Application of Data Particle Geometrical Divide Algorithms in the Process of Radar Signal Recognition
The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the electromagnetic environment. Systems of this type, called ELINT class systems, are passive solutions that detect, process, and analyse radio-electronic sig...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 19; p. 8183 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
30.09.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23198183 |
Cover
| Abstract | The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the electromagnetic environment. Systems of this type, called ELINT class systems, are passive solutions that detect, process, and analyse radio-electronic signals, providing distinctive information on the identified emission source in the final stage of data processing. The data processing in the mentioned types of systems is a very sophisticated issue and is based on advanced machine learning algorithms, artificial neural networks, fractal analysis, intra-pulse analysis, unintentional out-of-band emission analysis, and hybrids of these methods. Currently, there is no optimal method that would allow for the unambiguous identification of particular copies of the same type of radar emission source. This article constitutes an attempt to analyse radar signals generated by six radars of the same type under comparable measurement conditions for all six cases. The concept of the SEI module for the ELINT system was proposed in this paper. The main aim was to perform an advanced analysis, the purpose of which was to identify particular copies of those radars. Pioneering in this research is the application of the author’s algorithm for the data particle geometrical divide, which at the moment has no reference in international publication reports. The research revealed that applying the data particle geometrical divide algorithms to the SEI process concerning six copies of the same radar type allows for almost three times better accuracy than a random labelling strategy within approximately one second. |
|---|---|
| AbstractList | The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the electromagnetic environment. Systems of this type, called ELINT class systems, are passive solutions that detect, process, and analyse radio-electronic signals, providing distinctive information on the identified emission source in the final stage of data processing. The data processing in the mentioned types of systems is a very sophisticated issue and is based on advanced machine learning algorithms, artificial neural networks, fractal analysis, intra-pulse analysis, unintentional out-of-band emission analysis, and hybrids of these methods. Currently, there is no optimal method that would allow for the unambiguous identification of particular copies of the same type of radar emission source. This article constitutes an attempt to analyse radar signals generated by six radars of the same type under comparable measurement conditions for all six cases. The concept of the SEI module for the ELINT system was proposed in this paper. The main aim was to perform an advanced analysis, the purpose of which was to identify particular copies of those radars. Pioneering in this research is the application of the author’s algorithm for the data particle geometrical divide, which at the moment has no reference in international publication reports. The research revealed that applying the data particle geometrical divide algorithms to the SEI process concerning six copies of the same radar type allows for almost three times better accuracy than a random labelling strategy within approximately one second. The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the electromagnetic environment. Systems of this type, called ELINT class systems, are passive solutions that detect, process, and analyse radio-electronic signals, providing distinctive information on the identified emission source in the final stage of data processing. The data processing in the mentioned types of systems is a very sophisticated issue and is based on advanced machine learning algorithms, artificial neural networks, fractal analysis, intra-pulse analysis, unintentional out-of-band emission analysis, and hybrids of these methods. Currently, there is no optimal method that would allow for the unambiguous identification of particular copies of the same type of radar emission source. This article constitutes an attempt to analyse radar signals generated by six radars of the same type under comparable measurement conditions for all six cases. The concept of the SEI module for the ELINT system was proposed in this paper. The main aim was to perform an advanced analysis, the purpose of which was to identify particular copies of those radars. Pioneering in this research is the application of the author's algorithm for the data particle geometrical divide, which at the moment has no reference in international publication reports. The research revealed that applying the data particle geometrical divide algorithms to the SEI process concerning six copies of the same radar type allows for almost three times better accuracy than a random labelling strategy within approximately one second.The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the electromagnetic environment. Systems of this type, called ELINT class systems, are passive solutions that detect, process, and analyse radio-electronic signals, providing distinctive information on the identified emission source in the final stage of data processing. The data processing in the mentioned types of systems is a very sophisticated issue and is based on advanced machine learning algorithms, artificial neural networks, fractal analysis, intra-pulse analysis, unintentional out-of-band emission analysis, and hybrids of these methods. Currently, there is no optimal method that would allow for the unambiguous identification of particular copies of the same type of radar emission source. This article constitutes an attempt to analyse radar signals generated by six radars of the same type under comparable measurement conditions for all six cases. The concept of the SEI module for the ELINT system was proposed in this paper. The main aim was to perform an advanced analysis, the purpose of which was to identify particular copies of those radars. Pioneering in this research is the application of the author's algorithm for the data particle geometrical divide, which at the moment has no reference in international publication reports. The research revealed that applying the data particle geometrical divide algorithms to the SEI process concerning six copies of the same radar type allows for almost three times better accuracy than a random labelling strategy within approximately one second. |
| Audience | Academic |
| Author | Dudczyk, Janusz Rybak, Łukasz |
| AuthorAffiliation | Institute of Telecommunications Systems, Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; lukasz.rybak@wat.edu.pl |
| AuthorAffiliation_xml | – name: Institute of Telecommunications Systems, Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; lukasz.rybak@wat.edu.pl |
| Author_xml | – sequence: 1 givenname: Janusz orcidid: 0000-0001-7169-6824 surname: Dudczyk fullname: Dudczyk, Janusz – sequence: 2 givenname: Łukasz orcidid: 0000-0002-2920-7326 surname: Rybak fullname: Rybak, Łukasz |
| BookMark | eNp1Uttq3DAUNCWhubQP_QNDX9rCJrrZlp7KkrRpINCQ5l0cy8deLbK0lbwp-ftqL4QmNEggcc7MSDOck-LAB49F8YGSM84VOU-MUyWp5G-KYyqYmEnGyME_96PiJKUlIYxzLt8WR7yRvCGUHxc4X62cNTDZ4MvQl5cwQXkLcbLGYXmFYcQp5r4rL-2D7bCcuyFEOy3GVFpfTgssb2MwmNKGfQcdxPKXHXwm3KEJg7cb5XfFYQ8u4fv9eVrcf_92f_FjdvPz6vpifjMzQtbTDBjHjmOFbd5UCVET0_Jeiq6ibUu5YdjWQLjsBJhKtaRWdY21aHsOSkl-WlzvZLsAS72KdoT4qANYvS2EOOi9My0aSniOjUKlhCJGKdMz7CWQXJcgstaXndbar-DxDzj3JEiJ3sSun2LP4K878GrdjtgZ9FME9-wHzzveLvQQHrJU1VSiIlnh014hht9rTJMebTLoHHgM66SZbBoulaqqDP34AroM65gT36LqOvtidUad7VADZLvW9yE_bPLqcLQmz09vc33eNKxiimzDO98RTAwpRey1sdN2LjLRuv-6_vyC8XpCfwGGPdIY |
| CitedBy_id | crossref_primary_10_3390_app14104238 crossref_primary_10_3390_jmse12050810 crossref_primary_10_1109_TIM_2025_3529076 crossref_primary_10_3390_jmse12081379 crossref_primary_10_1109_TIM_2024_3391818 crossref_primary_10_3390_electronics13050846 crossref_primary_10_3390_jmse12081422 crossref_primary_10_3390_app14062367 |
| Cites_doi | 10.1109/22.989948 10.1109/SIU.2018.8404461 10.1007/11539902_104 10.1109/8.496249 10.24425/mms.2021.138537 10.1109/TAES.2014.130653 10.1109/TAP.2012.2227921 10.14429/dsj.61.529 10.1049/sil2.12069 10.1109/ACCESS.2020.3044453 10.3390/e22101088 10.1109/JSEN.2021.3087319 10.1109/LCOMM.2018.2871465 10.1088/1742-6596/1607/1/012109 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23198183 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_471032311a59490c99cf2ef8a01038a4 10.3390/s23198183 PMC10575450 A772529098 10_3390_s23198183 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c486t-a23ed3e5eb5eb194460cb3f84d51bb13c2eb6a038d4ac59b06966e64bf3a9983 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:43:12 EDT 2025 Sun Oct 26 04:09:14 EDT 2025 Tue Sep 30 17:11:49 EDT 2025 Thu Sep 04 16:22:52 EDT 2025 Tue Oct 07 07:32:10 EDT 2025 Mon Oct 20 17:16:13 EDT 2025 Thu Oct 16 04:29:21 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-a23ed3e5eb5eb194460cb3f84d51bb13c2eb6a038d4ac59b06966e64bf3a9983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2920-7326 0000-0001-7169-6824 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23198183 |
| PMID | 37837013 |
| PQID | 2876603226 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_471032311a59490c99cf2ef8a01038a4 unpaywall_primary_10_3390_s23198183 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10575450 proquest_miscellaneous_2877389955 proquest_journals_2876603226 gale_infotracacademiconefile_A772529098 crossref_citationtrail_10_3390_s23198183 crossref_primary_10_3390_s23198183 |
| PublicationCentury | 2000 |
| PublicationDate | 20230930 |
| PublicationDateYYYYMMDD | 2023-09-30 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230930 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Dadgarnia (ref_8) 2021; 15 Jang (ref_7) 2015; 51 ref_14 Sharma (ref_10) 2020; 8 ref_1 ref_3 Qiu (ref_15) 2020; 1607 ref_2 Sletten (ref_6) 1996; 44 ref_19 ref_18 ref_17 Slater (ref_4) 2013; 61 Spezio (ref_13) 2002; 50 ref_16 Matuszewski (ref_9) 2021; 28 Abratkiewicz (ref_5) 2021; 21 Ding (ref_11) 2018; 22 Gupta (ref_12) 2011; 61 |
| References_xml | – volume: 50 start-page: 633 year: 2002 ident: ref_13 article-title: Electronic Warfare Systems publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/22.989948 – ident: ref_3 doi: 10.1109/SIU.2018.8404461 – ident: ref_2 – ident: ref_19 doi: 10.1007/11539902_104 – volume: 44 start-page: 646 year: 1996 ident: ref_6 article-title: Ultrawide-band Radar Observations of Multipath Propagation Over the Sea Surface publication-title: IEEE Trans. Antennas Propagation doi: 10.1109/8.496249 – volume: 28 start-page: 781 year: 2021 ident: ref_9 article-title: Evaluation of Emitter Location Accuracy with the Modified Triangulation Method by Means of Maximum Likelihood Estimators publication-title: Metrol. Meas. Syst. doi: 10.24425/mms.2021.138537 – volume: 51 start-page: 792 year: 2015 ident: ref_7 article-title: Multipath Effect on Radar Detection of Nonfluctuating Targets publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2014.130653 – ident: ref_16 – ident: ref_14 – ident: ref_1 – volume: 61 start-page: 1371 year: 2013 ident: ref_4 article-title: Demonstration of an Electrically Small Antenna Array for UHF Direction-of-Arrival Estimation publication-title: IEEE Trans. Antennas Propagation doi: 10.1109/TAP.2012.2227921 – volume: 61 start-page: 228 year: 2011 ident: ref_12 article-title: Electronic Warfare: Issues and Challenges for Emitter Classification publication-title: Def. Sci. J. doi: 10.14429/dsj.61.529 – ident: ref_18 – volume: 15 start-page: 633 year: 2021 ident: ref_8 article-title: Automatic Recognition of Pulse Repetition Interval Modulation Using Temporal Convolutional Network publication-title: IET Signal Process. doi: 10.1049/sil2.12069 – volume: 8 start-page: 224761 year: 2020 ident: ref_10 article-title: Artificial Intelligence Aided Electronic Warfare Systems—Recent Trends and Evolving Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3044453 – ident: ref_17 doi: 10.3390/e22101088 – volume: 21 start-page: 19000 year: 2021 ident: ref_5 article-title: Multipath Interference Removal in Receivers of Linear Frequency Modulated Radar Pulses publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3087319 – volume: 22 start-page: 2591 year: 2018 ident: ref_11 article-title: Specific Emitter Identification via Convolutional Neural Networks publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2018.2871465 – volume: 1607 start-page: 012109 year: 2020 ident: ref_15 article-title: Evaluation of ELINT System Effectiveness Based on Grey Relational Optimization Algorithm publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1607/1/012109 |
| SSID | ssj0023338 |
| Score | 2.4704027 |
| Snippet | The process of recognising and classifying radar signals and their radiation sources is currently a key element of operational activities in the... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 8183 |
| SubjectTerms | Algorithms Artificial intelligence Classification Data mining data particle Decision making Electromagnetism geometrical divide imbalanced data sets Machine learning Military aspects Neural networks Propagation Radar radar identification radar recognition Radar systems Radiation Specific Emitter Identification Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8RSBgsxDgkvUJH4kPi6UUiGBUClSb5btTNqVtkm1mxXi3zOTeMOuCuKClFNsJ_Y87Plk-xvGXhdQBF8LnWKsAalUIFJvJKRoOlq6MpQ50EXhz1_08Xf56UydbaX6ojNhIz3wKLgDnDwzgUFI7pSRJgvGhKaApnKUoKByAxNoVpkNmIpQSyDyGnmEBIL6gxV-wODSJHZWn4Gk__pUfP145M11e-V-_nCLxdbac3SX3YlBI5-Nnb3HbkB7n93eohJ8wGD2eyeadw0_dL3jX-Pw-EfoLil1FiqEH9IFLOCzxXm3nPcXlys-bzmGgTzeGaDWJ652S_5tfk6_PdmcMerah-z06MPp--M0plBIg6x0n7pCQC1AgccnN4j9suBFU8la5d7nIhTgtUNB1tIFZXymEf6Alr4RDoGYeMT22q6Fx4zXdV3m2EaLppGICj3xiSpfqoAxpWsgYW83krUh0otTlouFRZhBSrCTEhL2cqp6NXJq_KnSO1LPVIFosIcXaBw2Ss_-yzgS9oaUa8lZsTPBxTsHOCSivbIzxBaqMJmpEra_0b-NXryyiCa1xh8UOmEvpmL0P9pUcS1066FOSRyFSiWs2rGbna7vlrTzi4HJm5IsYwibJezVZGJ_F8mT_yGSp-xWgf4xHnnZZ3v9cg3PMK7q_fPBhX4BsJMfyw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IJ5qoCDzkOASNYkfSQ4IbWlLhcSqWorUW2Q7znalbbLsQ4h_z0zWSbsqIOUUjxXbM7bniz3fALxLXGJNyVWIvoYLhXQ8NLlwIZqOEjq1aewoUPjbSJ3-EF8v5MUOjLpYGLpW2a2J7UJdNpb-kR-gZ69UhOanPs1_hpQ1ik5XuxQa2qdWKD-2FGN3YDchZqwB7B4ej87GPQTjiMg2_EIcwf7BEr2bHLcsvrUrteT9t5fo29cm767ruf79S89mN_akk4fwwDuTbLjR_iPYcfVjuH-DYvAJuOH1CTVrKnakV5qdeXthX1xzRSm1UFHsiAKzHBvOJtjt1eXVkk1rhu4h87EEVHusS71g36cT-uy4u3vU1E_h_OT4_PNp6FMrhFZkahXqhLuSO-kMPnGOmDCyhleZKGVsTMxt4ozSEc9Koa3MTaQQFjklTMU1AjT-DAZ1U7s9YGVZpjHWUbyqBKJFQzyj0qTSoq-pKxfAh25kC-tpxyn7xaxA-EFKKHolBPCmF51vuDb-JnRI6ukFiB67fdEsJoUfvQJ3XDQVHsda5iKPbJ7bKnFVpimrRaZFAO9JuQVNYmyM1T4WAbtEdFjFEDGHTPIozwLY7_Rf-Nm9LK5tMYDXfTHOSzps0bVr1q1MStyFUgaQbdnNVtO3S-rpZcvwTcmX0bWNAnjbm9i_h-T5_9v4Au4laPmbSy77MFgt1u4lelIr88pPjz85YR9K priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAceFcECjIPCS5pHn4kPqGFUiokqqq0UjlFtuNsI7bJajcLgl_POOtddilISEi5JBkndjzxfJPMfAPwIrWp0SUVIWINGzJuaaglsyGqjmAqM1liXaLwx0NxcMo-nPGztSx-F1aJrnjdL9IuCytECxZHKY0SGaFxodGkrF5_9d-SEoEAHBFAJq7CluC4M4Ct08Oj4ec-qci3XhAKUfTuoxnCGekus2GGerb-y2vy5TjJa_Nmor5_U-PxmhHavwVq2f1F7MmX3Xmnd82P35gd_2d8t-GmR6hkuFCpO3DFNnfhxhpv4T2ww1-_vUlbkT3VKXLklZC8t-2Fq9OFs0_2XLaXJcPxqJ3W3fnFjNQNQcxJfIKCa32sSjUln-qRu-3xMqCpbe7Dyf67k7cHoa_XEBqWiy5UKbUltdxq3BKJjmZsNK1yVvJE64Sa1GqhYpqXTBkudYyjE1YwXVGFXh_dhkHTNvYBkLIsswTbCFpVDF1Q7chLuc64QQCrKhvAq-XsFcZzmbuSGuMCfRo30cVqogN4thKdLAg8_iT0xqnASsBxbvcH2umo8E-vQDMeU2yRKC6ZjI2UpkptlStXKiNXLICXToEKtzJgZ4zyCQ44JMexVQzRkeGpjGUewM5Sxwq_ZMwKdF2FwBukIoCnq9P4srs_OKqx7byXyRwhIucB5Bu6udH1zTNNfd7ThruKzoiX4wCer9T474_k4T9JPYLrKaK-RQDNDgy66dw-RpTW6Sf-RfwJ-9o2_Q priority: 102 providerName: Unpaywall |
| Title | Application of Data Particle Geometrical Divide Algorithms in the Process of Radar Signal Recognition |
| URI | https://www.proquest.com/docview/2876603226 https://www.proquest.com/docview/2877389955 https://pubmed.ncbi.nlm.nih.gov/PMC10575450 https://www.mdpi.com/1424-8220/23/19/8183/pdf?version=1696056176 https://doaj.org/article/471032311a59490c99cf2ef8a01038a4 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD7a5QF4mLiKsFGZi4CXjCS-JH5AqGPrJqRVVVml8hTZjtNV6pKuF8H-PcdpGlZtIFV5SOzG8TnOOV9sfx_A-8hGRmdU-JhrWJ9xS30tmfXRdQRTsYlD6zYKn3fF2YB9H_LhFqyXNdcdOL8X2jk9qcFscvj7-uYrDvgvDnEiZP88xxxFYuChH6bXvtOTcvOutbjGNuxizJJO1OGcNfMLEUVktuIZ2vyHjehUkfjffVXfXT75YFlM1c0vNZncik2dx7BXJ5WkvfKCJ7Bli6fw6BbV4DOw7b8z1aTMybFaKNKr_Yac2vLKSWuhwcix26BlSXsywodcXF7NybggmCaSek-Bq91XmZqRH-ORu21_vQapLJ7DRefk4tuZX0ss-IYlYuGriNqMWm41_kKJ2DAwmuYJy3iodUhNZLVQAU0ypgyXOhAIj6xgOqcKgRp9ATtFWdiXQLIsi0OsI2ieM0SN2vGNch1zgzmnyq0Hn9Y9m5qaftypYExShCHOCGljBA_eNkWnK86N-wodOfM0BRxNdnWinI3SuvdSjLwBxRqh4pLJwEhp8sjmiXLqFoliHnx0xk2de2FjjKr3JOAjOVqstI3Yg0cykIkHB2v7p2snTRFtCoE3iIQHb5rLOD7dpIsqbLmsysSOw5BzD5INv9lo-uaVYnxZMX07EWZMcQMP3jUu9u8uefX_Nu7Dwwg9f7XY5QB2FrOlfY0Z1UK3YDsexnhMOqct2D066fb6rerrRKsaNnhu0O21f_4BbJsnxg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcKp7CtMDyElys2t6H7QNCgVBS-hAqQcpttbtep5FSOySOqv4o_iOzjp00KnCrlJO9djYz38zOl92ZAXgT2cjojAofYw3rM26pr1NmfYSOYCo2cWhdovDxiej9ZN8GfLABv9tcGHessvWJtaPOSuP-I9_DyF6IAOEnPk5--a5rlNtdbVtoLGBxaC8vkLLNPhx0Ub9vo2j_S_9zz2-6CviGJaLyVURtRi23Gj9I4ZkIjKZ5wjIeah1SE1ktVECTjCnDUx0IZARWMJ1ThdyE4mtvwW1G0ZWg-cSDFb-jSPcWxYsoTYO9GYZOKa6HdG3JqzsDXPf_189kbs2Libq8UOPxlQVv_x5sN5Eq6SygdR82bPEA7l6pX_gQbGe1_U3KnHRVpcj3Bozkqy3PXb8uRAHpuqwvSzrjIcq0OjufkVFBMPYkTaKCe_pUZWpKfoyG7mtP24NNZfEI-jch4cewWZSFfQIky7I4xGcEzXOGVFS7IqZcx9xgIKty68H7VrLSNDXNXWuNsURu45Qgl0rw4NVy6GRRyONvgz459SwHuNrb9YVyOpSN9CQu54hDGoaKpywNTJqaPLJ5olzLjEQxD9455UrnIXAyRjWJDviTXK0t2UFCw6M0SBMPdlv9y8Z1zOQK6B68XN5Go3c7Oaqw5bweE7vCiJx7kKzhZm3q63eK0VldPtx1dsa4OfDg9RJi_xbJ0__P8QVs9frHR_Lo4ORwB-5EaAWL0zS7sFlN5_YZhmyVfl4bCgF5w4b5B8XNVbk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ-LygLiKwABzE7xETWLHSR4QKpSxMZimsUl9s2zH6Sp1SelF034a_45z0qRdNeBtUp5qu3HP-Xwu9bkAvIlcZE3OpY-2hvNF7LhvMuF8hI4UOrFJ6ChR-Me-3DkW3_pxfwN-t7kwFFbZysRaUOeVpf_IO2jZSxkg_GSnaMIiDnrbH8e_fOogRTetbTuNBUT23PkZum_TD7s95PXbKNr-cvR5x286DPhWpHLm64i7nLvYGXzQnRcysIYXqcjj0JiQ28gZqQOe5kLbODOBRO_ASWEKrtFP4fi11-B6wnlG0YRJf-XrcXT9FoWMcDDoTNGMylA38jX1V3cJuKwLLsdn3pyXY31-pkejC8pv-y7caaxW1l3A7B5suPI-3L5Qy_ABuO7qKpxVBevpmWYHDTDZV1edUu8uRATrUQaYY93RAGk6OzmdsmHJ0A5lTdICrT7UuZ6wn8MBvfawDXKqyodwdBUUfgSbZVW6x8DyPE9CXCN5UQh0Sw0VNI1NEls0anXhPHjfUlbZpr45tdkYKfRziAlqyQQPXi2njhdFPf426ROxZzmB6nDXH1STgWqop1C1IyZ5GOo4E1lgs8wWkStSTe0zUi08eEfMVSQtcDNWN0kP-JOo7pbqonMTR1mQpR5stfxXjRiZqhXoPXi5HEYBQLc6unTVvJ6TUJHEOPYgXcPN2tbXR8rhSV1KnLo8ow0dePB6CbF_k-TJ__f4Am7gkVTfd_f3nsKtCA_BIrBmCzZnk7l7htbbzDyvzwkDdcXn8g-7CVn8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAceFcECjIPCS5pHn4kPqGFUiokqqq0UjlFtuNsI7bJajcLgl_POOtddilISEi5JBkndjzxfJPMfAPwIrWp0SUVIWINGzJuaaglsyGqjmAqM1liXaLwx0NxcMo-nPGztSx-F1aJrnjdL9IuCytECxZHKY0SGaFxodGkrF5_9d-SEoEAHBFAJq7CluC4M4Ct08Oj4ec-qci3XhAKUfTuoxnCGekus2GGerb-y2vy5TjJa_Nmor5_U-PxmhHavwVq2f1F7MmX3Xmnd82P35gd_2d8t-GmR6hkuFCpO3DFNnfhxhpv4T2ww1-_vUlbkT3VKXLklZC8t-2Fq9OFs0_2XLaXJcPxqJ3W3fnFjNQNQcxJfIKCa32sSjUln-qRu-3xMqCpbe7Dyf67k7cHoa_XEBqWiy5UKbUltdxq3BKJjmZsNK1yVvJE64Sa1GqhYpqXTBkudYyjE1YwXVGFXh_dhkHTNvYBkLIsswTbCFpVDF1Q7chLuc64QQCrKhvAq-XsFcZzmbuSGuMCfRo30cVqogN4thKdLAg8_iT0xqnASsBxbvcH2umo8E-vQDMeU2yRKC6ZjI2UpkptlStXKiNXLICXToEKtzJgZ4zyCQ44JMexVQzRkeGpjGUewM5Sxwq_ZMwKdF2FwBukIoCnq9P4srs_OKqx7byXyRwhIucB5Bu6udH1zTNNfd7ThruKzoiX4wCer9T474_k4T9JPYLrKaK-RQDNDgy66dw-RpTW6Sf-RfwJ-9o2_Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Data+Particle+Geometrical+Divide+Algorithms+in+the+Process+of+Radar+Signal+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Dudczyk%2C+Janusz&rft.au=Rybak%2C+%C5%81ukasz&rft.date=2023-09-30&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=19&rft.spage=8183&rft_id=info:doi/10.3390%2Fs23198183&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |