Predicting Radiation Esophagitis in Patients Undergoing Synchronous Boost Radiotherapy Post-Breast-Conserving Surgery

This study constructed a predictive model for occurrence of radiation esophagitis during breast-cancer radiotherapy. 308 breast-cancer patients were analyzed. Lasso regression identified crucial variables that were further integrated into a radiation esophagitis risk score, which was used to segrega...

Full description

Saved in:
Bibliographic Details
Published inDose-response Vol. 23; no. 2; p. 15593258251335802
Main Authors Zhang, Huai-wen, Wang, Yi-ren, Li, Jingao, Huang, Wei, Xu, Bin, Pang, Hao-wen, Jiang, Chun-ling
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.04.2025
SAGE PUBLICATIONS, INC
SAGE Publishing
Subjects
Online AccessGet full text
ISSN1559-3258
1559-3258
DOI10.1177/15593258251335802

Cover

Abstract This study constructed a predictive model for occurrence of radiation esophagitis during breast-cancer radiotherapy. 308 breast-cancer patients were analyzed. Lasso regression identified crucial variables that were further integrated into a radiation esophagitis risk score, which was used to segregate patients into high- and low-risk groups. A nomogram model was designed for clinical applicability. Training and validations were performed to assess robustness and generalizability of proposed models, employing C-index, AUCs, calibration curves, and decision curves. SHAP algorithm was used for model interpretation, offering insights into the major contributory factors. Seven significant variables were identified by Lasso regression. C-indexes of nomograms of individual clinical variables and risk score were 0.795 and 0.784, respectively, exhibiting strong predictive ability. In internal validation, AUCs for risk score, nomogram, and logistic models were 0.784, 0.795, and 0.812, respectively. Calibration curves showed a close fit between predicted and observed outcomes across models. Decision curve analysis indicated logistic model’s superior clinical utility when the risk threshold was above 0.2. SHAP interpretation emphasized radiation dose, pruritus, molecular type, and hepatic dysfunction as top contributory factors for radiation esophagitis. Models based on interpretable machine learning offer an intuitive tool to assess risk of radiation esophagitis in breast-cancer radiotherapy. Graphical Abstract
AbstractList This study constructed a predictive model for occurrence of radiation esophagitis during breast-cancer radiotherapy. 308 breast-cancer patients were analyzed. Lasso regression identified crucial variables that were further integrated into a radiation esophagitis risk score, which was used to segregate patients into high- and low-risk groups. A nomogram model was designed for clinical applicability. Training and validations were performed to assess robustness and generalizability of proposed models, employing C-index, AUCs, calibration curves, and decision curves. SHAP algorithm was used for model interpretation, offering insights into the major contributory factors. Seven significant variables were identified by Lasso regression. C-indexes of nomograms of individual clinical variables and risk score were 0.795 and 0.784, respectively, exhibiting strong predictive ability. In internal validation, AUCs for risk score, nomogram, and logistic models were 0.784, 0.795, and 0.812, respectively. Calibration curves showed a close fit between predicted and observed outcomes across models. Decision curve analysis indicated logistic model's superior clinical utility when the risk threshold was above 0.2. SHAP interpretation emphasized radiation dose, pruritus, molecular type, and hepatic dysfunction as top contributory factors for radiation esophagitis. Models based on interpretable machine learning offer an intuitive tool to assess risk of radiation esophagitis in breast-cancer radiotherapy.This study constructed a predictive model for occurrence of radiation esophagitis during breast-cancer radiotherapy. 308 breast-cancer patients were analyzed. Lasso regression identified crucial variables that were further integrated into a radiation esophagitis risk score, which was used to segregate patients into high- and low-risk groups. A nomogram model was designed for clinical applicability. Training and validations were performed to assess robustness and generalizability of proposed models, employing C-index, AUCs, calibration curves, and decision curves. SHAP algorithm was used for model interpretation, offering insights into the major contributory factors. Seven significant variables were identified by Lasso regression. C-indexes of nomograms of individual clinical variables and risk score were 0.795 and 0.784, respectively, exhibiting strong predictive ability. In internal validation, AUCs for risk score, nomogram, and logistic models were 0.784, 0.795, and 0.812, respectively. Calibration curves showed a close fit between predicted and observed outcomes across models. Decision curve analysis indicated logistic model's superior clinical utility when the risk threshold was above 0.2. SHAP interpretation emphasized radiation dose, pruritus, molecular type, and hepatic dysfunction as top contributory factors for radiation esophagitis. Models based on interpretable machine learning offer an intuitive tool to assess risk of radiation esophagitis in breast-cancer radiotherapy.
This study constructed a predictive model for occurrence of radiation esophagitis during breast-cancer radiotherapy. 308 breast-cancer patients were analyzed. Lasso regression identified crucial variables that were further integrated into a radiation esophagitis risk score, which was used to segregate patients into high- and low-risk groups. A nomogram model was designed for clinical applicability. Training and validations were performed to assess robustness and generalizability of proposed models, employing C-index, AUCs, calibration curves, and decision curves. SHAP algorithm was used for model interpretation, offering insights into the major contributory factors. Seven significant variables were identified by Lasso regression. C-indexes of nomograms of individual clinical variables and risk score were 0.795 and 0.784, respectively, exhibiting strong predictive ability. In internal validation, AUCs for risk score, nomogram, and logistic models were 0.784, 0.795, and 0.812, respectively. Calibration curves showed a close fit between predicted and observed outcomes across models. Decision curve analysis indicated logistic model’s superior clinical utility when the risk threshold was above 0.2. SHAP interpretation emphasized radiation dose, pruritus, molecular type, and hepatic dysfunction as top contributory factors for radiation esophagitis. Models based on interpretable machine learning offer an intuitive tool to assess risk of radiation esophagitis in breast-cancer radiotherapy.
This study constructed a predictive model for occurrence of radiation esophagitis during breast-cancer radiotherapy. 308 breast-cancer patients were analyzed. Lasso regression identified crucial variables that were further integrated into a radiation esophagitis risk score, which was used to segregate patients into high- and low-risk groups. A nomogram model was designed for clinical applicability. Training and validations were performed to assess robustness and generalizability of proposed models, employing C-index, AUCs, calibration curves, and decision curves. SHAP algorithm was used for model interpretation, offering insights into the major contributory factors. Seven significant variables were identified by Lasso regression. C-indexes of nomograms of individual clinical variables and risk score were 0.795 and 0.784, respectively, exhibiting strong predictive ability. In internal validation, AUCs for risk score, nomogram, and logistic models were 0.784, 0.795, and 0.812, respectively. Calibration curves showed a close fit between predicted and observed outcomes across models. Decision curve analysis indicated logistic model’s superior clinical utility when the risk threshold was above 0.2. SHAP interpretation emphasized radiation dose, pruritus, molecular type, and hepatic dysfunction as top contributory factors for radiation esophagitis. Models based on interpretable machine learning offer an intuitive tool to assess risk of radiation esophagitis in breast-cancer radiotherapy. Graphical Abstract
Author Xu, Bin
Zhang, Huai-wen
Wang, Yi-ren
Jiang, Chun-ling
Huang, Wei
Li, Jingao
Pang, Hao-wen
Author_xml – sequence: 1
  givenname: Huai-wen
  orcidid: 0000-0001-6259-6426
  surname: Zhang
  fullname: Zhang, Huai-wen
  organization: Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma
– sequence: 2
  givenname: Yi-ren
  surname: Wang
  fullname: Wang, Yi-ren
  organization: Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma
– sequence: 3
  givenname: Jingao
  surname: Li
  fullname: Li, Jingao
  email: jclil2002@163.com
  organization: Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma
– sequence: 4
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma
– sequence: 5
  givenname: Bin
  surname: Xu
  fullname: Xu, Bin
  organization: Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma
– sequence: 6
  givenname: Hao-wen
  surname: Pang
  fullname: Pang, Hao-wen
  email: haowenpang@foxmail.com
  organization: Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma
– sequence: 7
  givenname: Chun-ling
  surname: Jiang
  fullname: Jiang, Chun-ling
  organization: Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40297669$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhS1URB_wA9igSGzYpPgRv1aIjgqtVIkR0LXlOHbGo4w92Eml-fc4M21pQayudfyd46vrewqOQgwWgLcIniPE-UdEqSSYCkwRIVRA_AKczFo9i0dPzsfgNOc1hA3lBL0Cxw3EkjMmT8C0TLbzZvShr77rzuvRx1Bd5rhd6d6PPlc-VMui2jDm6jZ0NvVxhn_sglmlGOKUq4sY87i3x3Flk97uqmVR6otkdSmLGLJNd3vXlHqbdq_BS6eHbN_c1zNw--Xy5-Kqvvn29Xrx-aY2jeBj3TROI961UneMdMYRgwViiBttnIAdpVw4KgwR2LXCOcskZF0REMISatOSM3B9yO2iXqtt8huddipqr_ZCTL3SafRmsIphwyhBppUNbjBpW-2g1pAhYx1CrS1Znw5Z26nd2M6UgSQ9PAt9fhP8SvXxTiEMCRGCloQP9wkp_ppsHtXGZ2OHQQdbxqgIkowhxvmMvv8LXccphTIrRTCmXErCZurd05Yee3n43gKgA2BSzDlZ94ggqOYVUv-sUPGcHzxZ9_bPs_83_AaiO8gp
Cites_doi 10.1038/s43586-022-00172-0
10.3322/caac.21763
10.1016/j.compbiomed.2022.106073
10.1111/acel.13562
10.1016/j.critrevonc.2019.02.014
10.3389/fonc.2022.924144
10.1038/s41598-023-30812-8
10.1038/s41392-022-01251-0
10.1186/s13742-016-0117-6
10.1016/j.aller.2011.05.002
10.3389/fimmu.2022.1046410
10.1016/j.ijrobp.2011.02.052
10.1016/j.radonc.2012.08.014
10.1186/s12885-023-11764-8
10.54386/jam.v21i2.231
10.1016/j.tig.2020.03.005
10.11591/eei.v9i1.1464
10.1111/1754-9485.12943
10.1016/j.radonc.2018.01.001
10.1016/j.ijrobp.2023.03.060
10.1038/s41598-024-84342-y
10.1186/s13148-019-0730-1
10.3390/cancers14071833
10.1016/S0140-6736(05)67887-7
10.1038/s41597-021-01110-7
10.1200/JCO.2013.50.1643
10.1007/s00335-024-10088-7
10.4103/jmp.jmp_84_22
10.1186/s40001-023-01041-6
10.1038/s41586-021-04278-5
10.3389/fonc.2024.1384931
10.1016/j.prro.2021.08.004
10.1016/j.radonc.2005.10.001
10.3390/cancers15030634
10.1038/s41580-021-00407-0
10.1038/s41598-021-86327-7
10.1016/j.radonc.2020.10.042
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025.
The Author(s) 2025 This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025 SAGE Publications
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025.
– notice: The Author(s) 2025 This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025 SAGE Publications
DBID AFRWT
AAYXX
CITATION
NPM
K9.
7X8
5PM
DOA
DOI 10.1177/15593258251335802
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
ProQuest Health & Medical Complete (Alumni)

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1559-3258
ExternalDocumentID oai_doaj_org_article_62c6531cb942423bbaf0aa061cef11be
PMC12033885
40297669
10_1177_15593258251335802
10.1177_15593258251335802
Genre Journal Article
GrantInformation_xml – fundername: National College Student Innovation and Entrepreneurship Training Program
  grantid: 202310632001; 202310632028; 202310632036
– fundername: The Science and Technology Project of Jiangxi Province
  grantid: 20212BAB206065, 20242BAB26138
– fundername: Outstanding Youth of Jiangxi Cancer hospital
  grantid: 2021DYS02
– fundername: National Natural Science Foundation of China
  grantid: 82260607, 81760547
– fundername: Sichuan Provincial Medical Research Project Plan
  grantid: S21004
– fundername: High-Level and high-Skill leading Talents of Jiangxi Province
  grantid: GCSG2002001
– fundername: ;
  grantid: 20212BAB206065, 20242BAB26138
– fundername: ;
  grantid: 2021DYS02
– fundername: ;
  grantid: GCSG2002001
– fundername: ;
  grantid: S21004
– fundername: ;
  grantid: 202310632001; 202310632028; 202310632036
– fundername: ;
  grantid: 82260607, 81760547
GroupedDBID ---
0R~
29G
2WC
53G
54M
5GY
5VS
7X7
8FI
8FJ
AAFWJ
AAJPV
AAJQC
AAKDD
AAQQG
AASGM
ABAWP
ABDBF
ABJIS
ABNCE
ABQXT
ABUWG
ABVFX
ABXGC
ACARO
ACDXX
ACGFS
ACHEB
ACROE
ACUHS
ADBBV
ADOGD
AENEX
AEUHG
AEWDL
AFCOW
AFKRA
AFKRG
AFPKN
AFRWT
AJUZI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARTOV
AUTPY
AYAKG
B0M
BAWUL
BCNDV
BDDNI
BENPR
BPHCQ
BSEHC
BVXVI
CCPQU
CS3
DC.
DIK
DU5
E3Z
EAP
EBD
EBS
EDH
EMK
ESX
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
J8X
K.F
KQ8
MET
MK0
M~E
O9-
PHGZM
PHGZT
PIMPY
PQQKQ
ROL
RPM
SAUOL
SCDPB
SCNPE
SFC
TR2
TUS
UKHRP
~8M
4.4
AAYXX
ADEBD
CITATION
EJD
IPNFZ
RIG
NPM
K9.
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c487t-44fa17db9ad63dcf3c281617cacf80d5578f58c382fb8ffe6906d58c11290acb3
IEDL.DBID AFRWT
ISSN 1559-3258
IngestDate Wed Aug 27 01:29:26 EDT 2025
Thu Aug 21 18:26:43 EDT 2025
Fri Sep 05 17:22:13 EDT 2025
Tue Jul 01 15:24:04 EDT 2025
Mon Jul 21 05:27:00 EDT 2025
Thu Jul 03 08:38:35 EDT 2025
Sun Jul 06 05:40:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords radiotherapy
breast cancer
radiation esophagitis
machine learning
normal tissue complication
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
The Author(s) 2025.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-44fa17db9ad63dcf3c281617cacf80d5578f58c382fb8ffe6906d58c11290acb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-6259-6426
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/15593258251335802?utm_source=summon&utm_medium=discovery-provider
PMID 40297669
PQID 3225799365
PQPubID 4450826
ParticipantIDs doaj_primary_oai_doaj_org_article_62c6531cb942423bbaf0aa061cef11be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12033885
proquest_miscellaneous_3196616775
proquest_journals_3225799365
pubmed_primary_40297669
crossref_primary_10_1177_15593258251335802
sage_journals_10_1177_15593258251335802
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Thousand Oaks
– name: Sage CA: Los Angeles, CA
PublicationTitle Dose-response
PublicationTitleAlternate Dose Response
PublicationYear 2025
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
– name: SAGE Publishing
References Kumar, Attri, Singh 2019; 21
Vrdoljak, Boban, Barić 2023; 15
Sahebalam, Gholizadeh, Hafezian 2024; 36
Din, Dar, Rasool, Assad 2022; 149
Lubis, Lubis, Khowarizmi 2020; 9
Sammut, Crispin-Ortuzar, Chin 2022; 601
Keall, Nguyen, O'Brien 2018; 127
Dzul, Ninia, Jang, Kim, Dominello 2022; 12
Azodi, Tang, Shiu 2020; 36
Wu, Li, Yang 2022; 2022
Vougioukalaki, Demmers, Vermeij 2022; 21
Sun, Chen, Li 2023; 13
Yaney, Ayan, Pan 2021; 155
Rudin 2022; 2
Moncada-Torres, van Maaren, Hendriks, Siesling, Geleijnse 2021; 11
Siegel, Miller, Wagle, Jemal 2023; 73
Amin, Faraj, Ali, Rahim, Yarahmadi 2023; 48
Dinov 2016; 5
Srinivasu, Sandhya, Jhaveri, Raut 2022; 2022
Röösli, Bozkurt, Hernandez-Boussard 2022; 9
Zheng, Guo, Wang 2023; 28
Greener, Kandathil, Moffat, Jones 2022; 23
Lai, Lin, Lin 2022; 13
Engebretsen, Bohlin 2019; 11
Domínguez-Almendros, Benítez-Parejo, Gonzalez-Ramirez 2011; 39
Wang, Zhang, Dong 2023; 117
Chapet, Kong, Lee, Hayman, Ten Haken 2005; 77
Yang, Xiong, Wang, Li 2022; 12
Konkol, Śniatała, Milecki 2022; 27
Guo, Huang, Dou 2022; 7
Guerra, Gomez, Wei 2012; 105
Akthar, Golden, Nanda 2016; 34
West, Schneider, Wright 2020; 64
Pak, Rad, Nematollahi, Mahmoudi 2025; 15
Wang, Zhang, Wang 2024; 24
Meattini, Lambertini, Desideri, De Caluwé, Kaidar-Person, Livi 2019; 137
Wen, Wang, Chen 2024; 14
Clarke, Collins, Darby 2005; 366
Huang, Bradley, El Naqa 2012; 82
Monti, Xu, Mohan, Liao, Palma, Cella 2022; 14
e_1_3_5_28_2
e_1_3_5_27_2
e_1_3_5_26_2
e_1_3_5_25_2
e_1_3_5_24_2
e_1_3_5_23_2
e_1_3_5_22_2
e_1_3_5_21_2
e_1_3_5_29_2
e_1_3_5_2_2
e_1_3_5_40_2
e_1_3_5_41_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_4_2
e_1_3_5_3_2
e_1_3_5_6_2
e_1_3_5_5_2
e_1_3_5_17_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_37_2
e_1_3_5_12_2
Konkol M (e_1_3_5_36_2) 2022; 27
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_19_2
e_1_3_5_18_2
Srinivasu PN (e_1_3_5_14_2) 2022; 2022
Wu YL (e_1_3_5_35_2) 2022; 2022
e_1_3_5_31_2
e_1_3_5_30_2
References_xml – volume: 12
  start-page: 52
  issue: 1
  year: 2022
  end-page: 59
  article-title: Predictors of acute radiation dermatitis and esophagitis in African American patients receiving whole-breast radiation therapy
  publication-title: Pract Radiat Oncol
– volume: 5
  start-page: 12
  issue: 1
  year: 2016
  article-title: Methodological challenges and analytic opportunities for modeling and interpreting big healthcare data
  publication-title: GigaScience
– volume: 11
  start-page: 6968
  issue: 1
  year: 2021
  article-title: Interpretable machine learning can outperform cox regression predictions and provide insights in breast cancer survival
  publication-title: Sci Rep
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 20
  article-title: From blackbox to interpretable AI in healthcare: existing tools and case studies
  publication-title: Mob Inf Syst
– volume: 14
  start-page: 1384931
  year: 2024
  article-title: Construction of a predictive model for postoperative hospitalization time in colorectal cancer patients based on interpretable machine learning algorithm: a prospective preliminary study
  publication-title: Front Oncol
– volume: 155
  start-page: 167
  year: 2021
  end-page: 173
  article-title: Dosimetric parameters associated with radiation-induced esophagitis in breast cancer patients undergoing regional nodal irradiation
  publication-title: Radiother Oncol
– volume: 2
  start-page: 81
  issue: 1
  year: 2022
  article-title: Why black box machine learning should be avoided for high-stakes decisions, in brief
  publication-title: Nat Rev Methods Primers
– volume: 9
  start-page: 326
  issue: 1
  year: 2020
  end-page: 338
  article-title: Optimization of distance formula in K-nearest neighbor method
  publication-title: Bulletin EEI
– volume: 117
  start-page: 186
  issue: 1
  year: 2023
  end-page: 197
  article-title: Dose-volume predictors for radiation esophagitis in patients with breast cancer undergoing hypofractionated regional nodal radiation therapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 13
  start-page: 3968
  issue: 1
  year: 2023
  article-title: Risk and prognosis of secondary esophagus cancer after radiotherapy for breast cancer
  publication-title: Sci Rep
– volume: 82
  start-page: 1674
  issue: 5
  year: 2012
  end-page: 1679
  article-title: Modeling the risk of radiation-induced acute esophagitis for combined Washington University and RTOG trial 93-11 lung cancer patients
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 36
  start-page: 331
  issue: 1
  year: 2024
  end-page: 345
  article-title: The effect of different approaches to determining the regularization parameter of bayesian LASSO on the accuracy of genomic prediction
  publication-title: Mamm Genome
– volume: 73
  start-page: 17
  issue: 1
  year: 2023
  end-page: 48
  article-title: Cancer statistics, 2023
  publication-title: CA Cancer J Clin
– volume: 105
  start-page: 299
  issue: 3
  year: 2012
  end-page: 304
  article-title: Association between single nucleotide polymorphisms of the transforming growth factor β1 gene and the risk of severe radiation esophagitis in patients with lung cancer
  publication-title: Radiother Oncol
– volume: 48
  start-page: 38
  issue: 1
  year: 2023
  end-page: 42
  article-title: Prediction factors of radiation esophagitis in breast cancer patients undergoing supraclavicular radiotherapy
  publication-title: J Med Phys
– volume: 149
  start-page: 106073
  year: 2022
  article-title: Breast cancer detection using deep learning: datasets, methods, and challenges ahead
  publication-title: Comput Biol Med
– volume: 127
  start-page: 6
  issue: 1
  year: 2018
  end-page: 11
  article-title: The first clinical implementation of real-time image-guided adaptive radiotherapy using a standard linear accelerator
  publication-title: Radiother Oncol
– volume: 2022
  start-page: 3647462
  year: 2022
  article-title: Long-Term evaluation and normal tissue complication probability (Ntcp) models for predicting radiation-induced optic neuropathy after intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma: a large retrospective study in China
  publication-title: J Oncol
– volume: 12
  start-page: 924144
  year: 2022
  article-title: Interpretable machine learning model to prediction EGFR mutation in lung cancer
  publication-title: Front Oncol
– volume: 27
  start-page: 552
  issue: 3
  year: 2022
  end-page: 565
  article-title: Radiation-induced lung injury - what do we know in the era of modern radiotherapy?
  publication-title: Rep Pract Oncol Radiother
– volume: 64
  start-page: 113
  year: 2020
  end-page: 119
  article-title: Radiation-induced oesophagitis in breast cancer: factors influencing onset and severity for patients receiving supraclavicular nodal irradiation
  publication-title: J Med Imaging Radiat Oncol
– volume: 24
  start-page: 1
  issue: 1
  year: 2024
  end-page: 15
  article-title: Development of a neoadjuvant chemotherapy efficacy prediction model for nasopharyngeal carcinoma integrating magnetic resonance radiomics and pathomics: a multi-center retrospective study
  publication-title: BMC Cancer
– volume: 36
  start-page: 442
  issue: 6
  year: 2020
  end-page: 455
  article-title: Opening the black box: interpretable machine learning for geneticists
  publication-title: Trends Genet
– volume: 7
  start-page: 391
  issue: 1
  year: 2022
  article-title: Aging and aging-related diseases: from molecular mechanisms to interventions and treatments
  publication-title: Signal Transduct Target Ther
– volume: 11
  start-page: 123
  issue: 1
  year: 2019
  article-title: Statistical predictions with glmnet
  publication-title: Clin Epigenetics
– volume: 21
  start-page: e13562
  issue: 4
  year: 2022
  article-title: Different responses to DNA damage determine ageing differences between organs
  publication-title: Aging Cell
– volume: 601
  start-page: 623
  issue: 7894
  year: 2022
  end-page: 629
  article-title: Multi-omic machine learning predictor of breast cancer therapy response
  publication-title: Nature
– volume: 15
  start-page: 634
  issue: 3
  year: 2023
  article-title: Applying interpretable machine learning models for detection of breast cancer lymph node metastasis in patients eligible for neoadjuvant treatment
  publication-title: Cancers (Basel)
– volume: 77
  start-page: 176
  issue: 2
  year: 2005
  end-page: 181
  article-title: Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer
  publication-title: Radiother Oncol
– volume: 34
  start-page: e73
  issue: 9
  year: 2016
  end-page: 75
  article-title: Early and severe radiation esophagitis associated with concurrent sirolimus
  publication-title: J Clin Oncol
– volume: 366
  start-page: 2087
  year: 2005
  end-page: 2106
  article-title: Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials
  publication-title: Lancet
– volume: 14
  start-page: 1833
  issue: 7
  year: 2022
  article-title: Radiation-induced esophagitis in non-small-cell lung cancer patients: voxel-based analysis and NTCP modeling
  publication-title: Cancers (Basel)
– volume: 28
  start-page: 126
  issue: 1
  year: 2023
  article-title: Multi-omics to predict acute radiation esophagitis in patients with lung cancer treated with intensity-modulated radiation therapy
  publication-title: Eur J Med Res
– volume: 21
  start-page: 188
  issue: 2
  year: 2019
  end-page: 192
  article-title: Comparison of Lasso and stepwise regression technique for wheat yield prediction
  publication-title: J Agrometeorol
– volume: 137
  start-page: 143
  year: 2019
  end-page: 153
  article-title: Radiation therapy for young women with early breast cancer: current state of the art
  publication-title: Crit Rev Oncol Hematol
– volume: 9
  start-page: 24
  issue: 1
  year: 2022
  article-title: Peeking into a black box, the fairness and generalizability of a MIMIC-III benchmarking model
  publication-title: Sci Data
– volume: 39
  start-page: 295
  issue: 5
  year: 2011
  end-page: 305
  article-title: Logistic regression models
  publication-title: Allergol Immunopathol
– volume: 23
  start-page: 40
  issue: 1
  year: 2022
  end-page: 55
  article-title: A guide to machine learning for biologists
  publication-title: Nat Rev Mol Cell Biol
– volume: 15
  start-page: 547
  issue: 1
  year: 2025
  article-title: Application of the Lasso regularisation technique in mitigating overfitting in air quality prediction models
  publication-title: Sci Rep
– volume: 13
  start-page: 1046410
  year: 2022
  article-title: Identification of immune microenvironment subtypes and signature genes for Alzheimer's disease diagnosis and risk prediction based on interpretable machine learning
  publication-title: Front Immunol
– ident: e_1_3_5_16_2
  doi: 10.1038/s43586-022-00172-0
– ident: e_1_3_5_2_2
  doi: 10.3322/caac.21763
– ident: e_1_3_5_12_2
  doi: 10.1016/j.compbiomed.2022.106073
– ident: e_1_3_5_40_2
  doi: 10.1111/acel.13562
– ident: e_1_3_5_3_2
  doi: 10.1016/j.critrevonc.2019.02.014
– ident: e_1_3_5_18_2
  doi: 10.3389/fonc.2022.924144
– ident: e_1_3_5_38_2
  doi: 10.1038/s41598-023-30812-8
– ident: e_1_3_5_37_2
  doi: 10.1038/s41392-022-01251-0
– ident: e_1_3_5_9_2
  doi: 10.1186/s13742-016-0117-6
– volume: 2022
  start-page: 1
  year: 2022
  ident: e_1_3_5_14_2
  article-title: From blackbox to interpretable AI in healthcare: existing tools and case studies
  publication-title: Mob Inf Syst
– ident: e_1_3_5_30_2
  doi: 10.1016/j.aller.2011.05.002
– ident: e_1_3_5_19_2
  doi: 10.3389/fimmu.2022.1046410
– ident: e_1_3_5_23_2
  doi: 10.1016/j.ijrobp.2011.02.052
– ident: e_1_3_5_7_2
  doi: 10.1016/j.radonc.2012.08.014
– ident: e_1_3_5_21_2
  doi: 10.1186/s12885-023-11764-8
– ident: e_1_3_5_26_2
  doi: 10.54386/jam.v21i2.231
– volume: 27
  start-page: 552
  issue: 3
  year: 2022
  ident: e_1_3_5_36_2
  article-title: Radiation-induced lung injury - what do we know in the era of modern radiotherapy?
  publication-title: Rep Pract Oncol Radiother
– ident: e_1_3_5_17_2
  doi: 10.1016/j.tig.2020.03.005
– ident: e_1_3_5_24_2
  doi: 10.11591/eei.v9i1.1464
– ident: e_1_3_5_5_2
  doi: 10.1111/1754-9485.12943
– ident: e_1_3_5_33_2
  doi: 10.1016/j.radonc.2018.01.001
– ident: e_1_3_5_31_2
  doi: 10.1016/j.ijrobp.2023.03.060
– ident: e_1_3_5_28_2
  doi: 10.1038/s41598-024-84342-y
– ident: e_1_3_5_27_2
  doi: 10.1186/s13148-019-0730-1
– ident: e_1_3_5_8_2
  doi: 10.3390/cancers14071833
– ident: e_1_3_5_39_2
  doi: 10.1016/S0140-6736(05)67887-7
– ident: e_1_3_5_15_2
  doi: 10.1038/s41597-021-01110-7
– ident: e_1_3_5_41_2
  doi: 10.1200/JCO.2013.50.1643
– ident: e_1_3_5_29_2
  doi: 10.1007/s00335-024-10088-7
– ident: e_1_3_5_4_2
  doi: 10.4103/jmp.jmp_84_22
– ident: e_1_3_5_10_2
  doi: 10.1186/s40001-023-01041-6
– volume: 2022
  start-page: 3647462
  year: 2022
  ident: e_1_3_5_35_2
  article-title: Long-Term evaluation and normal tissue complication probability (Ntcp) models for predicting radiation-induced optic neuropathy after intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma: a large retrospective study in China
  publication-title: J Oncol
– ident: e_1_3_5_13_2
  doi: 10.1038/s41586-021-04278-5
– ident: e_1_3_5_25_2
  doi: 10.3389/fonc.2024.1384931
– ident: e_1_3_5_6_2
  doi: 10.1016/j.prro.2021.08.004
– ident: e_1_3_5_34_2
  doi: 10.1016/j.radonc.2005.10.001
– ident: e_1_3_5_22_2
  doi: 10.3390/cancers15030634
– ident: e_1_3_5_11_2
  doi: 10.1038/s41580-021-00407-0
– ident: e_1_3_5_20_2
  doi: 10.1038/s41598-021-86327-7
– ident: e_1_3_5_32_2
  doi: 10.1016/j.radonc.2020.10.042
SSID ssj0045731
Score 2.3461986
Snippet This study constructed a predictive model for occurrence of radiation esophagitis during breast-cancer radiotherapy. 308 breast-cancer patients were analyzed....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 15593258251335802
SubjectTerms Nomograms
Original
Radiation therapy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA_iqVBKW2u71pYIQqEQzG4-Njn6iiKCIraCtyU7SayXXfHtO_jfm9nse_qwpZde87GE-cpkZ-Y3hOwrL3wMWjEerGLShZJZFz2LFQftjfPgsBr57FyfXMnTa3X9rNUX5oRleOBMuANdgU5yAq2VePW3rYvcuXQLQYhl2Qa0vtzy5WMq22CpalFOMUyEV8LYm6gUlmkKjPtVa7fQCNb_Jw_zZaLks2yv8QI6fkveTJ4jPcwnfkc2QveevM6_3WiuJtoii4t7jLxgLjO9RNgBpDs9wl4F7gbhi-htRy8yluqcjk2Pbnpc_POhA8TJ7RdzOuv7-TBun8qzHij29GUzTGAfGPb4RAuDu3JR9QdydXz068cJmzorMEgPlIFJGV1Z-9Y6r4WHKKAy-NABB9Fwr5IaR2VAmCq2JiZeWq59GkDnjDtoxTbZ7PoufCJU1CKpvQrWg5ECwIpEcek1ryG9jIQoyPclpZu7DKDRlBPG-Au2FGSGvFgtROzrcSBJRDNJRPMviSjI7pKTzaSQ8wbtVp18Ma0KsreaTqqE8RHXhUTdBq2RLnVdpzUfM-NXJ5HY5EtrWxCzJhJrR12f6W5_j3DdZcWFMCZ99BtKz9OZ_kqGnf9Bhs_kVYW9iscso12yOdwvwpfkQA3t11FXHgEAThib
  priority: 102
  providerName: Directory of Open Access Journals
Title Predicting Radiation Esophagitis in Patients Undergoing Synchronous Boost Radiotherapy Post-Breast-Conserving Surgery
URI https://journals.sagepub.com/doi/full/10.1177/15593258251335802
https://www.ncbi.nlm.nih.gov/pubmed/40297669
https://www.proquest.com/docview/3225799365
https://www.proquest.com/docview/3196616775
https://pubmed.ncbi.nlm.nih.gov/PMC12033885
https://doaj.org/article/62c6531cb942423bbaf0aa061cef11be
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdt-jIYY9_z1gUNBoOBVluyvp5GMxLKYCVkLcubkfWR9aH2SJyH_PfT-SNbaAd7MujDFnen80l39zuE3nPHXPCCk9RrTnLjM6JNcCTQ1AqnjLMGspG_XYqL6_zrki-PUD3kwvQU3HyCsKq4olZZw-6G2-iz3sl4Br40RjmkXTLw49HP2-a26K67h6oa0AL-6e0tuLYtBETuyJDedoxOqOSajtDJ-Wzx42pQ3jmXrINY5ZrAF3pH6L0fPfiVtYj_95mpd6Mt_woZa_9is8foUW9-4vNOXp6gI189RQ-7uzvcpSQ9Q9v5Gtw3EBCNF4BdAMzDUyh4YFaAgYRvKjzvAFk3uK2ctKph8PddZQFst95u8KSuN007vc_x2mEoDEwmEAXfECgUCmoKZnWZ2c_R9Wx69eWC9OUZiI2nnIbkeTCZdKU2TjBnA7NUwWnJGhtU6njUBYEryxQNpQpRIHQqXGwACy81tmQv0KiqK_8KYSZZ1B3ca2dVzqzVLFI8dyKVNh6vGEvQx4HSxa8OhaPIeqDyO2xJ0AR4sR8IANptQ71eFf1-LAS1IqofW-ocLMqyNCE1Jho31ocsK32CTgdOFoNMFqD8ZDToBE_Qu3133I_gZDGVj9QtQKWJTEgZx7zsGL9fSQ6VwoTQCVIHInGw1MOe6uZni_md0ZQxpeJLP4D0_FnTP8nw-r9HvkEPKFQ1buORTtGoWW_922hqNeUYHculHPebJD4n08v5YtxeXPwGpiQofQ
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZlc2ihhL7rNE1VKBQKKrL1sHTMlizbNgkh3dDcjKzHNhc77HoP-ffR2Nptl6SQq_VgmNGMRp6ZbxD6JBxzwUtBqNeCcONzok1wJBTUSqeMswaqkU9O5fSC_7gUlymrEmphEgeXXyGtKlLUG-uNdkOdeHSBWSGg4pJBCC-a3x0uqFQjtHM4Of89W9thLko2oKUKTWBFimneu8nWrdSD99_ncd5NnPwn-6u_kCbP0G7yJPHhIPrn6JFvXqCnw284PFQXvUSrswVEYiC3GZ8DDAHIAR9B7wIzBzgjfNXgswFbdYn7JkjzFib_umks4Oa2qyUet-2y65encq0bDD1-yRgS2jsCPT_B4sCqocj6FbqYHM2-TUnqtEBsfLB0hPNg8tLV2jjJnA3MFgoePtbYoKgTUa2DUJapItQqRNlqKl38AM4aNbZmr9GoaRv_FmFWsmgGhNfOKs6s1SxynDtJSxtfSoxl6Mua09X1AKhR5Qlz_I5YMjQGWWwmAhZ2_6FdzKukWpUsrIyWxNaag3NY1yZQY6KfYn3I89pnaH8tyWp9vCqwY2X0zaTI0MfNcFQtiJeYxkfuVmCdZC7LMs55Mwh-QwmHpl9S6gyprSOxRer2SHP1p4fvzgvKmFJx089wev7S9F827D145gf0eDo7Oa6Ov5_-fIeeFNCsuE8z2kejbrHy76MH1dUHSVVuASIxEm4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9wwEBZlA6VQStLTTZqqUCgU1MjWYekxm2RJr7CkCc2bkXVs82KHXe9D_n01tnbbJSn0VRdiRjMaaWa-Qei9cMwFLwWhXgvCjc-JNsGRUFArnTLOGshG_n4mTy_5lytxlT7cIBcmUXDxCcKq4o56ZQ3SfePCQfIxHoArjRUCsi4ZuPGiCt6KzxpFR2jrcHL-82Kli7ko2YCYKjSBGcmvee8iGzdTD-B_n9V5N3jyrwiw_lKabKMnyZrEhwP7d9AD3zxFj4evODxkGD1Dy-kcvDEQ34zPAYoAeIFPoH6BmQGkEb5u8HTAV13gvhDSrIXBP24bC9i57XKBx2276PrpKWXrFkOdXzKGoPaOQN1P0Dowa0i0fo4uJycXR6ckVVsgNj5aOsJ5MHnpam2cZM4GZgsFjx9rbFDUiSjaQSjLVBFqFSJ_NZUuNoDBRo2t2Qs0atrGv0KYlSyqAuG1s4ozazWLFOdO0tLG1xJjGfq4onR1M4BqVHnCHb_DlgyNgRfrgYCH3Te081mVxKuShZVRm9haczAQ69oEaky0VawPeV77DO2tOFmtjlgFuqyM9pkUGXq37o7iBT4T0_hI3Qo0lMxlWcYxLwfGr3fCofCXlDpDauNIbGx1s6e5_tVDeOcFZUypuOgHOD1_9vRPMrz-75Fv0cPp8aT69vns6y56VEC94j7SaA-NuvnSv4lGVFfvJ0n5DTHJE34
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Radiation+Esophagitis+in+Patients+Undergoing+Synchronous+Boost+Radiotherapy+Post-Breast-Conserving+Surgery&rft.jtitle=Dose-response&rft.au=Zhang%2C+Huai-Wen&rft.au=Wang%2C+Yi-Ren&rft.au=Li%2C+Jingao&rft.au=Huang%2C+Wei&rft.date=2025-04-01&rft.issn=1559-3258&rft.eissn=1559-3258&rft.volume=23&rft.issue=2&rft.spage=15593258251335802&rft_id=info:doi/10.1177%2F15593258251335802&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-3258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-3258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-3258&client=summon