_primary_10_3177_jnsv_69_184
crossref_primary_10_3389_fcell_2023_1128534
crossref_primary_10_1210_endocr_bqab079
crossref_primary_10_1080_1028415X_2019_1637504
crossref_primary_10_1016_j_neuropharm_2017_12_027
crossref_primary_10_1016_j_arr_2022_101833
crossref_primary_10_1016_j_tibs_2016_05_008
crossref_primary_10_1016_j_cub_2017_04_030
crossref_primary_10_1093_ajcn_nqy132
crossref_primary_10_1016_j_mad_2021_111545
crossref_primary_10_3233_BPL_170044
crossref_primary_10_1007_s11427_022_2161_3
crossref_primary_10_1016_j_mad_2020_111246
crossref_primary_10_1016_j_ymthe_2020_03_003
crossref_primary_10_3390_nu16213577
crossref_primary_10_1016_j_fbio_2024_103859
crossref_primary_10_1126_science_aam7935
crossref_primary_10_3390_nu15132851
crossref_primary_10_1016_j_tibs_2022_03_008
crossref_primary_10_1161_CIRCULATIONAHA_121_056589
crossref_primary_10_1038_s41392_021_00646_9
crossref_primary_10_1016_j_coph_2018_05_007
crossref_primary_10_1097_QAD_0000000000003334
crossref_primary_10_1002_hep_32658
crossref_primary_10_1038_s41467_021_22863_0
crossref_primary_10_1111_febs_16352
crossref_primary_10_3389_fendo_2022_935106
crossref_primary_10_1016_j_molcel_2018_10_023
crossref_primary_10_1111_cpr_13796
crossref_primary_10_1186_s13287_018_0857_6
crossref_primary_10_1016_j_jacbts_2023_09_014
crossref_primary_10_12688_f1000research_11437_1
crossref_primary_10_1038_s43587_024_00674_4
crossref_primary_10_1093_sleepadvances_zpad044
crossref_primary_10_18632_aging_101993
crossref_primary_10_1007_s10495_021_01683_z
crossref_primary_10_1002_cbin_11691
crossref_primary_10_1016_j_bcp_2024_116556
crossref_primary_10_1016_j_mad_2021_111567
crossref_primary_10_1126_science_aax0860
crossref_primary_10_1186_s40169_016_0104_7
crossref_primary_10_1093_jn_nxaa190
crossref_primary_10_1155_2020_8819627
crossref_primary_10_3390_children10050837
crossref_primary_10_1016_j_ejmech_2023_115258
crossref_primary_10_1089_ars_2023_0354
crossref_primary_10_1007_s10522_020_09864_0
crossref_primary_10_1182_blood_2023022004
crossref_primary_10_1089_ars_2017_7228
crossref_primary_10_1155_2017_2309034
crossref_primary_10_1186_s12967_023_04286_1
crossref_primary_10_1016_j_mad_2021_111569
crossref_primary_10_1016_j_arr_2021_101528
crossref_primary_10_1515_teb_2024_0030
crossref_primary_10_1016_j_conb_2016_11_006
crossref_primary_10_1084_jem_20161066
crossref_primary_10_3390_biom10020330
crossref_primary_10_1016_j_fbio_2023_103126
crossref_primary_10_15252_embr_202254721
crossref_primary_10_1089_ars_2017_7479
crossref_primary_10_3390_ijms21186670
crossref_primary_10_1016_j_arr_2022_101636
crossref_primary_10_18632_aging_103954
crossref_primary_10_1016_j_celrep_2020_107964
crossref_primary_10_1007_s11427_024_2717_6
crossref_primary_10_3390_ijms20225638
crossref_primary_10_1007_s00018_019_03391_z
crossref_primary_10_1016_j_molmet_2021_101165
crossref_primary_10_3389_fnins_2021_647589
crossref_primary_10_1016_j_mad_2021_111584
crossref_primary_10_1016_j_mad_2020_111288
crossref_primary_10_3390_molecules26092729
crossref_primary_10_1016_j_mad_2020_111283
crossref_primary_10_1016_j_mad_2020_111282
crossref_primary_10_3390_nu12061616
crossref_primary_10_1016_j_tcb_2021_02_006
crossref_primary_10_1172_JCI163648
crossref_primary_10_1155_2017_3165396
crossref_primary_10_2174_2666338408666210322113713
crossref_primary_10_1039_D1RA02062E
crossref_primary_10_1021_acschembio_2c00773
crossref_primary_10_3389_fnins_2022_1009125
crossref_primary_10_1016_j_molmet_2021_101195
crossref_primary_10_1093_jn_nxab251
crossref_primary_10_18632_oncotarget_19948
crossref_primary_10_1038_s41556_019_0287_4
crossref_primary_10_1210_clinem_dgaa960
crossref_primary_10_3389_fphar_2020_604404
crossref_primary_10_1074_mcp_RA118_000882
crossref_primary_10_1089_aid_2019_0100
crossref_primary_10_1097_PRS_0000000000009673
crossref_primary_10_1161_CIRCRESAHA_117_311866
crossref_primary_10_3390_cells12030500
crossref_primary_10_1007_s40778_020_00180_4
crossref_primary_10_3390_cells10082040
crossref_primary_10_3390_gidisord4040031
crossref_primary_10_14336_AD_2021_1208
crossref_primary_10_1093_tas_txaa126
crossref_primary_10_1681_ASN_2016040385
crossref_primary_10_1016_j_celrep_2022_110475
crossref_primary_10_1016_j_celrep_2020_108203
crossref_primary_10_1016_j_neuron_2019_11_019
crossref_primary_10_1007_s11357_020_00311_z
crossref_primary_10_1016_j_cmet_2024_12_008
crossref_primary_10_14336_AD_2021_0523
crossref_primary_10_1111_acel_14400
crossref_primary_10_1016_j_mad_2019_111194
crossref_primary_10_1186_s13287_023_03497_z
crossref_primary_10_3389_fcvm_2021_716989
crossref_primary_10_1016_j_mencom_2019_01_040
crossref_primary_10_1016_j_cmet_2021_06_008
crossref_primary_10_1016_j_molmed_2017_02_005
crossref_primary_10_1186_s12979_023_00398_w
crossref_primary_10_1016_j_mito_2020_07_007
crossref_primary_10_1111_acel_13328
crossref_primary_10_1021_acs_cgd_9b00423
crossref_primary_10_1111_acel_13329
crossref_primary_10_1007_s12035_024_04006_w
crossref_primary_10_3389_fphys_2022_892749
crossref_primary_10_1016_j_athplu_2024_06_001
crossref_primary_10_1007_s11357_020_00211_2
crossref_primary_10_1007_s11357_019_00114_x
crossref_primary_10_1038_s42255_022_00640_7
crossref_primary_10_1007_s10522_018_9769_1
crossref_primary_10_1002_stem_2970
crossref_primary_10_2174_1574888X15666200512105347
crossref_primary_10_1016_j_celrep_2020_108660
crossref_primary_10_1016_j_yexcr_2020_111913
crossref_primary_10_1186_s13045_020_00986_z
crossref_primary_10_3389_fragi_2023_1172789
crossref_primary_10_3389_fimmu_2019_01469
crossref_primary_10_1038_s41580_021_00421_2
crossref_primary_10_1016_j_jmb_2019_12_036
crossref_primary_10_1128_msystems_01214_23
crossref_primary_10_1210_endrev_bnad019
crossref_primary_10_1111_brv_12866
crossref_primary_10_1038_s41467_021_26176_0
crossref_primary_10_1210_er_2017_00211
crossref_primary_10_1002_agm2_12223
crossref_primary_10_14336_AD_2020_0909
crossref_primary_10_1038_s41467_024_45823_w
crossref_primary_10_15252_emmm_201809390
crossref_primary_10_1242_jcs_212977
crossref_primary_10_3389_fphar_2024_1486717
crossref_primary_10_1007_s00018_023_04771_2
crossref_primary_10_1007_s10522_022_09987_6
crossref_primary_10_1007_s12264_023_01072_3
crossref_primary_10_1242_dev_199961
crossref_primary_10_3390_biomedicines8100390
crossref_primary_10_1002_jcsm_12581
crossref_primary_10_1096_fj_202100629R
crossref_primary_10_1111_acel_13301
crossref_primary_10_1111_acel_13304
crossref_primary_10_3390_cells11030468
crossref_primary_10_1016_j_biopha_2024_116481
crossref_primary_10_1089_rej_2017_1975
crossref_primary_10_1039_D4CC02650K
crossref_primary_10_15252_emmm_202113943
crossref_primary_10_1038_s41419_021_03912_4
crossref_primary_10_1038_s41514_025_00192_6
crossref_primary_10_3349_ymj_2023_0131
crossref_primary_10_1016_j_arr_2025_102732
crossref_primary_10_1016_j_arr_2024_102213
crossref_primary_10_1101_gr_227181_117
crossref_primary_10_1002_bies_202000273
crossref_primary_10_1126_scitranslmed_abb0319
crossref_primary_10_1039_D0OB00134A
crossref_primary_10_1016_j_bmc_2020_115824
crossref_primary_10_1186_s13395_019_0216_z
crossref_primary_10_1016_j_celrep_2019_01_007
crossref_primary_10_1016_j_celrep_2020_108656
crossref_primary_10_1186_s13045_020_00864_8
crossref_primary_10_1113_JP280908
crossref_primary_10_1038_s41467_023_36543_8
crossref_primary_10_1186_s40643_022_00578_4
crossref_primary_10_1167_iovs_19_27099
crossref_primary_10_1016_j_exger_2021_111313
crossref_primary_10_1096_fj_201800090R
crossref_primary_10_1007_s40266_022_00989_0
crossref_primary_10_3389_fcell_2023_1146399
crossref_primary_10_1038_s41580_022_00462_1
crossref_primary_10_1038_s41598_024_83500_6
crossref_primary_10_1002_jcsm_12558
crossref_primary_10_1016_j_ejphar_2020_173158
crossref_primary_10_18632_oncotarget_28256
crossref_primary_10_1039_C9NR05794C
crossref_primary_10_1111_acel_13976
crossref_primary_10_1155_2017_9209127
crossref_primary_10_1002_cyto_a_23886
crossref_primary_10_3390_cells13171509
crossref_primary_10_1038_s41536_021_00127_1
crossref_primary_10_1016_j_bcp_2019_02_008
crossref_primary_10_1126_science_aal0092
crossref_primary_10_1016_j_cmet_2019_05_018
crossref_primary_10_1007_s11357_022_00717_x
crossref_primary_10_3390_cells11132086
crossref_primary_10_3390_biology8020027
crossref_primary_10_3390_ijms20092158
crossref_primary_10_1126_science_aag1718
crossref_primary_10_1016_j_tips_2018_02_001
crossref_primary_10_1111_cpr_13191
crossref_primary_10_3390_geriatrics6020037
crossref_primary_10_1016_j_cell_2018_02_008
crossref_primary_10_1111_acel_12650
crossref_primary_10_1126_sciadv_abm1189
crossref_primary_10_1021_acs_jproteome_0c01037
crossref_primary_10_3389_fnagi_2018_00234
crossref_primary_10_1093_gerona_glad034
crossref_primary_10_1172_JCI158453
crossref_primary_10_1038_nrm_2016_71
crossref_primary_10_1038_s43587_021_00164_x
crossref_primary_10_1016_j_stem_2020_09_011
crossref_primary_10_1002_jcsm_13182
crossref_primary_10_1038_s41598_019_49547_6
crossref_primary_10_3389_fnins_2020_618395
crossref_primary_10_1016_j_mad_2024_111929
crossref_primary_10_1073_pnas_1718819115
crossref_primary_10_1016_j_molcel_2017_04_006
crossref_primary_10_1002_jcp_27401
crossref_primary_10_1016_j_bbrc_2024_149590
crossref_primary_10_7554_eLife_59828
crossref_primary_10_3389_fendo_2021_774667
crossref_primary_10_1007_s10565_024_09854_9
crossref_primary_10_3389_fphys_2019_01125
crossref_primary_10_1038_s41514_021_00058_7
crossref_primary_10_1016_j_molmed_2021_06_011
crossref_primary_10_3390_cells11081283
crossref_primary_10_1261_rna_077347_120
crossref_primary_10_3390_nu17030539
crossref_primary_10_1111_acel_12756
crossref_primary_10_1016_j_stem_2018_12_014
crossref_primary_10_1016_j_mad_2024_111917
crossref_primary_10_3389_fphys_2021_702276
crossref_primary_10_1016_j_exger_2023_112204
crossref_primary_10_1016_j_tma_2021_11_003
crossref_primary_10_1111_acel_12994
crossref_primary_10_1038_nrm_2016_93
crossref_primary_10_1038_s42003_023_04613_8
crossref_primary_10_1016_j_freeradbiomed_2023_06_023
crossref_primary_10_1007_s11357_021_00388_0
crossref_primary_10_3389_fmicb_2021_746121
crossref_primary_10_1007_s11064_019_02809_1
crossref_primary_10_1364_BOE_432561
crossref_primary_10_1038_s43587_022_00191_2
crossref_primary_10_1038_s41580_018_0020_3
crossref_primary_10_1038_s41586_024_08348_2
crossref_primary_10_1080_00207454_2022_2057849
crossref_primary_10_3390_nu14132752
crossref_primary_10_1016_j_jare_2024_07_010
crossref_primary_10_3389_fcell_2016_00109
crossref_primary_10_3390_ijms222312727
crossref_primary_10_3390_ijms252413465
crossref_primary_10_1038_s43587_024_00613_3
crossref_primary_10_12688_f1000research_12120_1
crossref_primary_10_3233_JAD_181184
crossref_primary_10_5483_BMBRep_2019_52_1_290
crossref_primary_10_1097_JBR_0000000000000105
crossref_primary_10_1016_j_bbrc_2024_150346
crossref_primary_10_1111_jnc_14472
crossref_primary_10_3390_antiox11122422
crossref_primary_10_1016_j_molcel_2020_04_010
crossref_primary_10_3389_fcell_2022_1049653
crossref_primary_10_1038_s41467_025_56402_y
crossref_primary_10_1002_jcsm_13398
crossref_primary_10_1097_IJG_0000000000000767
crossref_primary_10_3390_ijms24021615
crossref_primary_10_1007_s00394_019_01919_4
crossref_primary_10_1016_j_celrep_2024_114648
crossref_primary_10_4252_wjsc_v13_i10_1595
crossref_primary_10_1038_s41598_019_39419_4
crossref_primary_10_1080_15548627_2021_1975914
crossref_primary_10_3390_biomedicines10071611
crossref_primary_10_3389_fragi_2022_820215
crossref_primary_10_3390_life13041006
crossref_primary_10_1051_medsci_2023084
crossref_primary_10_1016_j_bbadis_2018_01_026
crossref_primary_10_1016_j_isci_2021_103635
crossref_primary_10_1016_j_phrs_2019_03_007
crossref_primary_10_1093_gerona_glab002
crossref_primary_10_1126_sciadv_adi6770
crossref_primary_10_1007_s11357_019_00074_2
crossref_primary_10_1016_j_cej_2024_158703
crossref_primary_10_3389_fphar_2023_1334160
crossref_primary_10_1097_j_pain_0000000000000862
crossref_primary_10_1007_s12015_020_09988_3
crossref_primary_10_1007_s00018_022_04499_5
crossref_primary_10_1172_JCI120844
crossref_primary_10_3389_fragi_2020_610406
crossref_primary_10_1016_j_exger_2018_01_018
crossref_primary_10_1172_JCI120842
crossref_primary_10_1016_j_cmet_2017_04_022
crossref_primary_10_1016_j_trecan_2017_06_001
crossref_primary_10_1177_0271678X21992625
crossref_primary_10_12688_f1000research_9846_1
crossref_primary_10_1515_hsz_2017_0209
crossref_primary_10_3390_cells12060915
crossref_primary_10_1007_s10974_019_09542_w
crossref_primary_10_1016_j_arr_2023_102106
crossref_primary_10_1002_cpnc_43
crossref_primary_10_1126_scitranslmed_aaf5504
crossref_primary_10_3390_metabo12020177
crossref_primary_10_1016_j_expneurol_2020_113219
crossref_primary_10_1038_s12276_023_01041_w
crossref_primary_10_1210_js_2017_00092
crossref_primary_10_1161_CIRCHEARTFAILURE_120_008170
crossref_primary_10_3390_biom9010034
crossref_primary_10_3389_fragi_2024_1452453
crossref_primary_10_1007_s00018_017_2462_8
crossref_primary_10_1039_D3SC04081J
crossref_primary_10_3390_pharmaceutics13060893
crossref_primary_10_1016_j_abb_2018_10_013
crossref_primary_10_1126_sciadv_adr1538
crossref_primary_10_1016_j_arr_2018_08_003
crossref_primary_10_3892_etm_2024_12475
crossref_primary_10_3390_metabo14080424
crossref_primary_10_1016_j_meatsci_2025_109772
crossref_primary_10_1016_j_cmet_2024_02_014
crossref_primary_10_1007_s13668_023_00475_y
crossref_primary_10_1165_rcmb_2016_0355TR
crossref_primary_10_1038_nature23876
crossref_primary_10_3390_antiox10121939
crossref_primary_10_3389_fmed_2022_1027055
crossref_primary_10_1016_j_jvssci_2022_11_003
crossref_primary_10_1016_j_lfs_2018_09_015
crossref_primary_10_1016_j_trsl_2018_05_005
crossref_primary_10_1016_j_mehy_2018_10_019
crossref_primary_10_1111_acel_12935
crossref_primary_10_1007_s11357_023_00789_3
crossref_primary_10_1242_dev_128389
crossref_primary_10_1016_j_trecan_2017_09_002
crossref_primary_10_3390_antiox10040519
crossref_primary_10_26508_lsa_202302505
crossref_primary_10_1126_science_aan2788
crossref_primary_10_1016_j_mce_2018_01_025
crossref_primary_10_1016_j_jhep_2022_05_040
crossref_primary_10_1089_rej_2018_2077
crossref_primary_10_1111_ejn_14264
crossref_primary_10_2106_JBJS_22_00894
crossref_primary_10_1002_1873_3468_14698
crossref_primary_10_1016_j_yjmcc_2018_06_007
crossref_primary_10_1073_pnas_1902346116
crossref_primary_10_1007_s12272_024_01519_9
crossref_primary_10_1016_j_jacc_2018_12_087
crossref_primary_10_3390_ijms24032959
crossref_primary_10_1016_j_exger_2020_110841
crossref_primary_10_1186_s12014_024_09509_1
crossref_primary_10_3934_molsci_2020002
crossref_primary_10_3389_fphys_2019_01523
crossref_primary_10_1038_s41536_018_0062_3
crossref_primary_10_1089_ars_2021_0074
crossref_primary_10_1002_fft2_261
crossref_primary_10_1016_j_jare_2025_03_025
crossref_primary_10_3390_pharmaceutics15020352
crossref_primary_10_1016_j_tcb_2023_02_004
crossref_primary_10_1167_iovs_63_4_5
crossref_primary_10_1093_hmg_ddaa167
crossref_primary_10_1016_j_tma_2018_08_003
crossref_primary_10_1155_2016_3208429
crossref_primary_10_1016_j_tma_2018_08_002
crossref_primary_10_1038_s41467_018_07253_3
crossref_primary_10_1089_rej_2019_2218
crossref_primary_10_1155_2017_7941563
crossref_primary_10_1177_1535370220929287
crossref_primary_10_1016_j_molmed_2019_09_009
crossref_primary_10_3389_fcell_2024_1464815
crossref_primary_10_3390_cells12070998
crossref_primary_10_1038_s41418_021_00873_1
crossref_primary_10_3389_fphar_2021_739510
crossref_primary_10_3892_or_2017_5793
crossref_primary_10_1093_hmg_ddac115
crossref_primary_10_1186_s10020_020_0136_8
crossref_primary_10_1016_j_cell_2017_07_042
crossref_primary_10_1089_ars_2020_8070
crossref_primary_10_1146_annurev_pharmtox_010716_104908
crossref_primary_10_1038_s41598_019_46478_0
crossref_primary_10_1038_s41598_018_37489_4
crossref_primary_10_1101_gad_352277_124
crossref_primary_10_3390_nu14193889
crossref_primary_10_1038_s41392_020_00311_7
crossref_primary_10_1172_jci_insight_158314
crossref_primary_10_1016_j_jid_2019_02_005
crossref_primary_10_1016_j_cmet_2022_11_005
crossref_primary_10_3390_ijms19124108
crossref_primary_10_1016_j_omtn_2019_09_012
crossref_primary_10_3389_fimmu_2023_1231700
crossref_primary_10_3389_fphys_2020_01054
crossref_primary_10_1128_MMBR_00038_18
crossref_primary_10_1016_j_arr_2016_06_005
crossref_primary_10_3390_nu14010113
crossref_primary_10_1186_s13395_018_0154_1
crossref_primary_10_1038_s42255_024_00997_x
crossref_primary_10_1111_febs_16573
crossref_primary_10_1016_j_cmet_2017_07_019
crossref_primary_10_1038_s41514_019_0040_z
crossref_primary_10_1016_j_exger_2020_110888
crossref_primary_10_1016_j_cmet_2019_09_001
crossref_primary_10_1093_hmg_ddy278
crossref_primary_10_3390_ijms25031698
crossref_primary_10_1113_EP086964
crossref_primary_10_3390_nu14010101
crossref_primary_10_1172_jci_insight_167274
crossref_primary_10_1016_j_arr_2019_100940
crossref_primary_10_1016_j_molmet_2017_05_011
crossref_primary_10_3390_nu14112259
crossref_primary_10_1152_ajpheart_00039_2019
crossref_primary_10_1016_j_preteyeres_2022_101136
crossref_primary_10_1038_s42255_020_0194_9
crossref_primary_10_7759_cureus_55661
crossref_primary_10_1016_j_freeradbiomed_2020_10_001
crossref_primary_10_1016_j_mad_2024_111993
crossref_primary_10_1089_ars_2016_6782
crossref_primary_10_1093_lifemeta_load028
crossref_primary_10_1038_s41514_017_0016_9
crossref_primary_10_1038_s41514_022_00084_z
crossref_primary_10_1155_2018_1941285
crossref_primary_10_1126_sciadv_abh4423
crossref_primary_10_1007_s11011_018_0346_8
crossref_primary_10_15252_embj_201695737
crossref_primary_10_1126_sciadv_add5163
crossref_primary_10_1111_acel_14027
crossref_primary_10_3389_fnins_2017_00146
crossref_primary_10_1016_j_yjmcc_2020_01_002
crossref_primary_10_1007_s11357_020_00165_5
crossref_primary_10_3390_antiox12050990
crossref_primary_10_1002_adtp_202200094
crossref_primary_10_1016_j_celrep_2021_109223
crossref_primary_10_1089_scd_2023_0065
crossref_primary_10_1530_JME_18_0085
crossref_primary_10_1038_npjamd_2016_17
crossref_primary_10_1016_j_biortech_2023_128953
crossref_primary_10_1128_msystems_00230_21
crossref_primary_10_1016_j_mcpro_2022_100276
crossref_primary_10_18632_aging_102247
crossref_primary_10_3389_fragi_2023_1202152
crossref_primary_10_3390_cells9030671
crossref_primary_10_1016_j_cels_2021_09_001
crossref_primary_10_1101_gad_351428_123
crossref_primary_10_1186_s12882_020_02006_1
crossref_primary_10_3390_cells11040710
crossref_primary_10_1016_j_jff_2023_105835
crossref_primary_10_1016_j_molmet_2019_09_013
crossref_primary_10_1016_j_isci_2022_105480
Cites_doi 10.1016/j.celrep.2013.05.043
10.1128/MCB.16.3.859
10.1038/mt.2009.253
10.1016/j.cell.2013.11.037
10.1038/nm.3655
10.1038/nrm3772
10.1038/nmeth.1584
10.1126/science.1260384
10.1242/jcs.037655
10.1016/j.cmet.2014.04.002
10.1038/nm.3869
10.1007/978-1-4757-3294-8
10.1016/j.cell.2008.06.016
10.1016/S1097-2765(03)00226-0
10.1016/j.stem.2012.10.002
10.1038/298294a0
10.1007/s00335-008-9107-z
10.1016/j.cmet.2012.04.022
10.1146/annurev-pathol-011811-132450
10.1038/nm.3464
10.1002/pmic.200600625
10.1038/nmeth.2703
10.1016/S0092-8674(04)00208-9
10.1038/nature11438
10.1016/j.cmet.2015.05.023
10.1038/nm.3710
10.1038/nature13013
10.1016/j.cell.2011.06.051
10.1006/excr.2001.5166
10.1152/physrev.00043.2011
10.1038/srep03432
10.1038/nature04330
10.32614/RJ-2014-028
10.1016/j.stem.2012.04.002
10.1016/j.stem.2014.12.004
10.1016/S0960-9822(06)00261-2
10.1038/nature03260
10.1101/sqb.2011.76.010652
10.1016/j.cell.2014.07.039
10.1016/j.cell.2013.05.039
10.1093/nar/gkv1145
10.1038/nm.3465
10.1210/er.2009-0026
10.1074/mcp.O111.016717
10.1073/pnas.2135385100
10.1038/nature08466
10.1038/nm.3656
10.15252/embr.201439704
10.1126/science.1099593
10.1101/gad.1971610
10.1016/j.cmet.2011.08.014
10.1016/j.cell.2013.06.016
10.1038/nbt.2841
ContentType Journal Article
Copyright Copyright © 2016 American Association for the Advancement of Science
Copyright © 2016, American Association for the Advancement of Science.
Copyright © 2016, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2016 American Association for the Advancement of Science
– notice: Copyright © 2016, American Association for the Advancement of Science.
– notice: Copyright © 2016, American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aaf2693
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
CrossRef
MEDLINE
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1443
ExternalDocumentID 4099327881
27127236
10_1126_science_aaf2693
24747797
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01AG043930
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
CGR
CUY
CVF
ECM
EIF
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c487t-ac883bcb6ae26dfe1369cd4737a0ba5e1a2d3a792bcbb614746e69da0fe9cf473
ISSN 0036-8075
1095-9203
IngestDate Sun Sep 28 12:28:52 EDT 2025
Sun Sep 28 02:37:45 EDT 2025
Fri Jul 25 10:04:36 EDT 2025
Thu Apr 03 07:02:58 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
Tue Jul 01 00:37:16 EDT 2025
Thu Jul 03 22:16:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6292
Language English
License Copyright © 2016, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c487t-ac883bcb6ae26dfe1369cd4737a0ba5e1a2d3a792bcbb614746e69da0fe9cf473
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/126595
PMID 27127236
PQID 1799274334
PQPubID 1256
PageCount 8
ParticipantIDs proquest_miscellaneous_1825519354
proquest_miscellaneous_1797879206
proquest_journals_1799274334
pubmed_primary_27127236
crossref_primary_10_1126_science_aaf2693
crossref_citationtrail_10_1126_science_aaf2693
jstor_primary_24747797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-17
PublicationDateYYYYMMDD 2016-06-17
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2016
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
Stein L. R. (e_1_3_2_24_2) 2014; 33
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
27339086 - Cell Res. 2016 Sep;26(9):971-2
27313027 - Science. 2016 Jun 17;352(6292):1396-7
27211483 - Nat Rev Mol Cell Biol. 2016 May 23;17(6):331
References_xml – ident: e_1_3_2_15_2
  doi: 10.1016/j.celrep.2013.05.043
– ident: e_1_3_2_33_2
  doi: 10.1128/MCB.16.3.859
– ident: e_1_3_2_48_2
  doi: 10.1038/mt.2009.253
– ident: e_1_3_2_21_2
  doi: 10.1016/j.cell.2013.11.037
– ident: e_1_3_2_9_2
  doi: 10.1038/nm.3655
– volume: 33
  start-page: 1321
  year: 2014
  ident: e_1_3_2_24_2
  article-title: Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging
  publication-title: EMBO J.
– ident: e_1_3_2_22_2
  doi: 10.1038/nrm3772
– ident: e_1_3_2_53_2
  doi: 10.1038/nmeth.1584
– ident: e_1_3_2_25_2
  doi: 10.1126/science.1260384
– ident: e_1_3_2_39_2
  doi: 10.1242/jcs.037655
– ident: e_1_3_2_18_2
  doi: 10.1016/j.cmet.2014.04.002
– ident: e_1_3_2_32_2
  doi: 10.1038/nm.3869
– ident: e_1_3_2_47_2
  doi: 10.1007/978-1-4757-3294-8
– ident: e_1_3_2_29_2
  doi: 10.1016/j.cell.2008.06.016
– ident: e_1_3_2_40_2
  doi: 10.1016/S1097-2765(03)00226-0
– ident: e_1_3_2_43_2
  doi: 10.1016/j.stem.2012.10.002
– ident: e_1_3_2_31_2
  doi: 10.1038/298294a0
– ident: e_1_3_2_45_2
  doi: 10.1007/s00335-008-9107-z
– ident: e_1_3_2_17_2
  doi: 10.1016/j.cmet.2012.04.022
– ident: e_1_3_2_6_2
  doi: 10.1146/annurev-pathol-011811-132450
– ident: e_1_3_2_14_2
  doi: 10.1038/nm.3464
– ident: e_1_3_2_50_2
  doi: 10.1002/pmic.200600625
– ident: e_1_3_2_51_2
  doi: 10.1038/nmeth.2703
– ident: e_1_3_2_2_2
  doi: 10.1016/S0092-8674(04)00208-9
– ident: e_1_3_2_11_2
  doi: 10.1038/nature11438
– ident: e_1_3_2_44_2
  doi: 10.1016/j.cmet.2015.05.023
– ident: e_1_3_2_8_2
  doi: 10.1038/nm.3710
– ident: e_1_3_2_12_2
  doi: 10.1038/nature13013
– ident: e_1_3_2_27_2
  doi: 10.1016/j.cell.2011.06.051
– ident: e_1_3_2_36_2
  doi: 10.1006/excr.2001.5166
– ident: e_1_3_2_5_2
  doi: 10.1152/physrev.00043.2011
– ident: e_1_3_2_41_2
  doi: 10.1038/srep03432
– ident: e_1_3_2_55_2
  doi: 10.1038/nature04330
– ident: e_1_3_2_46_2
  doi: 10.32614/RJ-2014-028
– ident: e_1_3_2_23_2
  doi: 10.1016/j.stem.2012.04.002
– ident: e_1_3_2_26_2
  doi: 10.1016/j.stem.2014.12.004
– ident: e_1_3_2_37_2
  doi: 10.1016/S0960-9822(06)00261-2
– ident: e_1_3_2_10_2
  doi: 10.1038/nature03260
– ident: e_1_3_2_7_2
  doi: 10.1101/sqb.2011.76.010652
– ident: e_1_3_2_49_2
  doi: 10.1016/j.cell.2014.07.039
– ident: e_1_3_2_4_2
  doi: 10.1016/j.cell.2013.05.039
– ident: e_1_3_2_54_2
  doi: 10.1093/nar/gkv1145
– ident: e_1_3_2_13_2
  doi: 10.1038/nm.3465
– ident: e_1_3_2_30_2
  doi: 10.1210/er.2009-0026
– ident: e_1_3_2_34_2
  doi: 10.1074/mcp.O111.016717
– ident: e_1_3_2_28_2
  doi: 10.1073/pnas.2135385100
– ident: e_1_3_2_38_2
  doi: 10.1038/nature08466
– ident: e_1_3_2_16_2
  doi: 10.1038/nm.3656
– ident: e_1_3_2_35_2
  doi: 10.15252/embr.201439704
– ident: e_1_3_2_42_2
  doi: 10.1126/science.1099593
– ident: e_1_3_2_3_2
  doi: 10.1101/gad.1971610
– ident: e_1_3_2_20_2
  doi: 10.1016/j.cmet.2011.08.014
– ident: e_1_3_2_19_2
  doi: 10.1016/j.cell.2013.06.016
– ident: e_1_3_2_52_2
  doi: 10.1038/nbt.2841
– reference: 27211483 - Nat Rev Mol Cell Biol. 2016 May 23;17(6):331
– reference: 27313027 - Science. 2016 Jun 17;352(6292):1396-7
– reference: 27339086 - Cell Res. 2016 Sep;26(9):971-2
SSID ssj0009593
Score 2.679445
Snippet Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of...
The oxidized form of cellular nicotinamide adenine dinucleotide (NAD + ) is critical for mitochondrial function, and its supplementation can lead to increased...
The oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) is critical for mitochondrial function, and its supplementation can lead to increased...
A dietary supplement protects aging muscleThe oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) is critical for mitochondrial function, and...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1436
SubjectTerms Aging
Animals
Cellular
Cellular Reprogramming
Cellular Senescence - drug effects
Cellular Senescence - physiology
Disease Models, Animal
Dystrophy
Enzymes
Life cycles
Life span
Longevity - drug effects
Longevity - physiology
Mathematical models
Melanocytes - cytology
Melanocytes - drug effects
Melanocytes - physiology
Mice
Mice, Inbred C57BL
Mice, Inbred mdx
Mitochondria
Mitochondria - drug effects
Mitochondria - physiology
Muscles
Muscular Dystrophies - therapy
Myoblasts, Skeletal - cytology
Myoblasts, Skeletal - drug effects
Myoblasts, Skeletal - physiology
NAD - metabolism
NAD - pharmacology
Neural Stem Cells - cytology
Neural Stem Cells - drug effects
Neural Stem Cells - physiology
Niacinamide - analogs & derivatives
Niacinamide - metabolism
Nicotinamide adenine dinucleotide
Oxidative Stress
Precursors
Repressor Proteins - biosynthesis
Rodents
Stem cells
Unfolded Protein Response - drug effects
Title NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice
URI https://www.jstor.org/stable/24747797
https://www.ncbi.nlm.nih.gov/pubmed/27127236
https://www.proquest.com/docview/1799274334
https://www.proquest.com/docview/1797879206
https://www.proquest.com/docview/1825519354
Volume 352
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJiReEBsMCgMZiYehKFNqp3by2DJGxcOeNjEkpMhO7a3SmiKaPoz_i_-P88-maEWDl6hyL1aS78v57nK-Q-gdZ6wsZU1STaROc83ytJAsS_OBkpqLAlxomyB7xiYX-efL4WWv96uTtbRq5XH98859Jf-DKowBrmaX7D8gGyeFAfgN-MIREIbjvTA-G50AdGMT-Dc1tE3Woo0RqGUyhzcVNFsztV05bHS8VfPExOkTs5a1IQ1ZNdcG-GVyM9MqAf1iUx_nPiUu2K1BBYA9Gr_xdJCNyYojl1IQMgz8aZ1wQwxQTxbNlVzE7z23K2fON1fgBCxi2scXO_x1tpb8BM6960NlNrLN5t2wxYCZ9Cq3SzOoYl8J2S1ETvtmpnEkyWhXPdMh6fCQEdc6z-tbsPZYZ-0G75DevS50OlmqYyE0Ya4x42YF7j9WxpivaD0lwio_QeUneIB2CZAd1OvuaHwyPt1a7dnXlOrs1grXsGEOuYzY7b6OtXnOn6DH3lnBI8e8PdRTzT566NqX3u6jPQ_vEh_56uXvn6JvQEqc4EhJHCiJNyiJgXvYUBIbSuJASTscKIkNJbGhJJ412FDyGbo4_Xj-YZL6Fh5pDZ5wm4q6KKisJROKsKlWA8rKeppzykUmxVANBJlSwUsCMhIsRZ4zxcqpyLQqaw1yB2inWTTqBcIqy5WktJTg0edKU0l0oSisQXVel0Oa9dFxeJJV7evbmzYrN9UW9ProKJ7w3ZV22S56YKGJcgSulPOS99FhwKryimFZmSKLBCxzmvfR2_g3qG3zQEWjFisrA0slcJ39RaYAfx8crCHM89zxYH0BfEA4oezl_W_iFXq0fhEP0U77Y6Veg0Xdyjeev78B4b3PhQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAD+%2B+repletion+improves+mitochondrial+and+stem+cell+function+and+enhances+life+span+in+mice&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhang%2C+Hongbo&rft.au=Ryu%2C+Dongryeol&rft.au=Wu%2C+Yibo&rft.au=Gariani%2C+Karim&rft.date=2016-06-17&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=352&rft.issue=6292&rft.spage=1436&rft.epage=1443&rft_id=info:doi/10.1126%2Fscience.aaf2693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aaf2693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon