Cancer Diagnosis Using Deep Learning: A Bibliographic Review

In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Bord...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 11; no. 9; p. 1235
Main Authors Munir, Khushboo, Elahi, Hassan, Ayub, Afsheen, Frezza, Fabrizio, Rizzi, Antonello
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.08.2019
MDPI
Subjects
Online AccessGet full text
ISSN2072-6694
2072-6694
DOI10.3390/cancers11091235

Cover

Abstract In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements.
AbstractList In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements.
In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann's machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements.In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann's machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements.
Author Rizzi, Antonello
Elahi, Hassan
Ayub, Afsheen
Frezza, Fabrizio
Munir, Khushboo
AuthorAffiliation 2 Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
1 Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
3 Department of Basic and Applied Science for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14/16, 00161 Rome, Italy
AuthorAffiliation_xml – name: 3 Department of Basic and Applied Science for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14/16, 00161 Rome, Italy
– name: 2 Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
– name: 1 Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
Author_xml – sequence: 1
  givenname: Khushboo
  orcidid: 0000-0002-4867-5707
  surname: Munir
  fullname: Munir, Khushboo
– sequence: 2
  givenname: Hassan
  orcidid: 0000-0001-6836-604X
  surname: Elahi
  fullname: Elahi, Hassan
– sequence: 3
  givenname: Afsheen
  surname: Ayub
  fullname: Ayub, Afsheen
– sequence: 4
  givenname: Fabrizio
  orcidid: 0000-0001-9457-7617
  surname: Frezza
  fullname: Frezza, Fabrizio
– sequence: 5
  givenname: Antonello
  orcidid: 0000-0001-8244-0015
  surname: Rizzi
  fullname: Rizzi, Antonello
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31450799$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPAyEUhYnR-F67M5O4cVOFgYFijEltfSVNTIyuCaV3KmYKI8xo-u-l1mcXyuZC-M7J4bCFVp13gNAewUeUSnxstDMQIiFYkpwWK2gzxyLvcC7Z6o_9BtqN8QmnRSkRXKyjDUpYgYWUm-i0_26SDayeOB9tzB6idZNsAFBnQ9DBpdNJ1svO7aiyfhJ0_WhNdgcvFl530Fqpqwi7H3MbPVxe3PevO8Pbq5t-b9gxrCuaTlcC5gyXI2wkEJ6bNABDycZcAiOU8EKybqKAwUgDxiWMMeOlEAREacZ0G-GFb-tqPXvVVaXqYKc6zBTBat6FWuoiSc4WkrodTWFswDVBf8u8tur3jbOPauJfFBcCE8KTweGHQfDPLcRGTW00UFXagW-jyvMuSdFJQRN6sIQ--Ta41IjKCyYKUjA6p_Z_JvqK8vkXCSgWgAk-xgClMrbRjfXzgLb646nHS7r_ynkDAwOvCQ
CitedBy_id crossref_primary_10_3390_cancers12102881
crossref_primary_10_3390_cancers13236116
crossref_primary_10_1002_rcs_2169
crossref_primary_10_1109_ACCESS_2024_3359418
crossref_primary_10_3390_s21186264
crossref_primary_10_1111_jop_13397
crossref_primary_10_1109_ACCESS_2021_3093616
crossref_primary_10_1186_s40001_022_00916_4
crossref_primary_10_1088_1757_899X_1074_1_012025
crossref_primary_10_1007_s11042_023_16236_6
crossref_primary_10_3390_life12122036
crossref_primary_10_1007_s11831_021_09648_w
crossref_primary_10_1158_2767_9764_CRC_23_0083
crossref_primary_10_1038_s41598_021_86327_7
crossref_primary_10_4093_dmj_2022_0349
crossref_primary_10_1134_S1063778822090241
crossref_primary_10_1016_j_csbj_2020_08_003
crossref_primary_10_1007_s12652_021_03613_y
crossref_primary_10_1109_ACCESS_2023_3339635
crossref_primary_10_3390_app10228298
crossref_primary_10_3390_electronics12030750
crossref_primary_10_1007_s10278_021_00541_3
crossref_primary_10_3389_fonc_2022_1068198
crossref_primary_10_1111_odi_13825
crossref_primary_10_1093_bib_bbae420
crossref_primary_10_1155_2022_8685604
crossref_primary_10_3389_fpsyg_2022_901796
crossref_primary_10_3390_cancers13194974
crossref_primary_10_1016_j_ultrasmedbio_2022_06_019
crossref_primary_10_17816_MAJ631404
crossref_primary_10_1002_cam4_7218
crossref_primary_10_1002_ima_22752
crossref_primary_10_3389_fmed_2023_1165865
crossref_primary_10_3390_s21061938
crossref_primary_10_1007_s10479_022_04755_8
crossref_primary_10_1088_1361_6560_ace1cf
crossref_primary_10_1155_2022_7459455
crossref_primary_10_1159_000541573
crossref_primary_10_1007_s13198_023_01871_x
crossref_primary_10_3390_diagnostics12081793
crossref_primary_10_3390_app11104321
crossref_primary_10_1177_09544119221129917
crossref_primary_10_3390_genes13010065
crossref_primary_10_1016_j_ebiom_2022_104207
crossref_primary_10_1088_1757_899X_1128_1_012049
crossref_primary_10_3389_fonc_2022_908873
crossref_primary_10_3390_math10060863
crossref_primary_10_1097_MOU_0000000000000813
crossref_primary_10_35713_aic_v1_i1_1
crossref_primary_10_3390_cancers12123817
crossref_primary_10_1109_JIOT_2021_3109435
crossref_primary_10_1249_MSS_0000000000002674
crossref_primary_10_3390_life12071084
crossref_primary_10_1186_s13244_023_01380_2
crossref_primary_10_1002_cam4_70069
crossref_primary_10_1007_s11042_024_19558_1
crossref_primary_10_1145_3676282
crossref_primary_10_1186_s12859_021_04301_6
crossref_primary_10_53070_bbd_1173074
crossref_primary_10_1007_s12530_024_09608_2
crossref_primary_10_1186_s12911_022_02047_6
crossref_primary_10_1177_0022034520902128
crossref_primary_10_1080_09500340_2024_2313724
crossref_primary_10_1158_0008_5472_CAN_23_2040
crossref_primary_10_17341_gazimmfd_1094154
crossref_primary_10_3390_diagnostics14040454
crossref_primary_10_1093_comjnl_bxaa198
crossref_primary_10_1016_j_compbiomed_2022_105623
crossref_primary_10_3390_a15020049
crossref_primary_10_3390_s23114993
crossref_primary_10_46604_aiti_2023_9488
crossref_primary_10_1177_15330338211016386
crossref_primary_10_3934_mbe_2023706
crossref_primary_10_3390_biology11010047
crossref_primary_10_1007_s00500_022_06989_x
crossref_primary_10_1053_j_seminhematol_2024_11_002
crossref_primary_10_1016_j_critrevonc_2024_104528
crossref_primary_10_4103_EUS_D_21_00131
crossref_primary_10_3390_diagnostics10110958
crossref_primary_10_3390_diagnostics13091563
crossref_primary_10_3390_electronics10243183
crossref_primary_10_3390_cancers14153803
crossref_primary_10_32604_iasc_2022_026601
crossref_primary_10_1038_s41598_022_10441_3
crossref_primary_10_46387_bjesr_1114243
crossref_primary_10_1007_s42044_024_00216_6
crossref_primary_10_1142_S0219467823500158
crossref_primary_10_3390_s22114156
crossref_primary_10_55544_jrasb_2_5_9
crossref_primary_10_1080_13682199_2023_2298111
crossref_primary_10_1016_j_csbj_2024_07_012
crossref_primary_10_3390_bdcc8070080
crossref_primary_10_2196_22148
crossref_primary_10_1186_s13321_020_00421_y
crossref_primary_10_3389_fonc_2022_804632
crossref_primary_10_1109_ACCESS_2021_3104724
crossref_primary_10_1371_journal_pone_0305268
crossref_primary_10_18034_ra_v6i3_672
crossref_primary_10_1155_2022_5905230
crossref_primary_10_1177_10760296231171082
crossref_primary_10_3389_frai_2023_1128153
crossref_primary_10_37391_ijeer_100445
crossref_primary_10_3390_bios12030144
crossref_primary_10_1109_ACCESS_2023_3235833
crossref_primary_10_1155_2021_9409508
crossref_primary_10_3389_fbinf_2023_1103493
crossref_primary_10_1016_j_colsurfb_2023_113716
crossref_primary_10_1016_j_apm_2020_08_079
crossref_primary_10_1016_j_molmed_2024_11_009
crossref_primary_10_32446_0368_1025it_2021_6_66_71
crossref_primary_10_3390_cancers13071590
crossref_primary_10_1038_s41598_021_89352_8
crossref_primary_10_3390_app13053370
crossref_primary_10_3390_diagnostics13152555
crossref_primary_10_3390_s23115099
crossref_primary_10_1016_j_vrih_2022_09_002
crossref_primary_10_1186_s43042_024_00522_5
crossref_primary_10_1007_s12553_021_00586_y
crossref_primary_10_3389_fpsyt_2022_1105496
crossref_primary_10_3390_pr11072047
crossref_primary_10_1007_s00339_023_06648_4
crossref_primary_10_1016_j_bspc_2021_102527
crossref_primary_10_3390_s22010372
crossref_primary_10_1016_j_matpr_2022_02_395
crossref_primary_10_1038_s41598_023_30309_4
crossref_primary_10_3389_fphar_2021_720694
crossref_primary_10_37285_ijpsn_2024_17_2_7
crossref_primary_10_1088_1757_899X_1022_1_012020
crossref_primary_10_3390_app12178755
crossref_primary_10_1016_j_bspc_2023_105474
crossref_primary_10_1002_cbdv_202401315
crossref_primary_10_1007_s11042_024_20349_x
crossref_primary_10_4018_IJIIT_298695
crossref_primary_10_3390_s21124048
crossref_primary_10_3389_fmicb_2022_1024104
crossref_primary_10_3390_jpm13121681
crossref_primary_10_1155_2022_1450723
crossref_primary_10_15407_exp_oncology_2024_04_289
crossref_primary_10_1007_s11042_021_10952_7
crossref_primary_10_1002_jhbp_825
crossref_primary_10_2174_1568026622666220701091339
crossref_primary_10_3390_math11061279
crossref_primary_10_3390_app10061988
crossref_primary_10_3390_app10103429
crossref_primary_10_1109_ACCESS_2023_3289224
crossref_primary_10_1063_5_0129203
crossref_primary_10_3390_ijms25116186
crossref_primary_10_1007_s00521_023_09312_3
crossref_primary_10_29137_umagd_1116295
crossref_primary_10_1155_2021_1701447
crossref_primary_10_3390_cancers14030623
crossref_primary_10_1007_s42979_023_01701_8
crossref_primary_10_3233_XST_200694
crossref_primary_10_3390_tomography9040096
crossref_primary_10_3390_app10030997
crossref_primary_10_1109_JBHI_2023_3237749
crossref_primary_10_3390_biomedicines9020159
crossref_primary_10_3390_cancers15041183
crossref_primary_10_1016_j_csbj_2020_07_009
crossref_primary_10_3390_diagnostics14010089
crossref_primary_10_4274_atfm_galenos_2022_78309
crossref_primary_10_1007_s41666_021_00093_9
crossref_primary_10_1038_s41390_022_02181_x
crossref_primary_10_1109_JBHI_2022_3192010
crossref_primary_10_1007_s40747_022_00694_w
crossref_primary_10_1080_08037051_2022_2128716
crossref_primary_10_7717_peerj_cs_1903
crossref_primary_10_1109_ACCESS_2023_3260027
crossref_primary_10_1093_noajnl_vdae045
crossref_primary_10_1109_ACCESS_2020_3016715
crossref_primary_10_1038_s41598_022_07445_4
crossref_primary_10_21205_deufmd_2022247114
crossref_primary_10_1016_j_oraloncology_2021_105254
crossref_primary_10_1007_s11356_022_22167_w
crossref_primary_10_3390_s22020496
crossref_primary_10_3390_ma14247846
crossref_primary_10_1007_s12672_023_00823_y
crossref_primary_10_2174_1573405617666210923144739
crossref_primary_10_3389_frai_2022_884749
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_2174_1386207325666220304112914
crossref_primary_10_1007_s11831_025_10275_y
crossref_primary_10_1186_s12888_023_05109_9
crossref_primary_10_3390_s21062077
crossref_primary_10_1109_ACCESS_2023_3335196
crossref_primary_10_1111_cyt_12942
crossref_primary_10_1111_odi_14318
crossref_primary_10_1049_ipr2_13246
crossref_primary_10_1016_j_chaos_2020_110120
crossref_primary_10_1016_j_cmpb_2022_106874
crossref_primary_10_1088_1742_6596_1963_1_012066
crossref_primary_10_1097_DM_2023_00001
crossref_primary_10_3390_cancers14061370
crossref_primary_10_1016_j_compbiomed_2021_105161
crossref_primary_10_1007_s11042_022_12229_z
crossref_primary_10_1016_j_aej_2024_11_063
crossref_primary_10_1007_s11018_021_01962_w
crossref_primary_10_1016_j_matpr_2021_04_241
crossref_primary_10_1016_j_eswa_2024_124113
crossref_primary_10_1016_j_health_2021_100010
crossref_primary_10_1088_1752_7163_acb284
crossref_primary_10_3390_make6010033
crossref_primary_10_3390_rs12030454
crossref_primary_10_3389_fpubh_2023_1090146
crossref_primary_10_33131_24222208_392
crossref_primary_10_3390_diagnostics12102472
crossref_primary_10_1186_s12903_021_01642_9
crossref_primary_10_1002_ima_22546
crossref_primary_10_3390_e23101248
crossref_primary_10_1007_s10462_023_10426_2
crossref_primary_10_3390_cancers17010121
crossref_primary_10_1016_j_compbiomed_2022_106443
crossref_primary_10_1109_TIM_2023_3293555
crossref_primary_10_33131_24222208_388
crossref_primary_10_1016_S1470_2045_20_30751_8
Cites_doi 10.2196/jmir.2930
10.1109/TMI.2015.2481436
10.1109/TMI.2019.2927182
10.1109/DICTA.2015.7371234
10.1118/1.1997327
10.1109/ICCV.2017.244
10.1109/ICIP.2014.7025716
10.1038/nature14539
10.1109/IIH-MSP.2015.41
10.1109/ISSNIP.2007.4496905
10.1016/j.media.2017.10.002
10.1016/j.compmedimag.2007.02.002
10.1109/TMI.2016.2536809
10.1109/ISBI.2017.7950686
10.1016/j.eswa.2015.04.034
10.1109/ICASSP.2016.7471811
10.1162/neco.2006.18.7.1527
10.1007/978-3-642-33454-2_46
10.1109/TMI.2016.2538465
10.1117/12.2266335
10.1007/3-540-26431-0_97
10.1109/TBME.2012.2209423
10.1109/34.206958
10.1117/12.2253513
10.1109/JBHI.2016.2637004
10.1109/SMC.2016.7844626
10.1007/978-3-662-56537-7_89
10.4236/jcc.2015.311023
10.1109/CVPR.2015.7298965
10.1017/CBO9780511546860
10.1117/12.2253620
10.1093/oso/9780198538493.001.0001
10.1016/j.patcog.2018.09.007
10.1002/mrm.22147
10.1111/j.1600-0846.2008.00301.x
10.1109/NER.2015.7146798
10.1007/978-3-319-75238-9_11
10.1109/ISBI.2016.7493473
10.1109/EMBC.2016.7590962
10.1109/ISBI.2016.7493284
10.1016/j.compmedimag.2016.11.004
10.1088/0031-9155/45/10/308
10.1109/TMI.2016.2642839
10.1016/j.procs.2016.05.238
10.1109/EMBC.2015.7319032
10.1109/ICCV.2013.413
10.1109/IWSSIP.2018.8439373
10.1109/TMI.2016.2528120
10.1109/ISBI.2016.7493349
10.1007/978-3-319-10593-2_13
10.1109/TMI.2018.2820120
10.1109/TPAMI.2013.50
10.1109/ICASSP.2013.6638947
10.1109/IJCNN.2016.7727519
10.1109/TBME.2015.2430895
10.1118/1.4944498
10.1109/ICCAS.2016.7832398
10.1155/2018/5105709
10.1109/ICEI18.2018.8448814
10.1117/1.JMI.5.2.021208
10.1109/ICEEICT.2015.7307530
10.1007/978-3-030-00214-5_150
10.1093/annonc/mdy166
10.1109/TMI.2007.895460
10.1080/03091900802451315
10.1007/11752912_23
10.1109/ACCESS.2014.2373335
10.1007/978-3-642-39608-3_3
10.1007/978-3-030-01201-4_31
10.1109/EMBC.2016.7590782
10.1007/s10278-014-9718-8
10.1118/1.3528204
10.1007/s12021-014-9245-2
10.1109/TBME.2016.2613502
10.1109/ICCV.2015.178
10.1109/NSSMIC.2018.8824732
10.1007/978-3-030-00934-2_92
10.1016/j.media.2013.12.002
10.1016/j.patcog.2016.05.029
10.1109/TMI.2015.2508280
10.1593/tlo.13844
10.3322/caac.21262
10.1016/j.neuroimage.2018.03.045
10.1109/TMI.2015.2433900
10.1109/TMI.2013.2239307
10.1007/978-3-319-46723-8_14
10.1109/WACV.2016.7477603
10.1016/j.procs.2015.03.090
10.1109/SICE.2016.7749265
10.1016/j.media.2016.08.008
10.1109/EMBC.2016.7590963
10.1109/ICIP.2016.7532834
10.1007/978-981-13-1595-4_37
10.1109/BIBM.2015.7359868
10.1016/j.media.2016.10.004
10.1109/TMI.2016.2532122
10.1109/IPTA.2016.7821017
10.1007/978-3-319-70096-0_39
10.1118/1.597307
10.1038/ncomms5006
10.1016/j.patcog.2008.09.006
10.1109/ISBI.2016.7493472
10.1109/ICIP.2015.7351343
10.1109/BIBM.2016.7822579
10.1109/3DV.2016.79
10.1007/978-3-030-00934-2_67
10.1007/978-3-319-47157-0_31
10.1109/KST.2016.7440527
10.1109/CVPR.2018.00917
10.1007/978-3-319-75420-8_54
10.3322/caac.21332
10.1016/S0738-081X(02)00236-5
10.1016/j.gie.2018.07.037
10.1007/978-3-030-00919-9_17
10.1109/CEC.2016.7743955
10.1186/s12911-018-0631-9
10.1007/978-3-319-59050-9_12
10.4249/scholarpedia.5947
10.1038/nature21056
10.24963/ijcai.2018/96
10.1109/CVPR.2015.7298798
10.1016/j.compbiomed.2007.02.008
10.1109/CINTI.2016.7846429
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/cancers11091235
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
Biological Sciences
ProQuest Research Library
Biological science database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID 10.3390/cancers11091235
PMC6770116
31450799
10_3390_cancers11091235
Genre Journal Article
Review
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
TUS
3V.
GROUPED_DOAJ
NPM
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
C1A
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c487t-89e0640fb0c9e162cc9ee0ef4d69e41316594889ee4ebae00fed046f771e7fcd3
IEDL.DBID UNPAY
ISSN 2072-6694
IngestDate Sun Oct 26 04:11:24 EDT 2025
Tue Sep 30 16:55:14 EDT 2025
Thu Oct 02 08:04:44 EDT 2025
Fri Jul 25 12:17:58 EDT 2025
Thu Jan 02 23:06:07 EST 2025
Thu Apr 24 23:09:38 EDT 2025
Thu Oct 16 04:40:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords convolutional neural networks (CNNs)
deep learning
recurrent neural networks (RNNs)
long short-term memory (LTSM)
restricted Boltzmann’s machine (RBM)
generative adversarial models (GANs)
deep autoencoders (DANs)
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-89e0640fb0c9e162cc9ee0ef4d69e41316594889ee4ebae00fed046f771e7fcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4867-5707
0000-0001-8244-0015
0000-0001-9457-7617
0000-0001-6836-604X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-6694/11/9/1235/pdf?version=1566558778
PMID 31450799
PQID 2547515433
PQPubID 2032421
ParticipantIDs unpaywall_primary_10_3390_cancers11091235
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6770116
proquest_miscellaneous_2281131153
proquest_journals_2547515433
pubmed_primary_31450799
crossref_citationtrail_10_3390_cancers11091235
crossref_primary_10_3390_cancers11091235
PublicationCentury 2000
PublicationDate 20190823
PublicationDateYYYYMMDD 2019-08-23
PublicationDate_xml – month: 8
  year: 2019
  text: 20190823
  day: 23
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cancers
PublicationTitleAlternate Cancers (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tustison (ref_21) 2015; 13
ref_137
ref_93
Setio (ref_60) 2016; 35
ref_92
Zhang (ref_30) 2007; 37
ref_91
ref_138
ref_90
Yu (ref_142) 2016; 36
Karssemeijer (ref_5) 2000; 45
Messadi (ref_25) 2009; 33
ref_99
ref_130
ref_133
ref_132
Li (ref_103) 2015; 3
ref_19
ref_18
Sitinukunwattana (ref_84) 2017; 35
Moreno (ref_160) 2019; 99
ref_16
ref_15
Cha (ref_96) 2016; 43
ref_126
ref_125
ref_128
ref_127
Hinton (ref_135) 2006; 18
Sumithra (ref_147) 2015; 45
ref_24
ref_120
Kingravi (ref_31) 2008; 14
ref_20
ref_121
ref_124
ref_123
LeCun (ref_23) 2015; 521
Zacharaki (ref_27) 2009; 2
Sadeghi (ref_17) 2013; 32
Bengio (ref_22) 2013; 35
ref_28
Hua (ref_58) 2015; 57
Walker (ref_158) 2019; 40
Hawkins (ref_11) 2005; 2
ref_72
ref_71
Pereira (ref_80) 2016; 35
ref_70
Ahmed (ref_94) 2017; Volume 10134
ref_151
ref_79
ref_150
ref_77
ref_152
ref_76
ref_155
ref_154
ref_74
ref_157
ref_73
ref_156
Guo (ref_162) 2016; 35
Wang (ref_115) 2018; 174
Kallenberg (ref_136) 2016; 35
Sitinukunwattana (ref_83) 2015; 34
Torre (ref_1) 2015; 65
ref_148
ref_149
ref_140
ref_89
ref_88
ref_141
ref_87
ref_85
Gordon (ref_98) 2017; Volume 10134
Albarqouni (ref_48) 2016; 35
ref_50
Giotis (ref_69) 2015; 42
Wei (ref_10) 2005; 32
Siegel (ref_2) 2016; 66
ref_54
Eltonsy (ref_9) 2007; 26
ref_53
ref_52
ref_51
Horie (ref_159) 2019; 89
Gibson (ref_97) 2017; Volume 10135
Saha (ref_144) 2015; 5
Shen (ref_57) 2017; 61
ref_59
Hou (ref_131) 2019; 86
Esteva (ref_86) 2017; 542
Balagurunthan (ref_12) 2005; 7
ref_61
Lee (ref_41) 1993; 15
Reddy (ref_26) 2014; 1
ref_68
ref_161
ref_67
Kistler (ref_78) 2013; 15
ref_66
ref_163
Yin (ref_7) 1994; 3
ref_65
ref_64
Aerts (ref_8) 2014; 5
ref_63
ref_62
Ng (ref_129) 2011; 72
ref_167
Tian (ref_165) 2018; 5
Yuan (ref_35) 2009; 42
Ponraj (ref_29) 2011; 2
Hinton (ref_134) 2009; 4
Litjens (ref_75) 2014; 18
ref_114
ref_117
ref_116
ref_119
Jain (ref_107) 2009; 21
ref_118
Xing (ref_101) 2016; 35
ref_36
Kamnitsas (ref_81) 2017; 36
Cha (ref_105) 2017; Volume 10134
ref_34
ref_33
Taqdir (ref_139) 2018; 4
ref_32
Dou (ref_56) 2017; 64
ref_111
Han (ref_13) 2015; 28
ref_110
ref_113
ref_112
Mehta (ref_145) 2016; 85
ref_39
ref_38
Armato (ref_166) 2011; 38
ref_37
Zhao (ref_82) 2018; 43
ref_104
Yu (ref_164) 2017; 21
ref_106
ref_108
Haenssle (ref_153) 2018; 29
Doi (ref_4) 2007; 31
ref_109
ref_47
ref_46
ref_45
ref_44
ref_43
ref_100
ref_42
Song (ref_95) 2015; 62
ref_102
Alex (ref_122) 2017; Volume 10133
ref_40
ref_3
Barata (ref_14) 2012; 59
ref_49
Bhuiyan (ref_146) 2013; 4
Wang (ref_55) 2017; 57
Chandrahasa (ref_143) 2016; 5
ref_6
References_xml – volume: 1
  start-page: 2348
  year: 2014
  ident: ref_26
  article-title: Developing an approach to brain MRI image preprocessing for tumor detection
  publication-title: Int. J. Res.
– volume: 15
  start-page: e245
  year: 2013
  ident: ref_78
  article-title: The virutal skeleton database: An open access repository for biomedical research and collaboration
  publication-title: J. Med. Internet Res.
  doi: 10.2196/jmir.2930
– volume: 35
  start-page: 550
  year: 2016
  ident: ref_101
  article-title: An automaticl learning-based framework or robust nucleus segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2481436
– ident: ref_110
  doi: 10.1109/TMI.2019.2927182
– ident: ref_138
  doi: 10.1109/DICTA.2015.7371234
– volume: 32
  start-page: 2827
  year: 2005
  ident: ref_10
  article-title: Computer-aided detection of breast masses on full field digital mammograms
  publication-title: Med. Phys.
  doi: 10.1118/1.1997327
– ident: ref_112
  doi: 10.1109/ICCV.2017.244
– ident: ref_15
  doi: 10.1109/ICIP.2014.7025716
– ident: ref_39
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_23
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_79
  doi: 10.1109/IIH-MSP.2015.41
– ident: ref_37
  doi: 10.1109/ISSNIP.2007.4496905
– ident: ref_42
– volume: 43
  start-page: 98
  year: 2018
  ident: ref_82
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.10.002
– volume: 31
  start-page: 198
  year: 2007
  ident: ref_4
  article-title: Computer-aided diagnosis in medical imaging: Historical review, current status and future potential
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2007.02.002
– ident: ref_71
– volume: 35
  start-page: 1160
  year: 2016
  ident: ref_60
  article-title: Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2536809
– ident: ref_61
  doi: 10.1109/ISBI.2017.7950686
– volume: 42
  start-page: 6578
  year: 2015
  ident: ref_69
  article-title: MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.034
– ident: ref_88
  doi: 10.1109/ICASSP.2016.7471811
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_135
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref_77
– ident: ref_18
  doi: 10.1007/978-3-642-33454-2_46
– volume: 35
  start-page: 1240
  year: 2016
  ident: ref_80
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– ident: ref_53
  doi: 10.1117/12.2266335
– ident: ref_6
  doi: 10.1007/3-540-26431-0_97
– volume: 59
  start-page: 2744
  year: 2012
  ident: ref_14
  article-title: A system for the detection of pigment network in dermoscopy images using directional filters
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2209423
– volume: 99
  start-page: 33
  year: 2019
  ident: ref_160
  article-title: Diagnostic accuracy of non-melanocytic pink flat skin lesions on the legs: Dermoscopic and reflectance confocal microscopy evaluation
  publication-title: Acta Dermato-Venereologica
– volume: Volume 10134
  start-page: 1013402
  year: 2017
  ident: ref_98
  article-title: Segmentation of inner and outer bladder wall using deep-learning convolutional neural networks in CT urography
  publication-title: Medical Imaging 2017: Computer-Aided Diagnosis
– volume: 15
  start-page: 388
  year: 1993
  ident: ref_41
  article-title: Feature extraction based on decision boundaries
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.206958
– ident: ref_62
– ident: ref_92
  doi: 10.1117/12.2253513
– volume: 21
  start-page: 65
  year: 2017
  ident: ref_164
  article-title: Integrating online and offline three-dimensional deep learning for automanted plopy detection in colonscopy videos
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2637004
– ident: ref_45
– ident: ref_87
  doi: 10.1109/SMC.2016.7844626
– ident: ref_119
  doi: 10.1007/978-3-662-56537-7_89
– volume: 3
  start-page: 146
  year: 2015
  ident: ref_103
  article-title: Automatic segmentation of liver tumor in CT images with deep convolutional neural networks
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2015.311023
– ident: ref_106
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_64
  doi: 10.1017/CBO9780511546860
– ident: ref_91
  doi: 10.1117/12.2253620
– ident: ref_128
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 86
  start-page: 188
  year: 2019
  ident: ref_131
  article-title: Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.09.007
– volume: 2
  start-page: 1609
  year: 2009
  ident: ref_27
  article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22147
– volume: 14
  start-page: 347
  year: 2008
  ident: ref_31
  article-title: Border detection in dermoscopy images using statistical region merging
  publication-title: Skin Res. Technol.
  doi: 10.1111/j.1600-0846.2008.00301.x
– ident: ref_3
– ident: ref_140
– ident: ref_141
  doi: 10.1109/NER.2015.7146798
– ident: ref_118
  doi: 10.1007/978-3-319-75238-9_11
– ident: ref_90
  doi: 10.1109/ISBI.2016.7493473
– ident: ref_167
  doi: 10.1109/EMBC.2016.7590962
– ident: ref_47
– ident: ref_68
  doi: 10.1109/ISBI.2016.7493284
– volume: 57
  start-page: 10
  year: 2017
  ident: ref_55
  article-title: Lung nodule classification using deep feature fusion in chest radiography
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2016.11.004
– volume: 45
  start-page: 2843
  year: 2000
  ident: ref_5
  article-title: An automatic method to discriminate malignant masses from normal tissue in digital mammograms1
  publication-title: Phys. Meds. Biol.
  doi: 10.1088/0031-9155/45/10/308
– volume: 21
  start-page: 769
  year: 2009
  ident: ref_107
  article-title: Natural image denoising with convolutional networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 36
  start-page: 994
  year: 2016
  ident: ref_142
  article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2642839
– volume: 85
  start-page: 309
  year: 2016
  ident: ref_145
  article-title: Review on techniques and steps of computer aided skin cancer diagnosis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.05.238
– ident: ref_157
– ident: ref_20
  doi: 10.1109/EMBC.2015.7319032
– ident: ref_34
  doi: 10.1109/ICCV.2013.413
– ident: ref_155
  doi: 10.1109/IWSSIP.2018.8439373
– volume: 35
  start-page: 1313
  year: 2016
  ident: ref_48
  article-title: AggNet: Deep learning from crowds for mitosis detection in breast cancer histology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528120
– ident: ref_100
  doi: 10.1109/ISBI.2016.7493349
– volume: Volume 10134
  start-page: 1013404
  year: 2017
  ident: ref_105
  article-title: Bladder cancer treantment response assessment using deep learning learning in CT with transfer learning
  publication-title: Medical Imaging 2017: Computer-Aided Diagnosis
– ident: ref_108
  doi: 10.1007/978-3-319-10593-2_13
– ident: ref_114
  doi: 10.1109/TMI.2018.2820120
– ident: ref_44
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_22
  article-title: Representation learning: A review and new prespectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– ident: ref_73
– ident: ref_126
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref_49
  doi: 10.1109/IJCNN.2016.7727519
– volume: 62
  start-page: 2421
  year: 2015
  ident: ref_95
  article-title: Accurate segmentation of cervical cytoplasm and nuclei based on multi-scale convolutional network and graph partitioning
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2430895
– volume: 43
  start-page: 1882
  year: 2016
  ident: ref_96
  article-title: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets
  publication-title: Med. Phys.
  doi: 10.1118/1.4944498
– ident: ref_59
  doi: 10.1109/ICCAS.2016.7832398
– ident: ref_130
  doi: 10.1155/2018/5105709
– ident: ref_149
  doi: 10.1109/ICEI18.2018.8448814
– volume: 5
  start-page: 021208
  year: 2018
  ident: ref_165
  article-title: PSNet: Prostate segmentation on MRI based on a convolutional neural network
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.5.2.021208
– ident: ref_28
  doi: 10.1109/ICEEICT.2015.7307530
– ident: ref_148
  doi: 10.1007/978-3-030-00214-5_150
– volume: 29
  start-page: 1836
  year: 2018
  ident: ref_153
  article-title: Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdy166
– volume: 26
  start-page: 880
  year: 2007
  ident: ref_9
  article-title: A concentric morphology for the detection of masses in mammograph
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.895460
– volume: 33
  start-page: 288
  year: 2009
  ident: ref_25
  article-title: Extraction of specific parameters for skin tumour classification
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091900802451315
– ident: ref_38
  doi: 10.1007/11752912_23
– volume: 2
  start-page: 1418
  year: 2005
  ident: ref_11
  article-title: Predicting outcomes of nonsmall cell lung cancer using CT image features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2373335
– ident: ref_89
– ident: ref_16
  doi: 10.1007/978-3-642-39608-3_3
– ident: ref_156
  doi: 10.1007/978-3-030-01201-4_31
– ident: ref_154
– ident: ref_76
  doi: 10.1109/EMBC.2016.7590782
– volume: 28
  start-page: 99
  year: 2015
  ident: ref_13
  article-title: Texture feature analysis for computer-aided diagnosis on pulmonary nodules
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-014-9718-8
– ident: ref_36
– ident: ref_19
– volume: 4
  start-page: 1
  year: 2013
  ident: ref_146
  article-title: Image processing for skin cancer features extraction
  publication-title: Int. J. Sci. Eng. Res.
– volume: 38
  start-page: 915
  year: 2011
  ident: ref_166
  article-title: The lung image database consortium (LIDC) and image database resource initiative(IDRI): A compelete reference database of lung nodules on CT scans
  publication-title: Med. Phys.
  doi: 10.1118/1.3528204
– volume: 13
  start-page: 209
  year: 2015
  ident: ref_21
  article-title: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation(simplified) with ANTsR
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-014-9245-2
– volume: 64
  start-page: 1558
  year: 2017
  ident: ref_56
  article-title: Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2613502
– ident: ref_109
  doi: 10.1109/ICCV.2015.178
– ident: ref_152
  doi: 10.1109/NSSMIC.2018.8824732
– ident: ref_125
  doi: 10.1007/978-3-030-00934-2_92
– volume: 18
  start-page: 359
  year: 2014
  ident: ref_75
  article-title: Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge
  publication-title: Med. Imaging Anal.
  doi: 10.1016/j.media.2013.12.002
– volume: 40
  start-page: 176
  year: 2019
  ident: ref_158
  article-title: Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio (sonification) outputs: Laboratory and prospective observational studies
  publication-title: EBio Med.
– volume: 61
  start-page: 663
  year: 2017
  ident: ref_57
  article-title: Multicrop convolutional neural networks for lung nodule malignancy suspiciousness classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.05.029
– volume: 35
  start-page: 1077
  year: 2016
  ident: ref_162
  article-title: Deformable MR prostate segmentation via deep feature learning and sparse patch matching
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2508280
– volume: 7
  start-page: 72
  year: 2005
  ident: ref_12
  article-title: Reproducibility and prognosis of quantitative features extracted from CT images
  publication-title: Transl. Oncol.
  doi: 10.1593/tlo.13844
– ident: ref_127
– volume: 65
  start-page: 87
  year: 2015
  ident: ref_1
  article-title: Global cancer statistics, 2012
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21262
– volume: 174
  start-page: 550
  year: 2018
  ident: ref_115
  article-title: 3D conditional generative adversarial networks for high-quality pet image estimation at low dose
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.03.045
– volume: 34
  start-page: 2366
  year: 2015
  ident: ref_83
  article-title: A stochastic polygons model for glandular structures in colon histology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2433900
– volume: 32
  start-page: 849
  year: 2013
  ident: ref_17
  article-title: Detection and analysis of irregular streaks in dermoscopic images of skin lesions
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2239307
– ident: ref_99
  doi: 10.1007/978-3-319-46723-8_14
– ident: ref_102
  doi: 10.1109/WACV.2016.7477603
– volume: 45
  start-page: 76
  year: 2015
  ident: ref_147
  article-title: Segmentation and classification of skin lesions for disease diagnosis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.03.090
– ident: ref_54
  doi: 10.1109/SICE.2016.7749265
– volume: 35
  start-page: 489
  year: 2017
  ident: ref_84
  article-title: Gland segmentation in colon histology images: The glas challenge contest
  publication-title: Med. Image Anal
  doi: 10.1016/j.media.2016.08.008
– ident: ref_70
  doi: 10.1109/EMBC.2016.7590963
– ident: ref_65
  doi: 10.1109/ICIP.2016.7532834
– ident: ref_161
  doi: 10.1007/978-981-13-1595-4_37
– ident: ref_51
  doi: 10.1109/BIBM.2015.7359868
– volume: 36
  start-page: 61
  year: 2017
  ident: ref_81
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 5
  start-page: 111
  year: 2016
  ident: ref_143
  article-title: Detection of skin cancer using image processing techniques
  publication-title: Int. J. Mod. Trends Eng. Res. (IJMTER)
– ident: ref_66
– volume: 35
  start-page: 1322
  year: 2016
  ident: ref_136
  article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2532122
– ident: ref_67
  doi: 10.1109/IPTA.2016.7821017
– ident: ref_132
  doi: 10.1007/978-3-319-70096-0_39
– volume: Volume 10134
  start-page: 101342E
  year: 2017
  ident: ref_94
  article-title: Fine-tuning convolutional deep features for MRI based brain tumor classification
  publication-title: SPIE Proceedings: Medical Imaging 2017: Computer-Aided Diagnosis
– ident: ref_72
– ident: ref_124
– volume: 3
  start-page: 445
  year: 1994
  ident: ref_7
  article-title: Computerized detection of masses in digital mammograms: automated alignment of breast images and its effects on bilateral-substraction technique
  publication-title: Phys. Med.
  doi: 10.1118/1.597307
– volume: 5
  start-page: 4006
  year: 2014
  ident: ref_8
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5006
– volume: Volume 10135
  start-page: 101351M
  year: 2017
  ident: ref_97
  article-title: Deep residual networks for automatic segmentation of laparoscopic videos of the liver
  publication-title: Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling
– volume: 42
  start-page: 1017
  year: 2009
  ident: ref_35
  article-title: A narrow band graph partitioning method for skin lesion segmentation
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2008.09.006
– ident: ref_104
  doi: 10.1109/ISBI.2016.7493472
– volume: 72
  start-page: 1
  year: 2011
  ident: ref_129
  article-title: Sparse autoencoder
  publication-title: CS294A Lect. Notes
– ident: ref_137
  doi: 10.1109/ICIP.2015.7351343
– ident: ref_93
  doi: 10.1109/BIBM.2016.7822579
– ident: ref_163
  doi: 10.1109/3DV.2016.79
– ident: ref_24
– ident: ref_120
  doi: 10.1007/978-3-030-00934-2_67
– volume: 2
  start-page: 656
  year: 2011
  ident: ref_29
  article-title: A survey on the preprocessing techniques of mammogram for the detection of breast cancer
  publication-title: J. Emerg. Trends Comput. Inf. Sci.
– volume: 4
  start-page: 1824
  year: 2018
  ident: ref_139
  article-title: Cancer detection techniques—A review
  publication-title: Int. Res. J. Eng. Technol. (IRJET)
– volume: 57
  start-page: 2015
  year: 2015
  ident: ref_58
  article-title: Computer-aided classification of lung nodules on computed tomography images via deep learning technique
  publication-title: Onco Targets Ther.
– ident: ref_40
– ident: ref_33
  doi: 10.1007/978-3-319-47157-0_31
– ident: ref_50
  doi: 10.1109/KST.2016.7440527
– ident: ref_63
– ident: ref_113
  doi: 10.1109/CVPR.2018.00917
– ident: ref_150
  doi: 10.1007/978-3-319-75420-8_54
– volume: 66
  start-page: 7
  year: 2016
  ident: ref_2
  article-title: Cancer Statistics, 2016
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21332
– ident: ref_43
  doi: 10.1016/S0738-081X(02)00236-5
– ident: ref_111
– volume: 89
  start-page: 25
  year: 2019
  ident: ref_159
  article-title: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2018.07.037
– ident: ref_121
  doi: 10.1007/978-3-030-00919-9_17
– ident: ref_74
  doi: 10.1109/CEC.2016.7743955
– ident: ref_116
– volume: 5
  start-page: 1081
  year: 2015
  ident: ref_144
  article-title: and Gupta, R. An automated skin lesion diagnosis by using image processing techniques
  publication-title: Int. J. Recent Innov. Trends Comput. Commun.
– ident: ref_151
  doi: 10.1186/s12911-018-0631-9
– ident: ref_46
– ident: ref_85
– ident: ref_123
  doi: 10.1007/978-3-319-59050-9_12
– volume: 4
  start-page: 5947
  year: 2009
  ident: ref_134
  article-title: Deep belief networks
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.5947
– volume: Volume 10133
  start-page: 101330G
  year: 2017
  ident: ref_122
  article-title: Generative adversarial networks for brain lesion detection
  publication-title: Medical Imaging 2017: Image Processing
– volume: 542
  start-page: 115
  year: 2017
  ident: ref_86
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: ref_133
– ident: ref_117
  doi: 10.24963/ijcai.2018/96
– ident: ref_32
  doi: 10.1109/CVPR.2015.7298798
– volume: 37
  start-page: 1591
  year: 2007
  ident: ref_30
  article-title: Boundary delineation in transrectal ultrasound image for prostate cancer
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.02.008
– ident: ref_52
  doi: 10.1109/CINTI.2016.7846429
SSID ssj0000331767
Score 2.624721
SecondaryResourceType review_article
Snippet In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1235
SubjectTerms Artificial intelligence
Brain cancer
Breast cancer
Classification
Deep learning
Diagnosis
Image processing
Learning algorithms
Long short-term memory
Lung cancer
Machine learning
Neural networks
Neuroimaging
Noise
Review
Segmentation
Skin cancer
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dixQxDA_nHqgvh5_n6CkVfNCH8abtbLsVRe6TQ3AR8eDehmmb6sAyu97ucvjf28yXrof6NA_NUJqkTdKkvwC8CFngpeA2tU7INM-NTkvuMR2riTOW23FumwLZqTo7zz9cjC-2YNq_haGyyv5MbA5qP3d0R74fAxkdbW8u5fvF95S6RlF2tW-hUXatFfy7BmLsBmwLQsYawfbhyfTT5-HWJZPRXirdYvzIGO_vO2Lu5ZKAN-nZ6KZ5uuZzXi-dvLWuF-WPq3I2-80und6Bnc6hZAetBtyFLazvwc2PXcr8Prw9aqZmx21NXbVkTZUAO0ZcsA5d9esbdsAOKzurWgDryrE2Z_AAzk9PvhydpV3LhNTFyGOVTgxSai7YzBnkSrj4wQxD7pXBaK-4IniWSIU52hKzLKCPEXLQmqMOzsuHMKrnNT4CJoW21ppghPUUZE6Uk8pTl1Cvg0CVwOueU4Xr8MSprcWsiHEFsbb4g7UJvBx-WLRQGn8n3etZX3R7aln80oAEng_DcTdQiqOscb6ONGLCGwChSLPbSmqYS_I8Or_GJKA3ZDgQENL25khdfWsQt5XWlLBK4NUg7f8t4fG_l_AEbkfXy9DttJB7MFpdrvFpdG9W9lmnsz8BqVL7ig
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BkUoviGebtiAjcYBDSux47XUFQqWlqpDKiZV6i2JnDJGidNmHaP89YycbWtqKUw6exMmMnZkvM_kG4I3PPC8Ft6l1Ik-lNDoteYXpSI2dsdyOpI0Fst_UyUR-PRud_W0H1Ctwfiu0C_2kJrNm7-LX5Sfa8B8D4iTI_t4F_czmgTsz_Pl5Hx6QmzKhj8NpH-vH13JOrjJ2lBWZFqlSRnZUP7ddYwPWcy4pVoqcsFcc1o0o9GYx5cNlOy0vf5dNc8VTHT-GR32IyQ66NfEE7mH7FNZP-yT6M_hwGO-CHXVVdvWcxboBdoQ4ZT3f6o99dsA-17apO0rr2rEui_AcJsdfvh-epH0ThdQRFlmkY4MhWedt5gxyJRwdMEMvK2WQPBhXgbCFpFCiLTHLPFaEmb3WHLV3Vf4C1trzFreA5UJba403wlYBdo6Vy1UV-oZW2gtUCeytNFW4nmE8NLpoCkIaQcvFP1pO4O1wwrQj17hbdHel-mK1SAoCt5riMZnnCbwehml_hKRH2eL5kmTEmEdKIZLZ7Cw1zLUycQL6mg0HgcC9fX2krX9GDm6ldUhhJfBusPb_HmH7zvl3YIPiMBM-VYt8F9YWsyW-pFhnYV_FNfwHXSX6mw
  priority: 102
  providerName: Scholars Portal
Title Cancer Diagnosis Using Deep Learning: A Bibliographic Review
URI https://www.ncbi.nlm.nih.gov/pubmed/31450799
https://www.proquest.com/docview/2547515433
https://www.proquest.com/docview/2281131153
https://pubmed.ncbi.nlm.nih.gov/PMC6770116
https://www.mdpi.com/2072-6694/11/9/1235/pdf?version=1566558778
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: ABDBF
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M48
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xVgJeGN8ERmUkHuAhTew4dowmoe6LCWnVhKhUnrLYsSGiyqq1BbG_fnbiRnQTQoiX5MHnJM6d4_v5Lr8DeG1igwuCZSgVSUJKBQ8LXOowZZkSEsuUyiZBdsyOJ_TjNJ36OqcLn1ZpoXjVfKRJzEnImKARxpGI3G-d0bw073_4rSSHPdI04zzbgj5LrTPeg_5kfDr64krKrTu3hD6JBfeRcm_yYuFYNt3FNteiGw7mzTzJO6t6Xvz6Wcxmvy1CR9twtn78Nvfk-3C1lEN1eY3Z8T_Gdx_ueQcVjVqLegC3dP0Qbp_4EPwj2N1vRocO2hy9aoGarAN0oPUcebbWr-_QCO1Vcla1hNiVQm0M4jFMjg4_7x-HvgRDqCySWYaZ0C7UZ2SshMaMKHvSsTa0ZELb9Q8zR_dipTTVstBxbHRpEbfhHGtuVJk8gV59XutngBLCpZTCCCJLB1ozphJWuqqjJTdEswCGa2XkyvOTuzIZs9ziFKe9_Jr2AnjTdZi31Bx_Ft1Zazf3c3SRW2jMrTdHkySAV12znV0uZFLU-nxlZUiGG0IiK_O0NYbuXgmm1pkWIgC-YSadgGPu3mypq28Ngzfj3AXAAnjbGdTfhvD8H2RfwF3r1wm39U2SHegtL1b6pfWdlnIA_b3D8emnAWx9mGJ7PKHZwM-ZK9pjGEI
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_gkYgvRvxcRa2JJvqwsNvutVciMcBBDoGLMZDwtm67s7rJZe_k7kL45_zbmO4XnkR94mkfOt2mM21npjP9DcDbLMjChIfGN5YLP4q08pMwRb8re1ab0HQjUybIDuXgNPp81j1bgl_NWxiXVtmcieVBnY6tuyPfIEdGke6NhPg0-em7qlEuutqU0Ejq0grpVgkxVj_sOMTLC3LhplsHfZL3O8739052B35dZcC3ZKzP_J5GF83KTGA1hpJb-mCAWZRKjXTEh9IhmhAVRmgSDIIMU3IqM6VCVJlNBf33DixHgubZgeWdveGXr-0tTyBIP0tVYQoJoYMN64R5PnVAn-6Z6qI6vGHj3kzVXJkXk-TyIhmNftOD-w_gfm3Asu1qxa3CEhYP4e5xHaJ_BB93y6FZv8rhy6eszEpgfcQJq9Fcv2-ybbaTm1FeAWbnllUxisdweivMewKdYlzgM2CCK2OMzjQ3qXNqe9IKmbqqpKnKOEoP1htOxbbGL3dlNEYx-TGOtfEfrPXgfdthUkF3_J10rWF9XO_haXy94jx40zbT7nMhlaTA8ZxoeC8sAYuI5mklqXYsEUZkbGvtgVqQYUvgkL0XW4r8R4nwLZVyATIPPrTS_t8Unv97Cq9hZXByfBQfHQwPX8A9Mvu0uxnnYg06s_M5viTTamZe1euXwbfb3jJX8ug5tw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTRq8IP4TNsBIIMFD1sRO7XpiQtu6amNQTYhJewuxY2-RqrRbW037inyqnRMnUCbgaU958CVW7nznO9_5dwBvbWTjjMYqVJqyMEmkCLM4N2GX97RUseomqiqQHfL94-TzSfdkCX42d2FcWWVjEytDnY-1OyPvYCAjcO9NGOtYXxZx1B98mpyHroOUy7Q27TQy32Yh36rgxvwlj0NzdYnh3HTroI-yf0fpYO_77n7oOw6EGh33WdiTxmW2rIq0NDGnGh8mMjbJuTRo7mPu0E2QyiRGZSaKrMkxwLRCxEZYnTP87h1YcckvNBIrO3vDo2_tiU_EcK_mosYXYkxGHe0EezF1oJ_uyuri1njD371Ztnl3Xk6yq8tsNPptTxw8gPvemSXb9ep7CEumfASrX326_jF83K2mJv26nq-YkqpCgfSNmRCP7Hq6SbbJTqFGRQ2eXWhS5yuewPGtMO8pLJfj0jwHwqhQSkkrqcpdgNvjmvHcdSjNhaWGB7DRcCrVHsvctdQYpRjTONamf7A2gPftC5MaxuPvpOsN61Ovz9P01-oL4E07jJro0itZacZzpKG9uAIvQppntaTauVicoOMtZQBiQYYtgUP5Xhwpi7MK7ZsL4ZJlAXxopf2_X3jx7194DauoOumXg-HhGtxDD1C6Q3LK1mF5djE3L9HLmqlXfvkS-HHbGnMNPVk95g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BVgIulK9CaEFG4gCHbGI7seMKCS0tVYVExYGVyinEzhgiVumquwuCX1878UZsK4QQpxw8TmLPOJ7nmbwBeG5TSytGdawN43GWKRlXtMY4F4VRmuo8012C7Ik4nmbvTvPTUOd0EdIqHRRvuo80SyWLhVBZQmmiEv9bZzKv7evv4SjJY488L6QsrsOWyJ0zPoKt6cmHySdfUm7duSf04Q7cJ8bP5PnCs2z6m23uRVcczKt5kjdX7bz6-aOazX7bhI624fP69fvck2_j1VKPza9LzI7_Mb47cDs4qGTSW9RduIbtPbjxPoTg78Org2505LDP0WsWpMs6IIeIcxLYWr_skwl50-hZ0xNiN4b0MYgHMD16-_HgOA4lGGLjkMwyLhT6UJ_VqVFIBTPuginarBYK3f5Hhad7cVKYoa4wTS3WDnFbKSlKa2q-A6P2rMVHQDiTWmtlFdO1B62FMFzUvupoLS1DEcF4rYzSBH5yXyZjVjqc4rVXXtJeBC-GDvOemuPPontr7ZZhjS5KB42l8-YyziN4NjS71eVDJlWLZysnwwraERI5mYe9MQzP4jRzzrRSEcgNMxkEPHP3ZkvbfO0YvIWUPgAWwcvBoP42hMf_ILsLt5xfp_zRN-N7MFqer_CJ852W-mlYHxccxRTd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+Diagnosis+Using+Deep+Learning%3A+A+Bibliographic+Review&rft.jtitle=Cancers&rft.au=Munir%2C+Khushboo&rft.au=Elahi%2C+Hassan&rft.au=Ayub%2C+Afsheen&rft.au=Frezza%2C+Fabrizio&rft.date=2019-08-23&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=11&rft.issue=9&rft_id=info:doi/10.3390%2Fcancers11091235&rft_id=info%3Apmid%2F31450799&rft.externalDocID=31450799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon