Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs

Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D ⊂ℝ d are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in L 2 ( D )-orthogonal bases,...

Full description

Saved in:
Bibliographic Details
Published inFoundations of computational mathematics Vol. 10; no. 6; pp. 615 - 646
Main Authors Cohen, Albert, DeVore, Ronald, Schwab, Christoph
Format Journal Article
LanguageEnglish
Published New York Springer-Verlag 01.12.2010
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-3375
1615-3383
DOI10.1007/s10208-010-9072-2

Cover

Abstract Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D ⊂ℝ d are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in L 2 ( D )-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y = y ( ω )=( y i ( ω )). This yields an equivalent parametric deterministic PDE whose solution u ( x , y ) is a function of both the space variable x ∈ D and the in general countably many parameters  y . We establish new regularity theorems describing the smoothness properties of the solution u as a map from y ∈ U =(−1,1) ∞ to . These results lead to analytic estimates on the V norms of the coefficients (which are functions of x ) in a so-called “generalized polynomial chaos” (gpc) expansion of u . Convergence estimates of approximations of u by best N -term truncated V valued polynomials in the variable y ∈ U are established. These estimates are of the form N − r , where the rate of convergence r depends only on the decay of the random input expansion. It is shown that r exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with N “samples” (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients. A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family of finite element spaces in D of the coefficients in the N -term truncated gpc expansions of u ( x , y ). In contrast to previous works, the level l of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution u as a map from y ∈ U =(−1,1) ∞ to a smoothness space W ⊂ V are established leading to analytic estimates on the W norms of the gpc coefficients and on their space discretization error. The space W coincides with in the case where D is a smooth or convex domain. Our analysis shows that in realistic settings a convergence rate in terms of the total number of degrees of freedom N dof can be obtained. Here the rate s is determined by both the best N -term approximation rate r and the approximation order of the space discretization in  D .
AbstractList Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D super(d) are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in L super(2)(D)-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y=y( omega )=(y sub(i) ( omega )). This yields an equivalent parametric deterministic PDE whose solution u(x,y) is a function of both the space variable x[isin]D and the in general countably many parameters y. We establish new regularity theorems describing the smoothness properties of the solution u as a map from y[isin]U=(-1,1) super( infinity ) to V = H 0 1 ( D ) . These results lead to analytic estimates on the V norms of the coefficients (which are functions of x) in a so-called "generalized polynomial chaos" (gpc) expansion of u. Convergence estimates of approximations of u by best N-term truncated V valued polynomials in the variable y[isin]U are established. These estimates are of the form N super(-r), where the rate of convergence r depends only on the decay of the random input expansion. It is shown that r exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with N "samples" (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients. A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family { V sub(l) } super( infinity ) sub(l = 0) is a subset of V of finite element spaces in D of the coefficients in the N-term truncated gpc expansions of u(x,y). In contrast to previous works, the level l of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution u as a map from y[isin]U=(-1,1) super( infinity ) to a smoothness space W is a subset of V are established leading to analytic estimates on the W norms of the gpc coefficients and on their space discretization error. The space W coincides with H 2 ( D ) H 0 1 ( D ) in the case where D is a smooth or convex domain. Our analysis shows that in realistic settings a convergence rate N dof - s in terms of the total number of degrees of freedom N sub(dof) can be obtained. Here the rate s is determined by both the best N-term approximation rate r and the approximation order of the space discretization in D.
Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D [subset] [R.sup.d] are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in [L.sup.2](D)-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y = y([omega]) = ([y.sub.i] ([omega])). This yields an equivalent parametric deterministic PDE whose solution u(x,y) is a function of both the space variable x [member of] D and the in general countably many parameters y. We establish new regularity theorems describing the smoothness properties of the solution u as a map from y [member of] U = [(-1, 1).sup.[infinity]] to V = [H.sup.1.sub.0](D). These results lead to analytic estimates on the V norms of the coefficients (which are functions of x) in a so-called "generalized polynomial chaos" (gpc) expansion of u. Convergence estimates of approximations of u by best N-term truncated V valued polynomials in the variable y [member of] U are established. These estimates are of the form [N.sup.-r], where the rate of convergence r depends only on the decay of the random input expansion. It is shown that r exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with N "samples" (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients. A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family [{[V.sub.l]}.sup.[infinity].sub.l=0] [subset] V of finite element spaces in D of the coefficients in the N-term truncated gpc expansions of u(x, y). In contrast to previous works, the level l of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution u as a map from y [member of] U = [(-1, 1).sup.[infinity]] to a smoothness space W c V are established leading to analytic estimates on the W norms of the gpc coefficients and on their space discretization error. The space W coincides with [H.sup.2](D) [intersection] [H.sup.1.sub.0] (D) in the case where D is a smooth or convex domain. Our analysis shows that in realistic settings a convergence rate [N.sup.-s.sub.dof] in terms of the total number of degrees of freedom [N.sub.dof] can be obtained. Here the rate s is determined by both the best N-term approximation rate r and the approximation order of the space discretization in D. Keywords Stochastic and parametric elliptic equations * Wiener polynomial chaos * Approximation rates * Nonlinear approximation * Sparsity Mathematics Subject Classification (2000) 41A * 65N * 65C30
Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D^sup d^ are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in L ^sup 2^(D)-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y=y(ω)=(y ^sub i^(ω)). This yields an equivalent parametric deterministic PDE whose solution u(x,y) is a function of both the space variable xD and the in general countably many parameters y. We establish new regularity theorems describing the smoothness properties of the solution u as a map from yU=(-1,1)^sup ∞^ to V = H 0 1 ( D ) . These results lead to analytic estimates on the V norms of the coefficients (which are functions of x) in a so-called "generalized polynomial chaos" (gpc) expansion of u. Convergence estimates of approximations of u by best N-term truncated V valued polynomials in the variable yU are established. These estimates are of the form N ^sup -r^, where the rate of convergence r depends only on the decay of the random input expansion. It is shown that r exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with N "samples" (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients. A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family { V l } l = 0 ∞ V of finite element spaces in D of the coefficients in the N-term truncated gpc expansions of u(x,y). In contrast to previous works, the level l of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution u as a map from yU=(-1,1)^sup ∞^ to a smoothness space WV are established leading to analytic estimates on the W norms of the gpc coefficients and on their space discretization error. The space W coincides with H 2 ( D ) ∩ H 0 1 ( D ) in the case where D is a smooth or convex domain. Our analysis shows that in realistic settings a convergence rate N dof − s in terms of the total number of degrees of freedom N ^sub dof^ can be obtained. Here the rate s is determined by both the best N-term approximation rate r and the approximation order of the space discretization in D.[PUBLICATION ABSTRACT]
Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D [subset] [R.sup.d] are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in [L.sup.2](D)-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y = y([omega]) = ([y.sub.i] ([omega])). This yields an equivalent parametric deterministic PDE whose solution u(x,y) is a function of both the space variable x [member of] D and the in general countably many parameters y.
Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D ⊂ℝ d are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in L 2 ( D )-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y = y ( ω )=( y i ( ω )). This yields an equivalent parametric deterministic PDE whose solution u ( x , y ) is a function of both the space variable x ∈ D and the in general countably many parameters  y . We establish new regularity theorems describing the smoothness properties of the solution u as a map from y ∈ U =(−1,1) ∞ to . These results lead to analytic estimates on the V norms of the coefficients (which are functions of x ) in a so-called “generalized polynomial chaos” (gpc) expansion of u . Convergence estimates of approximations of u by best N -term truncated V valued polynomials in the variable y ∈ U are established. These estimates are of the form N − r , where the rate of convergence r depends only on the decay of the random input expansion. It is shown that r exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with N “samples” (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients. A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family of finite element spaces in D of the coefficients in the N -term truncated gpc expansions of u ( x , y ). In contrast to previous works, the level l of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution u as a map from y ∈ U =(−1,1) ∞ to a smoothness space W ⊂ V are established leading to analytic estimates on the W norms of the gpc coefficients and on their space discretization error. The space W coincides with in the case where D is a smooth or convex domain. Our analysis shows that in realistic settings a convergence rate in terms of the total number of degrees of freedom N dof can be obtained. Here the rate s is determined by both the best N -term approximation rate r and the approximation order of the space discretization in  D .
Audience Academic
Author Cohen, Albert
Schwab, Christoph
DeVore, Ronald
Author_xml – sequence: 1
  givenname: Albert
  surname: Cohen
  fullname: Cohen, Albert
  email: cohen@ann.jussieu.fr
  organization: Laboratoire Jacques-Louis Lions, UMR 7598, UPMC Univ. Paris 06, Laboratoire Jacques-Louis Lions, UMR 7598, CNRS
– sequence: 2
  givenname: Ronald
  surname: DeVore
  fullname: DeVore, Ronald
  organization: Department of Mathematics, Texas A& M University
– sequence: 3
  givenname: Christoph
  surname: Schwab
  fullname: Schwab, Christoph
  organization: Seminar for Applied Mathematics, ETH Zürich
BookMark eNp9kl9vFCEUxSemJrbVD-Ab0Qfjw1QuDDPD47qubZNGTf3zShj2sqHOwgqsqd--bMdotlkNDxDyO5fDveekOvLBY1U9B3oGlHZvElBG-5oCrSXtWM0eVcfQgqg57_nRn3MnnlQnKd1QCkJCc1x9mwf_E-MKvUFyrTMmEix5iymTD3XGuCbnesT43Xky22xiuHVrnV3widgQiSbzUad7yWIc3SY7Q9Knd4v0tHps9Zjw2e_9tPr6fvFlflFffTy_nM-uatP0ba4HpgVw2i-ltq1ELRjg0IoBDBVNywfRMNS9XWptYRBWGGk7AZKi5S0Hrflp9WqqW6z92BbXau2SwXHUHsM2KQlSgmCSF_LFA_ImbKMv5lTfM9oC0KZALydoVT6tnLchR212JdWMC9F2TYEKVR-gSgsx6rGMxbpyvcefHeDLWuLamYOC13uCwmS8zSu9TUldfr7eZ2FiTQwpRbRqE8uM4i8FVO2ioaZoqBINtYuGYkXTPdAYl-_HWoy58b9KNilTecWvMP7t4r9Fd5Uryuc
CODEN FCMOA3
CitedBy_id crossref_primary_10_1142_S0218202513500218
crossref_primary_10_1007_s00211_024_01397_9
crossref_primary_10_1007_s10013_013_0011_9
crossref_primary_10_1093_imanum_drab036
crossref_primary_10_1007_s10440_019_00262_4
crossref_primary_10_1007_s10915_018_0652_7
crossref_primary_10_1007_s00211_013_0572_2
crossref_primary_10_1002_gamm_201310004
crossref_primary_10_1016_j_jsv_2020_115708
crossref_primary_10_1016_j_camwa_2013_06_005
crossref_primary_10_1137_140985913
crossref_primary_10_1137_19M1262796
crossref_primary_10_1137_22M1525181
crossref_primary_10_1016_j_jco_2015_09_006
crossref_primary_10_1007_s00211_011_0377_0
crossref_primary_10_1007_s10915_024_02766_0
crossref_primary_10_1142_S0219530511001728
crossref_primary_10_1137_22M1532263
crossref_primary_10_1137_19M1294952
crossref_primary_10_1137_20M1364722
crossref_primary_10_1016_j_matpur_2014_04_009
crossref_primary_10_2139_ssrn_3965238
crossref_primary_10_1007_s00211_017_0878_6
crossref_primary_10_1016_j_camwa_2024_04_007
crossref_primary_10_1016_j_jcp_2024_113488
crossref_primary_10_1007_s00211_021_01257_w
crossref_primary_10_1007_s00365_022_09570_9
crossref_primary_10_3934_ipi_2025007
crossref_primary_10_1007_s00211_016_0791_4
crossref_primary_10_1088_0266_5611_29_12_125011
crossref_primary_10_1137_23M1546981
crossref_primary_10_1051_m2an_2024050
crossref_primary_10_1137_090750743
crossref_primary_10_1137_22M1486170
crossref_primary_10_1007_s10915_015_0091_7
crossref_primary_10_1016_j_jco_2017_12_001
crossref_primary_10_1142_S0219530512500145
crossref_primary_10_1016_j_cma_2012_05_003
crossref_primary_10_4213_sm9791
crossref_primary_10_1016_j_jcp_2023_111912
crossref_primary_10_1051_m2an_2020013
crossref_primary_10_1137_120878999
crossref_primary_10_1142_S0218202513500681
crossref_primary_10_1016_j_camwa_2018_07_041
crossref_primary_10_1016_j_jcp_2015_02_025
crossref_primary_10_1137_16M1078690
crossref_primary_10_1016_j_camwa_2021_07_001
crossref_primary_10_1137_110826539
crossref_primary_10_1142_S0218202519500349
crossref_primary_10_1016_j_camwa_2015_06_021
crossref_primary_10_1007_s40072_019_00142_w
crossref_primary_10_1137_100785715
crossref_primary_10_1093_imanum_dru066
crossref_primary_10_1137_20M1333407
crossref_primary_10_1016_j_cma_2013_04_003
crossref_primary_10_1007_s00780_021_00462_7
crossref_primary_10_1002_fld_4843
crossref_primary_10_1137_20M1338137
crossref_primary_10_1007_s10444_019_09723_8
crossref_primary_10_1007_s00211_022_01339_3
crossref_primary_10_1002_mana_201100131
crossref_primary_10_1093_imanum_drx052
crossref_primary_10_1137_18M1205844
crossref_primary_10_1142_S0218202524500179
crossref_primary_10_1007_s00477_018_1637_7
crossref_primary_10_1007_s10208_016_9329_5
crossref_primary_10_1007_s10444_018_9594_8
crossref_primary_10_1007_s10543_011_0368_7
crossref_primary_10_1051_m2an_2019048
crossref_primary_10_1051_m2an_2021017
crossref_primary_10_1137_21M1461988
crossref_primary_10_1137_17M1132197
crossref_primary_10_1017_S0962492911000055
crossref_primary_10_1137_18M1194420
crossref_primary_10_1137_22M1479361
crossref_primary_10_1007_s10208_017_9350_3
crossref_primary_10_1137_120894725
crossref_primary_10_1137_18M1234151
crossref_primary_10_1007_s10208_015_9265_9
crossref_primary_10_1016_j_acha_2015_02_003
crossref_primary_10_1016_j_camwa_2015_12_005
crossref_primary_10_1016_j_jat_2012_11_005
crossref_primary_10_1142_S0218202512500236
crossref_primary_10_1137_15M1041390
crossref_primary_10_1016_j_jcp_2016_10_044
crossref_primary_10_1007_s00211_023_01364_w
crossref_primary_10_1137_17M1123079
crossref_primary_10_1137_20M131309X
crossref_primary_10_1016_j_camwa_2015_04_024
crossref_primary_10_1016_j_jco_2025_101933
crossref_primary_10_1137_23M1585015
crossref_primary_10_1142_S0218202513500589
crossref_primary_10_1002_num_22856
crossref_primary_10_1088_0266_5611_30_6_065007
crossref_primary_10_1137_130905253
crossref_primary_10_1137_140998652
crossref_primary_10_4213_sm9791e
crossref_primary_10_1007_s43670_022_00037_3
crossref_primary_10_1016_j_jcp_2014_02_024
crossref_primary_10_1137_110847597
crossref_primary_10_1007_s00365_017_9369_3
crossref_primary_10_1016_j_matcom_2017_10_009
crossref_primary_10_1016_j_apnum_2022_05_009
crossref_primary_10_1007_s10092_023_00565_x
crossref_primary_10_1007_s10208_016_9317_9
crossref_primary_10_1137_17M1137875
crossref_primary_10_1016_j_jcp_2023_112103
crossref_primary_10_1137_18M1176063
crossref_primary_10_1142_S0219876216500286
crossref_primary_10_1088_0266_5611_28_4_045003
crossref_primary_10_1017_fms_2020_23
crossref_primary_10_1137_16M1077611
crossref_primary_10_1016_j_cma_2015_08_006
crossref_primary_10_1007_s00211_024_01436_5
crossref_primary_10_1007_s40306_019_00345_2
crossref_primary_10_1007_s10569_017_9767_7
crossref_primary_10_1007_s10208_013_9154_z
crossref_primary_10_4213_sm9068
crossref_primary_10_1137_16M1085760
crossref_primary_10_1142_S0219530518500203
crossref_primary_10_1088_0266_5611_29_6_065011
crossref_primary_10_1007_s00365_011_9147_6
crossref_primary_10_1051_m2an_2018012
crossref_primary_10_1007_s00365_021_09542_5
crossref_primary_10_1051_m2an_2014050
crossref_primary_10_1007_s00211_020_01123_1
crossref_primary_10_1016_j_jat_2016_02_006
crossref_primary_10_1007_s10915_018_0661_6
crossref_primary_10_1137_130943984
crossref_primary_10_1007_s00211_021_01212_9
crossref_primary_10_4208_eajam_090615_060216a
crossref_primary_10_1007_s10444_024_10171_2
crossref_primary_10_1016_j_cma_2017_08_016
crossref_primary_10_1137_16M1082597
crossref_primary_10_1137_20M1369373
crossref_primary_10_1155_2015_812069
crossref_primary_10_1137_16M1106675
crossref_primary_10_1016_j_camwa_2013_03_004
crossref_primary_10_1137_100793682
crossref_primary_10_1016_j_cam_2017_05_031
crossref_primary_10_1142_S0219530513500012
crossref_primary_10_1007_s10915_013_9764_2
crossref_primary_10_1016_j_camwa_2015_09_013
crossref_primary_10_1007_s00211_019_01051_9
crossref_primary_10_1137_20M1342586
crossref_primary_10_1088_0266_5611_29_8_085010
crossref_primary_10_1137_120884158
crossref_primary_10_1016_j_jat_2019_04_006
crossref_primary_10_1007_s10208_014_9237_5
crossref_primary_10_1016_j_jcp_2022_111691
crossref_primary_10_1137_18M1236265
crossref_primary_10_1137_130929904
crossref_primary_10_1016_j_camwa_2012_10_008
crossref_primary_10_1007_s11075_016_0184_x
crossref_primary_10_1137_15M102188X
crossref_primary_10_1137_17M1117550
crossref_primary_10_1137_17M1123845
crossref_primary_10_1137_16M1061692
crossref_primary_10_1137_23M1596296
crossref_primary_10_1142_S0218202513500395
crossref_primary_10_1051_m2an_2020003
crossref_primary_10_1016_j_chemolab_2011_09_001
crossref_primary_10_1137_16M1096116
crossref_primary_10_1016_j_amc_2014_12_112
crossref_primary_10_1137_23M1593188
crossref_primary_10_1007_s40072_017_0092_7
crossref_primary_10_1007_s00033_016_0669_4
crossref_primary_10_5802_smai_jcm_74
crossref_primary_10_1007_s00211_016_0850_x
crossref_primary_10_1007_s00365_019_09461_6
crossref_primary_10_1070_SM9068
crossref_primary_10_1088_0266_5611_28_2_025009
crossref_primary_10_1016_j_camwa_2015_12_045
crossref_primary_10_1007_s10013_022_00584_1
crossref_primary_10_1137_18M1229560
crossref_primary_10_1007_s10915_023_02134_4
crossref_primary_10_1007_s10208_013_9186_4
crossref_primary_10_1016_j_cam_2019_112635
crossref_primary_10_1016_j_jco_2023_101779
crossref_primary_10_1016_j_cma_2021_113845
crossref_primary_10_1017_S0962492915000033
crossref_primary_10_1137_18M1170601
crossref_primary_10_1007_s10444_014_9350_7
crossref_primary_10_1093_imatrm_tnac001
crossref_primary_10_1007_s10915_022_01859_y
crossref_primary_10_1007_s10444_025_10224_0
crossref_primary_10_1137_110845537
crossref_primary_10_1016_j_jcp_2019_07_020
crossref_primary_10_1017_S0956792514000072
crossref_primary_10_1137_17M1138881
Cites_doi 10.1007/s11831-008-9019-9
10.1007/s10492-006-0010-1
10.1137/S0036142902418680
10.1137/050645142
10.1137/S1064827501387826
10.2307/2371268
10.1090/S0025-5718-06-01917-X
10.1137/070680540
10.1007/BF02818931
10.1016/j.jcp.2006.01.048
10.1137/040616449
10.1017/S0962492900002816
10.1137/060663660
10.1007/978-1-4612-1170-9
10.1090/S0025-5718-00-01252-7
10.1142/S0219530511001728
10.1093/imanum/drl025
ContentType Journal Article
Copyright SFoCM 2010
COPYRIGHT 2010 Springer
Copyright_xml – notice: SFoCM 2010
– notice: COPYRIGHT 2010 Springer
DBID AAYXX
CITATION
ISR
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-010-9072-2
DatabaseName CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Civil Engineering Abstracts




DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 646
ExternalDocumentID 2421015891
A355674043
10_1007_s10208_010_9072_2
Genre Feature
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
AEIIB
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c486t-b2a51308d9af69ea521eb65b1c05463b542ea8fdaaf1b5f5c9f75190ef3631aa3
IEDL.DBID U2A
ISSN 1615-3375
IngestDate Fri Sep 05 04:38:58 EDT 2025
Fri Jul 25 19:19:47 EDT 2025
Tue Jun 17 21:45:16 EDT 2025
Thu Jun 12 23:37:26 EDT 2025
Tue Jun 10 20:15:35 EDT 2025
Fri Jun 27 04:17:22 EDT 2025
Tue Jul 01 04:30:04 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Fri Feb 21 02:36:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Wiener polynomial chaos
65C30
Stochastic and parametric elliptic equations
Sparsity
41A
Approximation rates
Nonlinear approximation
65N
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-b2a51308d9af69ea521eb65b1c05463b542ea8fdaaf1b5f5c9f75190ef3631aa3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 882061104
PQPubID 43692
PageCount 32
ParticipantIDs proquest_miscellaneous_919915293
proquest_journals_882061104
gale_infotracmisc_A355674043
gale_infotracgeneralonefile_A355674043
gale_infotracacademiconefile_A355674043
gale_incontextgauss_ISR_A355674043
crossref_primary_10_1007_s10208_010_9072_2
crossref_citationtrail_10_1007_s10208_010_9072_2
springer_journals_10_1007_s10208_010_9072_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2010
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References Ghanem, Spanos (CR9) 1997; 4
Kleiber, Hien (CR11) 1992
Babuška, Nobile, Tempone (CR2) 2007; 45
Ciarlet (CR3) 1978
CR6
Nobile, Tempone, Webster (CR14) 2008; 46
Schwab, Todor (CR17) 2006; 217
Nobile, Tempone, Webster (CR13) 2008; 46
Karniadakis, Xiu (CR10) 2002; 24
DeVore (CR7) 1998; 7
Todor, Schwab (CR20) 2007; 45
Cohen (CR4) 2003
Schoutens (CR16) 2000
Ledoux, Talagrand (CR12) 1991
Gantumur, Harbecht, Stevenson (CR8) 2007; 76
Todor (CR19) 2006; 44
Babuška, Tempone, Zouraris (CR1) 2004; 42
Smolyak (CR18) 1963; 4
Cohen, Dahmen, DeVore (CR5) 2001; 70
von Petersdorff, Schwab (CR21) 2006; 51
Wiener (CR22) 1938; 60
Rozza, Huynh, Patera (CR15) 2008; 15
A. Cohen (9072_CR4) 2003
I. Babuška (9072_CR1) 2004; 42
R. Todor (9072_CR19) 2006; 44
R. Ghanem (9072_CR9) 1997; 4
C. Schwab (9072_CR17) 2006; 217
R. DeVore (9072_CR7) 1998; 7
M. Kleiber (9072_CR11) 1992
R. Todor (9072_CR20) 2007; 45
T. Gantumur (9072_CR8) 2007; 76
T. Petersdorff von (9072_CR21) 2006; 51
N. Wiener (9072_CR22) 1938; 60
A. Cohen (9072_CR5) 2001; 70
9072_CR6
G. Rozza (9072_CR15) 2008; 15
G.E. Karniadakis (9072_CR10) 2002; 24
F. Nobile (9072_CR13) 2008; 46
W. Schoutens (9072_CR16) 2000
F. Nobile (9072_CR14) 2008; 46
S.A. Smolyak (9072_CR18) 1963; 4
P.G. Ciarlet (9072_CR3) 1978
I. Babuška (9072_CR2) 2007; 45
M. Ledoux (9072_CR12) 1991
References_xml – volume: 15
  start-page: 229
  year: 2008
  end-page: 275
  ident: CR15
  article-title: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations and application to transport and continuum mechanics
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-008-9019-9
– volume: 51
  start-page: 145
  year: 2006
  end-page: 180
  ident: CR21
  article-title: Sparse finite element methods for operator equations with stochastic data
  publication-title: Appl. Math.
  doi: 10.1007/s10492-006-0010-1
– year: 2003
  ident: CR4
  publication-title: Numerical Analysis of Wavelet Methods
– volume: 42
  start-page: 800
  year: 2004
  end-page: 825
  ident: CR1
  article-title: Galerkin finite element approximations of stochastic elliptic partial differential equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142902418680
– volume: 45
  start-page: 1005
  year: 2007
  end-page: 1034
  ident: CR2
  article-title: A stochastic collocation method for elliptic partial differential equations with random input data
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050645142
– volume: 24
  start-page: 619
  year: 2002
  end-page: 644
  ident: CR10
  article-title: The Wiener-Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– volume: 60
  start-page: 897
  year: 1938
  end-page: 936
  ident: CR22
  article-title: The homogeneous chaos
  publication-title: Am. J. Math.
  doi: 10.2307/2371268
– volume: 76
  start-page: 615
  year: 2007
  end-page: 629
  ident: CR8
  article-title: An adaptive wavelet method without coarsening of the iterands
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-06-01917-X
– volume: 45
  start-page: 232
  year: 2007
  end-page: 261
  ident: CR20
  article-title: Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients
  publication-title: IMA J. Numer. Anal.
– volume: 46
  start-page: 2411
  year: 2008
  end-page: 2442
  ident: CR14
  article-title: An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/070680540
– year: 1978
  ident: CR3
  publication-title: The Finite Element Methods for Elliptic Problems
– ident: CR6
– volume: 4
  start-page: 63
  year: 1997
  end-page: 100
  ident: CR9
  article-title: Spectral techniques for stochastic finite elements
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF02818931
– year: 1992
  ident: CR11
  publication-title: The Stochastic Finite Element Methods
– volume: 70
  start-page: 27
  year: 2001
  end-page: 75
  ident: CR5
  article-title: Adaptive wavelet methods for elliptic operator equations—convergence rates
  publication-title: Math. Comput.
– volume: 217
  start-page: 100
  year: 2006
  end-page: 122
  ident: CR17
  article-title: Karhúnen–Loève approximation of random fields by generalized fast multipole methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.01.048
– volume: 4
  start-page: 240
  year: 1963
  end-page: 243
  ident: CR18
  article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 44
  start-page: 865
  year: 2006
  end-page: 878
  ident: CR19
  article-title: Robust eigenvalue computation for smoothing operators
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/040616449
– volume: 7
  start-page: 51
  year: 1998
  end-page: 150
  ident: CR7
  article-title: Nonlinear approximation
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002816
– year: 1991
  ident: CR12
  publication-title: Probability in Banachspaces
– volume: 46
  start-page: 2309
  year: 2008
  end-page: 2345
  ident: CR13
  article-title: A sparse grid stochastic collocation method for elliptic partial differential equations with random input data
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/060663660
– year: 2000
  ident: CR16
  publication-title: Stochastic Processes and Orthogonal Polynomials
– volume-title: The Stochastic Finite Element Methods
  year: 1992
  ident: 9072_CR11
– volume-title: Probability in Banachspaces
  year: 1991
  ident: 9072_CR12
– volume: 60
  start-page: 897
  year: 1938
  ident: 9072_CR22
  publication-title: Am. J. Math.
  doi: 10.2307/2371268
– volume: 51
  start-page: 145
  year: 2006
  ident: 9072_CR21
  publication-title: Appl. Math.
  doi: 10.1007/s10492-006-0010-1
– volume-title: The Finite Element Methods for Elliptic Problems
  year: 1978
  ident: 9072_CR3
– volume: 46
  start-page: 2309
  year: 2008
  ident: 9072_CR13
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/060663660
– volume-title: Numerical Analysis of Wavelet Methods
  year: 2003
  ident: 9072_CR4
– volume: 76
  start-page: 615
  year: 2007
  ident: 9072_CR8
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-06-01917-X
– volume: 7
  start-page: 51
  year: 1998
  ident: 9072_CR7
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002816
– volume: 15
  start-page: 229
  year: 2008
  ident: 9072_CR15
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-008-9019-9
– volume: 42
  start-page: 800
  year: 2004
  ident: 9072_CR1
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142902418680
– volume: 45
  start-page: 1005
  year: 2007
  ident: 9072_CR2
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050645142
– volume: 46
  start-page: 2411
  year: 2008
  ident: 9072_CR14
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/070680540
– volume-title: Stochastic Processes and Orthogonal Polynomials
  year: 2000
  ident: 9072_CR16
  doi: 10.1007/978-1-4612-1170-9
– volume: 4
  start-page: 63
  year: 1997
  ident: 9072_CR9
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF02818931
– volume: 70
  start-page: 27
  year: 2001
  ident: 9072_CR5
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-00-01252-7
– ident: 9072_CR6
  doi: 10.1142/S0219530511001728
– volume: 24
  start-page: 619
  year: 2002
  ident: 9072_CR10
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– volume: 4
  start-page: 240
  year: 1963
  ident: 9072_CR18
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 45
  start-page: 232
  year: 2007
  ident: 9072_CR20
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drl025
– volume: 217
  start-page: 100
  year: 2006
  ident: 9072_CR17
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.01.048
– volume: 44
  start-page: 865
  year: 2006
  ident: 9072_CR19
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/040616449
SSID ssj0015914
ssib031263371
Score 2.4156673
Snippet Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D ⊂ℝ d are introduced and their...
Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D [subset] [R.sup.d] are introduced...
Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D^sup d^ are introduced and their...
Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D super(d) are introduced and their...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 615
SubjectTerms Analysis
Applications of Mathematics
Approximation
Computational mathematics
Computer Science
Computer simulation
Convergence
Economics
Estimates
Galerkin methods
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Matrix Theory
Monte Carlo method
Numerical Analysis
Smoothness
Theorems
Title Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs
URI https://link.springer.com/article/10.1007/s10208-010-9072-2
https://www.proquest.com/docview/882061104
https://www.proquest.com/docview/919915293
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA-yPagPfkxl3eYIIgpKoE2btnnsnfduKrvI9Mp8CkmWDEF6ZbkX_PM9pzftrE7Bp0Jy0qb5OPklOed3CHleZa7UWmaMay1Y4S1nOpWGSYNel9am2uN5x-m8PFkU787FefTjDr21e38l2WnqX5zdeGd4lTLY0HEGendbIJ0UDOIFb4arAyE7Qm9EMizPK9FfZd70itFi9LtK_uNutFtyZg_IvYgVabPp3Ifklmt3yP2IG2mclQGS-tAMfdoOud07HEP23dOBmjU8Ip-P0M68c7l09AyRJl16OoGa0DlDPU2PoYJ4gk4b5Bv_8XXj3BgowFuqaRdFE4ugtQfoG0vDhzfT8JgsZtNPRycsBldgtqjLFTNcC1i_6gupfSmdhmXcmVKYzKbIkG9EwZ2u_YXWPjPCCyt9Bc2dOp-XeaZ1_oRstcvW7RKa6qzyXbRP2CtmuZGeG5PnxoMiFXUlE5L2raxsZB7HABjf1DVnMpZW0DEKO0bxhLwainzf0G78S_gZdp1COosW7WUu9ToE9fbjmWoATpUVMggl5GUU8kv4uNXR_QB-ARmwRpIvRpKXG_7vmwQPRoIwMe0oe78fSioqhqBq5MsHyFUkhA65WBBt3Vq3XAcl0RpNAAxLyOt-AF6_4K-tsPdf0vvkDh8Mcw7I1upq7Z4CvFqZQ7LdzCaTOT6Pv7yfHnbT6yfQiBrC
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQORQOPAqI0AIWQiCBLCVOnMTHpbRsobtCpYt6s2zXrpBQFuFdiZ_PTNZOCRQkrvFMHnY8_uyZ-YaQ503haq1lwbjWglXecqZzaZg0mHVpba49nnfM5vV0Ub0_E2cxjzukaPfkkuwt9S_JbrwPvMoZbOg4A7t7Hb2MuONa8MngOhCyJ_RGJMPKshHJlXnVLUaL0e8m-Q_faL_kHN4htyJWpJPN4N4l11y3Q25H3EjjrAxwKZVmSNd2yHZKOIbmm7OBmjXcI5_3Mc68T7l09ASRJl16-gbehM4Z2mn6Dl4QT9DpBPnGf3zZJDcGCvCWatpX0UQVjPYAe2Np-Pj2INwni8OD0_0pi8UVmK3aesUM1wLWr_Zcal9Lp2EZd6YWprA5MuQbUXGnW3-utS-M8MJK3wDay50v67LQunxAtrpl5x4Smuui8X21T9grFqWRnhtTlsaDIRVtIzOSp15WNjKPYwGMr-qSMxm1FQyMwoFRPCOvBpVvG9qNfwk_w6FTSGfRYbzMhV6HoI4-nagJwKm6QQahjLyMQn4JD7c6ph_AJyAD1kjyxUjyYsP_fZXg3kgQJqYdNe-mX0lFwxBUi3z5ALmqjNChFRUx1q1zy3VQEqPRBMCwjLxOP-DlDf7aC4_-S_op2Z6ezo7V8dH8wy65wYcgnT2ytfq-do8Baq3Mk35q_QRiJxqV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELVQkbg8cClUhBawEAIJZDVx4iR-XNouLdBVVVjUN8v22hUSylZ4V-LzmUnilEBB4jUe5-Z45jg-c4aQF1XmSq1lxrjWghXecqZTaZg0mHVpbao9_u84npWH8-L9mTjr65yGyHaPW5JdTgOqNDWr3YuF3_0l8Y23JKyUweKOM_DB1wsI1cjpmvPJsI0gZCvujaiG5Xkl4rbmVacYBabf3fMf-6Rt-JneI3d63Egn3UDfJ9dcs0nu9hiS9jM0wKFYpiEe2yQ3Y_IxNN8-HmRawwPyZQ855236paOniDrp0tO3cCd0xtBn03dwg_g3nU5Qe_zH1y7RMVCAulTTtqImdkHmB_geS8PJ_kF4SObTg897h6wvtMBsUZcrZrgWEMvqhdS-lE5DSHemFCazKarlG1Fwp2u_0NpnRnhhpa8A-aXO52WeaZ1vkY1m2bhHhKY6q3xb-RPWjVlupOfG5Lnx4FRFXcmEpPEtK9urkGMxjG_qUj8ZeysYGIUDo3hCXg9dLjoJjn8ZP8ehUyht0SB35lyvQ1BHn07VBKBVWaGaUEJe9UZ-CRe3uk9FgEdANayR5cuR5XmnBX6V4c7IECapHTVvx09J9U4iqBq18wF-FQmhQyt2RN5b45broCQy0wRAsoS8iR_g5Qn--hYe_5f1M3LjZH-qPh7NPmyTW3zg6-yQjdX3tXsCqGtlnrYz6yesdR7a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+Rates+of+Best+N-term+Galerkin+Approximations+for+a+Class+of+Elliptic+sPDEs&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Cohen%2C+Albert&rft.au=DeVore%2C+Ronald&rft.au=Schwab%2C+Christoph&rft.date=2010-12-01&rft.pub=Springer-Verlag&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=10&rft.issue=6&rft.spage=615&rft.epage=646&rft_id=info:doi/10.1007%2Fs10208-010-9072-2&rft.externalDocID=10_1007_s10208_010_9072_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon