Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors

Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative f...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 43
Main Authors Mun, Jaewan, Wang, Ging‐Ji Nathan, Oh, Jin Young, Katsumata, Toru, Lee, Franklin L., Kang, Jiheong, Wu, Hung‐Chin, Lissel, Franziska, Rondeau‐Gagné, Simon, Tok, Jeffrey B.‐H., Bao, Zhenan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 24.10.2018
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
1616-3028
DOI10.1002/adfm.201804222

Cover

Abstract Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm2 V−1 s−1 at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties. The effect of nonconjugated spacers on mechanical properties of polymer semiconductors is discussed. Longer and more flexible conjugation breakers lead to greater ductility and lower modulus without significant compromise in mobility. Specifically, a semiconducting polymer containing dodecyl segments maintains a moderate mobility (≈0.1 cm2 V−1 s−1) under 100% strain, and after 100 cycles at 50% strain.
AbstractList Abstract Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm 2 V −1 s −1 at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties.
Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm 2 V −1 s −1 at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties.
Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm2 V−1 s−1 at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties. The effect of nonconjugated spacers on mechanical properties of polymer semiconductors is discussed. Longer and more flexible conjugation breakers lead to greater ductility and lower modulus without significant compromise in mobility. Specifically, a semiconducting polymer containing dodecyl segments maintains a moderate mobility (≈0.1 cm2 V−1 s−1) under 100% strain, and after 100 cycles at 50% strain.
Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have described the improvement of stretchability of polymer semiconductors by incorporating nonconjugated spacers. However, the effect of relative flexibility of such conjugation breakers on mechanical and electrical properties has not yet been studied systematically. Here, conjugation breakers with different chain length and rigidity are incorporated into the backbone of diketopyrrolopyrrole‐based semiconductors. Interestingly, it is observed that the longer and more flexible conjugation breakers result in greater ductility and lower elastic modulus without significantly affecting mobility. The enhancement of stretchability is attributed to the reduced modulus and the decrease in crystallinity, as confirmed by X‐ray diffraction. With this newly established molecular design, transistors are prepared with a semiconducting polymer containing dodecyl segments as conjugation breakers. It is observed that this polymer retains a mobility of >0.36 cm2 V−1 s−1 at 100% strain, and after 100 cycles at 50% strain. Finally, its high stability against strain is also observed with a fully stretchable transistor fabricated. Taken together, the above results indicate that molecular engineering of conjugated polymers, i.e., by incorporating suitable conjugation breakers, can effectively tune mechanical properties without significantly compromising their electrical properties.
Author Tok, Jeffrey B.‐H.
Lissel, Franziska
Lee, Franklin L.
Rondeau‐Gagné, Simon
Kang, Jiheong
Bao, Zhenan
Oh, Jin Young
Katsumata, Toru
Mun, Jaewan
Wang, Ging‐Ji Nathan
Wu, Hung‐Chin
Author_xml – sequence: 1
  givenname: Jaewan
  surname: Mun
  fullname: Mun, Jaewan
  organization: Stanford University
– sequence: 2
  givenname: Ging‐Ji Nathan
  surname: Wang
  fullname: Wang, Ging‐Ji Nathan
  organization: Stanford University
– sequence: 3
  givenname: Jin Young
  surname: Oh
  fullname: Oh, Jin Young
  organization: Kyung Hee University
– sequence: 4
  givenname: Toru
  surname: Katsumata
  fullname: Katsumata, Toru
  organization: Asahi Kasei Corporation
– sequence: 5
  givenname: Franklin L.
  surname: Lee
  fullname: Lee, Franklin L.
  organization: Stanford University
– sequence: 6
  givenname: Jiheong
  surname: Kang
  fullname: Kang, Jiheong
  organization: Stanford University
– sequence: 7
  givenname: Hung‐Chin
  surname: Wu
  fullname: Wu, Hung‐Chin
  organization: Stanford University
– sequence: 8
  givenname: Franziska
  surname: Lissel
  fullname: Lissel, Franziska
  organization: Leibniz Institute of Polymer Research Dresden
– sequence: 9
  givenname: Simon
  surname: Rondeau‐Gagné
  fullname: Rondeau‐Gagné, Simon
  organization: University of Windsor
– sequence: 10
  givenname: Jeffrey B.‐H.
  surname: Tok
  fullname: Tok, Jeffrey B.‐H.
  organization: Stanford University
– sequence: 11
  givenname: Zhenan
  orcidid: 0000-0002-0972-1715
  surname: Bao
  fullname: Bao, Zhenan
  email: zbao@stanford.edu
  organization: Stanford University
BackLink https://www.osti.gov/biblio/1468671$$D View this record in Osti.gov
BookMark eNqFkE1rGzEYhEVJoU7aa84iPdvRx1qSj8ZN0oDTGpxCbkLWhyOzlraSluB_Xy0bUiiUnN45zPMOM-fgLMRgAbjEaIYRItfKuOOMICxQQwj5ACaYYTaliIizN42fPoHznA8IYc5pMwHxxjmrC4wO_ohBx3Do96pYA7ed0jZlGAN8sPpZBa9VCzcpdjYVb_NAbO3RV8T0uviwh5vYno4D42KC25JsqdyutfAxqZB9LjHlz-CjU222X17vBfh1e_O4-j5d_7y7Xy3XU90ITqZs7ticGcUM05ju6FwjxAk1lJGmUUZwRylSDNFdQ90Cc6oME7R2EsbMF1VegOvxbx86dXpRbSu75I8qnSRGcthLDnvJt70qcTUSMRcvs_al1q7tQp1H4oYJxnE1fR1NXYq_e5uLPMQ-hdpEEkwop1yIIXw2unSKOSfr3s9u_gFqvCo-hpKUb_-PLUbsxbf29E6IXH67ffjL_gGr96nR
CitedBy_id crossref_primary_10_1002_aelm_202000251
crossref_primary_10_1002_marc_202400637
crossref_primary_10_1016_j_ensm_2020_05_006
crossref_primary_10_1039_D4CC03254C
crossref_primary_10_1021_jacs_2c00072
crossref_primary_10_1002_ange_202402642
crossref_primary_10_1039_D1TC01082D
crossref_primary_10_1002_adfm_202303031
crossref_primary_10_1016_j_jpowsour_2023_233566
crossref_primary_10_1038_s41528_023_00236_5
crossref_primary_10_1021_acs_jpclett_1c03909
crossref_primary_10_1039_D3TC04141G
crossref_primary_10_1021_acs_macromol_1c01537
crossref_primary_10_1021_jacs_1c04984
crossref_primary_10_1360_SSC_2022_0044
crossref_primary_10_1021_acsami_9b12765
crossref_primary_10_1002_adma_201902417
crossref_primary_10_1002_marc_202401057
crossref_primary_10_1021_acsapm_1c00213
crossref_primary_10_1039_C9PY01216H
crossref_primary_10_1021_acsaelm_1c00025
crossref_primary_10_1021_acscentsci_4c01541
crossref_primary_10_1039_D2CS00173J
crossref_primary_10_6023_A23050213
crossref_primary_10_1016_j_joule_2020_01_014
crossref_primary_10_1002_smll_202401966
crossref_primary_10_1002_solr_202300699
crossref_primary_10_1039_D0TC06059C
crossref_primary_10_1016_j_mser_2024_100863
crossref_primary_10_1002_adma_202207544
crossref_primary_10_1021_jacs_4c07174
crossref_primary_10_1002_adfm_202203527
crossref_primary_10_1038_s41467_021_25719_9
crossref_primary_10_1039_D3TC04821G
crossref_primary_10_1002_anie_202301863
crossref_primary_10_1039_C9RA10534D
crossref_primary_10_1016_j_eurpolymj_2024_112840
crossref_primary_10_1002_adfm_202100161
crossref_primary_10_1021_acs_chemmater_3c02555
crossref_primary_10_1021_acs_macromol_1c00936
crossref_primary_10_1016_j_mtcomm_2025_111893
crossref_primary_10_1002_advs_202002930
crossref_primary_10_1002_advs_202002778
crossref_primary_10_1021_acs_chemmater_3c02394
crossref_primary_10_1002_nadc_20224124202
crossref_primary_10_1055_a_2191_6011
crossref_primary_10_1039_D1PY01154E
crossref_primary_10_1002_adfm_202009201
crossref_primary_10_1016_j_jiec_2021_12_014
crossref_primary_10_1021_acs_macromol_9b02573
crossref_primary_10_1002_pol_20210281
crossref_primary_10_1021_acsami_0c14592
crossref_primary_10_1021_acs_macromol_1c00268
crossref_primary_10_1002_adma_201904765
crossref_primary_10_1002_adma_202300034
crossref_primary_10_1021_acs_chemmater_8b04314
crossref_primary_10_1002_adma_201902743
crossref_primary_10_1039_D2MA00581F
crossref_primary_10_1021_acs_chemmater_9b03333
crossref_primary_10_1002_adma_201901493
crossref_primary_10_1021_acsmaterialslett_2c00749
crossref_primary_10_1021_acs_macromol_0c00381
crossref_primary_10_1002_admi_202202186
crossref_primary_10_1021_acs_chemrev_4c00571
crossref_primary_10_1021_acs_macromol_3c00109
crossref_primary_10_1038_s41428_022_00729_6
crossref_primary_10_1038_s41928_020_00513_5
crossref_primary_10_1038_s41565_022_01246_6
crossref_primary_10_1002_marc_202400331
crossref_primary_10_1021_acs_chemmater_0c01437
crossref_primary_10_1021_acs_macromol_1c00534
crossref_primary_10_1039_D3LP00106G
crossref_primary_10_1016_j_cej_2020_126940
crossref_primary_10_1021_acsmaterialslett_2c00138
crossref_primary_10_1002_adfm_202003608
crossref_primary_10_1021_acs_chemmater_3c02498
crossref_primary_10_1038_s41467_021_23798_2
crossref_primary_10_1002_adma_202110639
crossref_primary_10_1039_D2TC01771G
crossref_primary_10_1364_OME_450214
crossref_primary_10_1557_s43577_021_00093_5
crossref_primary_10_1021_acs_chemmater_3c02131
crossref_primary_10_1007_s40843_022_2331_8
crossref_primary_10_1126_sciadv_adq0171
crossref_primary_10_1002_adfm_202310558
crossref_primary_10_1021_acs_jpclett_1c00714
crossref_primary_10_1002_ange_202301863
crossref_primary_10_1002_adfm_202306576
crossref_primary_10_1002_adfm_202305249
crossref_primary_10_1002_adfm_202004137
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_1021_acs_chemmater_1c04085
crossref_primary_10_1021_acsami_9b10943
crossref_primary_10_1002_idm2_12223
crossref_primary_10_1021_acs_chemmater_3c02025
crossref_primary_10_1021_acsami_1c15208
crossref_primary_10_1039_D2TB01567F
crossref_primary_10_1038_s41563_023_01529_w
crossref_primary_10_1039_D2NJ06190B
crossref_primary_10_1002_smtd_202100676
crossref_primary_10_1039_C9QM00055K
crossref_primary_10_1016_j_colsurfa_2023_132081
crossref_primary_10_1039_D0TC02363A
crossref_primary_10_1002_anie_202402642
crossref_primary_10_1038_s41528_023_00269_w
crossref_primary_10_1002_admt_202201067
crossref_primary_10_1002_advs_202305800
crossref_primary_10_1002_smll_202412767
crossref_primary_10_1002_advs_202305361
crossref_primary_10_1021_acsami_8b21130
crossref_primary_10_1002_pol_20210494
crossref_primary_10_1021_acs_macromol_0c00209
crossref_primary_10_1039_D1EE01062J
crossref_primary_10_1021_acs_macromol_9b00589
crossref_primary_10_1063_1_5145180
crossref_primary_10_1016_j_xcrp_2022_101244
crossref_primary_10_1021_acsami_2c07445
crossref_primary_10_1038_s41467_024_50358_1
crossref_primary_10_1007_s40820_022_00884_8
crossref_primary_10_1002_aelm_201901133
crossref_primary_10_1039_D4TB01198H
crossref_primary_10_1002_adma_202107361
crossref_primary_10_1002_advs_202400304
crossref_primary_10_3390_ma13143092
crossref_primary_10_1002_adma_202201623
crossref_primary_10_1002_smll_202206938
crossref_primary_10_1002_marc_202100636
crossref_primary_10_1021_acsami_3c09951
crossref_primary_10_1016_j_ijbiomac_2024_137960
crossref_primary_10_1016_j_jmst_2020_01_008
crossref_primary_10_1021_acsami_3c12057
crossref_primary_10_1039_D2TC04383A
crossref_primary_10_1002_pi_6749
crossref_primary_10_3390_s25030925
crossref_primary_10_1002_adhm_202002105
crossref_primary_10_1002_adfm_201905340
crossref_primary_10_1021_acsami_3c10033
crossref_primary_10_1021_acsaelm_3c01719
crossref_primary_10_34133_cbsystems_0172
crossref_primary_10_1021_acs_chemmater_4c01146
crossref_primary_10_1016_j_polymer_2023_125986
crossref_primary_10_1021_acsmacrolett_3c00517
crossref_primary_10_1002_smll_202308595
crossref_primary_10_1038_s41428_021_00510_1
crossref_primary_10_1039_D0CS00333F
crossref_primary_10_1039_C9TC03263K
crossref_primary_10_1002_smll_202311527
crossref_primary_10_1002_aisy_202000117
crossref_primary_10_1021_acsapm_1c01167
crossref_primary_10_1021_acs_macromol_2c00957
crossref_primary_10_1039_D2CS00837H
crossref_primary_10_1002_aelm_202200438
crossref_primary_10_1126_science_adp9314
crossref_primary_10_29026_oea_2022_210131
crossref_primary_10_1016_j_jpowsour_2023_234009
crossref_primary_10_1021_acs_macromol_3c00703
crossref_primary_10_1002_aelm_202300816
crossref_primary_10_1063_5_0133569
crossref_primary_10_1002_adma_201903912
Cites_doi 10.1002/adfm.201705584
10.1038/ncomms2832
10.1021/la904840q
10.1038/nature21004
10.1021/cm502271j
10.1002/aelm.201600104
10.1038/nmat3722
10.1557/mrs.2016.325
10.1038/nmat2835
10.1021/ja504537v
10.1063/1.470648
10.1002/jcc.20035
10.1021/acs.chemrev.7b00003
10.1002/anie.200701920
10.1038/nmat1175
10.1039/c2jm30470h
10.1038/ncomms8955
10.1126/science.aah4496
10.1002/aelm.201500250
10.1038/nmat4671
10.1002/adma.201500233
10.1038/nature20102
10.1002/adma.200801788
10.1021/ma900137k
10.1063/1.464397
10.1002/ange.201006464
10.1002/aelm.201600311
10.1038/nature12314
10.1126/science.aaa9306
10.1021/cm501021v
10.1002/adma.201302240
10.1021/acs.macromol.8b00093
10.1021/acs.chemmater.6b00525
10.1002/adma.201404602
10.1002/adma.201605056
10.1557/mrs.2012.37
10.1021/acs.macromol.5b00524
10.1021/nl303612z
10.1021/acsami.6b16115
10.1002/adfm.201602603
10.1039/C4EE02657H
10.1021/nn1018768
10.1002/adfm.200601248
10.1039/C4SC02073A
10.1002/polb.22270
10.1016/j.progpolymsci.2013.09.005
10.1038/nphoton.2013.242
10.1021/ja405112s
10.1038/srep00754
10.1021/acs.macromol.5b00194
10.1016/j.bpj.2015.08.015
10.1021/la0618972
10.1126/science.154.3755.1467
10.1002/marc.201600377
10.1021/cr3001109
10.1002/aelm.201700429
10.1038/nature25494
10.1073/pnas.0401918101
10.1016/j.mattod.2014.05.006
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
ADTOC
UNPAY
DOI 10.1002/adfm.201804222
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID oai:osti.gov:1468671
1468671
10_1002_adfm_201804222
ADFM201804222
Genre article
GrantInformation_xml – fundername: Swiss National Science Foundation
– fundername: Samsung Electronics
– fundername: Fonds de Recherche du Québécois
– fundername: Samsung Scholarship
– fundername: Air Force Office of Scientific Research
  funderid: FA9550‐18‐1‐0143
– fundername: National Science Foundation
  funderid: ECCS‐1542152
– fundername: Stanford Nano Shared Facilities
– fundername: Nature et Technologies (FRQNT) for a postdoctoral fellowship
– fundername: U.S. Department of Energy
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c4872-65f656da6d6c13b35c00723d36244ad87f330a603b43f9173ad6831778dd59683
IEDL.DBID UNPAY
ISSN 1616-301X
1616-3028
IngestDate Sun Oct 26 02:15:45 EDT 2025
Mon Sep 25 05:37:10 EDT 2023
Sun Jul 13 04:11:37 EDT 2025
Thu Oct 09 00:32:13 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Wed Jan 22 16:38:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4872-65f656da6d6c13b35c00723d36244ad87f330a603b43f9173ad6831778dd59683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0002-0972-1715
0000000209721715
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1468671
PQID 2123737888
PQPubID 2045204
PageCount 10
ParticipantIDs unpaywall_primary_10_1002_adfm_201804222
osti_scitechconnect_1468671
proquest_journals_2123737888
crossref_primary_10_1002_adfm_201804222
crossref_citationtrail_10_1002_adfm_201804222
wiley_primary_10_1002_adfm_201804222_ADFM201804222
PublicationCentury 2000
PublicationDate October 24, 2018
PublicationDateYYYYMMDD 2018-10-24
PublicationDate_xml – month: 10
  year: 2018
  text: October 24, 2018
  day: 24
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Germany
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 42
1966; 154
2013; 25
2013; 4
2017; 3
2009; 42
2004; 25
2014; 26
2004; 3
2016; 540
2015; 109
2013; 7
2012; 12
2017; 355
2016; 37
2014; 136
2017; 9
2017; 117
2015; 48
2014; 5
2010; 26
2018; 4
2013; 12
2008; 20
2014; 17
2010; 4
2012; 22
2007; 23
2011; 123
2010; 9
2004; 101
2007; 17
2018; 28
2015; 6
1994
2017; 29
2012; 37
2015; 8
2016; 15
2015; 350
2012; 2
2015; 27
2016; 2
2012; 112
2013; 38
2016; 539
1993; 98
2018; 555
2008; 47
2013; 499
2013; 135
2018; 51
1995; 103
2014
2016; 28
2011; 49
2016; 26
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Grosberg A. I. (e_1_2_7_60_1) 1994
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Case D. A. (e_1_2_7_56_1) 2014
References_xml – volume: 42
  start-page: 7079
  year: 2009
  publication-title: Macromolecules
– volume: 539
  start-page: 411
  year: 2016
  publication-title: Nature
– volume: 540
  start-page: 379
  year: 2016
  publication-title: Nature
– volume: 49
  start-page: 909
  year: 2011
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 2
  start-page: 1600104
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 42
  start-page: 93
  year: 2017
  publication-title: MRS Bull.
– volume: 6
  start-page: 7955
  year: 2015
  publication-title: Nat. Commun.
– volume: 20
  start-page: 4887
  year: 2008
  publication-title: Adv. Mater.
– volume: 12
  start-page: 6353
  year: 2012
  publication-title: Nano Lett.
– volume: 7
  start-page: 817
  year: 2013
  publication-title: Nat. Photonics
– volume: 2
  start-page: 1500250
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 26
  start-page: 4544
  year: 2014
  publication-title: Chem. Mater.
– volume: 48
  start-page: 4339
  year: 2015
  publication-title: Macromolecules
– volume: 25
  start-page: 5997
  year: 2013
  publication-title: Adv. Mater.
– volume: 499
  start-page: 458
  year: 2013
  publication-title: Nature
– volume: 154
  start-page: 1467
  year: 1966
  publication-title: Science
– year: 2014
– year: 1994
– volume: 27
  start-page: 3045
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 7538
  year: 2010
  publication-title: ACS Nano
– volume: 123
  start-page: 1930
  year: 2011
  publication-title: Angew. Chem.
– volume: 135
  start-page: 14896
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 207
  year: 2012
  publication-title: MRS Bull.
– volume: 5
  start-page: 4922
  year: 2014
  publication-title: Chem. Sci.
– volume: 27
  start-page: 1255
  year: 2015
  publication-title: Adv. Mater.
– volume: 23
  start-page: 834
  year: 2007
  publication-title: Langmuir
– volume: 47
  start-page: 4070
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 117
  start-page: 6467
  year: 2017
  publication-title: Chem. Rev.
– volume: 4
  start-page: 1859
  year: 2013
  publication-title: Nat. Commun.
– volume: 355
  start-page: 59
  year: 2017
  publication-title: Science
– volume: 9
  start-page: 821
  year: 2010
  publication-title: Nat. Mater.
– volume: 51
  start-page: 2572
  year: 2018
  publication-title: Macromolecules
– volume: 17
  start-page: 2674
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 2048
  year: 2015
  publication-title: Macromolecules
– volume: 3
  start-page: 545
  year: 2004
  publication-title: Nat. Mater.
– volume: 15
  start-page: 937
  year: 2016
  publication-title: Nat. Mater.
– volume: 8
  start-page: 55
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 37
  start-page: 1623
  year: 2016
  publication-title: Macromol. Rapid Commun.
– volume: 136
  start-page: 9477
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1600311
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 9
  start-page: 8855
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 109
  start-page: 1528
  year: 2015
  publication-title: Biophys. J.
– volume: 28
  start-page: 2363
  year: 2016
  publication-title: Chem. Mater.
– volume: 103
  start-page: 4613
  year: 1995
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 1605056
  year: 2017
  publication-title: Adv. Mater.
– volume: 17
  start-page: 321
  year: 2014
  publication-title: Mater. Today
– volume: 4
  start-page: 1700429
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 2
  start-page: 754
  year: 2012
  publication-title: Sci. Rep.
– volume: 22
  start-page: 10416
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 112
  start-page: 5488
  year: 2012
  publication-title: Chem. Rev.
– volume: 26
  start-page: 7254
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 350
  start-page: 313
  year: 2015
  publication-title: Science
– volume: 26
  start-page: 3028
  year: 2014
  publication-title: Chem. Mater.
– volume: 12
  start-page: 1038
  year: 2013
  publication-title: Nat. Mater.
– volume: 28
  start-page: 1705584
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 1157
  year: 2004
  publication-title: J. Comput. Chem.
– volume: 26
  start-page: 9146
  year: 2010
  publication-title: Langmuir
– volume: 555
  start-page: 83
  year: 2018
  publication-title: Nature
– volume: 101
  start-page: 9966
  year: 2004
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 38
  start-page: 1832
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 98
  start-page: 10089
  year: 1993
  publication-title: J. Chem. Phys.
– ident: e_1_2_7_37_1
  doi: 10.1002/adfm.201705584
– ident: e_1_2_7_11_1
  doi: 10.1038/ncomms2832
– ident: e_1_2_7_49_1
  doi: 10.1021/la904840q
– ident: e_1_2_7_3_1
  doi: 10.1038/nature21004
– ident: e_1_2_7_54_1
  doi: 10.1021/cm502271j
– ident: e_1_2_7_36_1
  doi: 10.1002/aelm.201600104
– ident: e_1_2_7_28_1
  doi: 10.1038/nmat3722
– ident: e_1_2_7_4_1
  doi: 10.1557/mrs.2016.325
– ident: e_1_2_7_8_1
  doi: 10.1038/nmat2835
– ident: e_1_2_7_23_1
  doi: 10.1021/ja504537v
– ident: e_1_2_7_58_1
  doi: 10.1063/1.470648
– ident: e_1_2_7_57_1
  doi: 10.1002/jcc.20035
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.chemrev.7b00003
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.200701920
– ident: e_1_2_7_42_1
  doi: 10.1038/nmat1175
– ident: e_1_2_7_45_1
  doi: 10.1039/c2jm30470h
– ident: e_1_2_7_47_1
  doi: 10.1038/ncomms8955
– ident: e_1_2_7_30_1
  doi: 10.1126/science.aah4496
– ident: e_1_2_7_31_1
  doi: 10.1002/aelm.201500250
– ident: e_1_2_7_13_1
  doi: 10.1038/nmat4671
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201500233
– ident: e_1_2_7_17_1
  doi: 10.1038/nature20102
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.200801788
– ident: e_1_2_7_43_1
  doi: 10.1021/ma900137k
– ident: e_1_2_7_59_1
  doi: 10.1063/1.464397
– ident: e_1_2_7_10_1
  doi: 10.1002/ange.201006464
– ident: e_1_2_7_29_1
  doi: 10.1002/aelm.201600311
– ident: e_1_2_7_7_1
  doi: 10.1038/nature12314
– ident: e_1_2_7_12_1
  doi: 10.1126/science.aaa9306
– ident: e_1_2_7_14_1
  doi: 10.1021/cm501021v
– volume-title: Amber 14
  year: 2014
  ident: e_1_2_7_56_1
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201302240
– ident: e_1_2_7_51_1
  doi: 10.1021/acs.macromol.8b00093
– ident: e_1_2_7_41_1
  doi: 10.1021/acs.chemmater.6b00525
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201404602
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201605056
– ident: e_1_2_7_15_1
  doi: 10.1557/mrs.2012.37
– ident: e_1_2_7_50_1
  doi: 10.1021/acs.macromol.5b00524
– ident: e_1_2_7_22_1
  doi: 10.1021/nl303612z
– ident: e_1_2_7_40_1
  doi: 10.1021/acsami.6b16115
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.201602603
– ident: e_1_2_7_44_1
  doi: 10.1039/C4EE02657H
– ident: e_1_2_7_27_1
  doi: 10.1021/nn1018768
– ident: e_1_2_7_33_1
  doi: 10.1002/adfm.200601248
– ident: e_1_2_7_34_1
  doi: 10.1039/C4SC02073A
– ident: e_1_2_7_53_1
  doi: 10.1002/polb.22270
– ident: e_1_2_7_46_1
  doi: 10.1016/j.progpolymsci.2013.09.005
– ident: e_1_2_7_6_1
  doi: 10.1038/nphoton.2013.242
– ident: e_1_2_7_20_1
  doi: 10.1021/ja405112s
– ident: e_1_2_7_21_1
  doi: 10.1038/srep00754
– ident: e_1_2_7_35_1
  doi: 10.1021/acs.macromol.5b00194
– ident: e_1_2_7_61_1
  doi: 10.1016/j.bpj.2015.08.015
– ident: e_1_2_7_52_1
  doi: 10.1021/la0618972
– volume-title: Statistical Physics of Macromolecules
  year: 1994
  ident: e_1_2_7_60_1
– ident: e_1_2_7_9_1
  doi: 10.1126/science.154.3755.1467
– ident: e_1_2_7_26_1
  doi: 10.1002/marc.201600377
– ident: e_1_2_7_48_1
  doi: 10.1021/cr3001109
– ident: e_1_2_7_25_1
  doi: 10.1002/aelm.201700429
– ident: e_1_2_7_55_1
  doi: 10.1038/nature25494
– ident: e_1_2_7_5_1
  doi: 10.1073/pnas.0401918101
– ident: e_1_2_7_16_1
  doi: 10.1016/j.mattod.2014.05.006
SSID ssj0017734
Score 2.624994
Snippet Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several reports have...
Abstract Nonconjugated segments in polymer semiconductors have been utilized to improve the processability of semiconducting polymers. Recently, several...
SourceID unpaywall
osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Conjugation
conjugation breakers
Electrical properties
Materials science
Mechanical properties
Modulus of elasticity
organic field‐effect transistors (OFETs)
polymer semiconductors
Polymers
Segments
Semiconductor devices
Semiconductors
Spacers
Stretchability
stretchable electronics
Transistors
X-ray diffraction
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcX6UU9-BZjVfYg6CVtNpts0qOopQgVsRZ6C5t9HLQkpQ-kfnpnkjZaQQp6S2A3bZKZnf_M7v5CyGXIFLz1lnVTg9OMMOK5sWoZVwrfE9pGzNdY7-g-ik4_eBiEg2-7-Es-RFVwQ88oxmt0cJlOml_QUKkt7iRnMVKscBBmXBQ51XPFj2JRVE4rC4YLvNhgSW30_OZq95WoVMvBu1YU5-YsG8n5uxwOVzVsEYTau0Qu_3659uStMZumDfXxg-z4n_vbIzsLhUpvSpPaJxsmOyDb37iFhyQvmcc0t_QxzyCjfp1hNU7THmTgoCdpntGuwT3FaAL0CQv-YyS3Yo8eLsfPM-TMwsXoUz6cY-2cgnqmOEcOZoTbuWgRRQuIyeSI9Nv3L7cdd_HlBldBAuS7IrSgE7UUWijGUx4qJJRzDdEyCKSOI8u5J4XH04BbSBi51CIGJRPFWoctODwmtSzPzAnuKdc88gJjhfLAlJhsGROn1rMy4GkoA4e4yzeXqAXWHL-uMUxKILOf4INMqgfpkKuq_agEevzaso6GkIAUQZ6uwoVHaoq5EjIBHXK2tI9k4faTBHVAhIT-2CHXlc2s_R2_sIM1zZKbu3a3Ojv9S6c62cJjDL1-cEZq0_HMnIOmmqYXhd98At-MFwM
  priority: 102
  providerName: Wiley-Blackwell
Title Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201804222
https://www.proquest.com/docview/2123737888
https://www.osti.gov/biblio/1468671
UnpaywallVersion submittedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: ADMLS
  dateStart: 20130107
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1616-301X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBYlfdj2sHU3lvWCYIPtxa0t2bLyGNaGMkgI6wLZk9AVuhmrtAmj-_U7x5esGYzszQZZsvmOfL4jnfOJkPdFZgH1UUiMx21G-OMl0o58ogVLhQtlxhyud0xn4nKRf14Wyz3yrq-FwbTKCMbd5FSaa1NdxzOsDhJYJ74vCiDcA7K_mM3H3zCUEhlmbmXLP9dM9tKMKTvTLmC1eSZR6YptuZ4BjrJFKx-t6xt9_1NX1TZRbTzN5Bk579-xTTD5cbpemVP76y_5xh0fcUCedkyTjlvTeE72fP2CPHmgP_iSxFa7mMZAZ7GGyPj7GlfVHL2CSBp4IY01nXqsDUYo6RwX7m9RgRWfuMK0-lijXix0Ruexusc1cAosmOJeN5gDlmXRxhs2YiR3r8hicvH102XSncCQWAhkWCKKAHzPaeGEzbjhhUWlce7A6-W5drIMnKdapNzkPEDgx7UTEhhJKZ0DqCR_TQZ1rP0brA13vExzH4RNwSQyPfJempAGnXNT6HxIkh4cZTt5cjwlo1KtsDJTCKbagDkkHzbtb1phjn-2PEQwFFAK1MW1mEBkV6oDZEiOehNQ3fS9U-jPS1Tal0PycWMWO8dhjdXsaKbG55Pp5u7t__d_SB7jNTpOlh-Rwep27Y-BEa3MCcQCX9hJNy9-A_EnBaU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWq5VA48I1YWsCHSnBJm8SOkz1WwGpLu6uKtlJvluOPA6ySVbsrVH4985JNyiKhSvSWRHYi2zOeN-OZF8b2ssTSqo9CVHocM9KOFxV25COj0li5kCepQ7xjOlOTC_n1MuuyCVEL0_JD9AE3aEazX0PBEZA-uGUNNS6glDwpQGNFu_ADqchZAS761jNIJXneHiyrBCleyWXH2xinB5v9N-zSoCb92sCc26tqYW5-mvl8E8U2Zmj8hJXdANrskx_7q2W5b3_9xe14rxE-ZY_XIJUftlL1jG356jl79Ad14QtWt7THvA58VlfkVH9fISDn-Bk54QQpeV3xqUdZMaSAnyLmfwXyVvQ4Q0Z-XYFqll7GT-v5DcLnnAA0xzE5SRIqunhjSBsek-uX7GL85fzTJFr_vCGy5AOlkcoCQUVnlFM2EaXILEjKhSODKaVxRR6EiI2KRSlFIJ9RGKcKAjN54Vw2ostXbFDVlX-NsnIn8lj6oGxM0pSYkfdFGeJgpCgzI4cs6pZO2zWzOX6wMdctJ3OqMZG6n8gh-9C3X7ScHv9suQNJ0IRGQKlrkXtkl3CXQAs4ZLudgOi15l9rQIEcJP3FkH3shebO76SNINzRTB9-Hk_7uzf_0-k9256cT0_0ydHseIc9xHNY4lTussHyauXfEsRalu8aJfoNXhkbJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQIvE48EYsLeADElzSJrHjJMeKZVUeu1pRKvVmOX4cyipZtbtC5dczX7IJLBKqBLckshPZnvF8M575wtjrLLG06mWIKo9jRtrxosKWPjIqjZULeZI6xDtmc3V8Kj-eZX02IWphOn6IIeAGzWj3ayi4X7lw-Is11LiAUvKkAI0V7cI3ZVYWyOqbfBkYpJI87w6WVYIUr-Ss522M08Pd_jt2adSQfu1gztubemWuvpvlchfFtmZoep9V_QC67JNvB5t1dWB__MHt-F8jfMDubUEqP-qk6iG74etH7O5v1IWPWdPRHvMm8HlTk1N9vkFAzvETcsIJUvKm5jOPsmJIAV8g5n8B8lb0OEFGflODapZexhfN8grhc04AmuOYnCQJFV28NaQtj8nlE3Y6ff_13XG0_XlDZMkHSiOVBYKKziinbCIqkVmQlAtHBlNK44o8CBEbFYtKikA-ozBOFQRm8sK5rKTLp2xUN7V_hrJyJ_JY-qBsTNKUmNL7ogpxMFJUmZFjFvVLp-2W2Rw_2FjqjpM51ZhIPUzkmL0Z2q86To-_ttyDJGhCI6DUtcg9smu4S6AFHLP9XkD0VvMvNaBADpL-YszeDkJz7XfSVhCuaaaPJtPZcPf8Xzq9YrcWk6n-_GH-aY_dwWMY4lTus9H6YuNfEMJaVy9bHfoJ4F4aqA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBYlfdj20N1p1nYINthe3NqSLSuPYV0og4RAF8iehK7QzVilTRjtr-85vmTNYGRvNsiSzXfk8x3pnE-EfCwyC6iPQmI8bjPCHy-RduQTLVgqXCgz5nC9YzoTF4v827JY7pEPfS0MplVGMO4mp9JcmeoqnmF1kMA68X1RAOEekP3FbD7-gaGUyDBzK1v-uWayl2ZM2Zl2AavNM4lKV2zL9QxwlC1a-WRdX-u737qqtolq42kmz8l5_45tgsmv0_XKnNr7v-Qbd3zEC3LQMU06bk3jJdnz9Svy7JH-4GsSW-1iGgOdxRoi459rXFVz9BIiaeCFNNZ06rE2GKGkc1y4v0EFVnziEtPqY416sdAZncfqDtfAKbBginvdYA5YlkUbb9iIkdy-IYvJ1-9fLpLuBIbEQiDDElEE4HtOCydsxg0vLCqNcwdeL8-1k2XgPNUi5SbnAQI_rp2QwEhK6RxAJflbMqhj7Q-xNtzxMs19EDYFk8j0yHtpQhp0zk2h8yFJenCU7eTJ8ZSMSrXCykwhmGoD5pB82rS_boU5_tnyCMFQQClQF9diApFdqQ6QITnuTUB10_dWoT8vUWlfDsnnjVnsHIc1VrOjmRqfT6abu3f_3_8ReYrX6DhZfkwGq5u1PwFGtDLvuxnxANU1BLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Nonconjugated+Spacers+on+Mechanical+Properties+of+Semiconducting+Polymers+for+Stretchable+Transistors&rft.jtitle=Advanced+functional+materials&rft.au=Mun%2C+Jaewan&rft.au=Wang%2C+Ging%E2%80%90Ji+Nathan&rft.au=Oh%2C+Jin+Young&rft.au=Katsumata%2C+Toru&rft.date=2018-10-24&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=43&rft_id=info:doi/10.1002%2Fadfm.201804222&rft.externalDocID=1468671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon