Cancer Diagnosis Using Deep Learning: A Bibliographic Review
In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Bord...
        Saved in:
      
    
          | Published in | Cancers Vol. 11; no. 9; p. 1235 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        23.08.2019
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-6694 2072-6694  | 
| DOI | 10.3390/cancers11091235 | 
Cover
| Abstract | In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements. | 
    
|---|---|
| AbstractList | In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements. In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann's machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements.In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann's machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements.  | 
    
| Author | Rizzi, Antonello Elahi, Hassan Ayub, Afsheen Frezza, Fabrizio Munir, Khushboo  | 
    
| AuthorAffiliation | 2 Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy 1 Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy 3 Department of Basic and Applied Science for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14/16, 00161 Rome, Italy  | 
    
| AuthorAffiliation_xml | – name: 3 Department of Basic and Applied Science for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14/16, 00161 Rome, Italy – name: 2 Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy – name: 1 Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy  | 
    
| Author_xml | – sequence: 1 givenname: Khushboo orcidid: 0000-0002-4867-5707 surname: Munir fullname: Munir, Khushboo – sequence: 2 givenname: Hassan orcidid: 0000-0001-6836-604X surname: Elahi fullname: Elahi, Hassan – sequence: 3 givenname: Afsheen surname: Ayub fullname: Ayub, Afsheen – sequence: 4 givenname: Fabrizio orcidid: 0000-0001-9457-7617 surname: Frezza fullname: Frezza, Fabrizio – sequence: 5 givenname: Antonello orcidid: 0000-0001-8244-0015 surname: Rizzi fullname: Rizzi, Antonello  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31450799$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkUtPAyEUhYnR-F67M5O4cVOFgYFijEltfSVNTIyuCaV3KmYKI8xo-u-l1mcXyuZC-M7J4bCFVp13gNAewUeUSnxstDMQIiFYkpwWK2gzxyLvcC7Z6o_9BtqN8QmnRSkRXKyjDUpYgYWUm-i0_26SDayeOB9tzB6idZNsAFBnQ9DBpdNJ1svO7aiyfhJ0_WhNdgcvFl530Fqpqwi7H3MbPVxe3PevO8Pbq5t-b9gxrCuaTlcC5gyXI2wkEJ6bNABDycZcAiOU8EKybqKAwUgDxiWMMeOlEAREacZ0G-GFb-tqPXvVVaXqYKc6zBTBat6FWuoiSc4WkrodTWFswDVBf8u8tur3jbOPauJfFBcCE8KTweGHQfDPLcRGTW00UFXagW-jyvMuSdFJQRN6sIQ--Ta41IjKCyYKUjA6p_Z_JvqK8vkXCSgWgAk-xgClMrbRjfXzgLb646nHS7r_ynkDAwOvCQ | 
    
| CitedBy_id | crossref_primary_10_3390_cancers12102881 crossref_primary_10_3390_cancers13236116 crossref_primary_10_1002_rcs_2169 crossref_primary_10_1109_ACCESS_2024_3359418 crossref_primary_10_3390_s21186264 crossref_primary_10_1111_jop_13397 crossref_primary_10_1109_ACCESS_2021_3093616 crossref_primary_10_1186_s40001_022_00916_4 crossref_primary_10_1088_1757_899X_1074_1_012025 crossref_primary_10_1007_s11042_023_16236_6 crossref_primary_10_3390_life12122036 crossref_primary_10_1007_s11831_021_09648_w crossref_primary_10_1158_2767_9764_CRC_23_0083 crossref_primary_10_1038_s41598_021_86327_7 crossref_primary_10_4093_dmj_2022_0349 crossref_primary_10_1134_S1063778822090241 crossref_primary_10_1016_j_csbj_2020_08_003 crossref_primary_10_1007_s12652_021_03613_y crossref_primary_10_1109_ACCESS_2023_3339635 crossref_primary_10_3390_app10228298 crossref_primary_10_3390_electronics12030750 crossref_primary_10_1007_s10278_021_00541_3 crossref_primary_10_3389_fonc_2022_1068198 crossref_primary_10_1111_odi_13825 crossref_primary_10_1093_bib_bbae420 crossref_primary_10_1155_2022_8685604 crossref_primary_10_3389_fpsyg_2022_901796 crossref_primary_10_3390_cancers13194974 crossref_primary_10_1016_j_ultrasmedbio_2022_06_019 crossref_primary_10_17816_MAJ631404 crossref_primary_10_1002_cam4_7218 crossref_primary_10_1002_ima_22752 crossref_primary_10_3389_fmed_2023_1165865 crossref_primary_10_3390_s21061938 crossref_primary_10_1007_s10479_022_04755_8 crossref_primary_10_1088_1361_6560_ace1cf crossref_primary_10_1155_2022_7459455 crossref_primary_10_1159_000541573 crossref_primary_10_1007_s13198_023_01871_x crossref_primary_10_3390_diagnostics12081793 crossref_primary_10_3390_app11104321 crossref_primary_10_1177_09544119221129917 crossref_primary_10_3390_genes13010065 crossref_primary_10_1016_j_ebiom_2022_104207 crossref_primary_10_1088_1757_899X_1128_1_012049 crossref_primary_10_3389_fonc_2022_908873 crossref_primary_10_3390_math10060863 crossref_primary_10_1097_MOU_0000000000000813 crossref_primary_10_35713_aic_v1_i1_1 crossref_primary_10_3390_cancers12123817 crossref_primary_10_1109_JIOT_2021_3109435 crossref_primary_10_1249_MSS_0000000000002674 crossref_primary_10_3390_life12071084 crossref_primary_10_1186_s13244_023_01380_2 crossref_primary_10_1002_cam4_70069 crossref_primary_10_1007_s11042_024_19558_1 crossref_primary_10_1145_3676282 crossref_primary_10_1186_s12859_021_04301_6 crossref_primary_10_53070_bbd_1173074 crossref_primary_10_1007_s12530_024_09608_2 crossref_primary_10_1186_s12911_022_02047_6 crossref_primary_10_1177_0022034520902128 crossref_primary_10_1080_09500340_2024_2313724 crossref_primary_10_1158_0008_5472_CAN_23_2040 crossref_primary_10_17341_gazimmfd_1094154 crossref_primary_10_3390_diagnostics14040454 crossref_primary_10_1093_comjnl_bxaa198 crossref_primary_10_1016_j_compbiomed_2022_105623 crossref_primary_10_3390_a15020049 crossref_primary_10_3390_s23114993 crossref_primary_10_46604_aiti_2023_9488 crossref_primary_10_1177_15330338211016386 crossref_primary_10_3934_mbe_2023706 crossref_primary_10_3390_biology11010047 crossref_primary_10_1007_s00500_022_06989_x crossref_primary_10_1053_j_seminhematol_2024_11_002 crossref_primary_10_1016_j_critrevonc_2024_104528 crossref_primary_10_4103_EUS_D_21_00131 crossref_primary_10_3390_diagnostics10110958 crossref_primary_10_3390_diagnostics13091563 crossref_primary_10_3390_electronics10243183 crossref_primary_10_3390_cancers14153803 crossref_primary_10_32604_iasc_2022_026601 crossref_primary_10_1038_s41598_022_10441_3 crossref_primary_10_46387_bjesr_1114243 crossref_primary_10_1007_s42044_024_00216_6 crossref_primary_10_1142_S0219467823500158 crossref_primary_10_3390_s22114156 crossref_primary_10_55544_jrasb_2_5_9 crossref_primary_10_1080_13682199_2023_2298111 crossref_primary_10_1016_j_csbj_2024_07_012 crossref_primary_10_3390_bdcc8070080 crossref_primary_10_2196_22148 crossref_primary_10_1186_s13321_020_00421_y crossref_primary_10_3389_fonc_2022_804632 crossref_primary_10_1109_ACCESS_2021_3104724 crossref_primary_10_1371_journal_pone_0305268 crossref_primary_10_18034_ra_v6i3_672 crossref_primary_10_1155_2022_5905230 crossref_primary_10_1177_10760296231171082 crossref_primary_10_3389_frai_2023_1128153 crossref_primary_10_37391_ijeer_100445 crossref_primary_10_3390_bios12030144 crossref_primary_10_1109_ACCESS_2023_3235833 crossref_primary_10_1155_2021_9409508 crossref_primary_10_3389_fbinf_2023_1103493 crossref_primary_10_1016_j_colsurfb_2023_113716 crossref_primary_10_1016_j_apm_2020_08_079 crossref_primary_10_1016_j_molmed_2024_11_009 crossref_primary_10_32446_0368_1025it_2021_6_66_71 crossref_primary_10_3390_cancers13071590 crossref_primary_10_1038_s41598_021_89352_8 crossref_primary_10_3390_app13053370 crossref_primary_10_3390_diagnostics13152555 crossref_primary_10_3390_s23115099 crossref_primary_10_1016_j_vrih_2022_09_002 crossref_primary_10_1186_s43042_024_00522_5 crossref_primary_10_1007_s12553_021_00586_y crossref_primary_10_3389_fpsyt_2022_1105496 crossref_primary_10_3390_pr11072047 crossref_primary_10_1007_s00339_023_06648_4 crossref_primary_10_1016_j_bspc_2021_102527 crossref_primary_10_3390_s22010372 crossref_primary_10_1016_j_matpr_2022_02_395 crossref_primary_10_1038_s41598_023_30309_4 crossref_primary_10_3389_fphar_2021_720694 crossref_primary_10_37285_ijpsn_2024_17_2_7 crossref_primary_10_1088_1757_899X_1022_1_012020 crossref_primary_10_3390_app12178755 crossref_primary_10_1016_j_bspc_2023_105474 crossref_primary_10_1002_cbdv_202401315 crossref_primary_10_1007_s11042_024_20349_x crossref_primary_10_4018_IJIIT_298695 crossref_primary_10_3390_s21124048 crossref_primary_10_3389_fmicb_2022_1024104 crossref_primary_10_3390_jpm13121681 crossref_primary_10_1155_2022_1450723 crossref_primary_10_15407_exp_oncology_2024_04_289 crossref_primary_10_1007_s11042_021_10952_7 crossref_primary_10_1002_jhbp_825 crossref_primary_10_2174_1568026622666220701091339 crossref_primary_10_3390_math11061279 crossref_primary_10_3390_app10061988 crossref_primary_10_3390_app10103429 crossref_primary_10_1109_ACCESS_2023_3289224 crossref_primary_10_1063_5_0129203 crossref_primary_10_3390_ijms25116186 crossref_primary_10_1007_s00521_023_09312_3 crossref_primary_10_29137_umagd_1116295 crossref_primary_10_1155_2021_1701447 crossref_primary_10_3390_cancers14030623 crossref_primary_10_1007_s42979_023_01701_8 crossref_primary_10_3233_XST_200694 crossref_primary_10_3390_tomography9040096 crossref_primary_10_3390_app10030997 crossref_primary_10_1109_JBHI_2023_3237749 crossref_primary_10_3390_biomedicines9020159 crossref_primary_10_3390_cancers15041183 crossref_primary_10_1016_j_csbj_2020_07_009 crossref_primary_10_3390_diagnostics14010089 crossref_primary_10_4274_atfm_galenos_2022_78309 crossref_primary_10_1007_s41666_021_00093_9 crossref_primary_10_1038_s41390_022_02181_x crossref_primary_10_1109_JBHI_2022_3192010 crossref_primary_10_1007_s40747_022_00694_w crossref_primary_10_1080_08037051_2022_2128716 crossref_primary_10_7717_peerj_cs_1903 crossref_primary_10_1109_ACCESS_2023_3260027 crossref_primary_10_1093_noajnl_vdae045 crossref_primary_10_1109_ACCESS_2020_3016715 crossref_primary_10_1038_s41598_022_07445_4 crossref_primary_10_21205_deufmd_2022247114 crossref_primary_10_1016_j_oraloncology_2021_105254 crossref_primary_10_1007_s11356_022_22167_w crossref_primary_10_3390_s22020496 crossref_primary_10_3390_ma14247846 crossref_primary_10_1007_s12672_023_00823_y crossref_primary_10_2174_1573405617666210923144739 crossref_primary_10_3389_frai_2022_884749 crossref_primary_10_3390_pharmaceutics16020260 crossref_primary_10_2174_1386207325666220304112914 crossref_primary_10_1007_s11831_025_10275_y crossref_primary_10_1186_s12888_023_05109_9 crossref_primary_10_3390_s21062077 crossref_primary_10_1109_ACCESS_2023_3335196 crossref_primary_10_1111_cyt_12942 crossref_primary_10_1111_odi_14318 crossref_primary_10_1049_ipr2_13246 crossref_primary_10_1016_j_chaos_2020_110120 crossref_primary_10_1016_j_cmpb_2022_106874 crossref_primary_10_1088_1742_6596_1963_1_012066 crossref_primary_10_1097_DM_2023_00001 crossref_primary_10_3390_cancers14061370 crossref_primary_10_1016_j_compbiomed_2021_105161 crossref_primary_10_1007_s11042_022_12229_z crossref_primary_10_1016_j_aej_2024_11_063 crossref_primary_10_1007_s11018_021_01962_w crossref_primary_10_1016_j_matpr_2021_04_241 crossref_primary_10_1016_j_eswa_2024_124113 crossref_primary_10_1016_j_health_2021_100010 crossref_primary_10_1088_1752_7163_acb284 crossref_primary_10_3390_make6010033 crossref_primary_10_3390_rs12030454 crossref_primary_10_3389_fpubh_2023_1090146 crossref_primary_10_33131_24222208_392 crossref_primary_10_3390_diagnostics12102472 crossref_primary_10_1186_s12903_021_01642_9 crossref_primary_10_1002_ima_22546 crossref_primary_10_3390_e23101248 crossref_primary_10_1007_s10462_023_10426_2 crossref_primary_10_3390_cancers17010121 crossref_primary_10_1016_j_compbiomed_2022_106443 crossref_primary_10_1109_TIM_2023_3293555 crossref_primary_10_33131_24222208_388 crossref_primary_10_1016_S1470_2045_20_30751_8  | 
    
| Cites_doi | 10.2196/jmir.2930 10.1109/TMI.2015.2481436 10.1109/TMI.2019.2927182 10.1109/DICTA.2015.7371234 10.1118/1.1997327 10.1109/ICCV.2017.244 10.1109/ICIP.2014.7025716 10.1038/nature14539 10.1109/IIH-MSP.2015.41 10.1109/ISSNIP.2007.4496905 10.1016/j.media.2017.10.002 10.1016/j.compmedimag.2007.02.002 10.1109/TMI.2016.2536809 10.1109/ISBI.2017.7950686 10.1016/j.eswa.2015.04.034 10.1109/ICASSP.2016.7471811 10.1162/neco.2006.18.7.1527 10.1007/978-3-642-33454-2_46 10.1109/TMI.2016.2538465 10.1117/12.2266335 10.1007/3-540-26431-0_97 10.1109/TBME.2012.2209423 10.1109/34.206958 10.1117/12.2253513 10.1109/JBHI.2016.2637004 10.1109/SMC.2016.7844626 10.1007/978-3-662-56537-7_89 10.4236/jcc.2015.311023 10.1109/CVPR.2015.7298965 10.1017/CBO9780511546860 10.1117/12.2253620 10.1093/oso/9780198538493.001.0001 10.1016/j.patcog.2018.09.007 10.1002/mrm.22147 10.1111/j.1600-0846.2008.00301.x 10.1109/NER.2015.7146798 10.1007/978-3-319-75238-9_11 10.1109/ISBI.2016.7493473 10.1109/EMBC.2016.7590962 10.1109/ISBI.2016.7493284 10.1016/j.compmedimag.2016.11.004 10.1088/0031-9155/45/10/308 10.1109/TMI.2016.2642839 10.1016/j.procs.2016.05.238 10.1109/EMBC.2015.7319032 10.1109/ICCV.2013.413 10.1109/IWSSIP.2018.8439373 10.1109/TMI.2016.2528120 10.1109/ISBI.2016.7493349 10.1007/978-3-319-10593-2_13 10.1109/TMI.2018.2820120 10.1109/TPAMI.2013.50 10.1109/ICASSP.2013.6638947 10.1109/IJCNN.2016.7727519 10.1109/TBME.2015.2430895 10.1118/1.4944498 10.1109/ICCAS.2016.7832398 10.1155/2018/5105709 10.1109/ICEI18.2018.8448814 10.1117/1.JMI.5.2.021208 10.1109/ICEEICT.2015.7307530 10.1007/978-3-030-00214-5_150 10.1093/annonc/mdy166 10.1109/TMI.2007.895460 10.1080/03091900802451315 10.1007/11752912_23 10.1109/ACCESS.2014.2373335 10.1007/978-3-642-39608-3_3 10.1007/978-3-030-01201-4_31 10.1109/EMBC.2016.7590782 10.1007/s10278-014-9718-8 10.1118/1.3528204 10.1007/s12021-014-9245-2 10.1109/TBME.2016.2613502 10.1109/ICCV.2015.178 10.1109/NSSMIC.2018.8824732 10.1007/978-3-030-00934-2_92 10.1016/j.media.2013.12.002 10.1016/j.patcog.2016.05.029 10.1109/TMI.2015.2508280 10.1593/tlo.13844 10.3322/caac.21262 10.1016/j.neuroimage.2018.03.045 10.1109/TMI.2015.2433900 10.1109/TMI.2013.2239307 10.1007/978-3-319-46723-8_14 10.1109/WACV.2016.7477603 10.1016/j.procs.2015.03.090 10.1109/SICE.2016.7749265 10.1016/j.media.2016.08.008 10.1109/EMBC.2016.7590963 10.1109/ICIP.2016.7532834 10.1007/978-981-13-1595-4_37 10.1109/BIBM.2015.7359868 10.1016/j.media.2016.10.004 10.1109/TMI.2016.2532122 10.1109/IPTA.2016.7821017 10.1007/978-3-319-70096-0_39 10.1118/1.597307 10.1038/ncomms5006 10.1016/j.patcog.2008.09.006 10.1109/ISBI.2016.7493472 10.1109/ICIP.2015.7351343 10.1109/BIBM.2016.7822579 10.1109/3DV.2016.79 10.1007/978-3-030-00934-2_67 10.1007/978-3-319-47157-0_31 10.1109/KST.2016.7440527 10.1109/CVPR.2018.00917 10.1007/978-3-319-75420-8_54 10.3322/caac.21332 10.1016/S0738-081X(02)00236-5 10.1016/j.gie.2018.07.037 10.1007/978-3-030-00919-9_17 10.1109/CEC.2016.7743955 10.1186/s12911-018-0631-9 10.1007/978-3-319-59050-9_12 10.4249/scholarpedia.5947 10.1038/nature21056 10.24963/ijcai.2018/96 10.1109/CVPR.2015.7298798 10.1016/j.compbiomed.2007.02.008 10.1109/CINTI.2016.7846429  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019  | 
    
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019  | 
    
| DBID | AAYXX CITATION NPM 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.3390/cancers11091235 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) Biological Sciences ProQuest Research Library Biological science database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2072-6694 | 
    
| ExternalDocumentID | 10.3390/cancers11091235 PMC6770116 31450799 10_3390_cancers11091235  | 
    
| Genre | Journal Article Review  | 
    
| GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM TUS 3V. GROUPED_DOAJ NPM 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADRAZ ADTOC C1A IPNFZ ITC RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c487t-89e0640fb0c9e162cc9ee0ef4d69e41316594889ee4ebae00fed046f771e7fcd3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2072-6694 | 
    
| IngestDate | Sun Oct 26 04:11:24 EDT 2025 Tue Sep 30 16:55:14 EDT 2025 Thu Oct 02 08:04:44 EDT 2025 Fri Jul 25 12:17:58 EDT 2025 Thu Jan 02 23:06:07 EST 2025 Thu Apr 24 23:09:38 EDT 2025 Thu Oct 16 04:40:28 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Keywords | convolutional neural networks (CNNs) deep learning recurrent neural networks (RNNs) long short-term memory (LTSM) restricted Boltzmann’s machine (RBM) generative adversarial models (GANs) deep autoencoders (DANs)  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c487t-89e0640fb0c9e162cc9ee0ef4d69e41316594889ee4ebae00fed046f771e7fcd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23  | 
    
| ORCID | 0000-0002-4867-5707 0000-0001-8244-0015 0000-0001-9457-7617 0000-0001-6836-604X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-6694/11/9/1235/pdf?version=1566558778 | 
    
| PMID | 31450799 | 
    
| PQID | 2547515433 | 
    
| PQPubID | 2032421 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_cancers11091235 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6770116 proquest_miscellaneous_2281131153 proquest_journals_2547515433 pubmed_primary_31450799 crossref_citationtrail_10_3390_cancers11091235 crossref_primary_10_3390_cancers11091235  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20190823 | 
    
| PublicationDateYYYYMMDD | 2019-08-23 | 
    
| PublicationDate_xml | – month: 8 year: 2019 text: 20190823 day: 23  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Cancers | 
    
| PublicationTitleAlternate | Cancers (Basel) | 
    
| PublicationYear | 2019 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Tustison (ref_21) 2015; 13 ref_137 ref_93 Setio (ref_60) 2016; 35 ref_92 Zhang (ref_30) 2007; 37 ref_91 ref_138 ref_90 Yu (ref_142) 2016; 36 Karssemeijer (ref_5) 2000; 45 Messadi (ref_25) 2009; 33 ref_99 ref_130 ref_133 ref_132 Li (ref_103) 2015; 3 ref_19 ref_18 Sitinukunwattana (ref_84) 2017; 35 Moreno (ref_160) 2019; 99 ref_16 ref_15 Cha (ref_96) 2016; 43 ref_126 ref_125 ref_128 ref_127 Hinton (ref_135) 2006; 18 Sumithra (ref_147) 2015; 45 ref_24 ref_120 Kingravi (ref_31) 2008; 14 ref_20 ref_121 ref_124 ref_123 LeCun (ref_23) 2015; 521 Zacharaki (ref_27) 2009; 2 Sadeghi (ref_17) 2013; 32 Bengio (ref_22) 2013; 35 ref_28 Hua (ref_58) 2015; 57 Walker (ref_158) 2019; 40 Hawkins (ref_11) 2005; 2 ref_72 ref_71 Pereira (ref_80) 2016; 35 ref_70 Ahmed (ref_94) 2017; Volume 10134 ref_151 ref_79 ref_150 ref_77 ref_152 ref_76 ref_155 ref_154 ref_74 ref_157 ref_73 ref_156 Guo (ref_162) 2016; 35 Wang (ref_115) 2018; 174 Kallenberg (ref_136) 2016; 35 Sitinukunwattana (ref_83) 2015; 34 Torre (ref_1) 2015; 65 ref_148 ref_149 ref_140 ref_89 ref_88 ref_141 ref_87 ref_85 Gordon (ref_98) 2017; Volume 10134 Albarqouni (ref_48) 2016; 35 ref_50 Giotis (ref_69) 2015; 42 Wei (ref_10) 2005; 32 Siegel (ref_2) 2016; 66 ref_54 Eltonsy (ref_9) 2007; 26 ref_53 ref_52 ref_51 Horie (ref_159) 2019; 89 Gibson (ref_97) 2017; Volume 10135 Saha (ref_144) 2015; 5 Shen (ref_57) 2017; 61 ref_59 Hou (ref_131) 2019; 86 Esteva (ref_86) 2017; 542 Balagurunthan (ref_12) 2005; 7 ref_61 Lee (ref_41) 1993; 15 Reddy (ref_26) 2014; 1 ref_68 ref_161 ref_67 Kistler (ref_78) 2013; 15 ref_66 ref_163 Yin (ref_7) 1994; 3 ref_65 ref_64 Aerts (ref_8) 2014; 5 ref_63 ref_62 Ng (ref_129) 2011; 72 ref_167 Tian (ref_165) 2018; 5 Yuan (ref_35) 2009; 42 Ponraj (ref_29) 2011; 2 Hinton (ref_134) 2009; 4 Litjens (ref_75) 2014; 18 ref_114 ref_117 ref_116 ref_119 Jain (ref_107) 2009; 21 ref_118 Xing (ref_101) 2016; 35 ref_36 Kamnitsas (ref_81) 2017; 36 Cha (ref_105) 2017; Volume 10134 ref_34 ref_33 Taqdir (ref_139) 2018; 4 ref_32 Dou (ref_56) 2017; 64 ref_111 Han (ref_13) 2015; 28 ref_110 ref_113 ref_112 Mehta (ref_145) 2016; 85 ref_39 ref_38 Armato (ref_166) 2011; 38 ref_37 Zhao (ref_82) 2018; 43 ref_104 Yu (ref_164) 2017; 21 ref_106 ref_108 Haenssle (ref_153) 2018; 29 Doi (ref_4) 2007; 31 ref_109 ref_47 ref_46 ref_45 ref_44 ref_43 ref_100 ref_42 Song (ref_95) 2015; 62 ref_102 Alex (ref_122) 2017; Volume 10133 ref_40 ref_3 Barata (ref_14) 2012; 59 ref_49 Bhuiyan (ref_146) 2013; 4 Wang (ref_55) 2017; 57 Chandrahasa (ref_143) 2016; 5 ref_6  | 
    
| References_xml | – volume: 1 start-page: 2348 year: 2014 ident: ref_26 article-title: Developing an approach to brain MRI image preprocessing for tumor detection publication-title: Int. J. Res. – volume: 15 start-page: e245 year: 2013 ident: ref_78 article-title: The virutal skeleton database: An open access repository for biomedical research and collaboration publication-title: J. Med. Internet Res. doi: 10.2196/jmir.2930 – volume: 35 start-page: 550 year: 2016 ident: ref_101 article-title: An automaticl learning-based framework or robust nucleus segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2481436 – ident: ref_110 doi: 10.1109/TMI.2019.2927182 – ident: ref_138 doi: 10.1109/DICTA.2015.7371234 – volume: 32 start-page: 2827 year: 2005 ident: ref_10 article-title: Computer-aided detection of breast masses on full field digital mammograms publication-title: Med. Phys. doi: 10.1118/1.1997327 – ident: ref_112 doi: 10.1109/ICCV.2017.244 – ident: ref_15 doi: 10.1109/ICIP.2014.7025716 – ident: ref_39 – volume: 521 start-page: 436 year: 2015 ident: ref_23 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_79 doi: 10.1109/IIH-MSP.2015.41 – ident: ref_37 doi: 10.1109/ISSNIP.2007.4496905 – ident: ref_42 – volume: 43 start-page: 98 year: 2018 ident: ref_82 article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.10.002 – volume: 31 start-page: 198 year: 2007 ident: ref_4 article-title: Computer-aided diagnosis in medical imaging: Historical review, current status and future potential publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2007.02.002 – ident: ref_71 – volume: 35 start-page: 1160 year: 2016 ident: ref_60 article-title: Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2536809 – ident: ref_61 doi: 10.1109/ISBI.2017.7950686 – volume: 42 start-page: 6578 year: 2015 ident: ref_69 article-title: MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.034 – ident: ref_88 doi: 10.1109/ICASSP.2016.7471811 – volume: 18 start-page: 1527 year: 2006 ident: ref_135 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: ref_77 – ident: ref_18 doi: 10.1007/978-3-642-33454-2_46 – volume: 35 start-page: 1240 year: 2016 ident: ref_80 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2538465 – ident: ref_53 doi: 10.1117/12.2266335 – ident: ref_6 doi: 10.1007/3-540-26431-0_97 – volume: 59 start-page: 2744 year: 2012 ident: ref_14 article-title: A system for the detection of pigment network in dermoscopy images using directional filters publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2209423 – volume: 99 start-page: 33 year: 2019 ident: ref_160 article-title: Diagnostic accuracy of non-melanocytic pink flat skin lesions on the legs: Dermoscopic and reflectance confocal microscopy evaluation publication-title: Acta Dermato-Venereologica – volume: Volume 10134 start-page: 1013402 year: 2017 ident: ref_98 article-title: Segmentation of inner and outer bladder wall using deep-learning convolutional neural networks in CT urography publication-title: Medical Imaging 2017: Computer-Aided Diagnosis – volume: 15 start-page: 388 year: 1993 ident: ref_41 article-title: Feature extraction based on decision boundaries publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.206958 – ident: ref_62 – ident: ref_92 doi: 10.1117/12.2253513 – volume: 21 start-page: 65 year: 2017 ident: ref_164 article-title: Integrating online and offline three-dimensional deep learning for automanted plopy detection in colonscopy videos publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2637004 – ident: ref_45 – ident: ref_87 doi: 10.1109/SMC.2016.7844626 – ident: ref_119 doi: 10.1007/978-3-662-56537-7_89 – volume: 3 start-page: 146 year: 2015 ident: ref_103 article-title: Automatic segmentation of liver tumor in CT images with deep convolutional neural networks publication-title: J. Comput. Commun. doi: 10.4236/jcc.2015.311023 – ident: ref_106 doi: 10.1109/CVPR.2015.7298965 – ident: ref_64 doi: 10.1017/CBO9780511546860 – ident: ref_91 doi: 10.1117/12.2253620 – ident: ref_128 doi: 10.1093/oso/9780198538493.001.0001 – volume: 86 start-page: 188 year: 2019 ident: ref_131 article-title: Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.09.007 – volume: 2 start-page: 1609 year: 2009 ident: ref_27 article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22147 – volume: 14 start-page: 347 year: 2008 ident: ref_31 article-title: Border detection in dermoscopy images using statistical region merging publication-title: Skin Res. Technol. doi: 10.1111/j.1600-0846.2008.00301.x – ident: ref_3 – ident: ref_140 – ident: ref_141 doi: 10.1109/NER.2015.7146798 – ident: ref_118 doi: 10.1007/978-3-319-75238-9_11 – ident: ref_90 doi: 10.1109/ISBI.2016.7493473 – ident: ref_167 doi: 10.1109/EMBC.2016.7590962 – ident: ref_47 – ident: ref_68 doi: 10.1109/ISBI.2016.7493284 – volume: 57 start-page: 10 year: 2017 ident: ref_55 article-title: Lung nodule classification using deep feature fusion in chest radiography publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2016.11.004 – volume: 45 start-page: 2843 year: 2000 ident: ref_5 article-title: An automatic method to discriminate malignant masses from normal tissue in digital mammograms1 publication-title: Phys. Meds. Biol. doi: 10.1088/0031-9155/45/10/308 – volume: 21 start-page: 769 year: 2009 ident: ref_107 article-title: Natural image denoising with convolutional networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 36 start-page: 994 year: 2016 ident: ref_142 article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2642839 – volume: 85 start-page: 309 year: 2016 ident: ref_145 article-title: Review on techniques and steps of computer aided skin cancer diagnosis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.05.238 – ident: ref_157 – ident: ref_20 doi: 10.1109/EMBC.2015.7319032 – ident: ref_34 doi: 10.1109/ICCV.2013.413 – ident: ref_155 doi: 10.1109/IWSSIP.2018.8439373 – volume: 35 start-page: 1313 year: 2016 ident: ref_48 article-title: AggNet: Deep learning from crowds for mitosis detection in breast cancer histology images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528120 – ident: ref_100 doi: 10.1109/ISBI.2016.7493349 – volume: Volume 10134 start-page: 1013404 year: 2017 ident: ref_105 article-title: Bladder cancer treantment response assessment using deep learning learning in CT with transfer learning publication-title: Medical Imaging 2017: Computer-Aided Diagnosis – ident: ref_108 doi: 10.1007/978-3-319-10593-2_13 – ident: ref_114 doi: 10.1109/TMI.2018.2820120 – ident: ref_44 – volume: 35 start-page: 1798 year: 2013 ident: ref_22 article-title: Representation learning: A review and new prespectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – ident: ref_73 – ident: ref_126 doi: 10.1109/ICASSP.2013.6638947 – ident: ref_49 doi: 10.1109/IJCNN.2016.7727519 – volume: 62 start-page: 2421 year: 2015 ident: ref_95 article-title: Accurate segmentation of cervical cytoplasm and nuclei based on multi-scale convolutional network and graph partitioning publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2430895 – volume: 43 start-page: 1882 year: 2016 ident: ref_96 article-title: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets publication-title: Med. Phys. doi: 10.1118/1.4944498 – ident: ref_59 doi: 10.1109/ICCAS.2016.7832398 – ident: ref_130 doi: 10.1155/2018/5105709 – ident: ref_149 doi: 10.1109/ICEI18.2018.8448814 – volume: 5 start-page: 021208 year: 2018 ident: ref_165 article-title: PSNet: Prostate segmentation on MRI based on a convolutional neural network publication-title: J. Med. Imaging doi: 10.1117/1.JMI.5.2.021208 – ident: ref_28 doi: 10.1109/ICEEICT.2015.7307530 – ident: ref_148 doi: 10.1007/978-3-030-00214-5_150 – volume: 29 start-page: 1836 year: 2018 ident: ref_153 article-title: Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists publication-title: Ann. Oncol. doi: 10.1093/annonc/mdy166 – volume: 26 start-page: 880 year: 2007 ident: ref_9 article-title: A concentric morphology for the detection of masses in mammograph publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.895460 – volume: 33 start-page: 288 year: 2009 ident: ref_25 article-title: Extraction of specific parameters for skin tumour classification publication-title: J. Med. Eng. Technol. doi: 10.1080/03091900802451315 – ident: ref_38 doi: 10.1007/11752912_23 – volume: 2 start-page: 1418 year: 2005 ident: ref_11 article-title: Predicting outcomes of nonsmall cell lung cancer using CT image features publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2373335 – ident: ref_89 – ident: ref_16 doi: 10.1007/978-3-642-39608-3_3 – ident: ref_156 doi: 10.1007/978-3-030-01201-4_31 – ident: ref_154 – ident: ref_76 doi: 10.1109/EMBC.2016.7590782 – volume: 28 start-page: 99 year: 2015 ident: ref_13 article-title: Texture feature analysis for computer-aided diagnosis on pulmonary nodules publication-title: J. Digit. Imaging doi: 10.1007/s10278-014-9718-8 – ident: ref_36 – ident: ref_19 – volume: 4 start-page: 1 year: 2013 ident: ref_146 article-title: Image processing for skin cancer features extraction publication-title: Int. J. Sci. Eng. Res. – volume: 38 start-page: 915 year: 2011 ident: ref_166 article-title: The lung image database consortium (LIDC) and image database resource initiative(IDRI): A compelete reference database of lung nodules on CT scans publication-title: Med. Phys. doi: 10.1118/1.3528204 – volume: 13 start-page: 209 year: 2015 ident: ref_21 article-title: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation(simplified) with ANTsR publication-title: Neuroinformatics doi: 10.1007/s12021-014-9245-2 – volume: 64 start-page: 1558 year: 2017 ident: ref_56 article-title: Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2613502 – ident: ref_109 doi: 10.1109/ICCV.2015.178 – ident: ref_152 doi: 10.1109/NSSMIC.2018.8824732 – ident: ref_125 doi: 10.1007/978-3-030-00934-2_92 – volume: 18 start-page: 359 year: 2014 ident: ref_75 article-title: Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge publication-title: Med. Imaging Anal. doi: 10.1016/j.media.2013.12.002 – volume: 40 start-page: 176 year: 2019 ident: ref_158 article-title: Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio (sonification) outputs: Laboratory and prospective observational studies publication-title: EBio Med. – volume: 61 start-page: 663 year: 2017 ident: ref_57 article-title: Multicrop convolutional neural networks for lung nodule malignancy suspiciousness classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.05.029 – volume: 35 start-page: 1077 year: 2016 ident: ref_162 article-title: Deformable MR prostate segmentation via deep feature learning and sparse patch matching publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2508280 – volume: 7 start-page: 72 year: 2005 ident: ref_12 article-title: Reproducibility and prognosis of quantitative features extracted from CT images publication-title: Transl. Oncol. doi: 10.1593/tlo.13844 – ident: ref_127 – volume: 65 start-page: 87 year: 2015 ident: ref_1 article-title: Global cancer statistics, 2012 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21262 – volume: 174 start-page: 550 year: 2018 ident: ref_115 article-title: 3D conditional generative adversarial networks for high-quality pet image estimation at low dose publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.03.045 – volume: 34 start-page: 2366 year: 2015 ident: ref_83 article-title: A stochastic polygons model for glandular structures in colon histology images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2433900 – volume: 32 start-page: 849 year: 2013 ident: ref_17 article-title: Detection and analysis of irregular streaks in dermoscopic images of skin lesions publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2239307 – ident: ref_99 doi: 10.1007/978-3-319-46723-8_14 – ident: ref_102 doi: 10.1109/WACV.2016.7477603 – volume: 45 start-page: 76 year: 2015 ident: ref_147 article-title: Segmentation and classification of skin lesions for disease diagnosis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.03.090 – ident: ref_54 doi: 10.1109/SICE.2016.7749265 – volume: 35 start-page: 489 year: 2017 ident: ref_84 article-title: Gland segmentation in colon histology images: The glas challenge contest publication-title: Med. Image Anal doi: 10.1016/j.media.2016.08.008 – ident: ref_70 doi: 10.1109/EMBC.2016.7590963 – ident: ref_65 doi: 10.1109/ICIP.2016.7532834 – ident: ref_161 doi: 10.1007/978-981-13-1595-4_37 – ident: ref_51 doi: 10.1109/BIBM.2015.7359868 – volume: 36 start-page: 61 year: 2017 ident: ref_81 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 5 start-page: 111 year: 2016 ident: ref_143 article-title: Detection of skin cancer using image processing techniques publication-title: Int. J. Mod. Trends Eng. Res. (IJMTER) – ident: ref_66 – volume: 35 start-page: 1322 year: 2016 ident: ref_136 article-title: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2532122 – ident: ref_67 doi: 10.1109/IPTA.2016.7821017 – ident: ref_132 doi: 10.1007/978-3-319-70096-0_39 – volume: Volume 10134 start-page: 101342E year: 2017 ident: ref_94 article-title: Fine-tuning convolutional deep features for MRI based brain tumor classification publication-title: SPIE Proceedings: Medical Imaging 2017: Computer-Aided Diagnosis – ident: ref_72 – ident: ref_124 – volume: 3 start-page: 445 year: 1994 ident: ref_7 article-title: Computerized detection of masses in digital mammograms: automated alignment of breast images and its effects on bilateral-substraction technique publication-title: Phys. Med. doi: 10.1118/1.597307 – volume: 5 start-page: 4006 year: 2014 ident: ref_8 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat. Commun. doi: 10.1038/ncomms5006 – volume: Volume 10135 start-page: 101351M year: 2017 ident: ref_97 article-title: Deep residual networks for automatic segmentation of laparoscopic videos of the liver publication-title: Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling – volume: 42 start-page: 1017 year: 2009 ident: ref_35 article-title: A narrow band graph partitioning method for skin lesion segmentation publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2008.09.006 – ident: ref_104 doi: 10.1109/ISBI.2016.7493472 – volume: 72 start-page: 1 year: 2011 ident: ref_129 article-title: Sparse autoencoder publication-title: CS294A Lect. Notes – ident: ref_137 doi: 10.1109/ICIP.2015.7351343 – ident: ref_93 doi: 10.1109/BIBM.2016.7822579 – ident: ref_163 doi: 10.1109/3DV.2016.79 – ident: ref_24 – ident: ref_120 doi: 10.1007/978-3-030-00934-2_67 – volume: 2 start-page: 656 year: 2011 ident: ref_29 article-title: A survey on the preprocessing techniques of mammogram for the detection of breast cancer publication-title: J. Emerg. Trends Comput. Inf. Sci. – volume: 4 start-page: 1824 year: 2018 ident: ref_139 article-title: Cancer detection techniques—A review publication-title: Int. Res. J. Eng. Technol. (IRJET) – volume: 57 start-page: 2015 year: 2015 ident: ref_58 article-title: Computer-aided classification of lung nodules on computed tomography images via deep learning technique publication-title: Onco Targets Ther. – ident: ref_40 – ident: ref_33 doi: 10.1007/978-3-319-47157-0_31 – ident: ref_50 doi: 10.1109/KST.2016.7440527 – ident: ref_63 – ident: ref_113 doi: 10.1109/CVPR.2018.00917 – ident: ref_150 doi: 10.1007/978-3-319-75420-8_54 – volume: 66 start-page: 7 year: 2016 ident: ref_2 article-title: Cancer Statistics, 2016 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21332 – ident: ref_43 doi: 10.1016/S0738-081X(02)00236-5 – ident: ref_111 – volume: 89 start-page: 25 year: 2019 ident: ref_159 article-title: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2018.07.037 – ident: ref_121 doi: 10.1007/978-3-030-00919-9_17 – ident: ref_74 doi: 10.1109/CEC.2016.7743955 – ident: ref_116 – volume: 5 start-page: 1081 year: 2015 ident: ref_144 article-title: and Gupta, R. An automated skin lesion diagnosis by using image processing techniques publication-title: Int. J. Recent Innov. Trends Comput. Commun. – ident: ref_151 doi: 10.1186/s12911-018-0631-9 – ident: ref_46 – ident: ref_85 – ident: ref_123 doi: 10.1007/978-3-319-59050-9_12 – volume: 4 start-page: 5947 year: 2009 ident: ref_134 article-title: Deep belief networks publication-title: Scholarpedia doi: 10.4249/scholarpedia.5947 – volume: Volume 10133 start-page: 101330G year: 2017 ident: ref_122 article-title: Generative adversarial networks for brain lesion detection publication-title: Medical Imaging 2017: Image Processing – volume: 542 start-page: 115 year: 2017 ident: ref_86 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: ref_133 – ident: ref_117 doi: 10.24963/ijcai.2018/96 – ident: ref_32 doi: 10.1109/CVPR.2015.7298798 – volume: 37 start-page: 1591 year: 2007 ident: ref_30 article-title: Boundary delineation in transrectal ultrasound image for prostate cancer publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.02.008 – ident: ref_52 doi: 10.1109/CINTI.2016.7846429  | 
    
| SSID | ssj0000331767 | 
    
| Score | 2.624721 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 1235 | 
    
| SubjectTerms | Artificial intelligence Brain cancer Breast cancer Classification Deep learning Diagnosis Image processing Learning algorithms Long short-term memory Lung cancer Machine learning Neural networks Neuroimaging Noise Review Segmentation Skin cancer  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dixQxDA_nHqgvh5_n6CkVfNCH8abtbLsVRe6TQ3AR8eDehmmb6sAyu97ucvjf28yXrof6NA_NUJqkTdKkvwC8CFngpeA2tU7INM-NTkvuMR2riTOW23FumwLZqTo7zz9cjC-2YNq_haGyyv5MbA5qP3d0R74fAxkdbW8u5fvF95S6RlF2tW-hUXatFfy7BmLsBmwLQsYawfbhyfTT5-HWJZPRXirdYvzIGO_vO2Lu5ZKAN-nZ6KZ5uuZzXi-dvLWuF-WPq3I2-80und6Bnc6hZAetBtyFLazvwc2PXcr8Prw9aqZmx21NXbVkTZUAO0ZcsA5d9esbdsAOKzurWgDryrE2Z_AAzk9PvhydpV3LhNTFyGOVTgxSai7YzBnkSrj4wQxD7pXBaK-4IniWSIU52hKzLKCPEXLQmqMOzsuHMKrnNT4CJoW21ppghPUUZE6Uk8pTl1Cvg0CVwOueU4Xr8MSprcWsiHEFsbb4g7UJvBx-WLRQGn8n3etZX3R7aln80oAEng_DcTdQiqOscb6ONGLCGwChSLPbSmqYS_I8Or_GJKA3ZDgQENL25khdfWsQt5XWlLBK4NUg7f8t4fG_l_AEbkfXy9DttJB7MFpdrvFpdG9W9lmnsz8BqVL7ig priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BkUoviGebtiAjcYBDSux47XUFQqWlqpDKiZV6i2JnDJGidNmHaP89YycbWtqKUw6exMmMnZkvM_kG4I3PPC8Ft6l1Ik-lNDoteYXpSI2dsdyOpI0Fst_UyUR-PRud_W0H1Ctwfiu0C_2kJrNm7-LX5Sfa8B8D4iTI_t4F_czmgTsz_Pl5Hx6QmzKhj8NpH-vH13JOrjJ2lBWZFqlSRnZUP7ddYwPWcy4pVoqcsFcc1o0o9GYx5cNlOy0vf5dNc8VTHT-GR32IyQ66NfEE7mH7FNZP-yT6M_hwGO-CHXVVdvWcxboBdoQ4ZT3f6o99dsA-17apO0rr2rEui_AcJsdfvh-epH0ThdQRFlmkY4MhWedt5gxyJRwdMEMvK2WQPBhXgbCFpFCiLTHLPFaEmb3WHLV3Vf4C1trzFreA5UJba403wlYBdo6Vy1UV-oZW2gtUCeytNFW4nmE8NLpoCkIaQcvFP1pO4O1wwrQj17hbdHel-mK1SAoCt5riMZnnCbwehml_hKRH2eL5kmTEmEdKIZLZ7Cw1zLUycQL6mg0HgcC9fX2krX9GDm6ldUhhJfBusPb_HmH7zvl3YIPiMBM-VYt8F9YWsyW-pFhnYV_FNfwHXSX6mw priority: 102 providerName: Scholars Portal  | 
    
| Title | Cancer Diagnosis Using Deep Learning: A Bibliographic Review | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31450799 https://www.proquest.com/docview/2547515433 https://www.proquest.com/docview/2281131153 https://pubmed.ncbi.nlm.nih.gov/PMC6770116 https://www.mdpi.com/2072-6694/11/9/1235/pdf?version=1566558778  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: ABDBF dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-6694 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2072-6694 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000331767 issn: 2072-6694 databaseCode: M48 dateStart: 20091201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xVgJeGN8ERmUkHuAhTew4dowmoe6LCWnVhKhUnrLYsSGiyqq1BbG_fnbiRnQTQoiX5MHnJM6d4_v5Lr8DeG1igwuCZSgVSUJKBQ8LXOowZZkSEsuUyiZBdsyOJ_TjNJ36OqcLn1ZpoXjVfKRJzEnImKARxpGI3G-d0bw073_4rSSHPdI04zzbgj5LrTPeg_5kfDr64krKrTu3hD6JBfeRcm_yYuFYNt3FNteiGw7mzTzJO6t6Xvz6Wcxmvy1CR9twtn78Nvfk-3C1lEN1eY3Z8T_Gdx_ueQcVjVqLegC3dP0Qbp_4EPwj2N1vRocO2hy9aoGarAN0oPUcebbWr-_QCO1Vcla1hNiVQm0M4jFMjg4_7x-HvgRDqCySWYaZ0C7UZ2SshMaMKHvSsTa0ZELb9Q8zR_dipTTVstBxbHRpEbfhHGtuVJk8gV59XutngBLCpZTCCCJLB1ozphJWuqqjJTdEswCGa2XkyvOTuzIZs9ziFKe9_Jr2AnjTdZi31Bx_Ft1Zazf3c3SRW2jMrTdHkySAV12znV0uZFLU-nxlZUiGG0IiK_O0NYbuXgmm1pkWIgC-YSadgGPu3mypq28Ngzfj3AXAAnjbGdTfhvD8H2RfwF3r1wm39U2SHegtL1b6pfWdlnIA_b3D8emnAWx9mGJ7PKHZwM-ZK9pjGEI | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_gkYgvRvxcRa2JJvqwsNvutVciMcBBDoGLMZDwtm67s7rJZe_k7kL45_zbmO4XnkR94mkfOt2mM21npjP9DcDbLMjChIfGN5YLP4q08pMwRb8re1ab0HQjUybIDuXgNPp81j1bgl_NWxiXVtmcieVBnY6tuyPfIEdGke6NhPg0-em7qlEuutqU0Ejq0grpVgkxVj_sOMTLC3LhplsHfZL3O8739052B35dZcC3ZKzP_J5GF83KTGA1hpJb-mCAWZRKjXTEh9IhmhAVRmgSDIIMU3IqM6VCVJlNBf33DixHgubZgeWdveGXr-0tTyBIP0tVYQoJoYMN64R5PnVAn-6Z6qI6vGHj3kzVXJkXk-TyIhmNftOD-w_gfm3Asu1qxa3CEhYP4e5xHaJ_BB93y6FZv8rhy6eszEpgfcQJq9Fcv2-ybbaTm1FeAWbnllUxisdweivMewKdYlzgM2CCK2OMzjQ3qXNqe9IKmbqqpKnKOEoP1htOxbbGL3dlNEYx-TGOtfEfrPXgfdthUkF3_J10rWF9XO_haXy94jx40zbT7nMhlaTA8ZxoeC8sAYuI5mklqXYsEUZkbGvtgVqQYUvgkL0XW4r8R4nwLZVyATIPPrTS_t8Unv97Cq9hZXByfBQfHQwPX8A9Mvu0uxnnYg06s_M5viTTamZe1euXwbfb3jJX8ug5tw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTRq8IP4TNsBIIMFD1sRO7XpiQtu6amNQTYhJewuxY2-RqrRbW037inyqnRMnUCbgaU958CVW7nznO9_5dwBvbWTjjMYqVJqyMEmkCLM4N2GX97RUseomqiqQHfL94-TzSfdkCX42d2FcWWVjEytDnY-1OyPvYCAjcO9NGOtYXxZx1B98mpyHroOUy7Q27TQy32Yh36rgxvwlj0NzdYnh3HTroI-yf0fpYO_77n7oOw6EGh33WdiTxmW2rIq0NDGnGh8mMjbJuTRo7mPu0E2QyiRGZSaKrMkxwLRCxEZYnTP87h1YcckvNBIrO3vDo2_tiU_EcK_mosYXYkxGHe0EezF1oJ_uyuri1njD371Ztnl3Xk6yq8tsNPptTxw8gPvemSXb9ep7CEumfASrX326_jF83K2mJv26nq-YkqpCgfSNmRCP7Hq6SbbJTqFGRQ2eXWhS5yuewPGtMO8pLJfj0jwHwqhQSkkrqcpdgNvjmvHcdSjNhaWGB7DRcCrVHsvctdQYpRjTONamf7A2gPftC5MaxuPvpOsN61Ovz9P01-oL4E07jJro0itZacZzpKG9uAIvQppntaTauVicoOMtZQBiQYYtgUP5Xhwpi7MK7ZsL4ZJlAXxopf2_X3jx7194DauoOumXg-HhGtxDD1C6Q3LK1mF5djE3L9HLmqlXfvkS-HHbGnMNPVk95g | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BVgIulK9CaEFG4gCHbGI7seMKCS0tVYVExYGVyinEzhgiVumquwuCX1878UZsK4QQpxw8TmLPOJ7nmbwBeG5TSytGdawN43GWKRlXtMY4F4VRmuo8012C7Ik4nmbvTvPTUOd0EdIqHRRvuo80SyWLhVBZQmmiEv9bZzKv7evv4SjJY488L6QsrsOWyJ0zPoKt6cmHySdfUm7duSf04Q7cJ8bP5PnCs2z6m23uRVcczKt5kjdX7bz6-aOazX7bhI624fP69fvck2_j1VKPza9LzI7_Mb47cDs4qGTSW9RduIbtPbjxPoTg78Org2505LDP0WsWpMs6IIeIcxLYWr_skwl50-hZ0xNiN4b0MYgHMD16-_HgOA4lGGLjkMwyLhT6UJ_VqVFIBTPuginarBYK3f5Hhad7cVKYoa4wTS3WDnFbKSlKa2q-A6P2rMVHQDiTWmtlFdO1B62FMFzUvupoLS1DEcF4rYzSBH5yXyZjVjqc4rVXXtJeBC-GDvOemuPPontr7ZZhjS5KB42l8-YyziN4NjS71eVDJlWLZysnwwraERI5mYe9MQzP4jRzzrRSEcgNMxkEPHP3ZkvbfO0YvIWUPgAWwcvBoP42hMf_ILsLt5xfp_zRN-N7MFqer_CJ852W-mlYHxccxRTd | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+Diagnosis+Using+Deep+Learning%3A+A+Bibliographic+Review&rft.jtitle=Cancers&rft.au=Munir%2C+Khushboo&rft.au=Elahi%2C+Hassan&rft.au=Ayub%2C+Afsheen&rft.au=Frezza%2C+Fabrizio&rft.date=2019-08-23&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=11&rft.issue=9&rft_id=info:doi/10.3390%2Fcancers11091235&rft_id=info%3Apmid%2F31450799&rft.externalDocID=31450799 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |