Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs
Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D ⊂ℝ d are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in L 2 ( D )-orthogonal bases,...
Saved in:
Published in | Foundations of computational mathematics Vol. 10; no. 6; pp. 615 - 646 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer-Verlag
01.12.2010
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1615-3375 1615-3383 |
DOI | 10.1007/s10208-010-9072-2 |
Cover
Abstract | Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain
D
⊂ℝ
d
are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in
L
2
(
D
)-orthogonal bases, and on viewing the coefficients of these expansions as random parameters
y
=
y
(
ω
)=(
y
i
(
ω
)). This yields an equivalent parametric deterministic PDE whose solution
u
(
x
,
y
) is a function of both the space variable
x
∈
D
and the in general countably many parameters
y
.
We establish new regularity theorems describing the smoothness properties of the solution
u
as a map from
y
∈
U
=(−1,1)
∞
to
. These results lead to analytic estimates on the
V
norms of the coefficients (which are functions of
x
) in a so-called “generalized polynomial chaos” (gpc) expansion of
u
.
Convergence estimates of approximations of
u
by best
N
-term truncated
V
valued polynomials in the variable
y
∈
U
are established. These estimates are of the form
N
−
r
, where the rate of convergence
r
depends only on the decay of the random input expansion. It is shown that
r
exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with
N
“samples” (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients.
A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family
of finite element spaces in
D
of the coefficients in the
N
-term truncated gpc expansions of
u
(
x
,
y
). In contrast to previous works, the level
l
of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution
u
as a map from
y
∈
U
=(−1,1)
∞
to a smoothness space
W
⊂
V
are established leading to analytic estimates on the
W
norms of the gpc coefficients and on their space discretization error. The space
W
coincides with
in the case where
D
is a smooth or convex domain.
Our analysis shows that in realistic settings a convergence rate
in terms of the total number of degrees of freedom
N
dof
can be obtained. Here the rate
s
is determined by both the best
N
-term approximation rate
r
and the approximation order of the space discretization in
D
. |
---|---|
AbstractList | Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D super(d) are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in L super(2)(D)-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y=y( omega )=(y sub(i) ( omega )). This yields an equivalent parametric deterministic PDE whose solution u(x,y) is a function of both the space variable x[isin]D and the in general countably many parameters y. We establish new regularity theorems describing the smoothness properties of the solution u as a map from y[isin]U=(-1,1) super( infinity ) to V = H 0 1 ( D ) . These results lead to analytic estimates on the V norms of the coefficients (which are functions of x) in a so-called "generalized polynomial chaos" (gpc) expansion of u. Convergence estimates of approximations of u by best N-term truncated V valued polynomials in the variable y[isin]U are established. These estimates are of the form N super(-r), where the rate of convergence r depends only on the decay of the random input expansion. It is shown that r exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with N "samples" (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients. A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family { V sub(l) } super( infinity ) sub(l = 0) is a subset of V of finite element spaces in D of the coefficients in the N-term truncated gpc expansions of u(x,y). In contrast to previous works, the level l of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution u as a map from y[isin]U=(-1,1) super( infinity ) to a smoothness space W is a subset of V are established leading to analytic estimates on the W norms of the gpc coefficients and on their space discretization error. The space W coincides with H 2 ( D ) H 0 1 ( D ) in the case where D is a smooth or convex domain. Our analysis shows that in realistic settings a convergence rate N dof - s in terms of the total number of degrees of freedom N sub(dof) can be obtained. Here the rate s is determined by both the best N-term approximation rate r and the approximation order of the space discretization in D. Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D [subset] [R.sup.d] are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in [L.sup.2](D)-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y = y([omega]) = ([y.sub.i] ([omega])). This yields an equivalent parametric deterministic PDE whose solution u(x,y) is a function of both the space variable x [member of] D and the in general countably many parameters y. We establish new regularity theorems describing the smoothness properties of the solution u as a map from y [member of] U = [(-1, 1).sup.[infinity]] to V = [H.sup.1.sub.0](D). These results lead to analytic estimates on the V norms of the coefficients (which are functions of x) in a so-called "generalized polynomial chaos" (gpc) expansion of u. Convergence estimates of approximations of u by best N-term truncated V valued polynomials in the variable y [member of] U are established. These estimates are of the form [N.sup.-r], where the rate of convergence r depends only on the decay of the random input expansion. It is shown that r exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with N "samples" (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients. A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family [{[V.sub.l]}.sup.[infinity].sub.l=0] [subset] V of finite element spaces in D of the coefficients in the N-term truncated gpc expansions of u(x, y). In contrast to previous works, the level l of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution u as a map from y [member of] U = [(-1, 1).sup.[infinity]] to a smoothness space W c V are established leading to analytic estimates on the W norms of the gpc coefficients and on their space discretization error. The space W coincides with [H.sup.2](D) [intersection] [H.sup.1.sub.0] (D) in the case where D is a smooth or convex domain. Our analysis shows that in realistic settings a convergence rate [N.sup.-s.sub.dof] in terms of the total number of degrees of freedom [N.sub.dof] can be obtained. Here the rate s is determined by both the best N-term approximation rate r and the approximation order of the space discretization in D. Keywords Stochastic and parametric elliptic equations * Wiener polynomial chaos * Approximation rates * Nonlinear approximation * Sparsity Mathematics Subject Classification (2000) 41A * 65N * 65C30 Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D^sup d^ are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in L ^sup 2^(D)-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y=y(ω)=(y ^sub i^(ω)). This yields an equivalent parametric deterministic PDE whose solution u(x,y) is a function of both the space variable xD and the in general countably many parameters y. We establish new regularity theorems describing the smoothness properties of the solution u as a map from yU=(-1,1)^sup ∞^ to V = H 0 1 ( D ) . These results lead to analytic estimates on the V norms of the coefficients (which are functions of x) in a so-called "generalized polynomial chaos" (gpc) expansion of u. Convergence estimates of approximations of u by best N-term truncated V valued polynomials in the variable yU are established. These estimates are of the form N ^sup -r^, where the rate of convergence r depends only on the decay of the random input expansion. It is shown that r exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with N "samples" (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients. A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family { V l } l = 0 ∞ V of finite element spaces in D of the coefficients in the N-term truncated gpc expansions of u(x,y). In contrast to previous works, the level l of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution u as a map from yU=(-1,1)^sup ∞^ to a smoothness space WV are established leading to analytic estimates on the W norms of the gpc coefficients and on their space discretization error. The space W coincides with H 2 ( D ) ∩ H 0 1 ( D ) in the case where D is a smooth or convex domain. Our analysis shows that in realistic settings a convergence rate N dof − s in terms of the total number of degrees of freedom N ^sub dof^ can be obtained. Here the rate s is determined by both the best N-term approximation rate r and the approximation order of the space discretization in D.[PUBLICATION ABSTRACT] Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D [subset] [R.sup.d] are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in [L.sup.2](D)-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y = y([omega]) = ([y.sub.i] ([omega])). This yields an equivalent parametric deterministic PDE whose solution u(x,y) is a function of both the space variable x [member of] D and the in general countably many parameters y. Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D ⊂ℝ d are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in L 2 ( D )-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y = y ( ω )=( y i ( ω )). This yields an equivalent parametric deterministic PDE whose solution u ( x , y ) is a function of both the space variable x ∈ D and the in general countably many parameters y . We establish new regularity theorems describing the smoothness properties of the solution u as a map from y ∈ U =(−1,1) ∞ to . These results lead to analytic estimates on the V norms of the coefficients (which are functions of x ) in a so-called “generalized polynomial chaos” (gpc) expansion of u . Convergence estimates of approximations of u by best N -term truncated V valued polynomials in the variable y ∈ U are established. These estimates are of the form N − r , where the rate of convergence r depends only on the decay of the random input expansion. It is shown that r exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with N “samples” (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients. A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family of finite element spaces in D of the coefficients in the N -term truncated gpc expansions of u ( x , y ). In contrast to previous works, the level l of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution u as a map from y ∈ U =(−1,1) ∞ to a smoothness space W ⊂ V are established leading to analytic estimates on the W norms of the gpc coefficients and on their space discretization error. The space W coincides with in the case where D is a smooth or convex domain. Our analysis shows that in realistic settings a convergence rate in terms of the total number of degrees of freedom N dof can be obtained. Here the rate s is determined by both the best N -term approximation rate r and the approximation order of the space discretization in D . |
Audience | Academic |
Author | Cohen, Albert Schwab, Christoph DeVore, Ronald |
Author_xml | – sequence: 1 givenname: Albert surname: Cohen fullname: Cohen, Albert email: cohen@ann.jussieu.fr organization: Laboratoire Jacques-Louis Lions, UMR 7598, UPMC Univ. Paris 06, Laboratoire Jacques-Louis Lions, UMR 7598, CNRS – sequence: 2 givenname: Ronald surname: DeVore fullname: DeVore, Ronald organization: Department of Mathematics, Texas A& M University – sequence: 3 givenname: Christoph surname: Schwab fullname: Schwab, Christoph organization: Seminar for Applied Mathematics, ETH Zürich |
BookMark | eNp9kl9vFCEUxSemJrbVD-Ab0Qfjw1QuDDPD47qubZNGTf3zShj2sqHOwgqsqd--bMdotlkNDxDyO5fDveekOvLBY1U9B3oGlHZvElBG-5oCrSXtWM0eVcfQgqg57_nRn3MnnlQnKd1QCkJCc1x9mwf_E-MKvUFyrTMmEix5iymTD3XGuCbnesT43Xky22xiuHVrnV3widgQiSbzUad7yWIc3SY7Q9Knd4v0tHps9Zjw2e_9tPr6fvFlflFffTy_nM-uatP0ba4HpgVw2i-ltq1ELRjg0IoBDBVNywfRMNS9XWptYRBWGGk7AZKi5S0Hrflp9WqqW6z92BbXau2SwXHUHsM2KQlSgmCSF_LFA_ImbKMv5lTfM9oC0KZALydoVT6tnLchR212JdWMC9F2TYEKVR-gSgsx6rGMxbpyvcefHeDLWuLamYOC13uCwmS8zSu9TUldfr7eZ2FiTQwpRbRqE8uM4i8FVO2ioaZoqBINtYuGYkXTPdAYl-_HWoy58b9KNilTecWvMP7t4r9Fd5Uryuc |
CODEN | FCMOA3 |
CitedBy_id | crossref_primary_10_1142_S0218202513500218 crossref_primary_10_1007_s00211_024_01397_9 crossref_primary_10_1007_s10013_013_0011_9 crossref_primary_10_1093_imanum_drab036 crossref_primary_10_1007_s10440_019_00262_4 crossref_primary_10_1007_s10915_018_0652_7 crossref_primary_10_1007_s00211_013_0572_2 crossref_primary_10_1002_gamm_201310004 crossref_primary_10_1016_j_jsv_2020_115708 crossref_primary_10_1016_j_camwa_2013_06_005 crossref_primary_10_1137_140985913 crossref_primary_10_1137_19M1262796 crossref_primary_10_1137_22M1525181 crossref_primary_10_1016_j_jco_2015_09_006 crossref_primary_10_1007_s00211_011_0377_0 crossref_primary_10_1007_s10915_024_02766_0 crossref_primary_10_1142_S0219530511001728 crossref_primary_10_1137_22M1532263 crossref_primary_10_1137_19M1294952 crossref_primary_10_1137_20M1364722 crossref_primary_10_1016_j_matpur_2014_04_009 crossref_primary_10_2139_ssrn_3965238 crossref_primary_10_1007_s00211_017_0878_6 crossref_primary_10_1016_j_camwa_2024_04_007 crossref_primary_10_1016_j_jcp_2024_113488 crossref_primary_10_1007_s00211_021_01257_w crossref_primary_10_1007_s00365_022_09570_9 crossref_primary_10_3934_ipi_2025007 crossref_primary_10_1007_s00211_016_0791_4 crossref_primary_10_1088_0266_5611_29_12_125011 crossref_primary_10_1137_23M1546981 crossref_primary_10_1051_m2an_2024050 crossref_primary_10_1137_090750743 crossref_primary_10_1137_22M1486170 crossref_primary_10_1007_s10915_015_0091_7 crossref_primary_10_1016_j_jco_2017_12_001 crossref_primary_10_1142_S0219530512500145 crossref_primary_10_1016_j_cma_2012_05_003 crossref_primary_10_4213_sm9791 crossref_primary_10_1016_j_jcp_2023_111912 crossref_primary_10_1051_m2an_2020013 crossref_primary_10_1137_120878999 crossref_primary_10_1142_S0218202513500681 crossref_primary_10_1016_j_camwa_2018_07_041 crossref_primary_10_1016_j_jcp_2015_02_025 crossref_primary_10_1137_16M1078690 crossref_primary_10_1016_j_camwa_2021_07_001 crossref_primary_10_1137_110826539 crossref_primary_10_1142_S0218202519500349 crossref_primary_10_1016_j_camwa_2015_06_021 crossref_primary_10_1007_s40072_019_00142_w crossref_primary_10_1137_100785715 crossref_primary_10_1093_imanum_dru066 crossref_primary_10_1137_20M1333407 crossref_primary_10_1016_j_cma_2013_04_003 crossref_primary_10_1007_s00780_021_00462_7 crossref_primary_10_1002_fld_4843 crossref_primary_10_1137_20M1338137 crossref_primary_10_1007_s10444_019_09723_8 crossref_primary_10_1007_s00211_022_01339_3 crossref_primary_10_1002_mana_201100131 crossref_primary_10_1093_imanum_drx052 crossref_primary_10_1137_18M1205844 crossref_primary_10_1142_S0218202524500179 crossref_primary_10_1007_s00477_018_1637_7 crossref_primary_10_1007_s10208_016_9329_5 crossref_primary_10_1007_s10444_018_9594_8 crossref_primary_10_1007_s10543_011_0368_7 crossref_primary_10_1051_m2an_2019048 crossref_primary_10_1051_m2an_2021017 crossref_primary_10_1137_21M1461988 crossref_primary_10_1137_17M1132197 crossref_primary_10_1017_S0962492911000055 crossref_primary_10_1137_18M1194420 crossref_primary_10_1137_22M1479361 crossref_primary_10_1007_s10208_017_9350_3 crossref_primary_10_1137_120894725 crossref_primary_10_1137_18M1234151 crossref_primary_10_1007_s10208_015_9265_9 crossref_primary_10_1016_j_acha_2015_02_003 crossref_primary_10_1016_j_camwa_2015_12_005 crossref_primary_10_1016_j_jat_2012_11_005 crossref_primary_10_1142_S0218202512500236 crossref_primary_10_1137_15M1041390 crossref_primary_10_1016_j_jcp_2016_10_044 crossref_primary_10_1007_s00211_023_01364_w crossref_primary_10_1137_17M1123079 crossref_primary_10_1137_20M131309X crossref_primary_10_1016_j_camwa_2015_04_024 crossref_primary_10_1016_j_jco_2025_101933 crossref_primary_10_1137_23M1585015 crossref_primary_10_1142_S0218202513500589 crossref_primary_10_1002_num_22856 crossref_primary_10_1088_0266_5611_30_6_065007 crossref_primary_10_1137_130905253 crossref_primary_10_1137_140998652 crossref_primary_10_4213_sm9791e crossref_primary_10_1007_s43670_022_00037_3 crossref_primary_10_1016_j_jcp_2014_02_024 crossref_primary_10_1137_110847597 crossref_primary_10_1007_s00365_017_9369_3 crossref_primary_10_1016_j_matcom_2017_10_009 crossref_primary_10_1016_j_apnum_2022_05_009 crossref_primary_10_1007_s10092_023_00565_x crossref_primary_10_1007_s10208_016_9317_9 crossref_primary_10_1137_17M1137875 crossref_primary_10_1016_j_jcp_2023_112103 crossref_primary_10_1137_18M1176063 crossref_primary_10_1142_S0219876216500286 crossref_primary_10_1088_0266_5611_28_4_045003 crossref_primary_10_1017_fms_2020_23 crossref_primary_10_1137_16M1077611 crossref_primary_10_1016_j_cma_2015_08_006 crossref_primary_10_1007_s00211_024_01436_5 crossref_primary_10_1007_s40306_019_00345_2 crossref_primary_10_1007_s10569_017_9767_7 crossref_primary_10_1007_s10208_013_9154_z crossref_primary_10_4213_sm9068 crossref_primary_10_1137_16M1085760 crossref_primary_10_1142_S0219530518500203 crossref_primary_10_1088_0266_5611_29_6_065011 crossref_primary_10_1007_s00365_011_9147_6 crossref_primary_10_1051_m2an_2018012 crossref_primary_10_1007_s00365_021_09542_5 crossref_primary_10_1051_m2an_2014050 crossref_primary_10_1007_s00211_020_01123_1 crossref_primary_10_1016_j_jat_2016_02_006 crossref_primary_10_1007_s10915_018_0661_6 crossref_primary_10_1137_130943984 crossref_primary_10_1007_s00211_021_01212_9 crossref_primary_10_4208_eajam_090615_060216a crossref_primary_10_1007_s10444_024_10171_2 crossref_primary_10_1016_j_cma_2017_08_016 crossref_primary_10_1137_16M1082597 crossref_primary_10_1137_20M1369373 crossref_primary_10_1155_2015_812069 crossref_primary_10_1137_16M1106675 crossref_primary_10_1016_j_camwa_2013_03_004 crossref_primary_10_1137_100793682 crossref_primary_10_1016_j_cam_2017_05_031 crossref_primary_10_1142_S0219530513500012 crossref_primary_10_1007_s10915_013_9764_2 crossref_primary_10_1016_j_camwa_2015_09_013 crossref_primary_10_1007_s00211_019_01051_9 crossref_primary_10_1137_20M1342586 crossref_primary_10_1088_0266_5611_29_8_085010 crossref_primary_10_1137_120884158 crossref_primary_10_1016_j_jat_2019_04_006 crossref_primary_10_1007_s10208_014_9237_5 crossref_primary_10_1016_j_jcp_2022_111691 crossref_primary_10_1137_18M1236265 crossref_primary_10_1137_130929904 crossref_primary_10_1016_j_camwa_2012_10_008 crossref_primary_10_1007_s11075_016_0184_x crossref_primary_10_1137_15M102188X crossref_primary_10_1137_17M1117550 crossref_primary_10_1137_17M1123845 crossref_primary_10_1137_16M1061692 crossref_primary_10_1137_23M1596296 crossref_primary_10_1142_S0218202513500395 crossref_primary_10_1051_m2an_2020003 crossref_primary_10_1016_j_chemolab_2011_09_001 crossref_primary_10_1137_16M1096116 crossref_primary_10_1016_j_amc_2014_12_112 crossref_primary_10_1137_23M1593188 crossref_primary_10_1007_s40072_017_0092_7 crossref_primary_10_1007_s00033_016_0669_4 crossref_primary_10_5802_smai_jcm_74 crossref_primary_10_1007_s00211_016_0850_x crossref_primary_10_1007_s00365_019_09461_6 crossref_primary_10_1070_SM9068 crossref_primary_10_1088_0266_5611_28_2_025009 crossref_primary_10_1016_j_camwa_2015_12_045 crossref_primary_10_1007_s10013_022_00584_1 crossref_primary_10_1137_18M1229560 crossref_primary_10_1007_s10915_023_02134_4 crossref_primary_10_1007_s10208_013_9186_4 crossref_primary_10_1016_j_cam_2019_112635 crossref_primary_10_1016_j_jco_2023_101779 crossref_primary_10_1016_j_cma_2021_113845 crossref_primary_10_1017_S0962492915000033 crossref_primary_10_1137_18M1170601 crossref_primary_10_1007_s10444_014_9350_7 crossref_primary_10_1093_imatrm_tnac001 crossref_primary_10_1007_s10915_022_01859_y crossref_primary_10_1007_s10444_025_10224_0 crossref_primary_10_1137_110845537 crossref_primary_10_1016_j_jcp_2019_07_020 crossref_primary_10_1017_S0956792514000072 crossref_primary_10_1137_17M1138881 |
Cites_doi | 10.1007/s11831-008-9019-9 10.1007/s10492-006-0010-1 10.1137/S0036142902418680 10.1137/050645142 10.1137/S1064827501387826 10.2307/2371268 10.1090/S0025-5718-06-01917-X 10.1137/070680540 10.1007/BF02818931 10.1016/j.jcp.2006.01.048 10.1137/040616449 10.1017/S0962492900002816 10.1137/060663660 10.1007/978-1-4612-1170-9 10.1090/S0025-5718-00-01252-7 10.1142/S0219530511001728 10.1093/imanum/drl025 |
ContentType | Journal Article |
Copyright | SFoCM 2010 COPYRIGHT 2010 Springer |
Copyright_xml | – notice: SFoCM 2010 – notice: COPYRIGHT 2010 Springer |
DBID | AAYXX CITATION ISR 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s10208-010-9072-2 |
DatabaseName | CrossRef Gale In Context: Science Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Mathematics Applied Sciences Computer Science |
EISSN | 1615-3383 |
EndPage | 646 |
ExternalDocumentID | 2421015891 A355674043 10_1007_s10208_010_9072_2 |
Genre | Feature |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD AEIIB 7SC 7TB 8FD ABRTQ FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c486t-b2a51308d9af69ea521eb65b1c05463b542ea8fdaaf1b5f5c9f75190ef3631aa3 |
IEDL.DBID | U2A |
ISSN | 1615-3375 |
IngestDate | Fri Sep 05 04:38:58 EDT 2025 Fri Jul 25 19:19:47 EDT 2025 Tue Jun 17 21:45:16 EDT 2025 Thu Jun 12 23:37:26 EDT 2025 Tue Jun 10 20:15:35 EDT 2025 Fri Jun 27 04:17:22 EDT 2025 Tue Jul 01 04:30:04 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Fri Feb 21 02:36:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Wiener polynomial chaos 65C30 Stochastic and parametric elliptic equations Sparsity 41A Approximation rates Nonlinear approximation 65N |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-b2a51308d9af69ea521eb65b1c05463b542ea8fdaaf1b5f5c9f75190ef3631aa3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 882061104 |
PQPubID | 43692 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_919915293 proquest_journals_882061104 gale_infotracmisc_A355674043 gale_infotracgeneralonefile_A355674043 gale_infotracacademiconefile_A355674043 gale_incontextgauss_ISR_A355674043 crossref_primary_10_1007_s10208_010_9072_2 crossref_citationtrail_10_1007_s10208_010_9072_2 springer_journals_10_1007_s10208_010_9072_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
PublicationTitle | Foundations of computational mathematics |
PublicationTitleAbbrev | Found Comput Math |
PublicationYear | 2010 |
Publisher | Springer-Verlag Springer Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
References | Ghanem, Spanos (CR9) 1997; 4 Kleiber, Hien (CR11) 1992 Babuška, Nobile, Tempone (CR2) 2007; 45 Ciarlet (CR3) 1978 CR6 Nobile, Tempone, Webster (CR14) 2008; 46 Schwab, Todor (CR17) 2006; 217 Nobile, Tempone, Webster (CR13) 2008; 46 Karniadakis, Xiu (CR10) 2002; 24 DeVore (CR7) 1998; 7 Todor, Schwab (CR20) 2007; 45 Cohen (CR4) 2003 Schoutens (CR16) 2000 Ledoux, Talagrand (CR12) 1991 Gantumur, Harbecht, Stevenson (CR8) 2007; 76 Todor (CR19) 2006; 44 Babuška, Tempone, Zouraris (CR1) 2004; 42 Smolyak (CR18) 1963; 4 Cohen, Dahmen, DeVore (CR5) 2001; 70 von Petersdorff, Schwab (CR21) 2006; 51 Wiener (CR22) 1938; 60 Rozza, Huynh, Patera (CR15) 2008; 15 A. Cohen (9072_CR4) 2003 I. Babuška (9072_CR1) 2004; 42 R. Todor (9072_CR19) 2006; 44 R. Ghanem (9072_CR9) 1997; 4 C. Schwab (9072_CR17) 2006; 217 R. DeVore (9072_CR7) 1998; 7 M. Kleiber (9072_CR11) 1992 R. Todor (9072_CR20) 2007; 45 T. Gantumur (9072_CR8) 2007; 76 T. Petersdorff von (9072_CR21) 2006; 51 N. Wiener (9072_CR22) 1938; 60 A. Cohen (9072_CR5) 2001; 70 9072_CR6 G. Rozza (9072_CR15) 2008; 15 G.E. Karniadakis (9072_CR10) 2002; 24 F. Nobile (9072_CR13) 2008; 46 W. Schoutens (9072_CR16) 2000 F. Nobile (9072_CR14) 2008; 46 S.A. Smolyak (9072_CR18) 1963; 4 P.G. Ciarlet (9072_CR3) 1978 I. Babuška (9072_CR2) 2007; 45 M. Ledoux (9072_CR12) 1991 |
References_xml | – volume: 15 start-page: 229 year: 2008 end-page: 275 ident: CR15 article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations and application to transport and continuum mechanics publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-008-9019-9 – volume: 51 start-page: 145 year: 2006 end-page: 180 ident: CR21 article-title: Sparse finite element methods for operator equations with stochastic data publication-title: Appl. Math. doi: 10.1007/s10492-006-0010-1 – year: 2003 ident: CR4 publication-title: Numerical Analysis of Wavelet Methods – volume: 42 start-page: 800 year: 2004 end-page: 825 ident: CR1 article-title: Galerkin finite element approximations of stochastic elliptic partial differential equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902418680 – volume: 45 start-page: 1005 year: 2007 end-page: 1034 ident: CR2 article-title: A stochastic collocation method for elliptic partial differential equations with random input data publication-title: SIAM J. Numer. Anal. doi: 10.1137/050645142 – volume: 24 start-page: 619 year: 2002 end-page: 644 ident: CR10 article-title: The Wiener-Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – volume: 60 start-page: 897 year: 1938 end-page: 936 ident: CR22 article-title: The homogeneous chaos publication-title: Am. J. Math. doi: 10.2307/2371268 – volume: 76 start-page: 615 year: 2007 end-page: 629 ident: CR8 article-title: An adaptive wavelet method without coarsening of