Automatic graph-based method for localization of cochlear implant electrode arrays in clinical CT with sub-voxel accuracy

•Cochlear implant programming relies on the intra-cochlear locations of electrodes.•An automatic method to segment electrode arrays in post-implantation CTs.•It uses two graph-based path-finding algorithms to segment CI electrodes in CTs.•The accuracy of the method is close to the manual localizatio...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 52; pp. 1 - 12
Main Authors Zhao, Yiyuan, Chakravorti, Srijata, Labadie, Robert F., Dawant, Benoit M., Noble, Jack H.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8431
1361-8423
DOI10.1016/j.media.2018.11.005

Cover

Abstract •Cochlear implant programming relies on the intra-cochlear locations of electrodes.•An automatic method to segment electrode arrays in post-implantation CTs.•It uses two graph-based path-finding algorithms to segment CI electrodes in CTs.•The accuracy of the method is close to the manual localizations produced by experts.•The method is robust with respect to various CT acquisition parameters. Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use. [Display omitted]
AbstractList •Cochlear implant programming relies on the intra-cochlear locations of electrodes.•An automatic method to segment electrode arrays in post-implantation CTs.•It uses two graph-based path-finding algorithms to segment CI electrodes in CTs.•The accuracy of the method is close to the manual localizations produced by experts.•The method is robust with respect to various CT acquisition parameters. Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use. [Display omitted]
Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use.
Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use.
Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use.Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use.
Author Noble, Jack H.
Labadie, Robert F.
Dawant, Benoit M.
Chakravorti, Srijata
Zhao, Yiyuan
AuthorAffiliation b Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235, USA
a Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
AuthorAffiliation_xml – name: b Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235, USA
– name: a Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
Author_xml – sequence: 1
  givenname: Yiyuan
  orcidid: 0000-0002-2298-5264
  surname: Zhao
  fullname: Zhao, Yiyuan
  email: yiyuan.zhao@vanderbilt.edu
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
– sequence: 2
  givenname: Srijata
  orcidid: 0000-0003-2442-2745
  surname: Chakravorti
  fullname: Chakravorti, Srijata
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
– sequence: 3
  givenname: Robert F.
  surname: Labadie
  fullname: Labadie, Robert F.
  organization: Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
– sequence: 4
  givenname: Benoit M.
  surname: Dawant
  fullname: Dawant, Benoit M.
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
– sequence: 5
  givenname: Jack H.
  surname: Noble
  fullname: Noble, Jack H.
  email: jack.noble@vanderbilt.edu
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30468968$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiPUin7AL0BClrhwSWonTpwcQKpWfEmVuJSzNbEnjVeOvdjJluXX4-2WAj0AJ1ua930188ycZUfOO8yyF4wWjLLmYl1MqA0UJWVtwVhBaf0kO2VVw_KWl9XRw5_VJ9lZjGtKqeCcPs1OKsqbtmva02x3ucx-gtkochNgM-Y9RNRkwnn0mgw-EOsVWPM9SbwjfiDKq9EiBGKmjQU3E7So5uA1EggBdpEYR5Q1ziQfWV2TWzOPJC59vvXf0BJQagmgds-y4wFsxOf373n25f2769XH_Orzh0-ry6tc8VbMORMMO13yktcCkCsFulZ909AOOGKjWi1EXfVd3wndC9G2PdeYZqt1R2Eoh-o844fcxW1gdwvWyk0wE4SdZFTuScq1vCMp9yQlYzKRTLa3B9tm6VNVoZsD_LJ6MPLPijOjvPFb2dS8aplIAa_vA4L_umCc5WSiQpuYoV-iLFkleEObrkzSV4-ka78El6gkVZcGL1m9D3z5e0cPrfxcZhJ0B4EKPsaAg1RmvttbatDYf4xbPfL-H6Q3BxemBW4NBhmVQaeSMKSjkNqbv_p_AGxh3uY
CitedBy_id crossref_primary_10_1186_s12880_023_01102_6
crossref_primary_10_1186_s12938_024_01249_5
crossref_primary_10_1097_MAO_0000000000003432
crossref_primary_10_1088_2057_1976_ac9aba
crossref_primary_10_1007_s00405_020_06156_8
crossref_primary_10_1016_j_media_2020_101659
crossref_primary_10_1088_1741_2552_abad7a
crossref_primary_10_1109_ACCESS_2024_3429524
crossref_primary_10_1159_000515684
crossref_primary_10_1016_j_heares_2022_108584
crossref_primary_10_1001_jamaoto_2025_0103
crossref_primary_10_1523_JNEUROSCI_0359_21_2021
crossref_primary_10_1080_14670100_2023_2179756
crossref_primary_10_3389_fnins_2019_00999
crossref_primary_10_1080_14670100_2019_1618525
crossref_primary_10_3390_mi13071081
crossref_primary_10_1097_MAO_0000000000003812
crossref_primary_10_1109_TBME_2021_3080116
crossref_primary_10_3390_jcm11226640
crossref_primary_10_1097_MAO_0000000000003547
crossref_primary_10_1097_MAO_0000000000003538
crossref_primary_10_1016_j_bpj_2020_04_009
crossref_primary_10_1016_j_media_2019_101553
crossref_primary_10_1044_2022_AJA_21_00123
Cites_doi 10.1016/j.media.2004.06.026
10.1117/1.JMI.3.3.035001
10.1097/00129492-200501000-00007
10.1159/000365273
10.1177/00034894071160S401
10.1121/1.399052
10.1121/1.1610451
10.1117/1.JMI.4.4.044007
10.1007/BF01386390
10.1097/MAO.0b013e3182096dc2
10.1159/000113510
10.1117/1.JMI.5.2.021202
10.1002/lary.24728
10.1097/01.moo.0000134452.24819.c0
10.1002/mp.13185
10.1682/JRRD.2007.10.0173
10.1097/AUD.0000000000000438
10.1109/TNSRE.2013.2253333
10.1117/12.2081473
10.1016/j.media.2014.02.001
10.1117/1.JMI.5.3.035001
10.1109/TBME.2011.2160262
10.1117/1.JMI.4.4.045002
10.1007/s10162-007-0076-9
10.1097/MAO.0000000000000909
10.3109/14992027.2013.851800
10.1007/s10162-004-5024-3
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Feb 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Feb 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.media.2018.11.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 12
ExternalDocumentID oai:pubmedcentral.nih.gov:6543817
PMC6543817
30468968
10_1016_j_media_2018_11_005
S1361841518301300
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01 DC014037
– fundername: NIDCD NIH HHS
  grantid: R01 DC014462
– fundername: NIDCD NIH HHS
  grantid: R01 DC008408
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c487t-171e9d242457ae4ccad5cb6609a4ee6c8d7753b9b97db7788b4de8965d90af2f3
IEDL.DBID UNPAY
ISSN 1361-8415
1361-8423
1361-8431
IngestDate Sun Oct 26 04:09:02 EDT 2025
Tue Sep 30 16:46:23 EDT 2025
Sun Sep 28 08:45:07 EDT 2025
Tue Oct 07 06:58:04 EDT 2025
Thu Apr 03 07:04:06 EDT 2025
Thu Apr 24 22:59:15 EDT 2025
Wed Oct 01 03:29:50 EDT 2025
Fri Feb 23 02:28:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cochlear implant
CI electrode array
Segmentation
Graph search
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-171e9d242457ae4ccad5cb6609a4ee6c8d7753b9b97db7788b4de8965d90af2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2298-5264
0000-0003-2442-2745
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6543817
PMID 30468968
PQID 2194572157
PQPubID 2045428
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_media_2018_11_005
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6543817
proquest_miscellaneous_2137460692
proquest_journals_2194572157
pubmed_primary_30468968
crossref_citationtrail_10_1016_j_media_2018_11_005
crossref_primary_10_1016_j_media_2018_11_005
elsevier_sciencedirect_doi_10_1016_j_media_2018_11_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Noble, Gifford, Hedley-Williams, Dawant, Labadie (bib0019) 2014; 19
Zhao, Labadie, Dawant, Noble (bib0042) 2018; 5
Wanna, Noble, Carlson, Gifford, Dietrich, Haynes, Dawant, Labadie (bib0029) 2014; 124
Bennink, Peters, Wendrich, Vonken, van Zantan, Viergever (bib0002) 2017; 38
Chakravorti, Bussey, Zhao, Dawant, Labadie, Noble (bib0006) 2017; 4
Zhao, Dawant, Labadie, Noble (bib0034) 2014
Boëx, de Balthasar, Kós, Pelizzone (bib0003) 2003; 114
Zhao, Dawant, Noble (bib0036) 2016; 3
Noble, Labadie, Gifford, Dawant (bib0018) 2013; 21
Bouix, Siddiqi, Tannenbaum (bib0004) 2005; 9
Rubinstein (bib0024) 2004; 12
Wang, Zhao, Noble, Dawant (bib0040) 2018; vol. 11070
Gifford, Shallop, Peterson (bib0011) 2008; 13
Skinner, Holden, Whiting, Voie, Brunsden, Neely, Saxon, Hullar, Finley (bib0025) 2007; 116
Dijkstra (bib0008) 1959; 1
Frangi, Niessen, Vincken, Viergever (bib0009) 1998
Braithwaite, Kjer, Fagertun, Ballaster, Dhanasingh, Mistrik, Gerber, Paulsen (bib0005) 2016
Fu, Nogaki (bib0010) 2005; 6
Greenwood (bib0013) 1990; 87
Noble, Labadie, Majdani, Dawant (bib0015) 2011; 58
Wanna, Noble, McRrackan, Dawant, Dietrich, Watkins, Rivas, Schuman, Labadie (bib0028) 2011; 32
Zhao, Dawant, Noble (bib0037) 2017
Noble, Hedley-Williams, Sunderhaus, Dawant, Labadie, Camarata, Gifford (bib0021) 2016; 37
Stakhovskaya, Sridhar, Bonham, Leake (bib0026) 2007; 8
Verbist, Frijns, Geleijns, Van Buchem (bib0027) 2005; 26
Zhang, Liu, Noble, Dawant (bib0032) 2017; 4
Zhao, Dawant, Labadie, Noble (bib0041) 2018; 45
National Institute on Deafness and Other Communication Disorders, 2011. NIDCD Fact Sheet: Cochlear Implants, NIH Publication No. 11-4798.
Reda, Noble, Labadie, Dawant (bib0023) 2014
Zhao, Labadie, Dawant, Noble (bib0038) 2018
Noble, Dawant (bib0020) 2015
Zhao, Y., Dawant, B.M., Noble, J.H., 2015. Automatic electrode configuration selection for image-guided cochlear implant programming. 94150K.
Aschendorff, Kubalek, Turowski, Zanella, Hochmuth, Schumacher, Klenzner, Laszig (bib0001) 2005; 26
Zhang, Zhao, Noble, Dawant (bib0033) 2017; 5
Noble, Gifford, Labadie, Dawant (bib0017) 2012; 7511
Reda, McRackan, Labadie, Dawant, Noble (bib0022) 2014; 18
Gifford, Hedley-Williams, Spahr (bib0012) 2014; 53
Wilson, Dorman (bib0031) 2008; 45
Chakravorti (10.1016/j.media.2018.11.005_bib0006) 2017; 4
Bennink (10.1016/j.media.2018.11.005_bib0002) 2017; 38
Reda (10.1016/j.media.2018.11.005_bib0023) 2014
Zhao (10.1016/j.media.2018.11.005_bib0037) 2017
Frangi (10.1016/j.media.2018.11.005_bib0009) 1998
Noble (10.1016/j.media.2018.11.005_bib0019) 2014; 19
Noble (10.1016/j.media.2018.11.005_bib0020) 2015
Skinner (10.1016/j.media.2018.11.005_bib0025) 2007; 116
Zhang (10.1016/j.media.2018.11.005_bib0032) 2017; 4
Greenwood (10.1016/j.media.2018.11.005_bib0013) 1990; 87
Fu (10.1016/j.media.2018.11.005_bib0010) 2005; 6
Bouix (10.1016/j.media.2018.11.005_bib0004) 2005; 9
10.1016/j.media.2018.11.005_bib0035
10.1016/j.media.2018.11.005_bib0014
Noble (10.1016/j.media.2018.11.005_bib0015) 2011; 58
Noble (10.1016/j.media.2018.11.005_bib0021) 2016; 37
Reda (10.1016/j.media.2018.11.005_bib0022) 2014; 18
Boëx (10.1016/j.media.2018.11.005_bib0003) 2003; 114
Zhao (10.1016/j.media.2018.11.005_bib0036) 2016; 3
Wanna (10.1016/j.media.2018.11.005_bib0029) 2014; 124
Zhao (10.1016/j.media.2018.11.005_bib0038) 2018
Zhao (10.1016/j.media.2018.11.005_bib0042) 2018; 5
Stakhovskaya (10.1016/j.media.2018.11.005_bib0026) 2007; 8
Wang (10.1016/j.media.2018.11.005_bib0040) 2018; vol. 11070
Zhao (10.1016/j.media.2018.11.005_bib0041) 2018; 45
Noble (10.1016/j.media.2018.11.005_bib0017) 2012; 7511
Gifford (10.1016/j.media.2018.11.005_bib0012) 2014; 53
Wanna (10.1016/j.media.2018.11.005_bib0028) 2011; 32
Aschendorff (10.1016/j.media.2018.11.005_bib0001) 2005; 26
Dijkstra (10.1016/j.media.2018.11.005_bib0008) 1959; 1
Verbist (10.1016/j.media.2018.11.005_bib0027) 2005; 26
Zhang (10.1016/j.media.2018.11.005_bib0033) 2017; 5
Rubinstein (10.1016/j.media.2018.11.005_bib0024) 2004; 12
Gifford (10.1016/j.media.2018.11.005_bib0011) 2008; 13
Noble (10.1016/j.media.2018.11.005_bib0018) 2013; 21
Braithwaite (10.1016/j.media.2018.11.005_bib0005) 2016
Wilson (10.1016/j.media.2018.11.005_bib0031) 2008; 45
Zhao (10.1016/j.media.2018.11.005_bib0034) 2014
References_xml – volume: 114
  start-page: 2049
  year: 2003
  end-page: 2057
  ident: bib0003
  article-title: Electrical field interactions in different cochlear implant systems
  publication-title: J. Acoust. Soc. Am.
– volume: 53
  start-page: 159
  year: 2014
  end-page: 164
  ident: bib0012
  article-title: Clinical assessment of spectral modulation detection for adult cochlear implant recipients: a non-language based measure of performance outcomes
  publication-title: Int. J. Audiol.
– volume: 124
  start-page: S1
  year: 2014
  end-page: S7
  ident: bib0029
  article-title: Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes
  publication-title: Laryngoscope
– volume: 4
  year: 2017
  ident: bib0006
  article-title: Cochlear implant phantom for evaluating computed tomography acquisition parameters
  publication-title: J. Med. Imaging
– reference: National Institute on Deafness and Other Communication Disorders, 2011. NIDCD Fact Sheet: Cochlear Implants, NIH Publication No. 11-4798.
– volume: 18
  start-page: 605
  year: 2014
  end-page: 615
  ident: bib0022
  article-title: Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients
  publication-title: Med. Image Anal.
– year: 2018
  ident: bib0038
  article-title: Validation of cochlear implant electrode localization techniques
  publication-title: Proceedings of SPIE – The International Society for Optical Engineering 10576, 105761U
– volume: 6
  start-page: 19
  year: 2005
  end-page: 27
  ident: bib0010
  article-title: Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 45
  start-page: 5030
  year: 2018
  end-page: 5040
  ident: bib0041
  article-title: Automatic localization of closely spaced cochlear implant electrode arrays in clinical CTs
  publication-title: Med. Phys.
– volume: vol. 11070
  year: 2018
  ident: bib0040
  article-title: Conditional Generative Adversarial Networks for Metal Artifact Reduction in CT Images of the Ear
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018
– volume: 13
  start-page: 193
  year: 2008
  end-page: 205
  ident: bib0011
  article-title: Speech recognition materials and ceiling effects: considerations for cochlear implant programs
  publication-title: Audiol. Neuro-otol.
– volume: 4
  year: 2017
  ident: bib0032
  article-title: Localizing landmark sets in head CTs using random forests and a heuristic search algorithm for registration initialization
  publication-title: J. Med. Imaging
– year: 2017
  ident: bib0037
  article-title: Automatic localization of cochlear implant electrodes in CTs with a limited intensity range
  publication-title: Proceedings of SPIE – The International Society for Optical Engineering, 101330T
– volume: 12
  start-page: 444
  year: 2004
  end-page: 448
  ident: bib0024
  article-title: How cochlear implants encode speech
  publication-title: Curr. Opin. Otolaryngol. Head Neck Surg.
– reference: Zhao, Y., Dawant, B.M., Noble, J.H., 2015. Automatic electrode configuration selection for image-guided cochlear implant programming. 94150K.
– volume: 37
  start-page: e63
  year: 2016
  end-page: e69
  ident: bib0021
  article-title: Initial results with Image-guided Cochlear Implant Programming in Children
  publication-title: Otol. Neurotol.
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: bib0008
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
– start-page: 152
  year: 2015
  end-page: 159
  ident: bib0020
  article-title: Automatic graph-based localization of cochlear implant electrodes in CT
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part II
– volume: 58
  start-page: 2625
  year: 2011
  end-page: 2632
  ident: bib0015
  article-title: Automatic segmentation of intra-cochlear anatomy in conventional CT
  publication-title: IEEE Trans. Bio-med. Eng.
– volume: 7511
  year: 2012
  ident: bib0017
  article-title: Statistical shape model segmentation and frequency mapping of cochlear implant stimulation targets in CT
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012. MICCAI 2012. Lecture Notes in Computer Science
– volume: 19
  start-page: 400
  year: 2014
  end-page: 411
  ident: bib0019
  article-title: Clinical evaluation of an image-guided cochlear implant programming strategy
  publication-title: Audiol. Neurotol.
– volume: 32
  start-page: 428
  year: 2011
  ident: bib0028
  article-title: Assessment of electrode placement and audiologic outcomes in bilateral cochlear implantation
  publication-title: Otol. Neurotol.
– volume: 5
  start-page: 035001
  year: 2018
  ident: bib0042
  article-title: Validation of automatic cochlear implant electrode localization techniques using μCTs
  publication-title: J. Med. Imaging
– year: 2016
  ident: bib0005
  article-title: Cochlear implant elecrode localization in post-operative CT using a spherical measure
  publication-title: Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on
– volume: 5
  year: 2017
  ident: bib0033
  article-title: Selecting electrode configurations for image-guided cochlear implant programming using template matching,
  publication-title: J. Med. Imaging
– volume: 45
  start-page: 695
  year: 2008
  end-page: 730
  ident: bib0031
  article-title: Cochlear implants: current designs and future possibilities
  publication-title: J. Rehabil. Res. Dev.
– volume: 8
  start-page: 220
  year: 2007
  end-page: 233
  ident: bib0026
  article-title: Frequency map for the human cochlear spiral ganglion: implications for cochlear implants
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 87
  start-page: 2592
  year: 1990
  end-page: 2605
  ident: bib0013
  article-title: A cochlear frequency-position function for several species – 29 years later
  publication-title: J. Acoust. Soc. Am.
– volume: 26
  start-page: 424
  year: 2005
  end-page: 429
  ident: bib0027
  article-title: Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients
  publication-title: Am. J. Neuroradiol.
– volume: 116
  start-page: 2
  year: 2007
  end-page: 24
  ident: bib0025
  article-title: In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea
  publication-title: Ann. Otol. Rhinol. Laryngol.
– volume: 38
  start-page: e376
  year: 2017
  end-page: e384
  ident: bib0002
  article-title: Automatic localization of cochlear implant electrode contacts in CT
  publication-title: Ear Hear.
– start-page: 130
  year: 1998
  end-page: 137
  ident: bib0009
  article-title: Multiscale vessel enhancement filtering
  publication-title: Medical Image Computing and Computer-Assisted Interventation—MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings
– volume: 21
  start-page: 820
  year: 2013
  end-page: 829
  ident: bib0018
  article-title: Image-guidance enables new methods for customizing cochlear implant stimulation strategies
  publication-title: Neural Syst. Rehabil. Eng. IEEE Trans.
– volume: 26
  start-page: 34
  year: 2005
  end-page: 37
  ident: bib0001
  article-title: Quality control after cochlear implant surgery by means of rotational tomography
  publication-title: Otol. Neurotol.
– start-page: 331
  year: 2014
  end-page: 338
  ident: bib0034
  article-title: Automatic localization of cochlear implant electrodes in CT
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014: 17th International Conference, Boston, MA, USA, September 14–18, 2014, Proceedings, Part I
– year: 2014
  ident: bib0023
  article-title: An artifact-robust, shape library-based algorithm for automatic segmentation of inner ear anatomy in post-cochlear-implantation CT
  publication-title: Proceedings of SPIE–the International Society for Optical Engineering 9034, 90342V
– volume: 3
  year: 2016
  ident: bib0036
  article-title: Automatic selection of the active electrode set for image-guided cochlear implant programming
  publication-title: J. Med. Imaging
– volume: 9
  start-page: 209
  year: 2005
  end-page: 221
  ident: bib0004
  article-title: Flux driven automatic centerline extraction
  publication-title: Med. Image Anal.
– volume: 9
  start-page: 209
  year: 2005
  ident: 10.1016/j.media.2018.11.005_bib0004
  article-title: Flux driven automatic centerline extraction
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.06.026
– year: 2016
  ident: 10.1016/j.media.2018.11.005_bib0005
  article-title: Cochlear implant elecrode localization in post-operative CT using a spherical measure
– volume: 3
  issue: 3
  year: 2016
  ident: 10.1016/j.media.2018.11.005_bib0036
  article-title: Automatic selection of the active electrode set for image-guided cochlear implant programming
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.3.3.035001
– volume: 26
  start-page: 34
  year: 2005
  ident: 10.1016/j.media.2018.11.005_bib0001
  article-title: Quality control after cochlear implant surgery by means of rotational tomography
  publication-title: Otol. Neurotol.
  doi: 10.1097/00129492-200501000-00007
– volume: 19
  start-page: 400
  year: 2014
  ident: 10.1016/j.media.2018.11.005_bib0019
  article-title: Clinical evaluation of an image-guided cochlear implant programming strategy
  publication-title: Audiol. Neurotol.
  doi: 10.1159/000365273
– volume: 116
  start-page: 2
  year: 2007
  ident: 10.1016/j.media.2018.11.005_bib0025
  article-title: In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea
  publication-title: Ann. Otol. Rhinol. Laryngol.
  doi: 10.1177/00034894071160S401
– volume: 87
  start-page: 2592
  year: 1990
  ident: 10.1016/j.media.2018.11.005_bib0013
  article-title: A cochlear frequency-position function for several species – 29 years later
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.399052
– volume: 114
  start-page: 2049
  year: 2003
  ident: 10.1016/j.media.2018.11.005_bib0003
  article-title: Electrical field interactions in different cochlear implant systems
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1610451
– volume: vol. 11070
  year: 2018
  ident: 10.1016/j.media.2018.11.005_bib0040
  article-title: Conditional Generative Adversarial Networks for Metal Artifact Reduction in CT Images of the Ear
– volume: 4
  issue: 4
  year: 2017
  ident: 10.1016/j.media.2018.11.005_bib0032
  article-title: Localizing landmark sets in head CTs using random forests and a heuristic search algorithm for registration initialization
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.4.4.044007
– volume: 1
  start-page: 269
  year: 1959
  ident: 10.1016/j.media.2018.11.005_bib0008
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– volume: 32
  start-page: 428
  year: 2011
  ident: 10.1016/j.media.2018.11.005_bib0028
  article-title: Assessment of electrode placement and audiologic outcomes in bilateral cochlear implantation
  publication-title: Otol. Neurotol.
  doi: 10.1097/MAO.0b013e3182096dc2
– volume: 13
  start-page: 193
  year: 2008
  ident: 10.1016/j.media.2018.11.005_bib0011
  article-title: Speech recognition materials and ceiling effects: considerations for cochlear implant programs
  publication-title: Audiol. Neuro-otol.
  doi: 10.1159/000113510
– volume: 5
  issue: 2
  year: 2017
  ident: 10.1016/j.media.2018.11.005_bib0033
  article-title: Selecting electrode configurations for image-guided cochlear implant programming using template matching,
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.5.2.021202
– volume: 124
  start-page: S1
  year: 2014
  ident: 10.1016/j.media.2018.11.005_bib0029
  article-title: Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes
  publication-title: Laryngoscope
  doi: 10.1002/lary.24728
– volume: 12
  start-page: 444
  year: 2004
  ident: 10.1016/j.media.2018.11.005_bib0024
  article-title: How cochlear implants encode speech
  publication-title: Curr. Opin. Otolaryngol. Head Neck Surg.
  doi: 10.1097/01.moo.0000134452.24819.c0
– year: 2017
  ident: 10.1016/j.media.2018.11.005_bib0037
  article-title: Automatic localization of cochlear implant electrodes in CTs with a limited intensity range
– volume: 45
  start-page: 5030
  issue: 11
  year: 2018
  ident: 10.1016/j.media.2018.11.005_bib0041
  article-title: Automatic localization of closely spaced cochlear implant electrode arrays in clinical CTs
  publication-title: Med. Phys.
  doi: 10.1002/mp.13185
– volume: 45
  start-page: 695
  year: 2008
  ident: 10.1016/j.media.2018.11.005_bib0031
  article-title: Cochlear implants: current designs and future possibilities
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2007.10.0173
– volume: 38
  start-page: e376
  issue: 6
  year: 2017
  ident: 10.1016/j.media.2018.11.005_bib0002
  article-title: Automatic localization of cochlear implant electrode contacts in CT
  publication-title: Ear Hear.
  doi: 10.1097/AUD.0000000000000438
– year: 2018
  ident: 10.1016/j.media.2018.11.005_bib0038
  article-title: Validation of cochlear implant electrode localization techniques
– volume: 21
  start-page: 820
  year: 2013
  ident: 10.1016/j.media.2018.11.005_bib0018
  article-title: Image-guidance enables new methods for customizing cochlear implant stimulation strategies
  publication-title: Neural Syst. Rehabil. Eng. IEEE Trans.
  doi: 10.1109/TNSRE.2013.2253333
– start-page: 331
  year: 2014
  ident: 10.1016/j.media.2018.11.005_bib0034
  article-title: Automatic localization of cochlear implant electrodes in CT
– volume: 7511
  year: 2012
  ident: 10.1016/j.media.2018.11.005_bib0017
  article-title: Statistical shape model segmentation and frequency mapping of cochlear implant stimulation targets in CT
– ident: 10.1016/j.media.2018.11.005_bib0035
  doi: 10.1117/12.2081473
– volume: 18
  start-page: 605
  year: 2014
  ident: 10.1016/j.media.2018.11.005_bib0022
  article-title: Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.02.001
– start-page: 152
  year: 2015
  ident: 10.1016/j.media.2018.11.005_bib0020
  article-title: Automatic graph-based localization of cochlear implant electrodes in CT
– volume: 5
  start-page: 035001
  issue: 3
  year: 2018
  ident: 10.1016/j.media.2018.11.005_bib0042
  article-title: Validation of automatic cochlear implant electrode localization techniques using μCTs
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.5.3.035001
– volume: 58
  start-page: 2625
  year: 2011
  ident: 10.1016/j.media.2018.11.005_bib0015
  article-title: Automatic segmentation of intra-cochlear anatomy in conventional CT
  publication-title: IEEE Trans. Bio-med. Eng.
  doi: 10.1109/TBME.2011.2160262
– year: 2014
  ident: 10.1016/j.media.2018.11.005_bib0023
  article-title: An artifact-robust, shape library-based algorithm for automatic segmentation of inner ear anatomy in post-cochlear-implantation CT
– volume: 26
  start-page: 424
  year: 2005
  ident: 10.1016/j.media.2018.11.005_bib0027
  article-title: Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients
  publication-title: Am. J. Neuroradiol.
– volume: 4
  issue: 4
  year: 2017
  ident: 10.1016/j.media.2018.11.005_bib0006
  article-title: Cochlear implant phantom for evaluating computed tomography acquisition parameters
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.4.4.045002
– volume: 8
  start-page: 220
  year: 2007
  ident: 10.1016/j.media.2018.11.005_bib0026
  article-title: Frequency map for the human cochlear spiral ganglion: implications for cochlear implants
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-007-0076-9
– ident: 10.1016/j.media.2018.11.005_bib0014
– volume: 37
  start-page: e63
  issue: 2
  year: 2016
  ident: 10.1016/j.media.2018.11.005_bib0021
  article-title: Initial results with Image-guided Cochlear Implant Programming in Children
  publication-title: Otol. Neurotol.
  doi: 10.1097/MAO.0000000000000909
– start-page: 130
  year: 1998
  ident: 10.1016/j.media.2018.11.005_bib0009
  article-title: Multiscale vessel enhancement filtering
– volume: 53
  start-page: 159
  year: 2014
  ident: 10.1016/j.media.2018.11.005_bib0012
  article-title: Clinical assessment of spectral modulation detection for adult cochlear implant recipients: a non-language based measure of performance outcomes
  publication-title: Int. J. Audiol.
  doi: 10.3109/14992027.2013.851800
– volume: 6
  start-page: 19
  year: 2005
  ident: 10.1016/j.media.2018.11.005_bib0010
  article-title: Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-004-5024-3
SSID ssj0007440
Score 2.434209
Snippet •Cochlear implant programming relies on the intra-cochlear locations of electrodes.•An automatic method to segment electrode arrays in post-implantation...
Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Automation
CI electrode array
Cochlea
Cochlea - diagnostic imaging
Cochlear implant
Cochlear Implants
Correlation analysis
Electrodes
Electrodes, Implanted
Graph search
Hearing loss
Humans
Localization
Neural prostheses
Prosthetics
Radiographic Image Interpretation, Computer-Assisted - methods
Segmentation
Surgical implants
Tomography, X-Ray Computed - methods
Transplants & implants
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhz4OpUlfTpOiQo9V1i9Z1jEsDaGQXppAbkaWZOLi2svuus1e8tszI8tulpRQerQ1xrJmNA9r5htCPlVSZToSmoWhUixNeclKHitmeJhVWnPNHcTG-bfs7DL9esWvdsh8rIXBtEqv-wed7rS1vzPzqzlb1PXse5RgsxKwWHmCx28Yt6epwC4Gx7d_0jwQAG-ovYoYUo_IQy7Hy1VnYH5XfoxQntjD7u_W6aH3-TCJ8mnfLtTmt2qaexbq9CV54V1LejLMfo_s2HafPL8HOLhPnpz7o_RXZHPSrzuH10odaDVDe2bo0FGagitLnZnzZZq0qyiozmtsMkHrn4sGGEJ9Cx1jqVou1WZF65aOlZZ0fkHxHy9d9SX71d3Yhiqt-6XSm9fk8vTLxfyM-T4MTEM4s2aRiKw0WEfChbIp8NxwXWZZKFVqbaZzIyDoKWUphSkFxNRlamwuM25kqKq4St6Q3bZr7TtCVQwkiEWqwQ8TRihpkNzmXFdS8yQg8bj-hfYg5dgroynGbLQfhWNagUyD8KUApgXk8_TQYsDoeJw8GxlbbIlaAVbk8QcPRzEo_E5fFaDxYVnAcRIB-TgNwx7FgxfV2q5HmkSkECnKOCBvB6mZJoon07BWeUDEljxNBIj_vT3S1tcOBxzLgvMI3ssmyfuX7z_43-9_T57BlRxy1g_J7nrZ2yNwydblB7fn7gB9BDaD
  priority: 102
  providerName: Elsevier
Title Automatic graph-based method for localization of cochlear implant electrode arrays in clinical CT with sub-voxel accuracy
URI https://dx.doi.org/10.1016/j.media.2018.11.005
https://www.ncbi.nlm.nih.gov/pubmed/30468968
https://www.proquest.com/docview/2194572157
https://www.proquest.com/docview/2137460692
https://pubmed.ncbi.nlm.nih.gov/PMC6543817
https://www.ncbi.nlm.nih.gov/pmc/articles/6543817
UnpaywallVersion submittedVersion
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trcTHAx9jbIFRGYlHnDVtHCePZWKUj1UIrWg8RY7taIU0rdoGKA_87Zwdp9oYmthTEvkixckvubv4d78DeJEnIpIBl7TbFYKGIctoxnqCKtaNcimZZFZi42QUDcfhuzN2tgVBUwtjSfsym_hlMfXLybnlVs6n8rDhiR2aYsg44NvQjhiG3y1oj0cfB1_q-qqAxqHtWuD2bXs3t98PGtUhy--ylRmG2xX7RsbT9K_7t2e6GnleJVDersq5WP8QRXHBOx3fh0_NvGpSyje_WmW-_PWX5OONJv4A7rlYlQzqoYewpcsduHtBwXAHbp24tflHsB5Uq5kVgCVWBZsaB6lI3aKaYGxMrN90dZ9klhP8Fp-brhVkMp0X-ISJ68mjNBGLhVgvyaQkTekmOTol5qcxWVYZ_T77qQsipKwWQq53YXz8-vRoSF1jByoxP1rRgAc6UaYwhXGhQwSRYjKLom4iQq0jGSuOWVSWZAlXGcckPQuVjpOIqaQr8l7efwytclbqfSCihyZG3FRiYMcVF4ky5jpmMk8k63vQax5qKp3quWm-UaQNve1rapGQGiRgPpQiEjx4uTlpXot-XG8eNWhJXdxSxyMpuqXrTzxosJW6T8cyRReCtwUjMe7B880wvvRmJUeUelYZmz4PMfVMeh7s1VDcXKhZ6sZ7FXvAL4F0Y2AExS-PINyssLhDmAd0A-f_mf-TG9o_hTt4lNTc9wNorRaVfoah3SrrwLb_O-hAe_D2_XCE2zevPnwedNwr_gczwlHD
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIlE4ICivQAEjccTdvBzHx2pFtUC3F7ZSb5FjO2pQSFa7G2Av_HZmEid0VVQhrvFYcTzjecQz3xDyrpAq0YHQzPeVYnHMc5bzUDHD_aTQmmveQWzMz5PZRfzpkl_ukelQC4NplU739zq909buycTt5mRZlpMvQYTNSsBipRFev0HcfifmocAI7PjXnzwPRMDri68ChuQD9FCX5NWVZ2CCV3qMWJ7YxO7v5umm-3kzi_KgrZdq-0NV1TUTdfqQPHC-JT3pl_-I7Nn6kNy_hjh4SO7O3V36Y7I9aTdNB9hKO9RqhgbN0L6lNAVflnZ2ztVp0qagoDuvsMsELb8tK-AIdT10jKVqtVLbNS1rOpRa0umC4k9eum5z9r35aSuqtG5XSm-fkIvTD4vpjLlGDExDPLNhgQisNFhIwoWyMTDdcJ0niS9VbG2iUyMg6sllLoXJBQTVeWxsKhNupK-KsIiekv26qe1zQlUIJAhGqsERE0YoaZDcplwXUvPII-Gw_5l2KOXYLKPKhnS0r1nHtAyZBvFLBkzzyPtx0rIH6bidPBkYm-3IWgZm5PaJR4MYZO6orzNQ-bAt4DkJj7wdh-GQ4s2Lqm3TIk0kYggVZeiRZ73UjAvFq2nYq9QjYkeeRgIEAN8dqcurDggc64LTAN7LRsn7l-9_8b_f_4YczBbzs-zs4_nnl-QejMg-gf2I7G9WrX0F_tkmf92dv98ZhTmm
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVOJx4FFehoIWiSObxonX6z1GFVWF1AqhRiona19WA44dJTEQfj2z67XVUlTRm60dS971Z8833plvAN4XQqY65pqORlLSJGGKKjaW1LBRWmjNNPMSGyen6fEs-XTOzncg7mphfNK-VvNhVS6G1fzC51YuF_qgyxM7cMWQWczvwG7KkH4PYHd2-nn6ta2vimmW-K4F4di3dwvHk7hTHfL5Xb4yw-V2ZUMn4-n61_3bM11nntcTKO811VJuf8qyvOSdjh7Bl25ebVLK92GzUUP9-y_Jx1tN_DE8DFyVTNuhJ7Bjqz14cEnBcA_unoS9-aewnTab2gvAEq-CTZ2DNKRtUU2QGxPvN0PdJ6kLgt_iC9e1gswXyxKfMAk9eYwlcrWS2zWZV6Qr3SSHZ8T9NCbrRtEf9S9bEql1s5J6-wxmRx_PDo9paOxANcZHGxrz2ArjClMYlzZBEBmmVZqOhEysTXVmOEZRSijBjeIYpKvE2EykzIiRLMbF5DkMqrqyL4HIMZo4cVONxI4bLoVx5jZjuhCaTSIYdw8110H13DXfKPMuve1b7pGQOyRgPJQjEiL40F-0bEU_bjZPO7Tkgbe0fCRHt3TzhfsdtvLw6Vjn6EJwWZCJ8Qje9cP40rudHFnZunE2E55g6CnGEbxoodjfqNvqxrXKIuBXQNobOEHxqyMINy8sHhAWAe3h_D_zf3VL-9dwH89Em_u-D4PNqrFvkNpt1NvwMv8BYepNqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+graph-based+method+for+localization+of+cochlear+implant+electrode+arrays+in+clinical+CT+with+sub-voxel+accuracy&rft.jtitle=Medical+image+analysis&rft.au=Zhao%2C+Yiyuan&rft.au=Chakravorti%2C+Srijata&rft.au=Labadie%2C+Robert+F.&rft.au=Dawant%2C+Benoit+M.&rft.date=2019-02-01&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=52&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.media.2018.11.005&rft_id=info%3Apmid%2F30468968&rft.externalDocID=PMC6543817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon