Automatic graph-based method for localization of cochlear implant electrode arrays in clinical CT with sub-voxel accuracy
•Cochlear implant programming relies on the intra-cochlear locations of electrodes.•An automatic method to segment electrode arrays in post-implantation CTs.•It uses two graph-based path-finding algorithms to segment CI electrodes in CTs.•The accuracy of the method is close to the manual localizatio...
Saved in:
| Published in | Medical image analysis Vol. 52; pp. 1 - 12 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.02.2019
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1361-8415 1361-8423 1361-8431 1361-8423 |
| DOI | 10.1016/j.media.2018.11.005 |
Cover
| Abstract | •Cochlear implant programming relies on the intra-cochlear locations of electrodes.•An automatic method to segment electrode arrays in post-implantation CTs.•It uses two graph-based path-finding algorithms to segment CI electrodes in CTs.•The accuracy of the method is close to the manual localizations produced by experts.•The method is robust with respect to various CT acquisition parameters.
Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use.
[Display omitted] |
|---|---|
| AbstractList | •Cochlear implant programming relies on the intra-cochlear locations of electrodes.•An automatic method to segment electrode arrays in post-implantation CTs.•It uses two graph-based path-finding algorithms to segment CI electrodes in CTs.•The accuracy of the method is close to the manual localizations produced by experts.•The method is robust with respect to various CT acquisition parameters.
Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use.
[Display omitted] Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use. Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use. Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use.Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use. |
| Author | Noble, Jack H. Labadie, Robert F. Dawant, Benoit M. Chakravorti, Srijata Zhao, Yiyuan |
| AuthorAffiliation | b Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235, USA a Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA |
| AuthorAffiliation_xml | – name: b Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235, USA – name: a Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA |
| Author_xml | – sequence: 1 givenname: Yiyuan orcidid: 0000-0002-2298-5264 surname: Zhao fullname: Zhao, Yiyuan email: yiyuan.zhao@vanderbilt.edu organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA – sequence: 2 givenname: Srijata orcidid: 0000-0003-2442-2745 surname: Chakravorti fullname: Chakravorti, Srijata organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA – sequence: 3 givenname: Robert F. surname: Labadie fullname: Labadie, Robert F. organization: Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA – sequence: 4 givenname: Benoit M. surname: Dawant fullname: Dawant, Benoit M. organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA – sequence: 5 givenname: Jack H. surname: Noble fullname: Noble, Jack H. email: jack.noble@vanderbilt.edu organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30468968$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhiPUin7AL0BClrhwSWonTpwcQKpWfEmVuJSzNbEnjVeOvdjJluXX4-2WAj0AJ1ua930188ycZUfOO8yyF4wWjLLmYl1MqA0UJWVtwVhBaf0kO2VVw_KWl9XRw5_VJ9lZjGtKqeCcPs1OKsqbtmva02x3ucx-gtkochNgM-Y9RNRkwnn0mgw-EOsVWPM9SbwjfiDKq9EiBGKmjQU3E7So5uA1EggBdpEYR5Q1ziQfWV2TWzOPJC59vvXf0BJQagmgds-y4wFsxOf373n25f2769XH_Orzh0-ry6tc8VbMORMMO13yktcCkCsFulZ909AOOGKjWi1EXfVd3wndC9G2PdeYZqt1R2Eoh-o844fcxW1gdwvWyk0wE4SdZFTuScq1vCMp9yQlYzKRTLa3B9tm6VNVoZsD_LJ6MPLPijOjvPFb2dS8aplIAa_vA4L_umCc5WSiQpuYoV-iLFkleEObrkzSV4-ka78El6gkVZcGL1m9D3z5e0cPrfxcZhJ0B4EKPsaAg1RmvttbatDYf4xbPfL-H6Q3BxemBW4NBhmVQaeSMKSjkNqbv_p_AGxh3uY |
| CitedBy_id | crossref_primary_10_1186_s12880_023_01102_6 crossref_primary_10_1186_s12938_024_01249_5 crossref_primary_10_1097_MAO_0000000000003432 crossref_primary_10_1088_2057_1976_ac9aba crossref_primary_10_1007_s00405_020_06156_8 crossref_primary_10_1016_j_media_2020_101659 crossref_primary_10_1088_1741_2552_abad7a crossref_primary_10_1109_ACCESS_2024_3429524 crossref_primary_10_1159_000515684 crossref_primary_10_1016_j_heares_2022_108584 crossref_primary_10_1001_jamaoto_2025_0103 crossref_primary_10_1523_JNEUROSCI_0359_21_2021 crossref_primary_10_1080_14670100_2023_2179756 crossref_primary_10_3389_fnins_2019_00999 crossref_primary_10_1080_14670100_2019_1618525 crossref_primary_10_3390_mi13071081 crossref_primary_10_1097_MAO_0000000000003812 crossref_primary_10_1109_TBME_2021_3080116 crossref_primary_10_3390_jcm11226640 crossref_primary_10_1097_MAO_0000000000003547 crossref_primary_10_1097_MAO_0000000000003538 crossref_primary_10_1016_j_bpj_2020_04_009 crossref_primary_10_1016_j_media_2019_101553 crossref_primary_10_1044_2022_AJA_21_00123 |
| Cites_doi | 10.1016/j.media.2004.06.026 10.1117/1.JMI.3.3.035001 10.1097/00129492-200501000-00007 10.1159/000365273 10.1177/00034894071160S401 10.1121/1.399052 10.1121/1.1610451 10.1117/1.JMI.4.4.044007 10.1007/BF01386390 10.1097/MAO.0b013e3182096dc2 10.1159/000113510 10.1117/1.JMI.5.2.021202 10.1002/lary.24728 10.1097/01.moo.0000134452.24819.c0 10.1002/mp.13185 10.1682/JRRD.2007.10.0173 10.1097/AUD.0000000000000438 10.1109/TNSRE.2013.2253333 10.1117/12.2081473 10.1016/j.media.2014.02.001 10.1117/1.JMI.5.3.035001 10.1109/TBME.2011.2160262 10.1117/1.JMI.4.4.045002 10.1007/s10162-007-0076-9 10.1097/MAO.0000000000000909 10.3109/14992027.2013.851800 10.1007/s10162-004-5024-3 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. Copyright Elsevier BV Feb 2019 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Feb 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.media.2018.11.005 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| EndPage | 12 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:6543817 PMC6543817 30468968 10_1016_j_media_2018_11_005 S1361841518301300 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R01 DC014037 – fundername: NIDCD NIH HHS grantid: R01 DC014462 – fundername: NIDCD NIH HHS grantid: R01 DC008408 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c487t-171e9d242457ae4ccad5cb6609a4ee6c8d7753b9b97db7788b4de8965d90af2f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1361-8415 1361-8423 1361-8431 |
| IngestDate | Sun Oct 26 04:09:02 EDT 2025 Tue Sep 30 16:46:23 EDT 2025 Sun Sep 28 08:45:07 EDT 2025 Tue Oct 07 06:58:04 EDT 2025 Thu Apr 03 07:04:06 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 Wed Oct 01 03:29:50 EDT 2025 Fri Feb 23 02:28:19 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cochlear implant CI electrode array Segmentation Graph search |
| Language | English |
| License | Copyright © 2018 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c487t-171e9d242457ae4ccad5cb6609a4ee6c8d7753b9b97db7788b4de8965d90af2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2298-5264 0000-0003-2442-2745 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6543817 |
| PMID | 30468968 |
| PQID | 2194572157 |
| PQPubID | 2045428 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_media_2018_11_005 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6543817 proquest_miscellaneous_2137460692 proquest_journals_2194572157 pubmed_primary_30468968 crossref_citationtrail_10_1016_j_media_2018_11_005 crossref_primary_10_1016_j_media_2018_11_005 elsevier_sciencedirect_doi_10_1016_j_media_2018_11_005 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Noble, Gifford, Hedley-Williams, Dawant, Labadie (bib0019) 2014; 19 Zhao, Labadie, Dawant, Noble (bib0042) 2018; 5 Wanna, Noble, Carlson, Gifford, Dietrich, Haynes, Dawant, Labadie (bib0029) 2014; 124 Bennink, Peters, Wendrich, Vonken, van Zantan, Viergever (bib0002) 2017; 38 Chakravorti, Bussey, Zhao, Dawant, Labadie, Noble (bib0006) 2017; 4 Zhao, Dawant, Labadie, Noble (bib0034) 2014 Boëx, de Balthasar, Kós, Pelizzone (bib0003) 2003; 114 Zhao, Dawant, Noble (bib0036) 2016; 3 Noble, Labadie, Gifford, Dawant (bib0018) 2013; 21 Bouix, Siddiqi, Tannenbaum (bib0004) 2005; 9 Rubinstein (bib0024) 2004; 12 Wang, Zhao, Noble, Dawant (bib0040) 2018; vol. 11070 Gifford, Shallop, Peterson (bib0011) 2008; 13 Skinner, Holden, Whiting, Voie, Brunsden, Neely, Saxon, Hullar, Finley (bib0025) 2007; 116 Dijkstra (bib0008) 1959; 1 Frangi, Niessen, Vincken, Viergever (bib0009) 1998 Braithwaite, Kjer, Fagertun, Ballaster, Dhanasingh, Mistrik, Gerber, Paulsen (bib0005) 2016 Fu, Nogaki (bib0010) 2005; 6 Greenwood (bib0013) 1990; 87 Noble, Labadie, Majdani, Dawant (bib0015) 2011; 58 Wanna, Noble, McRrackan, Dawant, Dietrich, Watkins, Rivas, Schuman, Labadie (bib0028) 2011; 32 Zhao, Dawant, Noble (bib0037) 2017 Noble, Hedley-Williams, Sunderhaus, Dawant, Labadie, Camarata, Gifford (bib0021) 2016; 37 Stakhovskaya, Sridhar, Bonham, Leake (bib0026) 2007; 8 Verbist, Frijns, Geleijns, Van Buchem (bib0027) 2005; 26 Zhang, Liu, Noble, Dawant (bib0032) 2017; 4 Zhao, Dawant, Labadie, Noble (bib0041) 2018; 45 National Institute on Deafness and Other Communication Disorders, 2011. NIDCD Fact Sheet: Cochlear Implants, NIH Publication No. 11-4798. Reda, Noble, Labadie, Dawant (bib0023) 2014 Zhao, Labadie, Dawant, Noble (bib0038) 2018 Noble, Dawant (bib0020) 2015 Zhao, Y., Dawant, B.M., Noble, J.H., 2015. Automatic electrode configuration selection for image-guided cochlear implant programming. 94150K. Aschendorff, Kubalek, Turowski, Zanella, Hochmuth, Schumacher, Klenzner, Laszig (bib0001) 2005; 26 Zhang, Zhao, Noble, Dawant (bib0033) 2017; 5 Noble, Gifford, Labadie, Dawant (bib0017) 2012; 7511 Reda, McRackan, Labadie, Dawant, Noble (bib0022) 2014; 18 Gifford, Hedley-Williams, Spahr (bib0012) 2014; 53 Wilson, Dorman (bib0031) 2008; 45 Chakravorti (10.1016/j.media.2018.11.005_bib0006) 2017; 4 Bennink (10.1016/j.media.2018.11.005_bib0002) 2017; 38 Reda (10.1016/j.media.2018.11.005_bib0023) 2014 Zhao (10.1016/j.media.2018.11.005_bib0037) 2017 Frangi (10.1016/j.media.2018.11.005_bib0009) 1998 Noble (10.1016/j.media.2018.11.005_bib0019) 2014; 19 Noble (10.1016/j.media.2018.11.005_bib0020) 2015 Skinner (10.1016/j.media.2018.11.005_bib0025) 2007; 116 Zhang (10.1016/j.media.2018.11.005_bib0032) 2017; 4 Greenwood (10.1016/j.media.2018.11.005_bib0013) 1990; 87 Fu (10.1016/j.media.2018.11.005_bib0010) 2005; 6 Bouix (10.1016/j.media.2018.11.005_bib0004) 2005; 9 10.1016/j.media.2018.11.005_bib0035 10.1016/j.media.2018.11.005_bib0014 Noble (10.1016/j.media.2018.11.005_bib0015) 2011; 58 Noble (10.1016/j.media.2018.11.005_bib0021) 2016; 37 Reda (10.1016/j.media.2018.11.005_bib0022) 2014; 18 Boëx (10.1016/j.media.2018.11.005_bib0003) 2003; 114 Zhao (10.1016/j.media.2018.11.005_bib0036) 2016; 3 Wanna (10.1016/j.media.2018.11.005_bib0029) 2014; 124 Zhao (10.1016/j.media.2018.11.005_bib0038) 2018 Zhao (10.1016/j.media.2018.11.005_bib0042) 2018; 5 Stakhovskaya (10.1016/j.media.2018.11.005_bib0026) 2007; 8 Wang (10.1016/j.media.2018.11.005_bib0040) 2018; vol. 11070 Zhao (10.1016/j.media.2018.11.005_bib0041) 2018; 45 Noble (10.1016/j.media.2018.11.005_bib0017) 2012; 7511 Gifford (10.1016/j.media.2018.11.005_bib0012) 2014; 53 Wanna (10.1016/j.media.2018.11.005_bib0028) 2011; 32 Aschendorff (10.1016/j.media.2018.11.005_bib0001) 2005; 26 Dijkstra (10.1016/j.media.2018.11.005_bib0008) 1959; 1 Verbist (10.1016/j.media.2018.11.005_bib0027) 2005; 26 Zhang (10.1016/j.media.2018.11.005_bib0033) 2017; 5 Rubinstein (10.1016/j.media.2018.11.005_bib0024) 2004; 12 Gifford (10.1016/j.media.2018.11.005_bib0011) 2008; 13 Noble (10.1016/j.media.2018.11.005_bib0018) 2013; 21 Braithwaite (10.1016/j.media.2018.11.005_bib0005) 2016 Wilson (10.1016/j.media.2018.11.005_bib0031) 2008; 45 Zhao (10.1016/j.media.2018.11.005_bib0034) 2014 |
| References_xml | – volume: 114 start-page: 2049 year: 2003 end-page: 2057 ident: bib0003 article-title: Electrical field interactions in different cochlear implant systems publication-title: J. Acoust. Soc. Am. – volume: 53 start-page: 159 year: 2014 end-page: 164 ident: bib0012 article-title: Clinical assessment of spectral modulation detection for adult cochlear implant recipients: a non-language based measure of performance outcomes publication-title: Int. J. Audiol. – volume: 124 start-page: S1 year: 2014 end-page: S7 ident: bib0029 article-title: Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes publication-title: Laryngoscope – volume: 4 year: 2017 ident: bib0006 article-title: Cochlear implant phantom for evaluating computed tomography acquisition parameters publication-title: J. Med. Imaging – reference: National Institute on Deafness and Other Communication Disorders, 2011. NIDCD Fact Sheet: Cochlear Implants, NIH Publication No. 11-4798. – volume: 18 start-page: 605 year: 2014 end-page: 615 ident: bib0022 article-title: Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients publication-title: Med. Image Anal. – year: 2018 ident: bib0038 article-title: Validation of cochlear implant electrode localization techniques publication-title: Proceedings of SPIE – The International Society for Optical Engineering 10576, 105761U – volume: 6 start-page: 19 year: 2005 end-page: 27 ident: bib0010 article-title: Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing publication-title: J. Assoc. Res. Otolaryngol. – volume: 45 start-page: 5030 year: 2018 end-page: 5040 ident: bib0041 article-title: Automatic localization of closely spaced cochlear implant electrode arrays in clinical CTs publication-title: Med. Phys. – volume: vol. 11070 year: 2018 ident: bib0040 article-title: Conditional Generative Adversarial Networks for Metal Artifact Reduction in CT Images of the Ear publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018 – volume: 13 start-page: 193 year: 2008 end-page: 205 ident: bib0011 article-title: Speech recognition materials and ceiling effects: considerations for cochlear implant programs publication-title: Audiol. Neuro-otol. – volume: 4 year: 2017 ident: bib0032 article-title: Localizing landmark sets in head CTs using random forests and a heuristic search algorithm for registration initialization publication-title: J. Med. Imaging – year: 2017 ident: bib0037 article-title: Automatic localization of cochlear implant electrodes in CTs with a limited intensity range publication-title: Proceedings of SPIE – The International Society for Optical Engineering, 101330T – volume: 12 start-page: 444 year: 2004 end-page: 448 ident: bib0024 article-title: How cochlear implants encode speech publication-title: Curr. Opin. Otolaryngol. Head Neck Surg. – reference: Zhao, Y., Dawant, B.M., Noble, J.H., 2015. Automatic electrode configuration selection for image-guided cochlear implant programming. 94150K. – volume: 37 start-page: e63 year: 2016 end-page: e69 ident: bib0021 article-title: Initial results with Image-guided Cochlear Implant Programming in Children publication-title: Otol. Neurotol. – volume: 1 start-page: 269 year: 1959 end-page: 271 ident: bib0008 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. – start-page: 152 year: 2015 end-page: 159 ident: bib0020 article-title: Automatic graph-based localization of cochlear implant electrodes in CT publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part II – volume: 58 start-page: 2625 year: 2011 end-page: 2632 ident: bib0015 article-title: Automatic segmentation of intra-cochlear anatomy in conventional CT publication-title: IEEE Trans. Bio-med. Eng. – volume: 7511 year: 2012 ident: bib0017 article-title: Statistical shape model segmentation and frequency mapping of cochlear implant stimulation targets in CT publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012. MICCAI 2012. Lecture Notes in Computer Science – volume: 19 start-page: 400 year: 2014 end-page: 411 ident: bib0019 article-title: Clinical evaluation of an image-guided cochlear implant programming strategy publication-title: Audiol. Neurotol. – volume: 32 start-page: 428 year: 2011 ident: bib0028 article-title: Assessment of electrode placement and audiologic outcomes in bilateral cochlear implantation publication-title: Otol. Neurotol. – volume: 5 start-page: 035001 year: 2018 ident: bib0042 article-title: Validation of automatic cochlear implant electrode localization techniques using μCTs publication-title: J. Med. Imaging – year: 2016 ident: bib0005 article-title: Cochlear implant elecrode localization in post-operative CT using a spherical measure publication-title: Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on – volume: 5 year: 2017 ident: bib0033 article-title: Selecting electrode configurations for image-guided cochlear implant programming using template matching, publication-title: J. Med. Imaging – volume: 45 start-page: 695 year: 2008 end-page: 730 ident: bib0031 article-title: Cochlear implants: current designs and future possibilities publication-title: J. Rehabil. Res. Dev. – volume: 8 start-page: 220 year: 2007 end-page: 233 ident: bib0026 article-title: Frequency map for the human cochlear spiral ganglion: implications for cochlear implants publication-title: J. Assoc. Res. Otolaryngol. – volume: 87 start-page: 2592 year: 1990 end-page: 2605 ident: bib0013 article-title: A cochlear frequency-position function for several species – 29 years later publication-title: J. Acoust. Soc. Am. – volume: 26 start-page: 424 year: 2005 end-page: 429 ident: bib0027 article-title: Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients publication-title: Am. J. Neuroradiol. – volume: 116 start-page: 2 year: 2007 end-page: 24 ident: bib0025 article-title: In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea publication-title: Ann. Otol. Rhinol. Laryngol. – volume: 38 start-page: e376 year: 2017 end-page: e384 ident: bib0002 article-title: Automatic localization of cochlear implant electrode contacts in CT publication-title: Ear Hear. – start-page: 130 year: 1998 end-page: 137 ident: bib0009 article-title: Multiscale vessel enhancement filtering publication-title: Medical Image Computing and Computer-Assisted Interventation—MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings – volume: 21 start-page: 820 year: 2013 end-page: 829 ident: bib0018 article-title: Image-guidance enables new methods for customizing cochlear implant stimulation strategies publication-title: Neural Syst. Rehabil. Eng. IEEE Trans. – volume: 26 start-page: 34 year: 2005 end-page: 37 ident: bib0001 article-title: Quality control after cochlear implant surgery by means of rotational tomography publication-title: Otol. Neurotol. – start-page: 331 year: 2014 end-page: 338 ident: bib0034 article-title: Automatic localization of cochlear implant electrodes in CT publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014: 17th International Conference, Boston, MA, USA, September 14–18, 2014, Proceedings, Part I – year: 2014 ident: bib0023 article-title: An artifact-robust, shape library-based algorithm for automatic segmentation of inner ear anatomy in post-cochlear-implantation CT publication-title: Proceedings of SPIE–the International Society for Optical Engineering 9034, 90342V – volume: 3 year: 2016 ident: bib0036 article-title: Automatic selection of the active electrode set for image-guided cochlear implant programming publication-title: J. Med. Imaging – volume: 9 start-page: 209 year: 2005 end-page: 221 ident: bib0004 article-title: Flux driven automatic centerline extraction publication-title: Med. Image Anal. – volume: 9 start-page: 209 year: 2005 ident: 10.1016/j.media.2018.11.005_bib0004 article-title: Flux driven automatic centerline extraction publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.06.026 – year: 2016 ident: 10.1016/j.media.2018.11.005_bib0005 article-title: Cochlear implant elecrode localization in post-operative CT using a spherical measure – volume: 3 issue: 3 year: 2016 ident: 10.1016/j.media.2018.11.005_bib0036 article-title: Automatic selection of the active electrode set for image-guided cochlear implant programming publication-title: J. Med. Imaging doi: 10.1117/1.JMI.3.3.035001 – volume: 26 start-page: 34 year: 2005 ident: 10.1016/j.media.2018.11.005_bib0001 article-title: Quality control after cochlear implant surgery by means of rotational tomography publication-title: Otol. Neurotol. doi: 10.1097/00129492-200501000-00007 – volume: 19 start-page: 400 year: 2014 ident: 10.1016/j.media.2018.11.005_bib0019 article-title: Clinical evaluation of an image-guided cochlear implant programming strategy publication-title: Audiol. Neurotol. doi: 10.1159/000365273 – volume: 116 start-page: 2 year: 2007 ident: 10.1016/j.media.2018.11.005_bib0025 article-title: In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea publication-title: Ann. Otol. Rhinol. Laryngol. doi: 10.1177/00034894071160S401 – volume: 87 start-page: 2592 year: 1990 ident: 10.1016/j.media.2018.11.005_bib0013 article-title: A cochlear frequency-position function for several species – 29 years later publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.399052 – volume: 114 start-page: 2049 year: 2003 ident: 10.1016/j.media.2018.11.005_bib0003 article-title: Electrical field interactions in different cochlear implant systems publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1610451 – volume: vol. 11070 year: 2018 ident: 10.1016/j.media.2018.11.005_bib0040 article-title: Conditional Generative Adversarial Networks for Metal Artifact Reduction in CT Images of the Ear – volume: 4 issue: 4 year: 2017 ident: 10.1016/j.media.2018.11.005_bib0032 article-title: Localizing landmark sets in head CTs using random forests and a heuristic search algorithm for registration initialization publication-title: J. Med. Imaging doi: 10.1117/1.JMI.4.4.044007 – volume: 1 start-page: 269 year: 1959 ident: 10.1016/j.media.2018.11.005_bib0008 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. doi: 10.1007/BF01386390 – volume: 32 start-page: 428 year: 2011 ident: 10.1016/j.media.2018.11.005_bib0028 article-title: Assessment of electrode placement and audiologic outcomes in bilateral cochlear implantation publication-title: Otol. Neurotol. doi: 10.1097/MAO.0b013e3182096dc2 – volume: 13 start-page: 193 year: 2008 ident: 10.1016/j.media.2018.11.005_bib0011 article-title: Speech recognition materials and ceiling effects: considerations for cochlear implant programs publication-title: Audiol. Neuro-otol. doi: 10.1159/000113510 – volume: 5 issue: 2 year: 2017 ident: 10.1016/j.media.2018.11.005_bib0033 article-title: Selecting electrode configurations for image-guided cochlear implant programming using template matching, publication-title: J. Med. Imaging doi: 10.1117/1.JMI.5.2.021202 – volume: 124 start-page: S1 year: 2014 ident: 10.1016/j.media.2018.11.005_bib0029 article-title: Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes publication-title: Laryngoscope doi: 10.1002/lary.24728 – volume: 12 start-page: 444 year: 2004 ident: 10.1016/j.media.2018.11.005_bib0024 article-title: How cochlear implants encode speech publication-title: Curr. Opin. Otolaryngol. Head Neck Surg. doi: 10.1097/01.moo.0000134452.24819.c0 – year: 2017 ident: 10.1016/j.media.2018.11.005_bib0037 article-title: Automatic localization of cochlear implant electrodes in CTs with a limited intensity range – volume: 45 start-page: 5030 issue: 11 year: 2018 ident: 10.1016/j.media.2018.11.005_bib0041 article-title: Automatic localization of closely spaced cochlear implant electrode arrays in clinical CTs publication-title: Med. Phys. doi: 10.1002/mp.13185 – volume: 45 start-page: 695 year: 2008 ident: 10.1016/j.media.2018.11.005_bib0031 article-title: Cochlear implants: current designs and future possibilities publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2007.10.0173 – volume: 38 start-page: e376 issue: 6 year: 2017 ident: 10.1016/j.media.2018.11.005_bib0002 article-title: Automatic localization of cochlear implant electrode contacts in CT publication-title: Ear Hear. doi: 10.1097/AUD.0000000000000438 – year: 2018 ident: 10.1016/j.media.2018.11.005_bib0038 article-title: Validation of cochlear implant electrode localization techniques – volume: 21 start-page: 820 year: 2013 ident: 10.1016/j.media.2018.11.005_bib0018 article-title: Image-guidance enables new methods for customizing cochlear implant stimulation strategies publication-title: Neural Syst. Rehabil. Eng. IEEE Trans. doi: 10.1109/TNSRE.2013.2253333 – start-page: 331 year: 2014 ident: 10.1016/j.media.2018.11.005_bib0034 article-title: Automatic localization of cochlear implant electrodes in CT – volume: 7511 year: 2012 ident: 10.1016/j.media.2018.11.005_bib0017 article-title: Statistical shape model segmentation and frequency mapping of cochlear implant stimulation targets in CT – ident: 10.1016/j.media.2018.11.005_bib0035 doi: 10.1117/12.2081473 – volume: 18 start-page: 605 year: 2014 ident: 10.1016/j.media.2018.11.005_bib0022 article-title: Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.02.001 – start-page: 152 year: 2015 ident: 10.1016/j.media.2018.11.005_bib0020 article-title: Automatic graph-based localization of cochlear implant electrodes in CT – volume: 5 start-page: 035001 issue: 3 year: 2018 ident: 10.1016/j.media.2018.11.005_bib0042 article-title: Validation of automatic cochlear implant electrode localization techniques using μCTs publication-title: J. Med. Imaging doi: 10.1117/1.JMI.5.3.035001 – volume: 58 start-page: 2625 year: 2011 ident: 10.1016/j.media.2018.11.005_bib0015 article-title: Automatic segmentation of intra-cochlear anatomy in conventional CT publication-title: IEEE Trans. Bio-med. Eng. doi: 10.1109/TBME.2011.2160262 – year: 2014 ident: 10.1016/j.media.2018.11.005_bib0023 article-title: An artifact-robust, shape library-based algorithm for automatic segmentation of inner ear anatomy in post-cochlear-implantation CT – volume: 26 start-page: 424 year: 2005 ident: 10.1016/j.media.2018.11.005_bib0027 article-title: Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients publication-title: Am. J. Neuroradiol. – volume: 4 issue: 4 year: 2017 ident: 10.1016/j.media.2018.11.005_bib0006 article-title: Cochlear implant phantom for evaluating computed tomography acquisition parameters publication-title: J. Med. Imaging doi: 10.1117/1.JMI.4.4.045002 – volume: 8 start-page: 220 year: 2007 ident: 10.1016/j.media.2018.11.005_bib0026 article-title: Frequency map for the human cochlear spiral ganglion: implications for cochlear implants publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-007-0076-9 – ident: 10.1016/j.media.2018.11.005_bib0014 – volume: 37 start-page: e63 issue: 2 year: 2016 ident: 10.1016/j.media.2018.11.005_bib0021 article-title: Initial results with Image-guided Cochlear Implant Programming in Children publication-title: Otol. Neurotol. doi: 10.1097/MAO.0000000000000909 – start-page: 130 year: 1998 ident: 10.1016/j.media.2018.11.005_bib0009 article-title: Multiscale vessel enhancement filtering – volume: 53 start-page: 159 year: 2014 ident: 10.1016/j.media.2018.11.005_bib0012 article-title: Clinical assessment of spectral modulation detection for adult cochlear implant recipients: a non-language based measure of performance outcomes publication-title: Int. J. Audiol. doi: 10.3109/14992027.2013.851800 – volume: 6 start-page: 19 year: 2005 ident: 10.1016/j.media.2018.11.005_bib0010 article-title: Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-004-5024-3 |
| SSID | ssj0007440 |
| Score | 2.434209 |
| Snippet | •Cochlear implant programming relies on the intra-cochlear locations of electrodes.•An automatic method to segment electrode arrays in post-implantation... Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Automation CI electrode array Cochlea Cochlea - diagnostic imaging Cochlear implant Cochlear Implants Correlation analysis Electrodes Electrodes, Implanted Graph search Hearing loss Humans Localization Neural prostheses Prosthetics Radiographic Image Interpretation, Computer-Assisted - methods Segmentation Surgical implants Tomography, X-Ray Computed - methods Transplants & implants |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhz4OpUlfTpOiQo9V1i9Z1jEsDaGQXppAbkaWZOLi2svuus1e8tszI8tulpRQerQ1xrJmNA9r5htCPlVSZToSmoWhUixNeclKHitmeJhVWnPNHcTG-bfs7DL9esWvdsh8rIXBtEqv-wed7rS1vzPzqzlb1PXse5RgsxKwWHmCx28Yt6epwC4Gx7d_0jwQAG-ovYoYUo_IQy7Hy1VnYH5XfoxQntjD7u_W6aH3-TCJ8mnfLtTmt2qaexbq9CV54V1LejLMfo_s2HafPL8HOLhPnpz7o_RXZHPSrzuH10odaDVDe2bo0FGagitLnZnzZZq0qyiozmtsMkHrn4sGGEJ9Cx1jqVou1WZF65aOlZZ0fkHxHy9d9SX71d3Yhiqt-6XSm9fk8vTLxfyM-T4MTEM4s2aRiKw0WEfChbIp8NxwXWZZKFVqbaZzIyDoKWUphSkFxNRlamwuM25kqKq4St6Q3bZr7TtCVQwkiEWqwQ8TRihpkNzmXFdS8yQg8bj-hfYg5dgroynGbLQfhWNagUyD8KUApgXk8_TQYsDoeJw8GxlbbIlaAVbk8QcPRzEo_E5fFaDxYVnAcRIB-TgNwx7FgxfV2q5HmkSkECnKOCBvB6mZJoon07BWeUDEljxNBIj_vT3S1tcOBxzLgvMI3ssmyfuX7z_43-9_T57BlRxy1g_J7nrZ2yNwydblB7fn7gB9BDaD priority: 102 providerName: Elsevier |
| Title | Automatic graph-based method for localization of cochlear implant electrode arrays in clinical CT with sub-voxel accuracy |
| URI | https://dx.doi.org/10.1016/j.media.2018.11.005 https://www.ncbi.nlm.nih.gov/pubmed/30468968 https://www.proquest.com/docview/2194572157 https://www.proquest.com/docview/2137460692 https://pubmed.ncbi.nlm.nih.gov/PMC6543817 https://www.ncbi.nlm.nih.gov/pmc/articles/6543817 |
| UnpaywallVersion | submittedVersion |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trcTHAx9jbIFRGYlHnDVtHCePZWKUj1UIrWg8RY7taIU0rdoGKA_87Zwdp9oYmthTEvkixckvubv4d78DeJEnIpIBl7TbFYKGIctoxnqCKtaNcimZZFZi42QUDcfhuzN2tgVBUwtjSfsym_hlMfXLybnlVs6n8rDhiR2aYsg44NvQjhiG3y1oj0cfB1_q-qqAxqHtWuD2bXs3t98PGtUhy--ylRmG2xX7RsbT9K_7t2e6GnleJVDersq5WP8QRXHBOx3fh0_NvGpSyje_WmW-_PWX5OONJv4A7rlYlQzqoYewpcsduHtBwXAHbp24tflHsB5Uq5kVgCVWBZsaB6lI3aKaYGxMrN90dZ9klhP8Fp-brhVkMp0X-ISJ68mjNBGLhVgvyaQkTekmOTol5qcxWVYZ_T77qQsipKwWQq53YXz8-vRoSF1jByoxP1rRgAc6UaYwhXGhQwSRYjKLom4iQq0jGSuOWVSWZAlXGcckPQuVjpOIqaQr8l7efwytclbqfSCihyZG3FRiYMcVF4ky5jpmMk8k63vQax5qKp3quWm-UaQNve1rapGQGiRgPpQiEjx4uTlpXot-XG8eNWhJXdxSxyMpuqXrTzxosJW6T8cyRReCtwUjMe7B880wvvRmJUeUelYZmz4PMfVMeh7s1VDcXKhZ6sZ7FXvAL4F0Y2AExS-PINyssLhDmAd0A-f_mf-TG9o_hTt4lNTc9wNorRaVfoah3SrrwLb_O-hAe_D2_XCE2zevPnwedNwr_gczwlHD |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIlE4ICivQAEjccTdvBzHx2pFtUC3F7ZSb5FjO2pQSFa7G2Av_HZmEid0VVQhrvFYcTzjecQz3xDyrpAq0YHQzPeVYnHMc5bzUDHD_aTQmmveQWzMz5PZRfzpkl_ukelQC4NplU739zq909buycTt5mRZlpMvQYTNSsBipRFev0HcfifmocAI7PjXnzwPRMDri68ChuQD9FCX5NWVZ2CCV3qMWJ7YxO7v5umm-3kzi_KgrZdq-0NV1TUTdfqQPHC-JT3pl_-I7Nn6kNy_hjh4SO7O3V36Y7I9aTdNB9hKO9RqhgbN0L6lNAVflnZ2ztVp0qagoDuvsMsELb8tK-AIdT10jKVqtVLbNS1rOpRa0umC4k9eum5z9r35aSuqtG5XSm-fkIvTD4vpjLlGDExDPLNhgQisNFhIwoWyMTDdcJ0niS9VbG2iUyMg6sllLoXJBQTVeWxsKhNupK-KsIiekv26qe1zQlUIJAhGqsERE0YoaZDcplwXUvPII-Gw_5l2KOXYLKPKhnS0r1nHtAyZBvFLBkzzyPtx0rIH6bidPBkYm-3IWgZm5PaJR4MYZO6orzNQ-bAt4DkJj7wdh-GQ4s2Lqm3TIk0kYggVZeiRZ73UjAvFq2nYq9QjYkeeRgIEAN8dqcurDggc64LTAN7LRsn7l-9_8b_f_4YczBbzs-zs4_nnl-QejMg-gf2I7G9WrX0F_tkmf92dv98ZhTmm |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVOJx4FFehoIWiSObxonX6z1GFVWF1AqhRiona19WA44dJTEQfj2z67XVUlTRm60dS971Z8833plvAN4XQqY65pqORlLSJGGKKjaW1LBRWmjNNPMSGyen6fEs-XTOzncg7mphfNK-VvNhVS6G1fzC51YuF_qgyxM7cMWQWczvwG7KkH4PYHd2-nn6ta2vimmW-K4F4di3dwvHk7hTHfL5Xb4yw-V2ZUMn4-n61_3bM11nntcTKO811VJuf8qyvOSdjh7Bl25ebVLK92GzUUP9-y_Jx1tN_DE8DFyVTNuhJ7Bjqz14cEnBcA_unoS9-aewnTab2gvAEq-CTZ2DNKRtUU2QGxPvN0PdJ6kLgt_iC9e1gswXyxKfMAk9eYwlcrWS2zWZV6Qr3SSHZ8T9NCbrRtEf9S9bEql1s5J6-wxmRx_PDo9paOxANcZHGxrz2ArjClMYlzZBEBmmVZqOhEysTXVmOEZRSijBjeIYpKvE2EykzIiRLMbF5DkMqrqyL4HIMZo4cVONxI4bLoVx5jZjuhCaTSIYdw8110H13DXfKPMuve1b7pGQOyRgPJQjEiL40F-0bEU_bjZPO7Tkgbe0fCRHt3TzhfsdtvLw6Vjn6EJwWZCJ8Qje9cP40rudHFnZunE2E55g6CnGEbxoodjfqNvqxrXKIuBXQNobOEHxqyMINy8sHhAWAe3h_D_zf3VL-9dwH89Em_u-D4PNqrFvkNpt1NvwMv8BYepNqA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+graph-based+method+for+localization+of+cochlear+implant+electrode+arrays+in+clinical+CT+with+sub-voxel+accuracy&rft.jtitle=Medical+image+analysis&rft.au=Zhao%2C+Yiyuan&rft.au=Chakravorti%2C+Srijata&rft.au=Labadie%2C+Robert+F.&rft.au=Dawant%2C+Benoit+M.&rft.date=2019-02-01&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=52&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.media.2018.11.005&rft_id=info%3Apmid%2F30468968&rft.externalDocID=PMC6543817 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |