Landsifier v1.0: a Python library to estimate likely triggers of mapped landslides

Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide databases for model training and testing. Landslide databases at times lack information on the underlying triggering mechanism, making these invento...

Full description

Saved in:
Bibliographic Details
Published inNatural hazards and earth system sciences Vol. 22; no. 11; pp. 3751 - 3764
Main Authors Rana, Kamal, Malik, Nishant, Ozturk, Ugur
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 22.11.2022
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1684-9981
1561-8633
1684-9981
DOI10.5194/nhess-22-3751-2022

Cover

Abstract Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide databases for model training and testing. Landslide databases at times lack information on the underlying triggering mechanism, making these inventories almost unusable in hazard models. We developed a Python-based unique library, Landsifier, that contains three different machine-Learning frameworks for assessing the likely triggering mechanisms of individual landslides or entire inventories based on landslide geometry. Two of these methods only use the 2D landslide planforms, and the third utilizes the 3D shape of landslides relying on an underlying digital elevation model (DEM). The base method extracts geometric properties of landslide polygons as a feature space for the shallow learner – random forest (RF). An alternative method relies on landslide planform images as an input for the deep learning algorithm – convolutional neural network (CNN). The last framework extracts topological properties of 3D landslides through topological data analysis (TDA) and then feeds these properties as a feature space to the random forest classifier. We tested all three interchangeable methods on several inventories with known triggers spread over the Japanese archipelago. To demonstrate the effectiveness of developed methods, we used two testing configurations. The first configuration merges all the available data for the k-fold cross-validation, whereas the second configuration excludes one inventory during the training phase to use as the sole testing inventory. Our geometric-feature-based method performs satisfactorily, with classification accuracies varying between 67 % and 92 %. We have introduced a more straightforward but data-intensive CNN alternative, as it inputs only landslide images without manual feature selection. CNN eases the scripting process without losing classification accuracy. Using topological features from 3D landslides (extracted through TDA) in the RF classifier improves classification accuracy by 12 % on average. TDA also requires less training data. However, the landscape autocorrelation could easily bias TDA-based classification. Finally, we implemented the three methods on an inventory without any triggering information to showcase a real-world application.
AbstractList Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide databases for model training and testing. Landslide databases at times lack information on the underlying triggering mechanism, making these inventories almost unusable in hazard models. We developed a Python-based unique library, Landsifier, that contains three different machine-Learning frameworks for assessing the likely triggering mechanisms of individual landslides or entire inventories based on landslide geometry. Two of these methods only use the 2D landslide planforms, and the third utilizes the 3D shape of landslides relying on an underlying digital elevation model (DEM). The base method extracts geometric properties of landslide polygons as a feature space for the shallow learner – random forest (RF). An alternative method relies on landslide planform images as an input for the deep learning algorithm – convolutional neural network (CNN). The last framework extracts topological properties of 3D landslides through topological data analysis (TDA) and then feeds these properties as a feature space to the random forest classifier. We tested all three interchangeable methods on several inventories with known triggers spread over the Japanese archipelago. To demonstrate the effectiveness of developed methods, we used two testing configurations. The first configuration merges all the available data for the k-fold cross-validation, whereas the second configuration excludes one inventory during the training phase to use as the sole testing inventory. Our geometric-feature-based method performs satisfactorily, with classification accuracies varying between 67 % and 92 %. We have introduced a more straightforward but data-intensive CNN alternative, as it inputs only landslide images without manual feature selection. CNN eases the scripting process without losing classification accuracy. Using topological features from 3D landslides (extracted through TDA) in the RF classifier improves classification accuracy by 12 % on average. TDA also requires less training data. However, the landscape autocorrelation could easily bias TDA-based classification. Finally, we implemented the three methods on an inventory without any triggering information to showcase a real-world application.
Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide databases for model training and testing. Landslide databases at times lack information on the underlying triggering mechanism, making these inventories almost unusable in hazard models. We developed a Python-based unique library, Landsifier, that contains three different machine-Learning frameworks for assessing the likely triggering mechanisms of individual landslides or entire inventories based on landslide geometry. Two of these methods only use the 2D landslide planforms, and the third utilizes the 3D shape of landslides relying on an underlying digital elevation model (DEM). The base method extracts geometric properties of landslide polygons as a feature space for the shallow learner – random forest (RF). An alternative method relies on landslide planform images as an input for the deep learning algorithm – convolutional neural network (CNN). The last framework extracts topological properties of 3D landslides through topological data analysis (TDA) and then feeds these properties as a feature space to the random forest classifier. We tested all three interchangeable methods on several inventories with known triggers spread over the Japanese archipelago. To demonstrate the effectiveness of developed methods, we used two testing configurations. The first configuration merges all the available data for the k -fold cross-validation, whereas the second configuration excludes one inventory during the training phase to use as the sole testing inventory. Our geometric-feature-based method performs satisfactorily, with classification accuracies varying between 67 % and 92 %. We have introduced a more straightforward but data-intensive CNN alternative, as it inputs only landslide images without manual feature selection. CNN eases the scripting process without losing classification accuracy. Using topological features from 3D landslides (extracted through TDA) in the RF classifier improves classification accuracy by 12 % on average. TDA also requires less training data. However, the landscape autocorrelation could easily bias TDA-based classification. Finally, we implemented the three methods on an inventory without any triggering information to showcase a real-world application.
Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide databases for model training and testing. Landslide databases at times lack information on the underlying triggering mechanism, making these inventories almost unusable in hazard models. We developed a Python-based unique library, Landsifier, that contains three different machine-Learning frameworks for assessing the likely triggering mechanisms of individual landslides or entire inventories based on landslide geometry. Two of these methods only use the 2D landslide planforms, and the third utilizes the 3D shape of landslides relying on an underlying digital elevation model (DEM). The base method extracts geometric properties of landslide polygons as a feature space for the shallow learner – random forest (RF). An alternative method relies on landslide planform images as an input for the deep learning algorithm – convolutional neural network (CNN). The last framework extracts topological properties of 3D landslides through topological data analysis (TDA) and then feeds these properties as a feature space to the random forest classifier. We tested all three interchangeable methods on several inventories with known triggers spread over the Japanese archipelago. To demonstrate the effectiveness of developed methods, we used two testing configurations. The first configuration merges all the available data for the k-fold cross-validation, whereas the second configuration excludes one inventory during the training phase to use as the sole testing inventory. Our geometric-feature-based method performs satisfactorily, with classification accuracies varying between 67 % and 92 %. We have introduced a more straightforward but data-intensive CNN alternative, as it inputs only landslide images without manual feature selection. CNN eases the scripting process without losing classification accuracy. Using topological features from 3D landslides (extracted through TDA) in the RF classifier improves classification accuracy by 12 % on average. TDA also requires less training data. However, the landscape autocorrelation could easily bias TDA-based classification. Finally, we implemented the three methods on an inventory without any triggering information to showcase a real-world application.
Audience Academic
Author Malik, Nishant
Rana, Kamal
Ozturk, Ugur
Author_xml – sequence: 1
  givenname: Kamal
  surname: Rana
  fullname: Rana, Kamal
– sequence: 2
  givenname: Nishant
  orcidid: 0000-0003-0953-4802
  surname: Malik
  fullname: Malik, Nishant
– sequence: 3
  givenname: Ugur
  orcidid: 0000-0002-7641-4344
  surname: Ozturk
  fullname: Ozturk, Ugur
BookMark eNqNUcFu1DAUjFCRaAs_wCkSJw5Z7Gc7TrhVFdCVVgJROFsvtpN6ycaL7S3s3_Rb-DKcLgIWIYR88NNoZjxvfFacTH6yRfGUkoWgLX8x3dgYK4CKSUErIAAPilNaN7xq24ae_DY_Ks5iXBMCreDktLhe4WSi650N3-5u6YK8LLF8t083fipH1wUM-zL50sbkNphsxj7ZMUPBDYMNsfR9ucHt1ppynI1GZ2x8XDzscYz2yY_7vPj4-tWHy6tq9fbN8vJiVWne1KnqRE0kY7ojUjQIjDCjW0Ip0z3pJO3BznOrBZVcAxBjmewN0SjyygIMOy-WB1_jca22IScMe-XRqXvAh0FhSE6PVkkQsuO65m1vuUGCYIVgEjiVTBJg2YsdvHbTFvdfcBx_GlKi5o7VfccKQM0dq7njrHp2UG2D_7zLJam134UpL61AsobVghD6izVgjuKm3qeAeuOiVhcSJK-5bOcEi7-w8jF243T-7t5l_Ejw_EiQOcl-TQPucszl9ftjLhy4OvgYg-3_b7vmD5F2CZPL7wR047-k3wE0vcoH
CitedBy_id crossref_primary_10_1038_s41467_024_46741_7
crossref_primary_10_1186_s40677_024_00297_2
crossref_primary_10_1002_esp_5816
crossref_primary_10_1007_s00371_023_03092_6
crossref_primary_10_1038_s41598_022_27352_y
crossref_primary_10_1016_j_catena_2024_107989
crossref_primary_10_1016_j_jag_2024_104037
crossref_primary_10_1016_j_envsoft_2024_106259
Cites_doi 10.1186/s40645-018-0169-6
10.1007/s13244-018-0639-9
10.1007/s10346-021-01645-1
10.1007/s11069-021-05199-2
10.1109/CVPR.2015.7299106
10.1029/2020GL090848
10.1007/s10346-016-0739-x
10.3390/rs11020196
10.1029/2019JF005056
10.1002/esp.4479
10.1029/2021JF006067
10.1109/ICEngTechnol.2017.8308186
10.1016/j.neunet.2006.01.005
10.1016/j.enggeo.2020.105855
10.3390/rs6032572
10.18608/jla.2017.42.6
10.1007/s10346-020-01485-5
10.1016/j.cageo.2005.02.014
10.1088/1748-0221/11/09/P09001
10.3389/frai.2021.681108
10.1109/ICBDA.2017.8078730
10.1016/j.jsc.2016.03.009
10.1002/esp.1064
10.1145/2347736.2347755
10.1007/s00477-021-02020-1
10.1016/j.earscirev.2020.103318
10.3133/ds1064
10.1016/j.jag.2021.102549
10.1016/j.enggeo.2021.106288
10.31223/X5VD1P
10.1145/3065386
10.5194/nhess-21-2581-2021
10.1016/j.earscirev.2012.02.001
10.1016/j.quascirev.2014.04.032
10.1016/j.earscirev.2022.104125
10.1016/j.rse.2016.07.017
10.1109/ICMLA.2019.00256
10.1090/S0273-0979-09-01249-X
10.1109/ICARCV.2014.7064414
10.1007/s10346-021-01689-3
10.1038/s41893-021-00757-9
10.1016/j.rse.2011.05.013
10.1016/j.geomorph.2012.05.003
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
HCIFZ
KL.
KR7
L.G
L6V
L7M
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
ADTOC
UNPAY
DOA
DOI 10.5194/nhess-22-3751-2022
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1684-9981
EndPage 3764
ExternalDocumentID oai_doaj_org_article_7257b4c649fe4da0a2e5537241737023
10.5194/nhess-22-3751-2022
A727464793
10_5194_nhess_22_3751_2022
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID 123
29M
2WC
2XV
5VS
6KP
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
E3Z
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
KL.
KR7
L.G
L7M
PKEHL
PQEST
PQUKI
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c486t-b560733cb0758a2303dc90113cf0b71f2e113c9c5174c220de37fd0ca551952d3
IEDL.DBID BENPR
ISSN 1684-9981
1561-8633
IngestDate Fri Oct 03 12:41:38 EDT 2025
Sun Oct 26 03:50:59 EDT 2025
Fri Jul 25 12:25:15 EDT 2025
Mon Oct 20 22:22:32 EDT 2025
Mon Oct 20 16:29:44 EDT 2025
Thu Oct 16 14:22:06 EDT 2025
Wed Oct 01 03:26:17 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-b560733cb0758a2303dc90113cf0b71f2e113c9c5174c220de37fd0ca551952d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7641-4344
0000-0003-0953-4802
OpenAccessLink https://www.proquest.com/docview/2738365001?pq-origsite=%requestingapplication%&accountid=15518
PQID 2738365001
PQPubID 105722
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_7257b4c649fe4da0a2e5537241737023
unpaywall_primary_10_5194_nhess_22_3751_2022
proquest_journals_2738365001
gale_infotracmisc_A727464793
gale_infotracacademiconefile_A727464793
gale_incontextgauss_ISR_A727464793
crossref_primary_10_5194_nhess_22_3751_2022
crossref_citationtrail_10_5194_nhess_22_3751_2022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-22
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-22
  day: 22
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Natural hazards and earth system sciences
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref1
– ident: ref42
  doi: 10.1186/s40645-018-0169-6
– ident: ref50
  doi: 10.1007/s13244-018-0639-9
– ident: ref32
  doi: 10.1007/s10346-021-01645-1
– ident: ref46
  doi: 10.1007/s11069-021-05199-2
– ident: ref40
  doi: 10.1109/CVPR.2015.7299106
– ident: ref39
  doi: 10.1029/2020GL090848
– ident: ref43
  doi: 10.1007/s10346-016-0739-x
– ident: ref16
  doi: 10.3390/rs11020196
– ident: ref27
  doi: 10.1029/2019JF005056
– ident: ref48
  doi: 10.1002/esp.4479
– ident: ref22
  doi: 10.1029/2021JF006067
– ident: ref2
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: ref7
  doi: 10.1016/j.neunet.2006.01.005
– ident: ref11
– ident: ref17
– ident: ref31
  doi: 10.1016/j.enggeo.2020.105855
– ident: ref5
  doi: 10.3390/rs6032572
– ident: ref34
  doi: 10.18608/jla.2017.42.6
– ident: ref36
  doi: 10.1007/s10346-020-01485-5
– ident: ref47
– ident: ref35
  doi: 10.1016/j.cageo.2005.02.014
– ident: ref4
  doi: 10.1088/1748-0221/11/09/P09001
– ident: ref21
  doi: 10.3389/frai.2021.681108
– ident: ref19
  doi: 10.1109/ICBDA.2017.8078730
– ident: ref9
  doi: 10.1016/j.jsc.2016.03.009
– ident: ref30
  doi: 10.1002/esp.1064
– ident: ref13
  doi: 10.1145/2347736.2347755
– ident: ref26
  doi: 10.1007/s00477-021-02020-1
– ident: ref28
  doi: 10.1016/j.earscirev.2020.103318
– ident: ref41
– ident: ref44
  doi: 10.3133/ds1064
– ident: ref3
  doi: 10.1016/j.jag.2021.102549
– ident: ref29
  doi: 10.1016/j.enggeo.2021.106288
– ident: ref33
  doi: 10.31223/X5VD1P
– ident: ref23
  doi: 10.1145/3065386
– ident: ref8
  doi: 10.5194/nhess-21-2581-2021
– ident: ref20
  doi: 10.1016/j.earscirev.2012.02.001
– ident: ref18
  doi: 10.1016/j.quascirev.2014.04.032
– ident: ref25
  doi: 10.1016/j.earscirev.2022.104125
– ident: ref6
  doi: 10.1016/j.rse.2016.07.017
– ident: ref15
  doi: 10.1109/ICMLA.2019.00256
– ident: ref38
– ident: ref10
  doi: 10.1090/S0273-0979-09-01249-X
– ident: ref24
  doi: 10.1109/ICARCV.2014.7064414
– ident: ref37
  doi: 10.1007/s10346-021-01689-3
– ident: ref49
– ident: ref12
  doi: 10.1038/s41893-021-00757-9
– ident: ref45
  doi: 10.1016/j.rse.2011.05.013
– ident: ref14
  doi: 10.1016/j.geomorph.2012.05.003
SSID ssj0029540
Score 2.3983443
Snippet Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3751
SubjectTerms Accuracy
Algorithms
Archipelagoes
Artificial neural networks
Autocorrelation
Automation
Classification
Classifiers
Configurations
Data analysis
Data mining
Data processing
Deep learning
Digital Elevation Models
Earthquakes
Feature extraction
Geological hazards
Inventories
Landslides
Landslides & mudslides
Libraries
Machine learning
Methods
Model accuracy
Model testing
Modelling
Neural networks
Planforms
Polygons
Python
Testing
Topology
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqXloOqLxE2oIshMShWM3ajh1zK4iqrQBVlEq9WY4fbdU0u4Jdof03_BZ-GTOJd9UVEnDgFjmT15eJ55vI8w0hL8EnZGOEYjrEyCQEKFanRrEIoaXG3g68V-f_-EkdncuTi-riTqsvXBM2yAMPwO1r8KlGeiVNijK40vFYVUJD4NFCQ8DB2beszSKZyqmWqYZSSGAHrFZCDOUywFbkfncFUwjDNey6GoGTcL4Sknrl_t_n53tkY9ZN3Py7a9s7Aehwi9zPzJEeDHf8gKzF7iHZyE3Mr-aPyNkHLNu9ThDofv6ArLR8Qx09naM4AM0_a-h0TFFWA2hqhLGb2MIQ5OeXQALpONFbN5nEQPv63_Y6xG-Pyfnh-y_vjljumcC8rNWUNcBgtBC-ASpQO8gvRPBYXSp8Khs9SjzitvEoUO05L0MUOoXSuwplZngQT8h6N-7iU0J15YBMaEigjJGQZhoI7YarJqRa4VBBRgvYrM-C4tjXorWQWCDUtofacm4RaotQF2RvecxkkNP4o_VbfBtLS5TC7gfAQWx2EPs3BynIC3yXFsUuOlxNc-lmcJ3js8_2AMibVPhvsSCvslEawzN4l4sTAAnUx1qx3F2xhK_Rr-5euIzNswE8kxa1ACpcjgryeulG_wDA9v8AYIds4rmwgJLzXbI-_TqLz4BJTZvn_UfzCzLHEn8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQ9lA48I-aUpCFkDiAS2I7dtLbtqIqCKqKslI5WY5jt1VDdtVmhZan4Vl4ss5k3VUXBCqnRM4kkcdjzzeJ5xtCXoJNyKoUiunaeybBQbEiVIp5cC0F1nbgPTv_p321N5IfjvKjSJODuTDX_t8DtpBv2xOY8Ax3nOs8gyHlsNyuqBxw94CsjPYPhl97QlSVsUL1deMzVUgGMUQ2z5D5y0OWvFBP1v_nknyHrE7biZ19t01zzefs3psXL7roqQpxq8nZ5rSrNt2P34gcb9ad--RuhJ50OLeVB-SWbx-S1VgF_WT2iBx-xLzf0wCe8tdPCGvTLWrpwQzZBWj82kO7MUVeDsC5HtrOfANNEOAfA4qk40C_2cnE17RPIG5Oa3_xmIx2333Z2WOx6AJzslAdqwACaSFcBViisBCgiNpheqpwIa10FrjH89Ihw7XjPK290KFOnc2Rp4bX4gkZtOPWrxGqcwtoREMEVpYS4tQSsEHJVVWHQmFTQrKrQTAuMpJjYYzGQGSC6jK9ugznBtVlUF0Jeb24ZzLn4_in9DaO7UISubT7BhgTE6em0bBqVdIpWQYva5ta7vNcaIA2WmiANAl5gZZhkC2jxe04x3YK73l_-NkMAf1JhR8nE_IqCoUx9MHZmN0AmkCCrSXJjSVJmM5u-fKVAZq4nECftCgEYOk0S8ibhVHeQAHr_yf-lNzGA-Zacr5BBt351D8D0NVVz-NsuwTRIB9W
  priority: 102
  providerName: Unpaywall
Title Landsifier v1.0: a Python library to estimate likely triggers of mapped landslides
URI https://www.proquest.com/docview/2738365001
https://doi.org/10.5194/nhess-22-3751-2022
https://doaj.org/article/7257b4c649fe4da0a2e5537241737023
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1684-9981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029540
  issn: 1561-8633
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1684-9981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029540
  issn: 1561-8633
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1684-9981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029540
  issn: 1561-8633
  databaseCode: BFMQW
  dateStart: 20090501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (via ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1684-9981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029540
  issn: 1561-8633
  databaseCode: BENPR
  dateStart: 20090501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1684-9981
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029540
  issn: 1561-8633
  databaseCode: 8FG
  dateStart: 20090501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t3cPgAfFTC4zKQkg8QLTUTuIECaEOrQwEVVWoNJ4sx3a6iZCU0Qr1v-cudSMqpIm3xr008uV8953r-w7gOdpEXOQiDaV1LowxQIVZWaShw9CSUW8H3rLzfx6n57P440VysQfjbS0MHavc-sTWUdvG0B75CZWQCIQT0eDt4mdIXaPo39VtCw3tWyvYNy3F2D4ccGLG6sHB6dl4Mu1SsDzZlEgiagizVIhNGQ2imPikvkTXEtLZdpkM0Hg43wlVLaP_v377Nhyu6oVe_9ZV9VdgGt2FOx5RsuHGBO7Bnqvvw6Fvbn65fgDTT1TOe1ViAGSYrEavmWaTNXEGML-Hw5YNI7YNRK8Ox767Codw7nPEhqwp2Q-9WDjL2rLg6sq6Xw9hNjr7-u489K0UQhNn6TIsENhIIUyBCCHTmHYIa6joVJgyKuSg5I4-54Z4qw3nkXVCljYyOiH2GW7FI-jVTe2OgMlEI8aQmFfleYzZZ44RP-dpYcsspaEABlutKeN5xqndRaUw3yBNq1bTinNFmlak6QBedvcsNiwbN0qf0svoJIkhux1orufKLzgl0RcVsUnjvHSx1ZHmLkmERMAihUSgEsAzepWKODBqOmQz1yt8zocvUzVETBentOUYwAsvVDY4B6N9zQJqgmizdiSPdyRxkZrdr7cWo7yTwDl1Jh3Aq86K_kMBj2_-tSdwi6SoYpLzY-gtr1fuKUKnZdGH_Wz0vu9XRb_dgMCr2Xgy_PYHpK4UKg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbG9lB4QPwUgQEWAvEA0VLbiROkCW2wqWVdNZVN2pvn2E43UZKytZr6z_G3cZc6ERXSxMveKvecKufz3Xeu7ztC3oJNiDzjSSitc6GAABWmRZ6EDkJLir0dWM3OfzhMeifi22l8ukZ-N7UweK2y8Ym1o7aVwTPyLSwh4QAnou7n6a8Qu0bhv6tNCw3tWyvY7ZpizBd2HLjFNaRwV9v9r7De7xjb3zv-0gt9l4HQiDSZhTnEfMm5ySF4phoQObcG6zG5KaJcdgvm8HNmkNLZMBZZx2VhI6NjJGZhlsNz75ANwUUGyd_G7t7waNSmfFm8LMkElBKmCefLsh2YKLbKc3BlId6ll3EXjJWxldBYdxD4N07cI515OdWLaz2Z_BUI9x-Q-x7B0p2lyT0ka658RDq-mfr54jEZDbB8-KKAgEshOY4-UU2PFshRQP2ZEZ1VFNk9AC07GPvhJjAEuh4DFqVVQX_q6dRZWpchTy6su3pCTm5FqU_JelmV7hmhMtaAaSTkcVkmINvNAGFkLMltkSY4FJBuozVlPK85tteYKMhvUNOq1rRiTKGmFWo6IB_aOdMlq8eN0ru4GK0kMnLXA9XlWPkNriT4vlyYRGSFE1ZHmrk45hIAkuQSgFFA3uBSKuTcKPFSz1jP4Xf630dqBzCkSPCIMyDvvVBRwTsY7WskQBNI07UiubkiCU7BrH7dWIzyTgneqd1CAfnYWtF_KOD5zU97TTq948OBGvSHBy_IXZyB1ZqMbZL12eXcvQTYNstf-b1Bydltb8c_q8hL-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIbHxgPgUgQEWAvEAUVPbiRMkhAajrGxM02DS3ozjON20koSt1dR_jb-Ou3yJCmniZW-Ve06V8_nud67vdwAv0CZkmojIV5lzvsQA5cd5GvkOQ0tMvR14zc7_dS_aPpRfjsKjFfjd1cLQtcrOJ9aOOistnZEPqIREIJwIhoO8vRaxvzV6X_3yqYMU_dPatdNoTGTHLS4wfTt_N97CtX7J-ejT94_bftthwLcyjmZ-ivFeCWFTDJyxQTQuMku1mMLmQaqGOXf0ObFE52w5DzInVJ4F1oREysIzgc-9BtcVsbhTlfroc5_sJWFTjIn4xI8jIZqCHZwmB8UxOjGfbtGrcIhmyvlSUKx7B_wbIW7C2ryozOLCTKd_hcDRbbjVYle22RjbHVhxxV1Ya9uoHy_uwcEuFQ6f5BhqGabFwVtm2P6C2AlYe1rEZiUjXg_EyQ7HTt0Uh1CzE0ShrMzZT1NVLmN1AfL0JHPn9-HwSlT6AFaLsnAPganQIJpRmMElicQ8N0FskfAozfI4oiEPhp3WtG0ZzamxxlRjZkOa1rWmNeeaNK1J0x687udUDZ_HpdIfaDF6SeLirgfKs4lut7ZW6PVSaSOZ5E5mJjDchaFQCI2UUAiJPHhOS6mJbaMgu52YOf7O-NuB3kT0KCM63PTgVSuUl_gO1rTVEagJIuhaktxYkkR3YJe_7ixGt-4I36nfPB686a3oPxTw6PKnPYMbuAn17nhv5zGs0wQq0-R8A1ZnZ3P3BPHaLH1abwwGP656J_4BeFpJkw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQ9lA48I-aUpCFkDiAS2I7dtLbtqIqCKqKslI5WY5jt1VDdtVmhZan4Vl4ss5k3VUXBCqnRM4kkcdjzzeJ5xtCXoJNyKoUiunaeybBQbEiVIp5cC0F1nbgPTv_p321N5IfjvKjSJODuTDX_t8DtpBv2xOY8Ax3nOs8gyHlsNyuqBxw94CsjPYPhl97QlSVsUL1deMzVUgGMUQ2z5D5y0OWvFBP1v_nknyHrE7biZ19t01zzefs3psXL7roqQpxq8nZ5rSrNt2P34gcb9ad--RuhJ50OLeVB-SWbx-S1VgF_WT2iBx-xLzf0wCe8tdPCGvTLWrpwQzZBWj82kO7MUVeDsC5HtrOfANNEOAfA4qk40C_2cnE17RPIG5Oa3_xmIx2333Z2WOx6AJzslAdqwACaSFcBViisBCgiNpheqpwIa10FrjH89Ihw7XjPK290KFOnc2Rp4bX4gkZtOPWrxGqcwtoREMEVpYS4tQSsEHJVVWHQmFTQrKrQTAuMpJjYYzGQGSC6jK9ugznBtVlUF0Jeb24ZzLn4_in9DaO7UISubT7BhgTE6em0bBqVdIpWQYva5ta7vNcaIA2WmiANAl5gZZhkC2jxe04x3YK73l_-NkMAf1JhR8nE_IqCoUx9MHZmN0AmkCCrSXJjSVJmM5u-fKVAZq4nECftCgEYOk0S8ibhVHeQAHr_yf-lNzGA-Zacr5BBt351D8D0NVVz-NsuwTRIB9W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landsifier+v1.0%3A+a+Python+library+to+estimate+likely+triggers+of+mapped+landslides&rft.jtitle=Natural+hazards+and+earth+system+sciences&rft.au=Rana%2C+Kamal&rft.au=Malik%2C+Nishant&rft.au=Ozturk%2C+Ugur&rft.date=2022-11-22&rft.pub=Copernicus+GmbH&rft.issn=1561-8633&rft.eissn=1684-9981&rft.volume=22&rft.issue=11&rft.spage=3751&rft.epage=3764&rft_id=info:doi/10.5194%2Fnhess-22-3751-2022&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1684-9981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1684-9981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1684-9981&client=summon