the iterands publication-title: Math. Comput. doi: 10.1090/S0025-5718-06-01917-X – volume: 45 start-page: 232 year: 2007 end-page: 261 ident: CR20 article-title: Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients publication-title: IMA J. Numer. Anal. – volume: 46 start-page: 2411 year: 2008 end-page: 2442 ident: CR14 article-title: An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data publication-title: SIAM J. Numer. Anal. doi: 10.1137/070680540 – year: 1978 ident: CR3 publication-title: The Finite Element Methods for Elliptic Problems – ident: CR6 – volume: 4 start-page: 63 year: 1997 end-page: 100 ident: CR9 article-title: Spectral techniques for stochastic finite elements publication-title: Arch. Comput. Methods Eng. doi: 10.1007/BF02818931 – year: 1992 ident: CR11 publication-title: The Stochastic Finite Element Methods – volume: 70 start-page: 27 year: 2001 end-page: 75 ident: CR5 article-title: Adaptive wavelet methods for elliptic operator equations—convergence rates publication-title: Math. Comput. – volume: 217 start-page: 100 year: 2006 end-page: 122 ident: CR17 article-title: Karhúnen–Loève approximation of random fields by generalized fast multipole methods publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.01.048 – volume: 4 start-page: 240 year: 1963 end-page: 243 ident: CR18 article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions publication-title: Dokl. Akad. Nauk SSSR – volume: 44 start-page: 865 year: 2006 end-page: 878 ident: CR19 article-title: Robust eigenvalue computation for smoothing operators publication-title: SIAM J. Numer. Anal. doi: 10.1137/040616449 – volume: 7 start-page: 51 year: 1998 end-page: 150 ident: CR7 article-title: Nonlinear approximation publication-title: Acta Numer. doi: 10.1017/S0962492900002816 – year: 1991 ident: CR12 publication-title: Probability in Banachspaces – volume: 46 start-page: 2309 year: 2008 end-page: 2345 ident: CR13 article-title: A sparse grid stochastic collocation method for elliptic partial differential equations with random input data publication-title: SIAM J. Numer. Anal. doi: 10.1137/060663660 – year: 2000 ident: CR16 publication-title: Stochastic Processes and Orthogonal Polynomials – volume-title: The Stochastic Finite Element Methods year: 1992 ident: 9072_CR11 – volume-title: Probability in Banachspaces year: 1991 ident: 9072_CR12 – volume: 60 start-page: 897 year: 1938 ident: 9072_CR22 publication-title: Am. J. Math. doi: 10.2307/2371268 – volume: 51 start-page: 145 year: 2006 ident: 9072_CR21 publication-title: Appl. Math. doi: 10.1007/s10492-006-0010-1 – volume-title: The Finite Element Methods for Elliptic Problems year: 1978 ident: 9072_CR3 – volume: 46 start-page: 2309 year: 2008 ident: 9072_CR13 publication-title: SIAM J. Numer. Anal. doi: 10.1137/060663660 – volume-title: Numerical Analysis of Wavelet Methods year: 2003 ident: 9072_CR4 – volume: 76 start-page: 615 year: 2007 ident: 9072_CR8 publication-title: Math. Comput. doi: 10.1090/S0025-5718-06-01917-X – volume: 7 start-page: 51 year: 1998 ident: 9072_CR7 publication-title: Acta Numer. doi: 10.1017/S0962492900002816 – volume: 15 start-page: 229 year: 2008 ident: 9072_CR15 publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-008-9019-9 – volume: 42 start-page: 800 year: 2004 ident: 9072_CR1 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902418680 – volume: 45 start-page: 1005 year: 2007 ident: 9072_CR2 publication-title: SIAM J. Numer. Anal. doi: 10.1137/050645142 – volume: 46 start-page: 2411 year: 2008 ident: 9072_CR14 publication-title: SIAM J. Numer. Anal. doi: 10.1137/070680540 – volume-title: Stochastic Processes and Orthogonal Polynomials year: 2000 ident: 9072_CR16 doi: 10.1007/978-1-4612-1170-9 – volume: 4 start-page: 63 year: 1997 ident: 9072_CR9 publication-title: Arch. Comput. Methods Eng. doi: 10.1007/BF02818931 – volume: 70 start-page: 27 year: 2001 ident: 9072_CR5 publication-title: Math. Comput. doi: 10.1090/S0025-5718-00-01252-7 – ident: 9072_CR6 doi: 10.1142/S0219530511001728 – volume: 24 start-page: 619 year: 2002 ident: 9072_CR10 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – volume: 4 start-page: 240 year: 1963 ident: 9072_CR18 publication-title: Dokl. Akad. Nauk SSSR – volume: 45 start-page: 232 year: 2007 ident: 9072_CR20 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drl025 – volume: 217 start-page: 100 year: 2006 ident: 9072_CR17 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.01.048 – volume: 44 start-page: 865 year: 2006 ident: 9072_CR19 publication-title: SIAM J. Numer. Anal. doi: 10.1137/040616449 |
SSID | ssj0015914 ssib031263371 |
Score | 2.4156673 |
Snippet | Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain
D
⊂ℝ
d
are introduced and their... Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D [subset] [R.sup.d] are introduced... Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D^sup d^ are introduced and their... Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D super(d) are introduced and their... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 615 |
SubjectTerms | Analysis Applications of Mathematics Approximation Computational mathematics Computer Science Computer simulation Convergence Economics Estimates Galerkin methods Linear and Multilinear Algebras Math Applications in Computer Science Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Matrix Theory Monte Carlo method Numerical Analysis Smoothness Theorems |
Title | Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs |
URI | https://link.springer.com/article/10.1007/s10208-010-9072-2 https://www.proquest.com/docview/882061104 https://www.proquest.com/docview/919915293 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA-yPagPfkxl3eYIIgpKoE2btnnsnfduKrvI9Mp8CkmWDEF6ZbkX_PM9pzftrE7Bp0Jy0qb5OPklOed3CHleZa7UWmaMay1Y4S1nOpWGSYNel9am2uN5x-m8PFkU787FefTjDr21e38l2WnqX5zdeGd4lTLY0HEGendbIJ0UDOIFb4arAyE7Qm9EMizPK9FfZd70itFi9LtK_uNutFtyZg_IvYgVabPp3Ifklmt3yP2IG2mclQGS-tAMfdoOud07HEP23dOBmjU8Ip-P0M68c7l09AyRJl16OoGa0DlDPU2PoYJ4gk4b5Bv_8XXj3BgowFuqaRdFE4ugtQfoG0vDhzfT8JgsZtNPRycsBldgtqjLFTNcC1i_6gupfSmdhmXcmVKYzKbIkG9EwZ2u_YXWPjPCCyt9Bc2dOp-XeaZ1_oRstcvW7RKa6qzyXbRP2CtmuZGeG5PnxoMiFXUlE5L2raxsZB7HABjf1DVnMpZW0DEKO0bxhLwainzf0G78S_gZdp1COosW7WUu9ToE9fbjmWoATpUVMggl5GUU8kv4uNXR_QB-ARmwRpIvRpKXG_7vmwQPRoIwMe0oe78fSioqhqBq5MsHyFUkhA65WBBt3Vq3XAcl0RpNAAxLyOt-AF6_4K-tsPdf0vvkDh8Mcw7I1upq7Z4CvFqZQ7LdzCaTOT6Pv7yfHnbT6yfQiBrC |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQORQOPAqI0AIWQiCBLCVOnMTHpbRsobtCpYt6s2zXrpBQFuFdiZ_PTNZOCRQkrvFMHnY8_uyZ-YaQ503haq1lwbjWglXecqZzaZg0mHVpba49nnfM5vV0Ub0_E2cxjzukaPfkkuwt9S_JbrwPvMoZbOg4A7t7Hb2MuONa8MngOhCyJ_RGJMPKshHJlXnVLUaL0e8m-Q_faL_kHN4htyJWpJPN4N4l11y3Q25H3EjjrAxwKZVmSNd2yHZKOIbmm7OBmjXcI5_3Mc68T7l09ASRJl16-gbehM4Z2mn6Dl4QT9DpBPnGf3zZJDcGCvCWatpX0UQVjPYAe2Np-Pj2INwni8OD0_0pi8UVmK3aesUM1wLWr_Zcal9Lp2EZd6YWprA5MuQbUXGnW3-utS-M8MJK3wDay50v67LQunxAtrpl5x4Smuui8X21T9grFqWRnhtTlsaDIRVtIzOSp15WNjKPYwGMr-qSMxm1FQyMwoFRPCOvBpVvG9qNfwk_w6FTSGfRYbzMhV6HoI4-nagJwKm6QQahjLyMQn4JD7c6ph_AJyAD1kjyxUjyYsP_fZXg3kgQJqYdNe-mX0lFwxBUi3z5ALmqjNChFRUx1q1zy3VQEqPRBMCwjLxOP-DlDf7aC4_-S_op2Z6ezo7V8dH8wy65wYcgnT2ytfq-do8Baq3Mk35q_QRiJxqV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELVQkbg8cClUhBawEAIJZDVx4iR-XNouLdBVVVjUN8v22hUSylZ4V-LzmUnilEBB4jUe5-Z45jg-c4aQF1XmSq1lxrjWghXecqZTaZg0mHVpbao9_u84npWH8-L9mTjr65yGyHaPW5JdTgOqNDWr3YuF3_0l8Y23JKyUweKOM_DB1wsI1cjpmvPJsI0gZCvujaiG5Xkl4rbmVacYBabf3fMf-6Rt-JneI3d63Egn3UDfJ9dcs0nu9hiS9jM0wKFYpiEe2yQ3Y_IxNN8-HmRawwPyZQ855236paOniDrp0tO3cCd0xtBn03dwg_g3nU5Qe_zH1y7RMVCAulTTtqImdkHmB_geS8PJ_kF4SObTg897h6wvtMBsUZcrZrgWEMvqhdS-lE5DSHemFCazKarlG1Fwp2u_0NpnRnhhpa8A-aXO52WeaZ1vkY1m2bhHhKY6q3xb-RPWjVlupOfG5Lnx4FRFXcmEpPEtK9urkGMxjG_qUj8ZeysYGIUDo3hCXg9dLjoJjn8ZP8ehUyht0SB35lyvQ1BHn07VBKBVWaGaUEJe9UZ-CRe3uk9FgEdANayR5cuR5XmnBX6V4c7IECapHTVvx09J9U4iqBq18wF-FQmhQyt2RN5b45broCQy0wRAsoS8iR_g5Qn--hYe_5f1M3LjZH-qPh7NPmyTW3zg6-yQjdX3tXsCqGtlnrYz6yesdR7a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+Rates+of+Best+N-term+Galerkin+Approximations+for+a+Class+of+Elliptic+sPDEs&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Cohen%2C+Albert&rft.au=DeVore%2C+Ronald&rft.au=Schwab%2C+Christoph&rft.date=2010-12-01&rft.pub=Springer-Verlag&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=10&rft.issue=6&rft.spage=615&rft.epage=646&rft_id=info:doi/10.1007%2Fs10208-010-9072-2&rft.externalDocID=10_1007_s10208_010_9072_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |