Application of Data Particle Geometrical Divide Algorithms in the Process of Radar Signal Recognition

The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the electromagnetic environment. Systems of this type, called ELINT class systems, are passive solutions that detect, process, and analyse radio-electronic sig...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 19; p. 8183
Main Authors Dudczyk, Janusz, Rybak, Łukasz
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.09.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23198183

Cover

Abstract The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the electromagnetic environment. Systems of this type, called ELINT class systems, are passive solutions that detect, process, and analyse radio-electronic signals, providing distinctive information on the identified emission source in the final stage of data processing. The data processing in the mentioned types of systems is a very sophisticated issue and is based on advanced machine learning algorithms, artificial neural networks, fractal analysis, intra-pulse analysis, unintentional out-of-band emission analysis, and hybrids of these methods. Currently, there is no optimal method that would allow for the unambiguous identification of particular copies of the same type of radar emission source. This article constitutes an attempt to analyse radar signals generated by six radars of the same type under comparable measurement conditions for all six cases. The concept of the SEI module for the ELINT system was proposed in this paper. The main aim was to perform an advanced analysis, the purpose of which was to identify particular copies of those radars. Pioneering in this research is the application of the author’s algorithm for the data particle geometrical divide, which at the moment has no reference in international publication reports. The research revealed that applying the data particle geometrical divide algorithms to the SEI process concerning six copies of the same radar type allows for almost three times better accuracy than a random labelling strategy within approximately one second.
AbstractList The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the electromagnetic environment. Systems of this type, called ELINT class systems, are passive solutions that detect, process, and analyse radio-electronic signals, providing distinctive information on the identified emission source in the final stage of data processing. The data processing in the mentioned types of systems is a very sophisticated issue and is based on advanced machine learning algorithms, artificial neural networks, fractal analysis, intra-pulse analysis, unintentional out-of-band emission analysis, and hybrids of these methods. Currently, there is no optimal method that would allow for the unambiguous identification of particular copies of the same type of radar emission source. This article constitutes an attempt to analyse radar signals generated by six radars of the same type under comparable measurement conditions for all six cases. The concept of the SEI module for the ELINT system was proposed in this paper. The main aim was to perform an advanced analysis, the purpose of which was to identify particular copies of those radars. Pioneering in this research is the application of the author’s algorithm for the data particle geometrical divide, which at the moment has no reference in international publication reports. The research revealed that applying the data particle geometrical divide algorithms to the SEI process concerning six copies of the same radar type allows for almost three times better accuracy than a random labelling strategy within approximately one second.
The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the electromagnetic environment. Systems of this type, called ELINT class systems, are passive solutions that detect, process, and analyse radio-electronic signals, providing distinctive information on the identified emission source in the final stage of data processing. The data processing in the mentioned types of systems is a very sophisticated issue and is based on advanced machine learning algorithms, artificial neural networks, fractal analysis, intra-pulse analysis, unintentional out-of-band emission analysis, and hybrids of these methods. Currently, there is no optimal method that would allow for the unambiguous identification of particular copies of the same type of radar emission source. This article constitutes an attempt to analyse radar signals generated by six radars of the same type under comparable measurement conditions for all six cases. The concept of the SEI module for the ELINT system was proposed in this paper. The main aim was to perform an advanced analysis, the purpose of which was to identify particular copies of those radars. Pioneering in this research is the application of the author's algorithm for the data particle geometrical divide, which at the moment has no reference in international publication reports. The research revealed that applying the data particle geometrical divide algorithms to the SEI process concerning six copies of the same radar type allows for almost three times better accuracy than a random labelling strategy within approximately one second.The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the electromagnetic environment. Systems of this type, called ELINT class systems, are passive solutions that detect, process, and analyse radio-electronic signals, providing distinctive information on the identified emission source in the final stage of data processing. The data processing in the mentioned types of systems is a very sophisticated issue and is based on advanced machine learning algorithms, artificial neural networks, fractal analysis, intra-pulse analysis, unintentional out-of-band emission analysis, and hybrids of these methods. Currently, there is no optimal method that would allow for the unambiguous identification of particular copies of the same type of radar emission source. This article constitutes an attempt to analyse radar signals generated by six radars of the same type under comparable measurement conditions for all six cases. The concept of the SEI module for the ELINT system was proposed in this paper. The main aim was to perform an advanced analysis, the purpose of which was to identify particular copies of those radars. Pioneering in this research is the application of the author's algorithm for the data particle geometrical divide, which at the moment has no reference in international publication reports. The research revealed that applying the data particle geometrical divide algorithms to the SEI process concerning six copies of the same radar type allows for almost three times better accuracy than a random labelling strategy within approximately one second.
Audience Academic
Author Dudczyk, Janusz
Rybak, Łukasz
AuthorAffiliation Institute of Telecommunications Systems, Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; lukasz.rybak@wat.edu.pl
AuthorAffiliation_xml – name: Institute of Telecommunications Systems, Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; lukasz.rybak@wat.edu.pl
Author_xml – sequence: 1
  givenname: Janusz
  orcidid: 0000-0001-7169-6824
  surname: Dudczyk
  fullname: Dudczyk, Janusz
– sequence: 2
  givenname: Łukasz
  orcidid: 0000-0002-2920-7326
  surname: Rybak
  fullname: Rybak, Łukasz
BookMark eNp1Uttq3DAUNCWhubQP_QNDX9rCJrrZlp7KkrRpINCQ5l0cy8deLbK0lbwp-ftqL4QmNEggcc7MSDOck-LAB49F8YGSM84VOU-MUyWp5G-KYyqYmEnGyME_96PiJKUlIYxzLt8WR7yRvCGUHxc4X62cNTDZ4MvQl5cwQXkLcbLGYXmFYcQp5r4rL-2D7bCcuyFEOy3GVFpfTgssb2MwmNKGfQcdxPKXHXwm3KEJg7cb5XfFYQ8u4fv9eVrcf_92f_FjdvPz6vpifjMzQtbTDBjHjmOFbd5UCVET0_Jeiq6ibUu5YdjWQLjsBJhKtaRWdY21aHsOSkl-WlzvZLsAS72KdoT4qANYvS2EOOi9My0aSniOjUKlhCJGKdMz7CWQXJcgstaXndbar-DxDzj3JEiJ3sSun2LP4K878GrdjtgZ9FME9-wHzzveLvQQHrJU1VSiIlnh014hht9rTJMebTLoHHgM66SZbBoulaqqDP34AroM65gT36LqOvtidUad7VADZLvW9yE_bPLqcLQmz09vc33eNKxiimzDO98RTAwpRey1sdN2LjLRuv-6_vyC8XpCfwGGPdIY
CitedBy_id crossref_primary_10_3390_app14104238
crossref_primary_10_3390_jmse12050810
crossref_primary_10_1109_TIM_2025_3529076
crossref_primary_10_3390_jmse12081379
crossref_primary_10_1109_TIM_2024_3391818
crossref_primary_10_3390_electronics13050846
crossref_primary_10_3390_jmse12081422
crossref_primary_10_3390_app14062367
Cites_doi 10.1109/22.989948
10.1109/SIU.2018.8404461
10.1007/11539902_104
10.1109/8.496249
10.24425/mms.2021.138537
10.1109/TAES.2014.130653
10.1109/TAP.2012.2227921
10.14429/dsj.61.529
10.1049/sil2.12069
10.1109/ACCESS.2020.3044453
10.3390/e22101088
10.1109/JSEN.2021.3087319
10.1109/LCOMM.2018.2871465
10.1088/1742-6596/1607/1/012109
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23198183
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_471032311a59490c99cf2ef8a01038a4
10.3390/s23198183
PMC10575450
A772529098
10_3390_s23198183
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c486t-a23ed3e5eb5eb194460cb3f84d51bb13c2eb6a038d4ac59b06966e64bf3a9983
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:43:12 EDT 2025
Sun Oct 26 04:09:14 EDT 2025
Tue Sep 30 17:11:49 EDT 2025
Thu Sep 04 16:22:52 EDT 2025
Tue Oct 07 07:32:10 EDT 2025
Mon Oct 20 17:16:13 EDT 2025
Thu Oct 16 04:29:21 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-a23ed3e5eb5eb194460cb3f84d51bb13c2eb6a038d4ac59b06966e64bf3a9983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2920-7326
0000-0001-7169-6824
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23198183
PMID 37837013
PQID 2876603226
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_471032311a59490c99cf2ef8a01038a4
unpaywall_primary_10_3390_s23198183
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10575450
proquest_miscellaneous_2877389955
proquest_journals_2876603226
gale_infotracacademiconefile_A772529098
crossref_citationtrail_10_3390_s23198183
crossref_primary_10_3390_s23198183
PublicationCentury 2000
PublicationDate 20230930
PublicationDateYYYYMMDD 2023-09-30
PublicationDate_xml – month: 9
  year: 2023
  text: 20230930
  day: 30
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dadgarnia (ref_8) 2021; 15
Jang (ref_7) 2015; 51
ref_14
Sharma (ref_10) 2020; 8
ref_1
ref_3
Qiu (ref_15) 2020; 1607
ref_2
Sletten (ref_6) 1996; 44
ref_19
ref_18
ref_17
Slater (ref_4) 2013; 61
Spezio (ref_13) 2002; 50
ref_16
Matuszewski (ref_9) 2021; 28
Abratkiewicz (ref_5) 2021; 21
Ding (ref_11) 2018; 22
Gupta (ref_12) 2011; 61
References_xml – volume: 50
  start-page: 633
  year: 2002
  ident: ref_13
  article-title: Electronic Warfare Systems
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/22.989948
– ident: ref_3
  doi: 10.1109/SIU.2018.8404461
– ident: ref_2
– ident: ref_19
  doi: 10.1007/11539902_104
– volume: 44
  start-page: 646
  year: 1996
  ident: ref_6
  article-title: Ultrawide-band Radar Observations of Multipath Propagation Over the Sea Surface
  publication-title: IEEE Trans. Antennas Propagation
  doi: 10.1109/8.496249
– volume: 28
  start-page: 781
  year: 2021
  ident: ref_9
  article-title: Evaluation of Emitter Location Accuracy with the Modified Triangulation Method by Means of Maximum Likelihood Estimators
  publication-title: Metrol. Meas. Syst.
  doi: 10.24425/mms.2021.138537
– volume: 51
  start-page: 792
  year: 2015
  ident: ref_7
  article-title: Multipath Effect on Radar Detection of Nonfluctuating Targets
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2014.130653
– ident: ref_16
– ident: ref_14
– ident: ref_1
– volume: 61
  start-page: 1371
  year: 2013
  ident: ref_4
  article-title: Demonstration of an Electrically Small Antenna Array for UHF Direction-of-Arrival Estimation
  publication-title: IEEE Trans. Antennas Propagation
  doi: 10.1109/TAP.2012.2227921
– volume: 61
  start-page: 228
  year: 2011
  ident: ref_12
  article-title: Electronic Warfare: Issues and Challenges for Emitter Classification
  publication-title: Def. Sci. J.
  doi: 10.14429/dsj.61.529
– ident: ref_18
– volume: 15
  start-page: 633
  year: 2021
  ident: ref_8
  article-title: Automatic Recognition of Pulse Repetition Interval Modulation Using Temporal Convolutional Network
  publication-title: IET Signal Process.
  doi: 10.1049/sil2.12069
– volume: 8
  start-page: 224761
  year: 2020
  ident: ref_10
  article-title: Artificial Intelligence Aided Electronic Warfare Systems—Recent Trends and Evolving Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3044453
– ident: ref_17
  doi: 10.3390/e22101088
– volume: 21
  start-page: 19000
  year: 2021
  ident: ref_5
  article-title: Multipath Interference Removal in Receivers of Linear Frequency Modulated Radar Pulses
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3087319
– volume: 22
  start-page: 2591
  year: 2018
  ident: ref_11
  article-title: Specific Emitter Identification via Convolutional Neural Networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2871465
– volume: 1607
  start-page: 012109
  year: 2020
  ident: ref_15
  article-title: Evaluation of ELINT System Effectiveness Based on Grey Relational Optimization Algorithm
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1607/1/012109
SSID ssj0023338
Score 2.4704027
Snippet The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8183
SubjectTerms Algorithms
Artificial intelligence
Classification
Data mining
data particle
Decision making
Electromagnetism
geometrical divide
imbalanced data sets
Machine learning
Military aspects
Neural networks
Propagation
Radar
radar identification
radar recognition
Radar systems
Radiation
Specific Emitter Identification
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8RSBgsxDgkvUJH4kPi6UUiGBUClSb5btTNqVtkm1mxXi3zOTeMOuCuKClFNsJ_Y87Plk-xvGXhdQBF8LnWKsAalUIFJvJKRoOlq6MpQ50EXhz1_08Xf56UydbaX6ojNhIz3wKLgDnDwzgUFI7pSRJgvGhKaApnKUoKByAxNoVpkNmIpQSyDyGnmEBIL6gxV-wODSJHZWn4Gk__pUfP145M11e-V-_nCLxdbac3SX3YlBI5-Nnb3HbkB7n93eohJ8wGD2eyeadw0_dL3jX-Pw-EfoLil1FiqEH9IFLOCzxXm3nPcXlys-bzmGgTzeGaDWJ652S_5tfk6_PdmcMerah-z06MPp--M0plBIg6x0n7pCQC1AgccnN4j9suBFU8la5d7nIhTgtUNB1tIFZXymEf6Alr4RDoGYeMT22q6Fx4zXdV3m2EaLppGICj3xiSpfqoAxpWsgYW83krUh0otTlouFRZhBSrCTEhL2cqp6NXJq_KnSO1LPVIFosIcXaBw2Ss_-yzgS9oaUa8lZsTPBxTsHOCSivbIzxBaqMJmpEra_0b-NXryyiCa1xh8UOmEvpmL0P9pUcS1066FOSRyFSiWs2rGbna7vlrTzi4HJm5IsYwibJezVZGJ_F8mT_yGSp-xWgf4xHnnZZ3v9cg3PMK7q_fPBhX4BsJMfyw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IJ5qoCDzkOASNYkfSQ4IbWlLhcSqWorUW2Q7znalbbLsQ4h_z0zWSbsqIOUUjxXbM7bniz3fALxLXGJNyVWIvoYLhXQ8NLlwIZqOEjq1aewoUPjbSJ3-EF8v5MUOjLpYGLpW2a2J7UJdNpb-kR-gZ69UhOanPs1_hpQ1ik5XuxQa2qdWKD-2FGN3YDchZqwB7B4ej87GPQTjiMg2_EIcwf7BEr2bHLcsvrUrteT9t5fo29cm767ruf79S89mN_akk4fwwDuTbLjR_iPYcfVjuH-DYvAJuOH1CTVrKnakV5qdeXthX1xzRSm1UFHsiAKzHBvOJtjt1eXVkk1rhu4h87EEVHusS71g36cT-uy4u3vU1E_h_OT4_PNp6FMrhFZkahXqhLuSO-kMPnGOmDCyhleZKGVsTMxt4ozSEc9Koa3MTaQQFjklTMU1AjT-DAZ1U7s9YGVZpjHWUbyqBKJFQzyj0qTSoq-pKxfAh25kC-tpxyn7xaxA-EFKKHolBPCmF51vuDb-JnRI6ukFiB67fdEsJoUfvQJ3XDQVHsda5iKPbJ7bKnFVpimrRaZFAO9JuQVNYmyM1T4WAbtEdFjFEDGHTPIozwLY7_Rf-Nm9LK5tMYDXfTHOSzps0bVr1q1MStyFUgaQbdnNVtO3S-rpZcvwTcmX0bWNAnjbm9i_h-T5_9v4Au4laPmbSy77MFgt1u4lelIr88pPjz85YR9K
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAceFcECjIPCS5pHn4kPqGFUiokqqq0UjlFtuNsI7bJajcLgl_POOtddilISEi5JBkndjzxfJPMfAPwIrWp0SUVIWINGzJuaaglsyGqjmAqM1liXaLwx0NxcMo-nPGztSx-F1aJrnjdL9IuCytECxZHKY0SGaFxodGkrF5_9d-SEoEAHBFAJq7CluC4M4Ct08Oj4ec-qci3XhAKUfTuoxnCGekus2GGerb-y2vy5TjJa_Nmor5_U-PxmhHavwVq2f1F7MmX3Xmnd82P35gd_2d8t-GmR6hkuFCpO3DFNnfhxhpv4T2ww1-_vUlbkT3VKXLklZC8t-2Fq9OFs0_2XLaXJcPxqJ3W3fnFjNQNQcxJfIKCa32sSjUln-qRu-3xMqCpbe7Dyf67k7cHoa_XEBqWiy5UKbUltdxq3BKJjmZsNK1yVvJE64Sa1GqhYpqXTBkudYyjE1YwXVGFXh_dhkHTNvYBkLIsswTbCFpVDF1Q7chLuc64QQCrKhvAq-XsFcZzmbuSGuMCfRo30cVqogN4thKdLAg8_iT0xqnASsBxbvcH2umo8E-vQDMeU2yRKC6ZjI2UpkptlStXKiNXLICXToEKtzJgZ4zyCQ44JMexVQzRkeGpjGUewM5Sxwq_ZMwKdF2FwBukIoCnq9P4srs_OKqx7byXyRwhIucB5Bu6udH1zTNNfd7ThruKzoiX4wCer9T474_k4T9JPYLrKaK-RQDNDgy66dw-RpTW6Sf-RfwJ-9o2_Q
  priority: 102
  providerName: Unpaywall
Title Application of Data Particle Geometrical Divide Algorithms in the Process of Radar Signal Recognition
URI https://www.proquest.com/docview/2876603226
https://www.proquest.com/docview/2877389955
https://pubmed.ncbi.nlm.nih.gov/PMC10575450
https://www.mdpi.com/1424-8220/23/19/8183/pdf?version=1696056176
https://doaj.org/article/471032311a59490c99cf2ef8a01038a4
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD7a5QF4mLiKsFGZi4CXjCS-JH5AqGPrJqRVVVml8hTZjtNV6pKuF8H-PcdpGlZtIFV5SOzG8TnOOV9sfx_A-8hGRmdU-JhrWJ9xS30tmfXRdQRTsYlD6zYKn3fF2YB9H_LhFqyXNdcdOL8X2jk9qcFscvj7-uYrDvgvDnEiZP88xxxFYuChH6bXvtOTcvOutbjGNuxizJJO1OGcNfMLEUVktuIZ2vyHjehUkfjffVXfXT75YFlM1c0vNZncik2dx7BXJ5WkvfKCJ7Bli6fw6BbV4DOw7b8z1aTMybFaKNKr_Yac2vLKSWuhwcix26BlSXsywodcXF7NybggmCaSek-Bq91XmZqRH-ORu21_vQapLJ7DRefk4tuZX0ss-IYlYuGriNqMWm41_kKJ2DAwmuYJy3iodUhNZLVQAU0ypgyXOhAIj6xgOqcKgRp9ATtFWdiXQLIsi0OsI2ieM0SN2vGNch1zgzmnyq0Hn9Y9m5qaftypYExShCHOCGljBA_eNkWnK86N-wodOfM0BRxNdnWinI3SuvdSjLwBxRqh4pLJwEhp8sjmiXLqFoliHnx0xk2de2FjjKr3JOAjOVqstI3Yg0cykIkHB2v7p2snTRFtCoE3iIQHb5rLOD7dpIsqbLmsysSOw5BzD5INv9lo-uaVYnxZMX07EWZMcQMP3jUu9u8uefX_Nu7Dwwg9f7XY5QB2FrOlfY0Z1UK3YDsexnhMOqct2D066fb6rerrRKsaNnhu0O21f_4BbJsnxg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcKp7CtMDyElys2t6H7QNCgVBS-hAqQcpttbtep5FSOySOqv4o_iOzjp00KnCrlJO9djYz38zOl92ZAXgT2cjojAofYw3rM26pr1NmfYSOYCo2cWhdovDxiej9ZN8GfLABv9tcGHessvWJtaPOSuP-I9_DyF6IAOEnPk5--a5rlNtdbVtoLGBxaC8vkLLNPhx0Ub9vo2j_S_9zz2-6CviGJaLyVURtRi23Gj9I4ZkIjKZ5wjIeah1SE1ktVECTjCnDUx0IZARWMJ1ThdyE4mtvwW1G0ZWg-cSDFb-jSPcWxYsoTYO9GYZOKa6HdG3JqzsDXPf_189kbs2Libq8UOPxlQVv_x5sN5Eq6SygdR82bPEA7l6pX_gQbGe1_U3KnHRVpcj3Bozkqy3PXb8uRAHpuqwvSzrjIcq0OjufkVFBMPYkTaKCe_pUZWpKfoyG7mtP24NNZfEI-jch4cewWZSFfQIky7I4xGcEzXOGVFS7IqZcx9xgIKty68H7VrLSNDXNXWuNsURu45Qgl0rw4NVy6GRRyONvgz459SwHuNrb9YVyOpSN9CQu54hDGoaKpywNTJqaPLJ5olzLjEQxD9455UrnIXAyRjWJDviTXK0t2UFCw6M0SBMPdlv9y8Z1zOQK6B68XN5Go3c7Oaqw5bweE7vCiJx7kKzhZm3q63eK0VldPtx1dsa4OfDg9RJi_xbJ0__P8QVs9frHR_Lo4ORwB-5EaAWL0zS7sFlN5_YZhmyVfl4bCgF5w4b5B8XNVbk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ-LygLiKwABzE7xETWLHSR4QKpSxMZimsUl9s2zH6Sp1SelF034a_45z0qRdNeBtUp5qu3HP-Xwu9bkAvIlcZE3OpY-2hvNF7LhvMuF8hI4UOrFJ6ChR-Me-3DkW3_pxfwN-t7kwFFbZysRaUOeVpf_IO2jZSxkg_GSnaMIiDnrbH8e_fOogRTetbTuNBUT23PkZum_TD7s95PXbKNr-cvR5x286DPhWpHLm64i7nLvYGXzQnRcysIYXqcjj0JiQ28gZqQOe5kLbODOBRO_ASWEKrtFP4fi11-B6wnlG0YRJf-XrcXT9FoWMcDDoTNGMylA38jX1V3cJuKwLLsdn3pyXY31-pkejC8pv-y7caaxW1l3A7B5suPI-3L5Qy_ABuO7qKpxVBevpmWYHDTDZV1edUu8uRATrUQaYY93RAGk6OzmdsmHJ0A5lTdICrT7UuZ6wn8MBvfawDXKqyodwdBUUfgSbZVW6x8DyPE9CXCN5UQh0Sw0VNI1NEls0anXhPHjfUlbZpr45tdkYKfRziAlqyQQPXi2njhdFPf426ROxZzmB6nDXH1STgWqop1C1IyZ5GOo4E1lgs8wWkStSTe0zUi08eEfMVSQtcDNWN0kP-JOo7pbqonMTR1mQpR5stfxXjRiZqhXoPXi5HEYBQLc6unTVvJ6TUJHEOPYgXcPN2tbXR8rhSV1KnLo8ow0dePB6CbF_k-TJ__f4Am7gkVTfd_f3nsKtCA_BIrBmCzZnk7l7htbbzDyvzwkDdcXn8g-7CVn8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAceFcECjIPCS5pHn4kPqGFUiokqqq0UjlFtuNsI7bJajcLgl_POOtddilISEi5JBkndjzxfJPMfAPwIrWp0SUVIWINGzJuaaglsyGqjmAqM1liXaLwx0NxcMo-nPGztSx-F1aJrnjdL9IuCytECxZHKY0SGaFxodGkrF5_9d-SEoEAHBFAJq7CluC4M4Ct08Oj4ec-qci3XhAKUfTuoxnCGekus2GGerb-y2vy5TjJa_Nmor5_U-PxmhHavwVq2f1F7MmX3Xmnd82P35gd_2d8t-GmR6hkuFCpO3DFNnfhxhpv4T2ww1-_vUlbkT3VKXLklZC8t-2Fq9OFs0_2XLaXJcPxqJ3W3fnFjNQNQcxJfIKCa32sSjUln-qRu-3xMqCpbe7Dyf67k7cHoa_XEBqWiy5UKbUltdxq3BKJjmZsNK1yVvJE64Sa1GqhYpqXTBkudYyjE1YwXVGFXh_dhkHTNvYBkLIsswTbCFpVDF1Q7chLuc64QQCrKhvAq-XsFcZzmbuSGuMCfRo30cVqogN4thKdLAg8_iT0xqnASsBxbvcH2umo8E-vQDMeU2yRKC6ZjI2UpkptlStXKiNXLICXToEKtzJgZ4zyCQ44JMexVQzRkeGpjGUewM5Sxwq_ZMwKdF2FwBukIoCnq9P4srs_OKqx7byXyRwhIucB5Bu6udH1zTNNfd7ThruKzoiX4wCer9T474_k4T9JPYLrKaK-RQDNDgy66dw-RpTW6Sf-RfwJ-9o2_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Data+Particle+Geometrical+Divide+Algorithms+in+the+Process+of+Radar+Signal+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Dudczyk%2C+Janusz&rft.au=Rybak%2C+%C5%81ukasz&rft.date=2023-09-30&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=19&rft.spage=8183&rft_id=info:doi/10.3390%2Fs23198183&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon