Landsifier v1.0: a Python library to estimate likely triggers of mapped landslides
Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide databases for model training and testing. Landslide databases at times lack information on the underlying triggering mechanism, making these invento...
        Saved in:
      
    
          | Published in | Natural hazards and earth system sciences Vol. 22; no. 11; pp. 3751 - 3764 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Katlenburg-Lindau
          Copernicus GmbH
    
        22.11.2022
     Copernicus Publications  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1684-9981 1561-8633 1684-9981  | 
| DOI | 10.5194/nhess-22-3751-2022 | 
Cover
| Abstract | Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide databases for model training and testing. Landslide databases at times lack information on the underlying triggering mechanism, making these inventories almost unusable in hazard models. We developed a Python-based unique library, Landsifier, that contains three different machine-Learning frameworks for assessing the likely triggering mechanisms of individual landslides or entire inventories based on landslide geometry. Two of these methods only use the 2D landslide planforms, and the third utilizes the 3D shape of landslides relying on an underlying digital elevation model (DEM). The base method extracts geometric properties of landslide polygons as a feature space for the shallow learner – random forest (RF). An alternative method relies on landslide planform images as an input for the deep learning algorithm – convolutional neural network (CNN). The last framework extracts topological properties of 3D landslides through topological data analysis (TDA) and then feeds these properties as a feature space to the random forest classifier. We tested all three interchangeable methods on several inventories with known triggers spread over the Japanese archipelago. To demonstrate the effectiveness of developed methods, we used two testing configurations. The first configuration merges all the available data for the k-fold cross-validation, whereas the second configuration excludes one inventory during the training phase to use as the sole testing inventory.
Our geometric-feature-based method performs satisfactorily, with classification accuracies varying between 67 % and 92 %. We have introduced a more straightforward but data-intensive CNN alternative, as it inputs only landslide images without manual feature selection. CNN eases the scripting process without losing classification accuracy. Using
topological features from 3D landslides (extracted through TDA) in the RF classifier improves classification accuracy by 12 % on average. TDA also requires less training data. However, the landscape autocorrelation could easily bias TDA-based classification. Finally, we implemented the three methods on an inventory without any triggering information to showcase a real-world application. | 
    
|---|---|
| AbstractList | Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide databases for model training and testing. Landslide databases at times lack information on the underlying triggering mechanism, making these inventories almost unusable in hazard models. We developed a Python-based unique library, Landsifier, that contains three different machine-Learning frameworks for assessing the likely triggering mechanisms of individual landslides or entire inventories based on landslide geometry. Two of these methods only use the 2D landslide planforms, and the third utilizes the 3D shape of landslides relying on an underlying digital elevation model (DEM). The base method extracts geometric properties of landslide polygons as a feature space for the shallow learner – random forest (RF). An alternative method relies on landslide planform images as an input for the deep learning algorithm – convolutional neural network (CNN). The last framework extracts topological properties of 3D landslides through topological data analysis (TDA) and then feeds these properties as a feature space to the random forest classifier. We tested all three interchangeable methods on several inventories with known triggers spread over the Japanese archipelago. To demonstrate the effectiveness of developed methods, we used two testing configurations. The first configuration merges all the available data for the k-fold cross-validation, whereas the second configuration excludes one inventory during the training phase to use as the sole testing inventory. Our geometric-feature-based method performs satisfactorily, with classification accuracies varying between 67 % and 92 %. We have introduced a more straightforward but data-intensive CNN alternative, as it inputs only landslide images without manual feature selection. CNN eases the scripting process without losing classification accuracy. Using topological features from 3D landslides (extracted through TDA) in the RF classifier improves classification accuracy by 12 % on average. TDA also requires less training data. However, the landscape autocorrelation could easily bias TDA-based classification. Finally, we implemented the three methods on an inventory without any triggering information to showcase a real-world application. Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide databases for model training and testing. Landslide databases at times lack information on the underlying triggering mechanism, making these inventories almost unusable in hazard models. We developed a Python-based unique library, Landsifier, that contains three different machine-Learning frameworks for assessing the likely triggering mechanisms of individual landslides or entire inventories based on landslide geometry. Two of these methods only use the 2D landslide planforms, and the third utilizes the 3D shape of landslides relying on an underlying digital elevation model (DEM). The base method extracts geometric properties of landslide polygons as a feature space for the shallow learner – random forest (RF). An alternative method relies on landslide planform images as an input for the deep learning algorithm – convolutional neural network (CNN). The last framework extracts topological properties of 3D landslides through topological data analysis (TDA) and then feeds these properties as a feature space to the random forest classifier. We tested all three interchangeable methods on several inventories with known triggers spread over the Japanese archipelago. To demonstrate the effectiveness of developed methods, we used two testing configurations. The first configuration merges all the available data for the k -fold cross-validation, whereas the second configuration excludes one inventory during the training phase to use as the sole testing inventory. Our geometric-feature-based method performs satisfactorily, with classification accuracies varying between 67 % and 92 %. We have introduced a more straightforward but data-intensive CNN alternative, as it inputs only landslide images without manual feature selection. CNN eases the scripting process without losing classification accuracy. Using topological features from 3D landslides (extracted through TDA) in the RF classifier improves classification accuracy by 12 % on average. TDA also requires less training data. However, the landscape autocorrelation could easily bias TDA-based classification. Finally, we implemented the three methods on an inventory without any triggering information to showcase a real-world application. Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide databases for model training and testing. Landslide databases at times lack information on the underlying triggering mechanism, making these inventories almost unusable in hazard models. We developed a Python-based unique library, Landsifier, that contains three different machine-Learning frameworks for assessing the likely triggering mechanisms of individual landslides or entire inventories based on landslide geometry. Two of these methods only use the 2D landslide planforms, and the third utilizes the 3D shape of landslides relying on an underlying digital elevation model (DEM). The base method extracts geometric properties of landslide polygons as a feature space for the shallow learner – random forest (RF). An alternative method relies on landslide planform images as an input for the deep learning algorithm – convolutional neural network (CNN). The last framework extracts topological properties of 3D landslides through topological data analysis (TDA) and then feeds these properties as a feature space to the random forest classifier. We tested all three interchangeable methods on several inventories with known triggers spread over the Japanese archipelago. To demonstrate the effectiveness of developed methods, we used two testing configurations. The first configuration merges all the available data for the k-fold cross-validation, whereas the second configuration excludes one inventory during the training phase to use as the sole testing inventory. Our geometric-feature-based method performs satisfactorily, with classification accuracies varying between 67 % and 92 %. We have introduced a more straightforward but data-intensive CNN alternative, as it inputs only landslide images without manual feature selection. CNN eases the scripting process without losing classification accuracy. Using topological features from 3D landslides (extracted through TDA) in the RF classifier improves classification accuracy by 12 % on average. TDA also requires less training data. However, the landscape autocorrelation could easily bias TDA-based classification. Finally, we implemented the three methods on an inventory without any triggering information to showcase a real-world application.  | 
    
| Audience | Academic | 
    
| Author | Malik, Nishant Rana, Kamal Ozturk, Ugur  | 
    
| Author_xml | – sequence: 1 givenname: Kamal surname: Rana fullname: Rana, Kamal – sequence: 2 givenname: Nishant orcidid: 0000-0003-0953-4802 surname: Malik fullname: Malik, Nishant – sequence: 3 givenname: Ugur orcidid: 0000-0002-7641-4344 surname: Ozturk fullname: Ozturk, Ugur  | 
    
| BookMark | eNqNUcFu1DAUjFCRaAs_wCkSJw5Z7Gc7TrhVFdCVVgJROFsvtpN6ycaL7S3s3_Rb-DKcLgIWIYR88NNoZjxvfFacTH6yRfGUkoWgLX8x3dgYK4CKSUErIAAPilNaN7xq24ae_DY_Ks5iXBMCreDktLhe4WSi650N3-5u6YK8LLF8t083fipH1wUM-zL50sbkNphsxj7ZMUPBDYMNsfR9ucHt1ppynI1GZ2x8XDzscYz2yY_7vPj4-tWHy6tq9fbN8vJiVWne1KnqRE0kY7ojUjQIjDCjW0Ip0z3pJO3BznOrBZVcAxBjmewN0SjyygIMOy-WB1_jca22IScMe-XRqXvAh0FhSE6PVkkQsuO65m1vuUGCYIVgEjiVTBJg2YsdvHbTFvdfcBx_GlKi5o7VfccKQM0dq7njrHp2UG2D_7zLJam134UpL61AsobVghD6izVgjuKm3qeAeuOiVhcSJK-5bOcEi7-w8jF243T-7t5l_Ejw_EiQOcl-TQPucszl9ftjLhy4OvgYg-3_b7vmD5F2CZPL7wR047-k3wE0vcoH | 
    
| CitedBy_id | crossref_primary_10_1038_s41467_024_46741_7 crossref_primary_10_1186_s40677_024_00297_2 crossref_primary_10_1002_esp_5816 crossref_primary_10_1007_s00371_023_03092_6 crossref_primary_10_1038_s41598_022_27352_y crossref_primary_10_1016_j_catena_2024_107989 crossref_primary_10_1016_j_jag_2024_104037 crossref_primary_10_1016_j_envsoft_2024_106259  | 
    
| Cites_doi | 10.1186/s40645-018-0169-6 10.1007/s13244-018-0639-9 10.1007/s10346-021-01645-1 10.1007/s11069-021-05199-2 10.1109/CVPR.2015.7299106 10.1029/2020GL090848 10.1007/s10346-016-0739-x 10.3390/rs11020196 10.1029/2019JF005056 10.1002/esp.4479 10.1029/2021JF006067 10.1109/ICEngTechnol.2017.8308186 10.1016/j.neunet.2006.01.005 10.1016/j.enggeo.2020.105855 10.3390/rs6032572 10.18608/jla.2017.42.6 10.1007/s10346-020-01485-5 10.1016/j.cageo.2005.02.014 10.1088/1748-0221/11/09/P09001 10.3389/frai.2021.681108 10.1109/ICBDA.2017.8078730 10.1016/j.jsc.2016.03.009 10.1002/esp.1064 10.1145/2347736.2347755 10.1007/s00477-021-02020-1 10.1016/j.earscirev.2020.103318 10.3133/ds1064 10.1016/j.jag.2021.102549 10.1016/j.enggeo.2021.106288 10.31223/X5VD1P 10.1145/3065386 10.5194/nhess-21-2581-2021 10.1016/j.earscirev.2012.02.001 10.1016/j.quascirev.2014.04.032 10.1016/j.earscirev.2022.104125 10.1016/j.rse.2016.07.017 10.1109/ICMLA.2019.00256 10.1090/S0273-0979-09-01249-X 10.1109/ICARCV.2014.7064414 10.1007/s10346-021-01689-3 10.1038/s41893-021-00757-9 10.1016/j.rse.2011.05.013 10.1016/j.geomorph.2012.05.003  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H8D H96 H97 HCIFZ KL. KR7 L.G L6V L7M M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY ADTOC UNPAY DOA  | 
    
| DOI | 10.5194/nhess-22-3751-2022 | 
    
| DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 1684-9981 | 
    
| EndPage | 3764 | 
    
| ExternalDocumentID | oai_doaj_org_article_7257b4c649fe4da0a2e5537241737023 10.5194/nhess-22-3751-2022 A727464793 10_5194_nhess_22_3751_2022  | 
    
| GeographicLocations | Japan | 
    
| GeographicLocations_xml | – name: Japan | 
    
| GroupedDBID | 123 29M 2WC 2XV 5VS 6KP 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO PYCSY Q2X RKB RNS TR2 XSB ~02 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H8D H96 H97 KL. KR7 L.G L7M PKEHL PQEST PQUKI ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c486t-b560733cb0758a2303dc90113cf0b71f2e113c9c5174c220de37fd0ca551952d3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1684-9981 1561-8633  | 
    
| IngestDate | Fri Oct 03 12:41:38 EDT 2025 Sun Oct 26 03:50:59 EDT 2025 Fri Jul 25 12:25:15 EDT 2025 Mon Oct 20 22:22:32 EDT 2025 Mon Oct 20 16:29:44 EDT 2025 Thu Oct 16 14:22:06 EDT 2025 Wed Oct 01 03:26:17 EDT 2025 Thu Apr 24 23:05:34 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c486t-b560733cb0758a2303dc90113cf0b71f2e113c9c5174c220de37fd0ca551952d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-7641-4344 0000-0003-0953-4802  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2738365001?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2738365001 | 
    
| PQPubID | 105722 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7257b4c649fe4da0a2e5537241737023 unpaywall_primary_10_5194_nhess_22_3751_2022 proquest_journals_2738365001 gale_infotracmisc_A727464793 gale_infotracacademiconefile_A727464793 gale_incontextgauss_ISR_A727464793 crossref_primary_10_5194_nhess_22_3751_2022 crossref_citationtrail_10_5194_nhess_22_3751_2022  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-11-22 | 
    
| PublicationDateYYYYMMDD | 2022-11-22 | 
    
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-22 day: 22  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Katlenburg-Lindau | 
    
| PublicationPlace_xml | – name: Katlenburg-Lindau | 
    
| PublicationTitle | Natural hazards and earth system sciences | 
    
| PublicationYear | 2022 | 
    
| Publisher | Copernicus GmbH Copernicus Publications  | 
    
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications  | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29  | 
    
| References_xml | – ident: ref1 – ident: ref42 doi: 10.1186/s40645-018-0169-6 – ident: ref50 doi: 10.1007/s13244-018-0639-9 – ident: ref32 doi: 10.1007/s10346-021-01645-1 – ident: ref46 doi: 10.1007/s11069-021-05199-2 – ident: ref40 doi: 10.1109/CVPR.2015.7299106 – ident: ref39 doi: 10.1029/2020GL090848 – ident: ref43 doi: 10.1007/s10346-016-0739-x – ident: ref16 doi: 10.3390/rs11020196 – ident: ref27 doi: 10.1029/2019JF005056 – ident: ref48 doi: 10.1002/esp.4479 – ident: ref22 doi: 10.1029/2021JF006067 – ident: ref2 doi: 10.1109/ICEngTechnol.2017.8308186 – ident: ref7 doi: 10.1016/j.neunet.2006.01.005 – ident: ref11 – ident: ref17 – ident: ref31 doi: 10.1016/j.enggeo.2020.105855 – ident: ref5 doi: 10.3390/rs6032572 – ident: ref34 doi: 10.18608/jla.2017.42.6 – ident: ref36 doi: 10.1007/s10346-020-01485-5 – ident: ref47 – ident: ref35 doi: 10.1016/j.cageo.2005.02.014 – ident: ref4 doi: 10.1088/1748-0221/11/09/P09001 – ident: ref21 doi: 10.3389/frai.2021.681108 – ident: ref19 doi: 10.1109/ICBDA.2017.8078730 – ident: ref9 doi: 10.1016/j.jsc.2016.03.009 – ident: ref30 doi: 10.1002/esp.1064 – ident: ref13 doi: 10.1145/2347736.2347755 – ident: ref26 doi: 10.1007/s00477-021-02020-1 – ident: ref28 doi: 10.1016/j.earscirev.2020.103318 – ident: ref41 – ident: ref44 doi: 10.3133/ds1064 – ident: ref3 doi: 10.1016/j.jag.2021.102549 – ident: ref29 doi: 10.1016/j.enggeo.2021.106288 – ident: ref33 doi: 10.31223/X5VD1P – ident: ref23 doi: 10.1145/3065386 – ident: ref8 doi: 10.5194/nhess-21-2581-2021 – ident: ref20 doi: 10.1016/j.earscirev.2012.02.001 – ident: ref18 doi: 10.1016/j.quascirev.2014.04.032 – ident: ref25 doi: 10.1016/j.earscirev.2022.104125 – ident: ref6 doi: 10.1016/j.rse.2016.07.017 – ident: ref15 doi: 10.1109/ICMLA.2019.00256 – ident: ref38 – ident: ref10 doi: 10.1090/S0273-0979-09-01249-X – ident: ref24 doi: 10.1109/ICARCV.2014.7064414 – ident: ref37 doi: 10.1007/s10346-021-01689-3 – ident: ref49 – ident: ref12 doi: 10.1038/s41893-021-00757-9 – ident: ref45 doi: 10.1016/j.rse.2011.05.013 – ident: ref14 doi: 10.1016/j.geomorph.2012.05.003  | 
    
| SSID | ssj0029540 | 
    
| Score | 2.3983443 | 
    
| Snippet | Landslide hazard models aim at mitigating landslide impact by providing probabilistic forecasting, and the accuracy of these models hinges on landslide... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 3751 | 
    
| SubjectTerms | Accuracy Algorithms Archipelagoes Artificial neural networks Autocorrelation Automation Classification Classifiers Configurations Data analysis Data mining Data processing Deep learning Digital Elevation Models Earthquakes Feature extraction Geological hazards Inventories Landslides Landslides & mudslides Libraries Machine learning Methods Model accuracy Model testing Modelling Neural networks Planforms Polygons Python Testing Topology Training  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqXloOqLxE2oIshMShWM3ajh1zK4iqrQBVlEq9WY4fbdU0u4Jdof03_BZ-GTOJd9UVEnDgFjmT15eJ55vI8w0hL8EnZGOEYjrEyCQEKFanRrEIoaXG3g68V-f_-EkdncuTi-riTqsvXBM2yAMPwO1r8KlGeiVNijK40vFYVUJD4NFCQ8DB2beszSKZyqmWqYZSSGAHrFZCDOUywFbkfncFUwjDNey6GoGTcL4Sknrl_t_n53tkY9ZN3Py7a9s7Aehwi9zPzJEeDHf8gKzF7iHZyE3Mr-aPyNkHLNu9ThDofv6ArLR8Qx09naM4AM0_a-h0TFFWA2hqhLGb2MIQ5OeXQALpONFbN5nEQPv63_Y6xG-Pyfnh-y_vjljumcC8rNWUNcBgtBC-ASpQO8gvRPBYXSp8Khs9SjzitvEoUO05L0MUOoXSuwplZngQT8h6N-7iU0J15YBMaEigjJGQZhoI7YarJqRa4VBBRgvYrM-C4tjXorWQWCDUtofacm4RaotQF2RvecxkkNP4o_VbfBtLS5TC7gfAQWx2EPs3BynIC3yXFsUuOlxNc-lmcJ3js8_2AMibVPhvsSCvslEawzN4l4sTAAnUx1qx3F2xhK_Rr-5euIzNswE8kxa1ACpcjgryeulG_wDA9v8AYIds4rmwgJLzXbI-_TqLz4BJTZvn_UfzCzLHEn8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQ9lA48I-aUpCFkDiAS2I7dtLbtqIqCKqKslI5WY5jt1VDdtVmhZan4Vl4ss5k3VUXBCqnRM4kkcdjzzeJ5xtCXoJNyKoUiunaeybBQbEiVIp5cC0F1nbgPTv_p321N5IfjvKjSJODuTDX_t8DtpBv2xOY8Ax3nOs8gyHlsNyuqBxw94CsjPYPhl97QlSVsUL1deMzVUgGMUQ2z5D5y0OWvFBP1v_nknyHrE7biZ19t01zzefs3psXL7roqQpxq8nZ5rSrNt2P34gcb9ad--RuhJ50OLeVB-SWbx-S1VgF_WT2iBx-xLzf0wCe8tdPCGvTLWrpwQzZBWj82kO7MUVeDsC5HtrOfANNEOAfA4qk40C_2cnE17RPIG5Oa3_xmIx2333Z2WOx6AJzslAdqwACaSFcBViisBCgiNpheqpwIa10FrjH89Ihw7XjPK290KFOnc2Rp4bX4gkZtOPWrxGqcwtoREMEVpYS4tQSsEHJVVWHQmFTQrKrQTAuMpJjYYzGQGSC6jK9ugznBtVlUF0Jeb24ZzLn4_in9DaO7UISubT7BhgTE6em0bBqVdIpWQYva5ta7vNcaIA2WmiANAl5gZZhkC2jxe04x3YK73l_-NkMAf1JhR8nE_IqCoUx9MHZmN0AmkCCrSXJjSVJmM5u-fKVAZq4nECftCgEYOk0S8ibhVHeQAHr_yf-lNzGA-Zacr5BBt351D8D0NVVz-NsuwTRIB9W priority: 102 providerName: Unpaywall  | 
    
| Title | Landsifier v1.0: a Python library to estimate likely triggers of mapped landslides | 
    
| URI | https://www.proquest.com/docview/2738365001 https://doi.org/10.5194/nhess-22-3751-2022 https://doaj.org/article/7257b4c649fe4da0a2e5537241737023  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1684-9981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029540 issn: 1561-8633 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1684-9981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029540 issn: 1561-8633 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1684-9981 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029540 issn: 1561-8633 databaseCode: BFMQW dateStart: 20090501 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (via ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1684-9981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029540 issn: 1561-8633 databaseCode: BENPR dateStart: 20090501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1684-9981 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029540 issn: 1561-8633 databaseCode: 8FG dateStart: 20090501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t3cPgAfFTC4zKQkg8QLTUTuIECaEOrQwEVVWoNJ4sx3a6iZCU0Qr1v-cudSMqpIm3xr008uV8953r-w7gOdpEXOQiDaV1LowxQIVZWaShw9CSUW8H3rLzfx6n57P440VysQfjbS0MHavc-sTWUdvG0B75CZWQCIQT0eDt4mdIXaPo39VtCw3tWyvYNy3F2D4ccGLG6sHB6dl4Mu1SsDzZlEgiagizVIhNGQ2imPikvkTXEtLZdpkM0Hg43wlVLaP_v377Nhyu6oVe_9ZV9VdgGt2FOx5RsuHGBO7Bnqvvw6Fvbn65fgDTT1TOe1ViAGSYrEavmWaTNXEGML-Hw5YNI7YNRK8Ox767Codw7nPEhqwp2Q-9WDjL2rLg6sq6Xw9hNjr7-u489K0UQhNn6TIsENhIIUyBCCHTmHYIa6joVJgyKuSg5I4-54Z4qw3nkXVCljYyOiH2GW7FI-jVTe2OgMlEI8aQmFfleYzZZ44RP-dpYcsspaEABlutKeN5xqndRaUw3yBNq1bTinNFmlak6QBedvcsNiwbN0qf0svoJIkhux1orufKLzgl0RcVsUnjvHSx1ZHmLkmERMAihUSgEsAzepWKODBqOmQz1yt8zocvUzVETBentOUYwAsvVDY4B6N9zQJqgmizdiSPdyRxkZrdr7cWo7yTwDl1Jh3Aq86K_kMBj2_-tSdwi6SoYpLzY-gtr1fuKUKnZdGH_Wz0vu9XRb_dgMCr2Xgy_PYHpK4UKg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbG9lB4QPwUgQEWAvEA0VLbiROkCW2wqWVdNZVN2pvn2E43UZKytZr6z_G3cZc6ERXSxMveKvecKufz3Xeu7ztC3oJNiDzjSSitc6GAABWmRZ6EDkJLir0dWM3OfzhMeifi22l8ukZ-N7UweK2y8Ym1o7aVwTPyLSwh4QAnou7n6a8Qu0bhv6tNCw3tWyvY7ZpizBd2HLjFNaRwV9v9r7De7xjb3zv-0gt9l4HQiDSZhTnEfMm5ySF4phoQObcG6zG5KaJcdgvm8HNmkNLZMBZZx2VhI6NjJGZhlsNz75ANwUUGyd_G7t7waNSmfFm8LMkElBKmCefLsh2YKLbKc3BlId6ll3EXjJWxldBYdxD4N07cI515OdWLaz2Z_BUI9x-Q-x7B0p2lyT0ka658RDq-mfr54jEZDbB8-KKAgEshOY4-UU2PFshRQP2ZEZ1VFNk9AC07GPvhJjAEuh4DFqVVQX_q6dRZWpchTy6su3pCTm5FqU_JelmV7hmhMtaAaSTkcVkmINvNAGFkLMltkSY4FJBuozVlPK85tteYKMhvUNOq1rRiTKGmFWo6IB_aOdMlq8eN0ru4GK0kMnLXA9XlWPkNriT4vlyYRGSFE1ZHmrk45hIAkuQSgFFA3uBSKuTcKPFSz1jP4Xf630dqBzCkSPCIMyDvvVBRwTsY7WskQBNI07UiubkiCU7BrH7dWIzyTgneqd1CAfnYWtF_KOD5zU97TTq948OBGvSHBy_IXZyB1ZqMbZL12eXcvQTYNstf-b1Bydltb8c_q8hL-Q | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIbHxgPgUgQEWAvEAUVPbiRMkhAajrGxM02DS3ozjON20koSt1dR_jb-Ou3yJCmniZW-Ve06V8_nud67vdwAv0CZkmojIV5lzvsQA5cd5GvkOQ0tMvR14zc7_dS_aPpRfjsKjFfjd1cLQtcrOJ9aOOistnZEPqIREIJwIhoO8vRaxvzV6X_3yqYMU_dPatdNoTGTHLS4wfTt_N97CtX7J-ejT94_bftthwLcyjmZ-ivFeCWFTDJyxQTQuMku1mMLmQaqGOXf0ObFE52w5DzInVJ4F1oREysIzgc-9BtcVsbhTlfroc5_sJWFTjIn4xI8jIZqCHZwmB8UxOjGfbtGrcIhmyvlSUKx7B_wbIW7C2ryozOLCTKd_hcDRbbjVYle22RjbHVhxxV1Ya9uoHy_uwcEuFQ6f5BhqGabFwVtm2P6C2AlYe1rEZiUjXg_EyQ7HTt0Uh1CzE0ShrMzZT1NVLmN1AfL0JHPn9-HwSlT6AFaLsnAPganQIJpRmMElicQ8N0FskfAozfI4oiEPhp3WtG0ZzamxxlRjZkOa1rWmNeeaNK1J0x687udUDZ_HpdIfaDF6SeLirgfKs4lut7ZW6PVSaSOZ5E5mJjDchaFQCI2UUAiJPHhOS6mJbaMgu52YOf7O-NuB3kT0KCM63PTgVSuUl_gO1rTVEagJIuhaktxYkkR3YJe_7ixGt-4I36nfPB686a3oPxTw6PKnPYMbuAn17nhv5zGs0wQq0-R8A1ZnZ3P3BPHaLH1abwwGP656J_4BeFpJkw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQ9lA48I-aUpCFkDiAS2I7dtLbtqIqCKqKslI5WY5jt1VDdtVmhZan4Vl4ss5k3VUXBCqnRM4kkcdjzzeJ5xtCXoJNyKoUiunaeybBQbEiVIp5cC0F1nbgPTv_p321N5IfjvKjSJODuTDX_t8DtpBv2xOY8Ax3nOs8gyHlsNyuqBxw94CsjPYPhl97QlSVsUL1deMzVUgGMUQ2z5D5y0OWvFBP1v_nknyHrE7biZ19t01zzefs3psXL7roqQpxq8nZ5rSrNt2P34gcb9ad--RuhJ50OLeVB-SWbx-S1VgF_WT2iBx-xLzf0wCe8tdPCGvTLWrpwQzZBWj82kO7MUVeDsC5HtrOfANNEOAfA4qk40C_2cnE17RPIG5Oa3_xmIx2333Z2WOx6AJzslAdqwACaSFcBViisBCgiNpheqpwIa10FrjH89Ihw7XjPK290KFOnc2Rp4bX4gkZtOPWrxGqcwtoREMEVpYS4tQSsEHJVVWHQmFTQrKrQTAuMpJjYYzGQGSC6jK9ugznBtVlUF0Jeb24ZzLn4_in9DaO7UISubT7BhgTE6em0bBqVdIpWQYva5ta7vNcaIA2WmiANAl5gZZhkC2jxe04x3YK73l_-NkMAf1JhR8nE_IqCoUx9MHZmN0AmkCCrSXJjSVJmM5u-fKVAZq4nECftCgEYOk0S8ibhVHeQAHr_yf-lNzGA-Zacr5BBt351D8D0NVVz-NsuwTRIB9W | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landsifier+v1.0%3A+a+Python+library+to+estimate+likely+triggers+of+mapped+landslides&rft.jtitle=Natural+hazards+and+earth+system+sciences&rft.au=Rana%2C+Kamal&rft.au=Malik%2C+Nishant&rft.au=Ozturk%2C+Ugur&rft.date=2022-11-22&rft.pub=Copernicus+GmbH&rft.issn=1561-8633&rft.eissn=1684-9981&rft.volume=22&rft.issue=11&rft.spage=3751&rft.epage=3764&rft_id=info:doi/10.5194%2Fnhess-22-3751-2022&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1684-9981&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1684-9981&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1684-9981&client=summon |