Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors
Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative f...
Saved in:
| Published in | Advanced functional materials Vol. 28; no. 43 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
24.10.2018
Wiley Blackwell (John Wiley & Sons) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1616-301X 1616-3028 1616-3028 |
| DOI | 10.1002/adfm.201804222 |
Cover
| Abstract | Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm2 V−1 s−1 at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties.
The effect of nonconjugated spacers on mechanical properties of polymer semiconductors is discussed. Longer and more flexible conjugation breakers lead to greater ductility and lower modulus without significant compromise in mobility. Specifically, a semiconducting polymer containing dodecyl segments maintains a moderate mobility (≈0.1 cm2 V−1 s−1) under 100% strain, and after 100 cycles at 50% strain. |
|---|---|
| AbstractList | Abstract
Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm
2
V
−1
s
−1
at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties. Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm 2 V −1 s −1 at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties. Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm2 V−1 s−1 at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties. The effect of nonconjugated spacers on mechanical properties of polymer semiconductors is discussed. Longer and more flexible conjugation breakers lead to greater ductility and lower modulus without significant compromise in mobility. Specifically, a semiconducting polymer containing dodecyl segments maintains a moderate mobility (≈0.1 cm2 V−1 s−1) under 100% strain, and after 100 cycles at 50% strain. Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm2 V−1 s−1 at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties. |
| Author | Tok, Jeffrey B.‐H. Lissel, Franziska Lee, Franklin L. Rondeau‐Gagné, Simon Kang, Jiheong Bao, Zhenan Oh, Jin Young Katsumata, Toru Mun, Jaewan Wang, Ging‐Ji Nathan Wu, Hung‐Chin |
| Author_xml | – sequence: 1 givenname: Jaewan surname: Mun fullname: Mun, Jaewan organization: Stanford University – sequence: 2 givenname: Ging‐Ji Nathan surname: Wang fullname: Wang, Ging‐Ji Nathan organization: Stanford University – sequence: 3 givenname: Jin Young surname: Oh fullname: Oh, Jin Young organization: Kyung Hee University – sequence: 4 givenname: Toru surname: Katsumata fullname: Katsumata, Toru organization: Asahi Kasei Corporation – sequence: 5 givenname: Franklin L. surname: Lee fullname: Lee, Franklin L. organization: Stanford University – sequence: 6 givenname: Jiheong surname: Kang fullname: Kang, Jiheong organization: Stanford University – sequence: 7 givenname: Hung‐Chin surname: Wu fullname: Wu, Hung‐Chin organization: Stanford University – sequence: 8 givenname: Franziska surname: Lissel fullname: Lissel, Franziska organization: Leibniz Institute of Polymer Research Dresden – sequence: 9 givenname: Simon surname: Rondeau‐Gagné fullname: Rondeau‐Gagné, Simon organization: University of Windsor – sequence: 10 givenname: Jeffrey B.‐H. surname: Tok fullname: Tok, Jeffrey B.‐H. organization: Stanford University – sequence: 11 givenname: Zhenan orcidid: 0000-0002-0972-1715 surname: Bao fullname: Bao, Zhenan email: zbao@stanford.edu organization: Stanford University |
| BackLink | https://www.osti.gov/biblio/1468671$$D View this record in Osti.gov |
| BookMark | eNqFkE1rGzEYhEVJoU7aa84iPdvRx1qSj8ZN0oDTGpxCbkLWhyOzlraSluB_Xy0bUiiUnN45zPMOM-fgLMRgAbjEaIYRItfKuOOMICxQQwj5ACaYYTaliIizN42fPoHznA8IYc5pMwHxxjmrC4wO_ohBx3Do96pYA7ed0jZlGAN8sPpZBa9VCzcpdjYVb_NAbO3RV8T0uviwh5vYno4D42KC25JsqdyutfAxqZB9LjHlz-CjU222X17vBfh1e_O4-j5d_7y7Xy3XU90ITqZs7ticGcUM05ju6FwjxAk1lJGmUUZwRylSDNFdQ90Cc6oME7R2EsbMF1VegOvxbx86dXpRbSu75I8qnSRGcthLDnvJt70qcTUSMRcvs_al1q7tQp1H4oYJxnE1fR1NXYq_e5uLPMQ-hdpEEkwop1yIIXw2unSKOSfr3s9u_gFqvCo-hpKUb_-PLUbsxbf29E6IXH67ffjL_gGr96nR |
| CitedBy_id | crossref_primary_10_1002_aelm_202000251 crossref_primary_10_1002_marc_202400637 crossref_primary_10_1016_j_ensm_2020_05_006 crossref_primary_10_1039_D4CC03254C crossref_primary_10_1021_jacs_2c00072 crossref_primary_10_1002_ange_202402642 crossref_primary_10_1039_D1TC01082D crossref_primary_10_1002_adfm_202303031 crossref_primary_10_1016_j_jpowsour_2023_233566 crossref_primary_10_1038_s41528_023_00236_5 crossref_primary_10_1021_acs_jpclett_1c03909 crossref_primary_10_1039_D3TC04141G crossref_primary_10_1021_acs_macromol_1c01537 crossref_primary_10_1021_jacs_1c04984 crossref_primary_10_1360_SSC_2022_0044 crossref_primary_10_1021_acsami_9b12765 crossref_primary_10_1002_adma_201902417 crossref_primary_10_1002_marc_202401057 crossref_primary_10_1021_acsapm_1c00213 crossref_primary_10_1039_C9PY01216H crossref_primary_10_1021_acsaelm_1c00025 crossref_primary_10_1021_acscentsci_4c01541 crossref_primary_10_1039_D2CS00173J crossref_primary_10_6023_A23050213 crossref_primary_10_1016_j_joule_2020_01_014 crossref_primary_10_1002_smll_202401966 crossref_primary_10_1002_solr_202300699 crossref_primary_10_1039_D0TC06059C crossref_primary_10_1016_j_mser_2024_100863 crossref_primary_10_1002_adma_202207544 crossref_primary_10_1021_jacs_4c07174 crossref_primary_10_1002_adfm_202203527 crossref_primary_10_1038_s41467_021_25719_9 crossref_primary_10_1039_D3TC04821G crossref_primary_10_1002_anie_202301863 crossref_primary_10_1039_C9RA10534D crossref_primary_10_1016_j_eurpolymj_2024_112840 crossref_primary_10_1002_adfm_202100161 crossref_primary_10_1021_acs_chemmater_3c02555 crossref_primary_10_1021_acs_macromol_1c00936 crossref_primary_10_1016_j_mtcomm_2025_111893 crossref_primary_10_1002_advs_202002930 crossref_primary_10_1002_advs_202002778 crossref_primary_10_1021_acs_chemmater_3c02394 crossref_primary_10_1002_nadc_20224124202 crossref_primary_10_1055_a_2191_6011 crossref_primary_10_1039_D1PY01154E crossref_primary_10_1002_adfm_202009201 crossref_primary_10_1016_j_jiec_2021_12_014 crossref_primary_10_1021_acs_macromol_9b02573 crossref_primary_10_1002_pol_20210281 crossref_primary_10_1021_acsami_0c14592 crossref_primary_10_1021_acs_macromol_1c00268 crossref_primary_10_1002_adma_201904765 crossref_primary_10_1002_adma_202300034 crossref_primary_10_1021_acs_chemmater_8b04314 crossref_primary_10_1002_adma_201902743 crossref_primary_10_1039_D2MA00581F crossref_primary_10_1021_acs_chemmater_9b03333 crossref_primary_10_1002_adma_201901493 crossref_primary_10_1021_acsmaterialslett_2c00749 crossref_primary_10_1021_acs_macromol_0c00381 crossref_primary_10_1002_admi_202202186 crossref_primary_10_1021_acs_chemrev_4c00571 crossref_primary_10_1021_acs_macromol_3c00109 crossref_primary_10_1038_s41428_022_00729_6 crossref_primary_10_1038_s41928_020_00513_5 crossref_primary_10_1038_s41565_022_01246_6 crossref_primary_10_1002_marc_202400331 crossref_primary_10_1021_acs_chemmater_0c01437 crossref_primary_10_1021_acs_macromol_1c00534 crossref_primary_10_1039_D3LP00106G crossref_primary_10_1016_j_cej_2020_126940 crossref_primary_10_1021_acsmaterialslett_2c00138 crossref_primary_10_1002_adfm_202003608 crossref_primary_10_1021_acs_chemmater_3c02498 crossref_primary_10_1038_s41467_021_23798_2 crossref_primary_10_1002_adma_202110639 crossref_primary_10_1039_D2TC01771G crossref_primary_10_1364_OME_450214 crossref_primary_10_1557_s43577_021_00093_5 crossref_primary_10_1021_acs_chemmater_3c02131 crossref_primary_10_1007_s40843_022_2331_8 crossref_primary_10_1126_sciadv_adq0171 crossref_primary_10_1002_adfm_202310558 crossref_primary_10_1021_acs_jpclett_1c00714 crossref_primary_10_1002_ange_202301863 crossref_primary_10_1002_adfm_202306576 crossref_primary_10_1002_adfm_202305249 crossref_primary_10_1002_adfm_202004137 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_1021_acs_chemmater_1c04085 crossref_primary_10_1021_acsami_9b10943 crossref_primary_10_1002_idm2_12223 crossref_primary_10_1021_acs_chemmater_3c02025 crossref_primary_10_1021_acsami_1c15208 crossref_primary_10_1039_D2TB01567F crossref_primary_10_1038_s41563_023_01529_w crossref_primary_10_1039_D2NJ06190B crossref_primary_10_1002_smtd_202100676 crossref_primary_10_1039_C9QM00055K crossref_primary_10_1016_j_colsurfa_2023_132081 crossref_primary_10_1039_D0TC02363A crossref_primary_10_1002_anie_202402642 crossref_primary_10_1038_s41528_023_00269_w crossref_primary_10_1002_admt_202201067 crossref_primary_10_1002_advs_202305800 crossref_primary_10_1002_smll_202412767 crossref_primary_10_1002_advs_202305361 crossref_primary_10_1021_acsami_8b21130 crossref_primary_10_1002_pol_20210494 crossref_primary_10_1021_acs_macromol_0c00209 crossref_primary_10_1039_D1EE01062J crossref_primary_10_1021_acs_macromol_9b00589 crossref_primary_10_1063_1_5145180 crossref_primary_10_1016_j_xcrp_2022_101244 crossref_primary_10_1021_acsami_2c07445 crossref_primary_10_1038_s41467_024_50358_1 crossref_primary_10_1007_s40820_022_00884_8 crossref_primary_10_1002_aelm_201901133 crossref_primary_10_1039_D4TB01198H crossref_primary_10_1002_adma_202107361 crossref_primary_10_1002_advs_202400304 crossref_primary_10_3390_ma13143092 crossref_primary_10_1002_adma_202201623 crossref_primary_10_1002_smll_202206938 crossref_primary_10_1002_marc_202100636 crossref_primary_10_1021_acsami_3c09951 crossref_primary_10_1016_j_ijbiomac_2024_137960 crossref_primary_10_1016_j_jmst_2020_01_008 crossref_primary_10_1021_acsami_3c12057 crossref_primary_10_1039_D2TC04383A crossref_primary_10_1002_pi_6749 crossref_primary_10_3390_s25030925 crossref_primary_10_1002_adhm_202002105 crossref_primary_10_1002_adfm_201905340 crossref_primary_10_1021_acsami_3c10033 crossref_primary_10_1021_acsaelm_3c01719 crossref_primary_10_34133_cbsystems_0172 crossref_primary_10_1021_acs_chemmater_4c01146 crossref_primary_10_1016_j_polymer_2023_125986 crossref_primary_10_1021_acsmacrolett_3c00517 crossref_primary_10_1002_smll_202308595 crossref_primary_10_1038_s41428_021_00510_1 crossref_primary_10_1039_D0CS00333F crossref_primary_10_1039_C9TC03263K crossref_primary_10_1002_smll_202311527 crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1021_acsapm_1c01167 crossref_primary_10_1021_acs_macromol_2c00957 crossref_primary_10_1039_D2CS00837H crossref_primary_10_1002_aelm_202200438 crossref_primary_10_1126_science_adp9314 crossref_primary_10_29026_oea_2022_210131 crossref_primary_10_1016_j_jpowsour_2023_234009 crossref_primary_10_1021_acs_macromol_3c00703 crossref_primary_10_1002_aelm_202300816 crossref_primary_10_1063_5_0133569 crossref_primary_10_1002_adma_201903912 |
| Cites_doi | 10.1002/adfm.201705584 10.1038/ncomms2832 10.1021/la904840q 10.1038/nature21004 10.1021/cm502271j 10.1002/aelm.201600104 10.1038/nmat3722 10.1557/mrs.2016.325 10.1038/nmat2835 10.1021/ja504537v 10.1063/1.470648 10.1002/jcc.20035 10.1021/acs.chemrev.7b00003 10.1002/anie.200701920 10.1038/nmat1175 10.1039/c2jm30470h 10.1038/ncomms8955 10.1126/science.aah4496 10.1002/aelm.201500250 10.1038/nmat4671 10.1002/adma.201500233 10.1038/nature20102 10.1002/adma.200801788 10.1021/ma900137k 10.1063/1.464397 10.1002/ange.201006464 10.1002/aelm.201600311 10.1038/nature12314 10.1126/science.aaa9306 10.1021/cm501021v 10.1002/adma.201302240 10.1021/acs.macromol.8b00093 10.1021/acs.chemmater.6b00525 10.1002/adma.201404602 10.1002/adma.201605056 10.1557/mrs.2012.37 10.1021/acs.macromol.5b00524 10.1021/nl303612z 10.1021/acsami.6b16115 10.1002/adfm.201602603 10.1039/C4EE02657H 10.1021/nn1018768 10.1002/adfm.200601248 10.1039/C4SC02073A 10.1002/polb.22270 10.1016/j.progpolymsci.2013.09.005 10.1038/nphoton.2013.242 10.1021/ja405112s 10.1038/srep00754 10.1021/acs.macromol.5b00194 10.1016/j.bpj.2015.08.015 10.1021/la0618972 10.1126/science.154.3755.1467 10.1002/marc.201600377 10.1021/cr3001109 10.1002/aelm.201700429 10.1038/nature25494 10.1073/pnas.0401918101 10.1016/j.mattod.2014.05.006 |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M OTOTI ADTOC UNPAY |
| DOI | 10.1002/adfm.201804222 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | oai:osti.gov:1468671 1468671 10_1002_adfm_201804222 ADFM201804222 |
| Genre | article |
| GrantInformation_xml | – fundername: Swiss National Science Foundation – fundername: Samsung Electronics – fundername: Fonds de Recherche du Québécois – fundername: Samsung Scholarship – fundername: Air Force Office of Scientific Research funderid: FA9550‐18‐1‐0143 – fundername: National Science Foundation funderid: ECCS‐1542152 – fundername: Stanford Nano Shared Facilities – fundername: Nature et Technologies (FRQNT) for a postdoctoral fellowship – fundername: U.S. Department of Energy |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4872-65f656da6d6c13b35c00723d36244ad87f330a603b43f9173ad6831778dd59683 |
| IEDL.DBID | UNPAY |
| ISSN | 1616-301X 1616-3028 |
| IngestDate | Sun Oct 26 02:15:45 EDT 2025 Mon Sep 25 05:37:10 EDT 2023 Sun Jul 13 04:11:37 EDT 2025 Thu Oct 09 00:32:13 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Wed Jan 22 16:38:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 43 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4872-65f656da6d6c13b35c00723d36244ad87f330a603b43f9173ad6831778dd59683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
| ORCID | 0000-0002-0972-1715 0000000209721715 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1468671 |
| PQID | 2123737888 |
| PQPubID | 2045204 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1002_adfm_201804222 osti_scitechconnect_1468671 proquest_journals_2123737888 crossref_primary_10_1002_adfm_201804222 crossref_citationtrail_10_1002_adfm_201804222 wiley_primary_10_1002_adfm_201804222_ADFM201804222 |
| PublicationCentury | 2000 |
| PublicationDate | October 24, 2018 |
| PublicationDateYYYYMMDD | 2018-10-24 |
| PublicationDate_xml | – month: 10 year: 2018 text: October 24, 2018 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: Germany |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
| References | 2017; 42 1966; 154 2013; 25 2013; 4 2017; 3 2009; 42 2004; 25 2014; 26 2004; 3 2016; 540 2015; 109 2013; 7 2012; 12 2017; 355 2016; 37 2014; 136 2017; 9 2017; 117 2015; 48 2014; 5 2010; 26 2018; 4 2013; 12 2008; 20 2014; 17 2010; 4 2012; 22 2007; 23 2011; 123 2010; 9 2004; 101 2007; 17 2018; 28 2015; 6 1994 2017; 29 2012; 37 2015; 8 2016; 15 2015; 350 2012; 2 2015; 27 2016; 2 2012; 112 2013; 38 2016; 539 1993; 98 2018; 555 2008; 47 2013; 499 2013; 135 2018; 51 1995; 103 2014 2016; 28 2011; 49 2016; 26 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Grosberg A. I. (e_1_2_7_60_1) 1994 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Case D. A. (e_1_2_7_56_1) 2014 |
| References_xml | – volume: 42 start-page: 7079 year: 2009 publication-title: Macromolecules – volume: 539 start-page: 411 year: 2016 publication-title: Nature – volume: 540 start-page: 379 year: 2016 publication-title: Nature – volume: 49 start-page: 909 year: 2011 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 2 start-page: 1600104 year: 2016 publication-title: Adv. Electron. Mater. – volume: 42 start-page: 93 year: 2017 publication-title: MRS Bull. – volume: 6 start-page: 7955 year: 2015 publication-title: Nat. Commun. – volume: 20 start-page: 4887 year: 2008 publication-title: Adv. Mater. – volume: 12 start-page: 6353 year: 2012 publication-title: Nano Lett. – volume: 7 start-page: 817 year: 2013 publication-title: Nat. Photonics – volume: 2 start-page: 1500250 year: 2016 publication-title: Adv. Electron. Mater. – volume: 26 start-page: 4544 year: 2014 publication-title: Chem. Mater. – volume: 48 start-page: 4339 year: 2015 publication-title: Macromolecules – volume: 25 start-page: 5997 year: 2013 publication-title: Adv. Mater. – volume: 499 start-page: 458 year: 2013 publication-title: Nature – volume: 154 start-page: 1467 year: 1966 publication-title: Science – year: 2014 – year: 1994 – volume: 27 start-page: 3045 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 7538 year: 2010 publication-title: ACS Nano – volume: 123 start-page: 1930 year: 2011 publication-title: Angew. Chem. – volume: 135 start-page: 14896 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 207 year: 2012 publication-title: MRS Bull. – volume: 5 start-page: 4922 year: 2014 publication-title: Chem. Sci. – volume: 27 start-page: 1255 year: 2015 publication-title: Adv. Mater. – volume: 23 start-page: 834 year: 2007 publication-title: Langmuir – volume: 47 start-page: 4070 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 117 start-page: 6467 year: 2017 publication-title: Chem. Rev. – volume: 4 start-page: 1859 year: 2013 publication-title: Nat. Commun. – volume: 355 start-page: 59 year: 2017 publication-title: Science – volume: 9 start-page: 821 year: 2010 publication-title: Nat. Mater. – volume: 51 start-page: 2572 year: 2018 publication-title: Macromolecules – volume: 17 start-page: 2674 year: 2007 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 2048 year: 2015 publication-title: Macromolecules – volume: 3 start-page: 545 year: 2004 publication-title: Nat. Mater. – volume: 15 start-page: 937 year: 2016 publication-title: Nat. Mater. – volume: 8 start-page: 55 year: 2015 publication-title: Energy Environ. Sci. – volume: 37 start-page: 1623 year: 2016 publication-title: Macromol. Rapid Commun. – volume: 136 start-page: 9477 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1600311 year: 2017 publication-title: Adv. Electron. Mater. – volume: 9 start-page: 8855 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 109 start-page: 1528 year: 2015 publication-title: Biophys. J. – volume: 28 start-page: 2363 year: 2016 publication-title: Chem. Mater. – volume: 103 start-page: 4613 year: 1995 publication-title: J. Chem. Phys. – volume: 29 start-page: 1605056 year: 2017 publication-title: Adv. Mater. – volume: 17 start-page: 321 year: 2014 publication-title: Mater. Today – volume: 4 start-page: 1700429 year: 2018 publication-title: Adv. Electron. Mater. – volume: 2 start-page: 754 year: 2012 publication-title: Sci. Rep. – volume: 22 start-page: 10416 year: 2012 publication-title: J. Mater. Chem. – volume: 112 start-page: 5488 year: 2012 publication-title: Chem. Rev. – volume: 26 start-page: 7254 year: 2016 publication-title: Adv. Funct. Mater. – volume: 350 start-page: 313 year: 2015 publication-title: Science – volume: 26 start-page: 3028 year: 2014 publication-title: Chem. Mater. – volume: 12 start-page: 1038 year: 2013 publication-title: Nat. Mater. – volume: 28 start-page: 1705584 year: 2018 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 1157 year: 2004 publication-title: J. Comput. Chem. – volume: 26 start-page: 9146 year: 2010 publication-title: Langmuir – volume: 555 start-page: 83 year: 2018 publication-title: Nature – volume: 101 start-page: 9966 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 start-page: 1832 year: 2013 publication-title: Prog. Polym. Sci. – volume: 98 start-page: 10089 year: 1993 publication-title: J. Chem. Phys. – ident: e_1_2_7_37_1 doi: 10.1002/adfm.201705584 – ident: e_1_2_7_11_1 doi: 10.1038/ncomms2832 – ident: e_1_2_7_49_1 doi: 10.1021/la904840q – ident: e_1_2_7_3_1 doi: 10.1038/nature21004 – ident: e_1_2_7_54_1 doi: 10.1021/cm502271j – ident: e_1_2_7_36_1 doi: 10.1002/aelm.201600104 – ident: e_1_2_7_28_1 doi: 10.1038/nmat3722 – ident: e_1_2_7_4_1 doi: 10.1557/mrs.2016.325 – ident: e_1_2_7_8_1 doi: 10.1038/nmat2835 – ident: e_1_2_7_23_1 doi: 10.1021/ja504537v – ident: e_1_2_7_58_1 doi: 10.1063/1.470648 – ident: e_1_2_7_57_1 doi: 10.1002/jcc.20035 – ident: e_1_2_7_39_1 doi: 10.1021/acs.chemrev.7b00003 – ident: e_1_2_7_24_1 doi: 10.1002/anie.200701920 – ident: e_1_2_7_42_1 doi: 10.1038/nmat1175 – ident: e_1_2_7_45_1 doi: 10.1039/c2jm30470h – ident: e_1_2_7_47_1 doi: 10.1038/ncomms8955 – ident: e_1_2_7_30_1 doi: 10.1126/science.aah4496 – ident: e_1_2_7_31_1 doi: 10.1002/aelm.201500250 – ident: e_1_2_7_13_1 doi: 10.1038/nmat4671 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201500233 – ident: e_1_2_7_17_1 doi: 10.1038/nature20102 – ident: e_1_2_7_1_1 doi: 10.1002/adma.200801788 – ident: e_1_2_7_43_1 doi: 10.1021/ma900137k – ident: e_1_2_7_59_1 doi: 10.1063/1.464397 – ident: e_1_2_7_10_1 doi: 10.1002/ange.201006464 – ident: e_1_2_7_29_1 doi: 10.1002/aelm.201600311 – ident: e_1_2_7_7_1 doi: 10.1038/nature12314 – ident: e_1_2_7_12_1 doi: 10.1126/science.aaa9306 – ident: e_1_2_7_14_1 doi: 10.1021/cm501021v – volume-title: Amber 14 year: 2014 ident: e_1_2_7_56_1 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201302240 – ident: e_1_2_7_51_1 doi: 10.1021/acs.macromol.8b00093 – ident: e_1_2_7_41_1 doi: 10.1021/acs.chemmater.6b00525 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201404602 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201605056 – ident: e_1_2_7_15_1 doi: 10.1557/mrs.2012.37 – ident: e_1_2_7_50_1 doi: 10.1021/acs.macromol.5b00524 – ident: e_1_2_7_22_1 doi: 10.1021/nl303612z – ident: e_1_2_7_40_1 doi: 10.1021/acsami.6b16115 – ident: e_1_2_7_18_1 doi: 10.1002/adfm.201602603 – ident: e_1_2_7_44_1 doi: 10.1039/C4EE02657H – ident: e_1_2_7_27_1 doi: 10.1021/nn1018768 – ident: e_1_2_7_33_1 doi: 10.1002/adfm.200601248 – ident: e_1_2_7_34_1 doi: 10.1039/C4SC02073A – ident: e_1_2_7_53_1 doi: 10.1002/polb.22270 – ident: e_1_2_7_46_1 doi: 10.1016/j.progpolymsci.2013.09.005 – ident: e_1_2_7_6_1 doi: 10.1038/nphoton.2013.242 – ident: e_1_2_7_20_1 doi: 10.1021/ja405112s – ident: e_1_2_7_21_1 doi: 10.1038/srep00754 – ident: e_1_2_7_35_1 doi: 10.1021/acs.macromol.5b00194 – ident: e_1_2_7_61_1 doi: 10.1016/j.bpj.2015.08.015 – ident: e_1_2_7_52_1 doi: 10.1021/la0618972 – volume-title: Statistical Physics of Macromolecules year: 1994 ident: e_1_2_7_60_1 – ident: e_1_2_7_9_1 doi: 10.1126/science.154.3755.1467 – ident: e_1_2_7_26_1 doi: 10.1002/marc.201600377 – ident: e_1_2_7_48_1 doi: 10.1021/cr3001109 – ident: e_1_2_7_25_1 doi: 10.1002/aelm.201700429 – ident: e_1_2_7_55_1 doi: 10.1038/nature25494 – ident: e_1_2_7_5_1 doi: 10.1073/pnas.0401918101 – ident: e_1_2_7_16_1 doi: 10.1016/j.mattod.2014.05.006 |
| SSID | ssj0017734 |
| Score | 2.624994 |
| Snippet | Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have... Abstract Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several... |
| SourceID | unpaywall osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Conjugation conjugation breakers Electrical properties Materials science Mechanical properties Modulus of elasticity organic field‐effect transistors (OFETs) polymer semiconductors Polymers Segments Semiconductor devices Semiconductors Spacers Stretchability stretchable electronics Transistors X-ray diffraction |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcX6UU9-BZjVfYg6CVtNpts0qOopQgVsRZ6C5t9HLQkpQ-kfnpnkjZaQQp6S2A3bZKZnf_M7v5CyGXIFLz1lnVTg9OMMOK5sWoZVwrfE9pGzNdY7-g-ik4_eBiEg2-7-Es-RFVwQ88oxmt0cJlOml_QUKkt7iRnMVKscBBmXBQ51XPFj2JRVE4rC4YLvNhgSW30_OZq95WoVMvBu1YU5-YsG8n5uxwOVzVsEYTau0Qu_3659uStMZumDfXxg-z4n_vbIzsLhUpvSpPaJxsmOyDb37iFhyQvmcc0t_QxzyCjfp1hNU7THmTgoCdpntGuwT3FaAL0CQv-YyS3Yo8eLsfPM-TMwsXoUz6cY-2cgnqmOEcOZoTbuWgRRQuIyeSI9Nv3L7cdd_HlBldBAuS7IrSgE7UUWijGUx4qJJRzDdEyCKSOI8u5J4XH04BbSBi51CIGJRPFWoctODwmtSzPzAnuKdc88gJjhfLAlJhsGROn1rMy4GkoA4e4yzeXqAXWHL-uMUxKILOf4INMqgfpkKuq_agEevzaso6GkIAUQZ6uwoVHaoq5EjIBHXK2tI9k4faTBHVAhIT-2CHXlc2s_R2_sIM1zZKbu3a3Ojv9S6c62cJjDL1-cEZq0_HMnIOmmqYXhd98At-MFwM priority: 102 providerName: Wiley-Blackwell |
| Title | Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201804222 https://www.proquest.com/docview/2123737888 https://www.osti.gov/biblio/1468671 |
| UnpaywallVersion | submittedVersion |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1616-3028 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: ADMLS dateStart: 20130107 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1616-301X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBYlfdj2sHU3lvWCYIPtxa0t2bLyGNaGMkgI6wLZk9AVuhmrtAmj-_U7x5esGYzszQZZsvmOfL4jnfOJkPdFZgH1UUiMx21G-OMl0o58ogVLhQtlxhyud0xn4nKRf14Wyz3yrq-FwbTKCMbd5FSaa1NdxzOsDhJYJ74vCiDcA7K_mM3H3zCUEhlmbmXLP9dM9tKMKTvTLmC1eSZR6YptuZ4BjrJFKx-t6xt9_1NX1TZRbTzN5Bk579-xTTD5cbpemVP76y_5xh0fcUCedkyTjlvTeE72fP2CPHmgP_iSxFa7mMZAZ7GGyPj7GlfVHL2CSBp4IY01nXqsDUYo6RwX7m9RgRWfuMK0-lijXix0Ruexusc1cAosmOJeN5gDlmXRxhs2YiR3r8hicvH102XSncCQWAhkWCKKAHzPaeGEzbjhhUWlce7A6-W5drIMnKdapNzkPEDgx7UTEhhJKZ0DqCR_TQZ1rP0brA13vExzH4RNwSQyPfJempAGnXNT6HxIkh4cZTt5cjwlo1KtsDJTCKbagDkkHzbtb1phjn-2PEQwFFAK1MW1mEBkV6oDZEiOehNQ3fS9U-jPS1Tal0PycWMWO8dhjdXsaKbG55Pp5u7t__d_SB7jNTpOlh-Rwep27Y-BEa3MCcQCX9hJNy9-A_EnBaU |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWq5VA48I1YWsCHSnBJm8SOkz1WwGpLu6uKtlJvluOPA6ySVbsrVH4985JNyiKhSvSWRHYi2zOeN-OZF8b2ssTSqo9CVHocM9KOFxV25COj0li5kCepQ7xjOlOTC_n1MuuyCVEL0_JD9AE3aEazX0PBEZA-uGUNNS6glDwpQGNFu_ADqchZAS761jNIJXneHiyrBCleyWXH2xinB5v9N-zSoCb92sCc26tqYW5-mvl8E8U2Zmj8hJXdANrskx_7q2W5b3_9xe14rxE-ZY_XIJUftlL1jG356jl79Ad14QtWt7THvA58VlfkVH9fISDn-Bk54QQpeV3xqUdZMaSAnyLmfwXyVvQ4Q0Z-XYFqll7GT-v5DcLnnAA0xzE5SRIqunhjSBsek-uX7GL85fzTJFr_vCGy5AOlkcoCQUVnlFM2EaXILEjKhSODKaVxRR6EiI2KRSlFIJ9RGKcKAjN54Vw2ostXbFDVlX-NsnIn8lj6oGxM0pSYkfdFGeJgpCgzI4cs6pZO2zWzOX6wMdctJ3OqMZG6n8gh-9C3X7ScHv9suQNJ0IRGQKlrkXtkl3CXQAs4ZLudgOi15l9rQIEcJP3FkH3shebO76SNINzRTB9-Hk_7uzf_0-k9256cT0_0ydHseIc9xHNY4lTussHyauXfEsRalu8aJfoNXhkbJA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQIvE48EYsLeADElzSJrHjJMeKZVUeu1pRKvVmOX4cyipZtbtC5dczX7IJLBKqBLckshPZnvF8M575wtjrLLG06mWIKo9jRtrxosKWPjIqjZULeZI6xDtmc3V8Kj-eZX02IWphOn6IIeAGzWj3ayi4X7lw-Is11LiAUvKkAI0V7cI3ZVYWyOqbfBkYpJI87w6WVYIUr-Ss522M08Pd_jt2adSQfu1gztubemWuvpvlchfFtmZoep9V_QC67JNvB5t1dWB__MHt-F8jfMDubUEqP-qk6iG74etH7O5v1IWPWdPRHvMm8HlTk1N9vkFAzvETcsIJUvKm5jOPsmJIAV8g5n8B8lb0OEFGflODapZexhfN8grhc04AmuOYnCQJFV28NaQtj8nlE3Y6ff_13XG0_XlDZMkHSiOVBYKKziinbCIqkVmQlAtHBlNK44o8CBEbFYtKikA-ozBOFQRm8sK5rKTLp2xUN7V_hrJyJ_JY-qBsTNKUmNL7ogpxMFJUmZFjFvVLp-2W2Rw_2FjqjpM51ZhIPUzkmL0Z2q86To-_ttyDJGhCI6DUtcg9smu4S6AFHLP9XkD0VvMvNaBADpL-YszeDkJz7XfSVhCuaaaPJtPZcPf8Xzq9YrcWk6n-_GH-aY_dwWMY4lTus9H6YuNfEMJaVy9bHfoJ4F4aqA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBYlfdj20N1p1nYINthe3NqSLSuPYV0og4RAF8iehK7QzVilTRjtr-85vmTNYGRvNsiSzXfk8x3pnE-EfCwyC6iPQmI8bjPCHy-RduQTLVgqXCgz5nC9YzoTF4v827JY7pEPfS0MplVGMO4mp9JcmeoqnmF1kMA68X1RAOEekP3FbD7-gaGUyDBzK1v-uWayl2ZM2Zl2AavNM4lKV2zL9QxwlC1a-WRdX-u737qqtolq42kmz8l5_45tgsmv0_XKnNr7v-Qbd3zEC3LQMU06bk3jJdnz9Svy7JH-4GsSW-1iGgOdxRoi459rXFVz9BIiaeCFNNZ06rE2GKGkc1y4v0EFVnziEtPqY416sdAZncfqDtfAKbBginvdYA5YlkUbb9iIkdy-IYvJ1-9fLpLuBIbEQiDDElEE4HtOCydsxg0vLCqNcwdeL8-1k2XgPNUi5SbnAQI_rp2QwEhK6RxAJflbMqhj7Q-xNtzxMs19EDYFk8j0yHtpQhp0zk2h8yFJenCU7eTJ8ZSMSrXCykwhmGoD5pB82rS_boU5_tnyCMFQQClQF9diApFdqQ6QITnuTUB10_dWoT8vUWlfDsnnjVnsHIc1VrOjmRqfT6abu3f_3_8ReYrX6DhZfkwGq5u1PwFGtDLvuxnxANU1BLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Nonconjugated+Spacers+on+Mechanical+Properties+of+Semiconducting+Polymers+for+Stretchable+Transistors&rft.jtitle=Advanced+functional+materials&rft.au=Mun%2C+Jaewan&rft.au=Wang%2C+Ging%E2%80%90Ji+Nathan&rft.au=Oh%2C+Jin+Young&rft.au=Katsumata%2C+Toru&rft.date=2018-10-24&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.201804222&rft.externalDocID=1468671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |