Uncertainties in coastal flood risk assessments in small island developing states
Considering the likely increase in coastal flooding in small island developing states (SIDSs) due to climate change, coastal managers at the local and global levels have been developing initiatives aimed at implementing disaster risk reduction (DRR) and adaptation measures. Developing science-based...
Saved in:
Published in | Natural hazards and earth system sciences Vol. 20; no. 9; pp. 2397 - 2414 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
11.09.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1684-9981 1561-8633 1684-9981 |
DOI | 10.5194/nhess-20-2397-2020 |
Cover
Abstract | Considering the likely increase in coastal flooding in small island
developing states (SIDSs) due to climate change, coastal managers at the
local and global levels have been developing initiatives aimed at
implementing disaster risk reduction (DRR) and adaptation measures.
Developing science-based adaptation policies requires accurate coastal flood
risk (CFR) assessments, which in the case of insular states are often
subject to input uncertainty. We analysed the impact of a number of
uncertain inputs on coastal flood damage estimates: (i) significant wave
height, (ii) storm surge level and (iii) sea level rise (SLR) contributions
to extreme sea levels, as well as the error-driven uncertainty in (iv) bathymetric and (v) topographic datasets, (vi) damage models, and (vii)
socioeconomic changes. The methodology was tested through a sensitivity
analysis using an ensemble of hydrodynamic models (XBeach and SFINCS)
coupled with a direct impact model (Delft-FIAT) for a case study of a number
of villages on the islands of São Tomé and Príncipe. Model
results indicate that for the current time horizon, depth damage functions
(DDFs) and digital elevation models (DEMs) dominate the overall damage
estimation uncertainty. When introducing climate and socioeconomic
uncertainties to the analysis, SLR projections become the most relevant
input for the year 2100 (followed by DEM and DDF). In general, the scarcity
of reliable input data leads to considerable predictive uncertainty in CFR
assessments in SIDSs. The findings of this research can help to prioritize
the allocation of limited resources towards the acquisitions of the most
relevant input data for reliable impact estimation. |
---|---|
AbstractList | Considering the likely increase in coastal flooding in small island developing states (SIDSs) due to climate change, coastal managers at the local and global levels have been developing initiatives aimed at implementing disaster risk reduction (DRR) and adaptation measures. Developing science-based adaptation policies requires accurate coastal flood risk (CFR) assessments, which in the case of insular states are often subject to input uncertainty. We analysed the impact of a number of uncertain inputs on coastal flood damage estimates: (i) significant wave height, (ii) storm surge level and (iii) sea level rise (SLR) contributions to extreme sea levels, as well as the error-driven uncertainty in (iv) bathymetric and (v) topographic datasets, (vi) damage models, and (vii) socioeconomic changes. The methodology was tested through a sensitivity analysis using an ensemble of hydrodynamic models (XBeach and SFINCS) coupled with a direct impact model (Delft-FIAT) for a case study of a number of villages on the islands of São Tomé and Príncipe. Model results indicate that for the current time horizon, depth damage functions (DDFs) and digital elevation models (DEMs) dominate the overall damage estimation uncertainty. When introducing climate and socioeconomic uncertainties to the analysis, SLR projections become the most relevant input for the year 2100 (followed by DEM and DDF). In general, the scarcity of reliable input data leads to considerable predictive uncertainty in CFR assessments in SIDSs. The findings of this research can help to prioritize the allocation of limited resources towards the acquisitions of the most relevant input data for reliable impact estimation. Considering the likely increase in coastal flooding in small island developing states (SIDSs) due to climate change, coastal managers at the local and global levels have been developing initiatives aimed at implementing disaster risk reduction (DRR) and adaptation measures. Developing science-based adaptation policies requires accurate coastal flood risk (CFR) assessments, which in the case of insular states are often subject to input uncertainty. We analysed the impact of a number of uncertain inputs on coastal flood damage estimates: (i) significant wave height, (ii) storm surge level and (iii) sea level rise (SLR) contributions to extreme sea levels, as well as the error-driven uncertainty in (iv) bathymetric and (v) topographic datasets, (vi) damage models, and (vii) socioeconomic changes. The methodology was tested through a sensitivity analysis using an ensemble of hydrodynamic models (XBeach and SFINCS) coupled with a direct impact model (Delft-FIAT) for a case study of a number of villages on the islands of São Tomé and Príncipe. Model results indicate that for the current time horizon, depth damage functions (DDFs) and digital elevation models (DEMs) dominate the overall damage estimation uncertainty. When introducing climate and socioeconomic uncertainties to the analysis, SLR projections become the most relevant input for the year 2100 (followed by DEM and DDF). In general, the scarcity of reliable input data leads to considerable predictive uncertainty in CFR assessments in SIDSs. The findings of this research can help to prioritize the allocation of limited resources towards the acquisitions of the most relevant input data for reliable impact estimation. Considering the likely increase in coastal flooding in small island developing states (SIDSs) due to climate change, coastal managers at the local and global levels have been developing initiatives aimed at implementing disaster risk reduction (DRR) and adaptation measures. Developing science-based adaptation policies requires accurate coastal flood risk (CFR) assessments, which in the case of insular states are often subject to input uncertainty. We analysed the impact of a number of uncertain inputs on coastal flood damage estimates: (i) significant wave height, (ii) storm surge level and (iii) sea level rise (SLR) contributions to extreme sea levels, as well as the error-driven uncertainty in (iv) bathymetric and (v) topographic datasets, (vi) damage models, and (vii) socioeconomic changes. The methodology was tested through a sensitivity analysis using an ensemble of hydrodynamic models (XBeach and SFINCS) coupled with a direct impact model (Delft-FIAT) for a case study of a number of villages on the islands of São Tomé and Príncipe. Model results indicate that for the current time horizon, depth damage functions (DDFs) and digital elevation models (DEMs) dominate the overall damage estimation uncertainty. When introducing climate and socioeconomic uncertainties to the analysis, SLR projections become the most relevant input for the year 2100 (followed by DEM and DDF). In general, the scarcity of reliable input data leads to considerable predictive uncertainty in CFR assessments in SIDSs. The findings of this research can help to prioritize the allocation of limited resources towards the acquisitions of the most relevant input data for reliable impact estimation. Considering the likely increase in coastal flooding in small island developing states (SIDSs) due to climate change, coastal managers at the local and global levels have been developing initiatives aimed at implementing disaster risk reduction (DRR) and adaptation measures. Developing science-based adaptation policies requires accurate coastal flood risk (CFR) assessments, which in the case of insular states are often subject to input uncertainty. We analysed the impact of a number of uncertain inputs on coastal flood damage estimates: (i) significant wave height, (ii) storm surge level and (iii) sea level rise (SLR) contributions to extreme sea levels, as well as the error-driven uncertainty in (iv) bathymetric and (v) topographic datasets, (vi) damage models, and (vii) socioeconomic changes. The methodology was tested through a sensitivity analysis using an ensemble of hydrodynamic models (XBeach and SFINCS) coupled with a direct impact model (Delft-FIAT) for a case study of a number of villages on the islands of São Tomé and Príncipe. Model results indicate that for the current time horizon, depth damage functions (DDFs) and digital elevation models (DEMs) dominate the overall damage estimation uncertainty. When introducing climate and socioeconomic uncertainties to the analysis, SLR projections become the most relevant input for the year 2100 (followed by DEM and DDF). In general, the scarcity of reliable input data leads to considerable predictive uncertainty in CFR assessments in SIDSs. The findings of this research can help to prioritize the allocation of limited resources towards the acquisitions of the most relevant input data for reliable impact estimation. |
Audience | Academic |
Author | Reniers, Ad J. H. M. Pearson, Stuart G. van Dongeren, Ap Bricker, Jeremy D. Parodi, Matteo U. Giardino, Alessio |
Author_xml | – sequence: 1 givenname: Matteo U. surname: Parodi fullname: Parodi, Matteo U. – sequence: 2 givenname: Alessio orcidid: 0000-0001-8744-5886 surname: Giardino fullname: Giardino, Alessio – sequence: 3 givenname: Ap orcidid: 0000-0002-1982-4777 surname: van Dongeren fullname: van Dongeren, Ap – sequence: 4 givenname: Stuart G. orcidid: 0000-0002-3986-4469 surname: Pearson fullname: Pearson, Stuart G. – sequence: 5 givenname: Jeremy D. surname: Bricker fullname: Bricker, Jeremy D. – sequence: 6 givenname: Ad J. H. M. surname: Reniers fullname: Reniers, Ad J. H. M. |
BookMark | eNp9kkuLFDEUhQsZwZnRP-CqwJWLGvOsSpbD4KNhQEaddUjl0aZNJW1uWvTfm-4WnRaREBIu3zk34Z6L7izl5LruOUZXHEv2Kn12AANBA6FyaidBj7pzPAo2SCnw2YP7k-4CYIMQkZyh8-7uPhlXqg6pBgd9SL3JGqqOvY85274E-NJrgGa_uFQPBCw6xj5A1Mn21n1zMW9DWvdNVh087R57HcE9-3VedvdvXn-6eTfcvn-7urm-HQwTYx2cNJRbO1mJuJGIEG7JROhIEZmwaNs4Pk9EjgJ5P6F5RnokxmLr-WikcPSyWx19bdYbtS1h0eWHyjqoQyGXtdKlBhOdktRTO0shjcdsMnT23gjfelqJ6SRs83px9NqW_HXnoKpN3pXUnq8IY5hxMTH-h1rrZhqSz7VoswQw6nqkHI-UcNqoq39QbVm3BNPG5kOrnwhenggaU933utY7ALX6-OGUJUfWlAxQnP_9cYzUPgnqkARFkNonQe2T0ETiL5EJbVSh9Sk6xP9JfwLpBbn_ |
CitedBy_id | crossref_primary_10_1016_j_coastaleng_2020_103796 crossref_primary_10_3390_w12123538 crossref_primary_10_5194_hess_28_2531_2024 crossref_primary_10_3390_w16020346 crossref_primary_10_5194_hess_27_3911_2023 crossref_primary_10_1016_j_rsase_2025_101528 crossref_primary_10_1038_s41893_021_00706_6 crossref_primary_10_3390_w17040599 crossref_primary_10_1016_j_coastaleng_2022_104216 crossref_primary_10_5194_nhess_22_3815_2022 crossref_primary_10_1016_j_ocemod_2024_102468 crossref_primary_10_1088_1748_9326_ad78eb crossref_primary_10_1016_j_ijdrr_2022_103454 crossref_primary_10_1016_j_coastaleng_2021_104057 crossref_primary_10_1016_j_ejrh_2025_102276 crossref_primary_10_3390_rs15163950 crossref_primary_10_5194_hess_27_4529_2023 crossref_primary_10_1038_s43247_024_01854_1 crossref_primary_10_1029_2020EF001882 crossref_primary_10_1111_jfr3_12713 crossref_primary_10_1126_sciadv_adn4004 crossref_primary_10_5194_nhess_23_3125_2023 |
Cites_doi | 10.1787/9789264266919-en 10.1016/j.rse.2006.05.012 10.1016/j.gloenvcha.2010.04.002 10.1080/02508060508691837 10.1007/s11069-010-9675-6 10.1016/j.coastaleng.2009.08.006 10.1038/s41598-017-17056-z 10.1007/s10113-018-1353-3 10.3390/s18113843 10.5194/nhess-16-1-2016 10.1038/ncomms11969 10.1111/jfr3.12459 10.1061/9780784402429.053 10.1016/j.gloenvcha.2016.05.009 10.1038/ncomms16075 10.1016/j.isprsjprs.2015.02.009 10.1016/j.scitotenv.2019.136162 10.1016/j.coastaleng.2017.07.004 10.1126/sciadv.aap9741 10.1016/j.envsoft.2017.01.014 10.5194/nhess-12-1045-2012 10.1016/j.csr.2013.10.007 10.5194/hess-20-1637-2016 10.1016/j.earscirev.2015.01.002 10.1016/j.gloenvcha.2008.05.002 10.1002/2013WR014396 10.1038/s41598-019-49822-6 10.1016/j.jhydrol.2009.08.015 10.1016/j.ecss.2012.01.004 10.1038/nclimate2736 10.1007/s11069-005-8603-7 10.1016/j.rse.2019.111319 10.1016/S0025-3227(02)00497-8 10.1016/j.ocemod.2004.11.007 10.1007/978-3-319-44234-1_6 10.1002/2015EA000107 10.1016/j.coastaleng.2014.08.013 10.1007/978-1-4020-4200-3_13 10.5194/nhess-18-2127-2018 10.3390/w4030568 10.1007/s10584-013-0974-2 10.5194/nhess-16-1189-2016 10.1007/s00704-006-0245-5 10.1038/s41467-019-12808-z 10.1111/j.1539-6924.2012.01880.x 10.1007/s11069-009-9452-6 10.5194/nhess-18-463-2018 10.1080/15715124.2008.9635343 10.1002/qj.828 10.1016/j.isprsjprs.2018.02.017 10.1002/2017GL072874 10.1007/s10113-018-1360-4 10.1016/j.envsoft.2014.09.017 10.1038/s41598-020-59806-6 10.1073/pnas.1222469111 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H8D H96 H97 HCIFZ KL. KR7 L.G L6V L7M M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/nhess-20-2397-2020 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1684-9981 |
EndPage | 2414 |
ExternalDocumentID | oai_doaj_org_article_93f3db989cf147c3bffc8f022d91378d A635163253 10_5194_nhess_20_2397_2020 |
GeographicLocations | Gulf of Guinea |
GeographicLocations_xml | – name: Gulf of Guinea |
GroupedDBID | 123 29M 2WC 2XV 5VS 6KP 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 BBORY PMFND 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H8D H96 H97 KL. KR7 L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c486t-e9c35dd7d905c90225d27236302718271ce5b729680ff70bb0a62cd1df56c98e3 |
IEDL.DBID | DOA |
ISSN | 1684-9981 1561-8633 |
IngestDate | Wed Aug 27 01:29:35 EDT 2025 Fri Aug 29 20:13:02 EDT 2025 Tue Jun 17 21:35:18 EDT 2025 Tue Jun 10 20:35:24 EDT 2025 Fri Jun 27 04:32:43 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Tue Jul 01 02:46:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-e9c35dd7d905c90225d27236302718271ce5b729680ff70bb0a62cd1df56c98e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3986-4469 0000-0002-1982-4777 0000-0001-8744-5886 |
OpenAccessLink | https://doaj.org/article/93f3db989cf147c3bffc8f022d91378d |
PQID | 2441458745 |
PQPubID | 105722 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_93f3db989cf147c3bffc8f022d91378d proquest_journals_2441458745 gale_infotracmisc_A635163253 gale_infotracacademiconefile_A635163253 gale_incontextgauss_ISR_A635163253 crossref_primary_10_5194_nhess_20_2397_2020 crossref_citationtrail_10_5194_nhess_20_2397_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-11 |
PublicationDateYYYYMMDD | 2020-09-11 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Natural hazards and earth system sciences |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref74 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref62 – ident: ref46 doi: 10.1787/9789264266919-en – ident: ref23 doi: 10.1016/j.rse.2006.05.012 – ident: ref20 – ident: ref7 doi: 10.1016/j.gloenvcha.2010.04.002 – ident: ref32 doi: 10.1080/02508060508691837 – ident: ref41 doi: 10.1007/s11069-010-9675-6 – ident: ref53 doi: 10.1016/j.coastaleng.2009.08.006 – ident: ref24 – ident: ref15 doi: 10.1038/s41598-017-17056-z – ident: ref21 doi: 10.1007/s10113-018-1353-3 – ident: ref25 doi: 10.3390/s18113843 – ident: ref9 – ident: ref57 – ident: ref68 doi: 10.5194/nhess-16-1-2016 – ident: ref44 doi: 10.1038/ncomms11969 – ident: ref47 doi: 10.1111/jfr3.12459 – ident: ref5 doi: 10.1061/9780784402429.053 – ident: ref65 – ident: ref52 doi: 10.1016/j.gloenvcha.2016.05.009 – ident: ref70 doi: 10.1038/ncomms16075 – ident: ref22 doi: 10.1016/j.isprsjprs.2015.02.009 – ident: ref40 – ident: ref8 doi: 10.1016/j.scitotenv.2019.136162 – ident: ref54 doi: 10.1016/j.coastaleng.2017.07.004 – ident: ref59 doi: 10.1126/sciadv.aap9741 – ident: ref3 doi: 10.1016/j.envsoft.2017.01.014 – ident: ref42 doi: 10.5194/nhess-12-1045-2012 – ident: ref16 doi: 10.1016/j.csr.2013.10.007 – ident: ref36 doi: 10.5194/hess-20-1637-2016 – ident: ref61 doi: 10.1016/j.earscirev.2015.01.002 – ident: ref30 doi: 10.1016/j.gloenvcha.2008.05.002 – ident: ref71 – ident: ref56 doi: 10.1002/2013WR014396 – ident: ref19 doi: 10.1038/s41598-019-49822-6 – ident: ref64 – ident: ref58 – ident: ref45 – ident: ref12 doi: 10.1016/j.jhydrol.2009.08.015 – ident: ref29 – ident: ref10 doi: 10.1016/j.ecss.2012.01.004 – ident: ref60 – ident: ref69 doi: 10.1038/nclimate2736 – ident: ref2 doi: 10.1007/s11069-005-8603-7 – ident: ref26 doi: 10.1016/j.rse.2019.111319 – ident: ref50 doi: 10.1016/S0025-3227(02)00497-8 – ident: ref1 doi: 10.1016/j.ocemod.2004.11.007 – ident: ref48 – ident: ref37 doi: 10.1007/978-3-319-44234-1_6 – ident: ref72 doi: 10.1002/2015EA000107 – ident: ref4 doi: 10.1016/j.coastaleng.2014.08.013 – ident: ref39 doi: 10.1007/978-1-4020-4200-3_13 – ident: ref66 doi: 10.5194/nhess-18-2127-2018 – ident: ref55 doi: 10.3390/w4030568 – ident: ref67 doi: 10.1007/s10584-013-0974-2 – ident: ref51 doi: 10.5194/nhess-16-1189-2016 – ident: ref11 doi: 10.1007/s00704-006-0245-5 – ident: ref33 doi: 10.1038/s41467-019-12808-z – ident: ref6 doi: 10.1111/j.1539-6924.2012.01880.x – ident: ref38 doi: 10.1007/s11069-009-9452-6 – ident: ref34 doi: 10.5194/nhess-18-463-2018 – ident: ref17 doi: 10.1080/15715124.2008.9635343 – ident: ref28 – ident: ref13 doi: 10.1002/qj.828 – ident: ref49 – ident: ref73 doi: 10.1016/j.isprsjprs.2018.02.017 – ident: ref74 doi: 10.1002/2017GL072874 – ident: ref43 doi: 10.1007/s10113-018-1360-4 – ident: ref35 – ident: ref63 doi: 10.1016/j.envsoft.2014.09.017 – ident: ref14 – ident: ref18 doi: 10.1038/s41598-020-59806-6 – ident: ref27 doi: 10.1073/pnas.1222469111 – ident: ref31 |
SSID | ssj0029540 |
Score | 2.4104176 |
Snippet | Considering the likely increase in coastal flooding in small island
developing states (SIDSs) due to climate change, coastal managers at the
local and global... Considering the likely increase in coastal flooding in small island developing states (SIDSs) due to climate change, coastal managers at the local and global... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2397 |
SubjectTerms | Adaptation Case studies Climate change Climate models Coastal climates Coastal flooding Coastal management Coastal zone management Damage assessment Datasets Developing countries Digital Elevation Models Disaster management Disaster risk Emergency preparedness Environmental risk Estimates Flood control Flood damage Flood risk Flooding Floods Hydrodynamic models Hydrodynamics Impact analysis Impact damage Islands Land development Rain Risk assessment Risk management Risk reduction Sea level Sea level rise Sensitivity analysis Significant wave height Socioeconomic factors Socioeconomics Storm damage Storm surges Storms Tidal waves Towns Uncertainty Uncertainty analysis Wave height |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCeIqFgiyExAFZjeNH7BMqiKUggcRjpd6seBy3lbZJ6W4P_Htmst7AHugpUjxR5LE989me-YaxV4jZuzpDJZKtnNAAVvikvYCkLaDDbtpMB_pfvtqjhf58bI7LgduqhFVubeJoqNMAdEZ-gG5IakPk7G8vfgmqGkW3q6WExk12S9boaylTfP5x2nB5s0mIRIwgnFVqkzSDmEUf9KdoSHCKiBodMj6p3vc_jmnk7_-flR5dz_weu1swIz_cDPJ9dqPrH7DbpXz56e-H7NsCh2682id6VH7WcxhahH1LnikunVP8OG8nDs5RYnXeLpf8bEWRjfxv6hQfM4xWj9hi_uHn-yNRaiUI0M6uRedBmZSa5CsDHh2zSXVTK0vXkriFaCR0JiKQtq7KualirFpbQ5IpGwvedeox2-uHvnvCuDRd1VYxxZitTrGJJiavDGjAvbTNbsbkVlEBCpE41bNYBtxQkHLDqNxQV4GUG0i5M_Zm-uZiQ6NxrfQ70v8kSRTY44vh8iSUFRW8yipF7zxkqRtQMWdwGXuevFSNSzP2kkYvEMlFT1E0J-0V_ufTj-_hEFEW4tDaqBl7XYTygH2AtiQloCaIF2tHcn9HElch7DZvJ0koVgD7NM3Zp9c3P2N3qN8UhyLlPttbX151zxHsrOOLcUb_ASMP--A priority: 102 providerName: ProQuest |
Title | Uncertainties in coastal flood risk assessments in small island developing states |
URI | https://www.proquest.com/docview/2441458745 https://doaj.org/article/93f3db989cf147c3bffc8f022d91378d |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgHOCC-BSBElkIiQOy6l1_rH1sUUNBooJCpN6s9XhNK4UNIumBf8_MrhOaA3DhFCmZKPHbsefN7swbxl4iZ-_qDFIkK53QAFb4pL2ApC1gwG7aTDf0P5zak7l-f27Or436opqwUR54BO7Aq6xS9M5DrnQDKuYMLmPkSb5SjUt0-kovN8lUSbW8GVshkR0IZ5Ua22WQreiD_gKPEHQOUWMoxlea9H0tJA3K_X86n4egM7vH7ha2yA_Hf3mf3ej6B-x2GVx-8fMh-zTHizY81CdhVH7Zc1i2SPgWPFNFOqfKcd5u1TcHi9W3drHglyuqaeS_m6b40Fu0esTms-Mvb05EmZIgQDu7Fp0HZVJqkpcGPAJjUt3UytIDSUwemgo6E5FCWydzbmSMsrU1pCplY8G7Tj1me_2y754wXplOtjKmGLPVKTbRxOSVAQ2YRdvsJqzaABWgSIjTJItFwFSCwA0DuKGWgcANBO6Evd5-5_sooPFX6yPCf2tJ4tfDG-gSobhE-JdLTNgLunqB5C16qp_52l7h77z7fBYOkV8hA62NmrBXxSgvcQ3QlnYERIIUsXYs93cscf_B7scbJwll_-OakGVqQ6MEnv6PFT1jdwgdqlOpqn22t_5x1T1HMrSOU3bTzd5O2a2j49OPZ9NhF_wCD94Hjg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWClgIxAFFTeJH4gNC5bHs0ocEdKXe3Hgct5WWpHS3Qv1T_EZm8oI90FtPkZJJIn8eez7b82DsJXL2Mg0QR17HeSQBdGS8NBF4qQENdlYE2tDf29eTmfxyqA7X2O8-FobcKvs5sZmofQ20R76FZiiRipKzvzv7GVHVKDpd7UtotGqxU17-wiXb4u30I_bvqzQdfzr4MIm6qgIRyFwvo9KAUN5n3sQKDJow5dMsFZoO8JBsZwmUyiHl1HkcQhY7Fxc6BZ_4oDSYvBT43RvsphRCkAthPv48LPCMagMwkZNEuRaiDdJBjiS3qhOcuFAloxQJAF6pvvg_hrCpF_A_q9CYuvEddrvjqHy7Vaq7bK2s7rGNrlz6yeV99nWGqtK4ElA6Vn5acagLpJlzHsgPnpO_Oi-GnJ-NxOJHMZ_z0wV5UvK_oVq8iWhaPGCza0HxIVuv6qp8xHiiyriInXcuaOld5pTzRiiQgGt3HfIRS3qgLHSJy6l-xtziAobAtQ24No0tgWsJ3BF7M7xz1qbtuFL6PeE_SFLK7eZGfX5suxFsjQjCO5MbCInMQLgQIA_Ycm8SkeV-xF5Q71lKqlGR185xcYH_mX7_ZreR1SHvTZUYsdedUKixDVB0QRCIBOXhWpHcXJHEUQ-rj3slsd2sg20axsjjqx8_ZxuTg71duzvd33nCbhEG5AOTJJtsfXl-UT5ForV0zxrt5uzouofTHyz7N40 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVgIuFU8RWmCFQByQFdvrXXsPFWppo4ZCVAqRett6Z71tpWCXJhXqX-RXMeOsAznQW0-R7LGj_Tw78409D8beIGevUg9x5FRcRBmAirTLdAQuU4AOOy89vdD_MlL74-zTsTxeYb-7WhhKq-xsYmuoXQP0jryPbijJJDVn7_uQFnG4O_hw8TOiCVL0pbUbp1GGMQtuq203Foo8DqrrXxjOTbeGu_js36bpYO_7x_0oTByIICvULKo0COlc7nQsQaN7ky7NU6Ho4x4S8TyBSlqko6qIvc9ja-NSpeAS56UCXVQC73uHreXo9TEQXNvZGx0eLcI_LeflmchYokIJMS_hQQaV9eszNGuosFGK9AB_afr4P26ynSbwP5_ROsLBA7YeGCzfnqvcQ7ZS1Y_YvTBM_ez6Mfs6RkVqEw2oWSs_rzk0JZLQCfeUJc8pm52Xi46grcT0RzmZ8PMp5Vnyv4VcvK13mj5h41vB8SlbrZu6esZ4Iqu4jK2z1qvM2dxK67SQkAFG9soXPZZ0QBkIbc1pusbEYHhD4JoWXJPGhsA1BG6PvV9cczFv6nGj9A7hv5Ckhtztgeby1IT9bbTwwlldaPBJloOw3kPhceVOJyIvXI-9pqdnqOVGTcp7Wl7h_wy_HZlt5HzIilMpeuxdEPINrgHKUCKBSFCXriXJzSVJtAmwfLpTEhNsEq5psYOe33z6FbuLW8t8Ho4ONth9goASZJJkk63OLq-qF8jCZvZlUG_OTm57R_0Bi8VCaA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainties+in+coastal+flood+risk+assessments+in+small+island+developing+states&rft.jtitle=Natural+hazards+and+earth+system+sciences&rft.au=M.+U.+Parodi&rft.au=A.+Giardino&rft.au=A.+van+Dongeren&rft.au=S.+G.+Pearson&rft.date=2020-09-11&rft.pub=Copernicus+Publications&rft.issn=1561-8633&rft.eissn=1684-9981&rft.volume=20&rft.spage=2397&rft.epage=2414&rft_id=info:doi/10.5194%2Fnhess-20-2397-2020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_93f3db989cf147c3bffc8f022d91378d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1684-9981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1684-9981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1684-9981&client=summon |