MicroRNA-29a Promotion of Nephrin Acetylation Ameliorates Hyperglycemia-Induced Podocyte Dysfunction

Podocyte dysfunction is a detrimental feature in diabetic nephropathy, with loss of nephrin integrity contributing to diabetic podocytopathy. MicroRNAs (miRs) reportedly modulate the hyperglycemia-induced perturbation of renal tissue homeostasis. This study investigated whether regulation of histone...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Society of Nephrology Vol. 25; no. 8; pp. 1698 - 1709
Main Authors Lin, Chun-Liang, Lee, Pei-Hsien, Hsu, Yung-Chien, Lei, Chen-Chou, Ko, Jih-Yang, Chuang, Pei-Chin, Huang, Yu-Ting, Wang, Shao-Yu, Wu, Shin-Long, Chen, Yu-Shan, Chiang, Wen-Chih, Reiser, Jochen, Wang, Feng-Sheng
Format Journal Article
LanguageEnglish
Published Washington, DC American Society of Nephrology 01.08.2014
Subjects
Online AccessGet full text
ISSN1046-6673
1533-3450
1533-3450
DOI10.1681/ASN.2013050527

Cover

Abstract Podocyte dysfunction is a detrimental feature in diabetic nephropathy, with loss of nephrin integrity contributing to diabetic podocytopathy. MicroRNAs (miRs) reportedly modulate the hyperglycemia-induced perturbation of renal tissue homeostasis. This study investigated whether regulation of histone deacetylase (HDAC) actions and nephrin acetylation by miR-29 contributes to podocyte homeostasis and renal function in diabetic kidneys. Hyperglycemia accelerated podocyte injury and reduced nephrin, acetylated nephrin, and miR-29a levels in primary renal glomeruli from streptozotocin-induced diabetic mice. Diabetic miR-29a transgenic mice had better nephrin levels, podocyte viability, and renal function and less glomerular fibrosis and inflammation reaction compared with diabetic wild-type mice. Overexpression of miR-29a attenuated the promotion of HDAC4 signaling, nephrin ubiquitination, and urinary nephrin excretion associated with diabetes and restored nephrin acetylation. Knockdown of miR-29a by antisense oligonucleotides promoted HDAC4 action, nephrin loss, podocyte apoptosis, and proteinuria in nondiabetic mice. In vitro, interruption of HDAC4 signaling alleviated the high glucose-induced apoptosis and inhibition of nephrin acetylation in podocyte cultures. Furthermore, HDAC4 interference increased the acetylation status of histone H3 at lysine 9 (H3K9Ac), the enrichment of H3K9Ac in miR-29a proximal promoter, and miR-29a transcription in high glucose-stressed podocytes. In conclusion, hyperglycemia impairs miR-29a signaling to intensify HDAC4 actions that contribute to podocyte protein deacetylation and degradation as well as renal dysfunction. HDAC4, via epigenetic H3K9 hypoacetylation, reduces miR-29a transcription. The renoprotective effects of miR-29a in diabetes-induced loss of podocyte integrity and renal homeostasis highlights the importance of post-translational acetylation reactions in podocyte microenvironments. Increasing miR-29a action may protect against diabetic podocytopathy.
AbstractList Podocyte dysfunction is a detrimental feature in diabetic nephropathy, with loss of nephrin integrity contributing to diabetic podocytopathy. MicroRNAs (miRs) reportedly modulate the hyperglycemia-induced perturbation of renal tissue homeostasis. This study investigated whether regulation of histone deacetylase (HDAC) actions and nephrin acetylation by miR-29 contributes to podocyte homeostasis and renal function in diabetic kidneys. Hyperglycemia accelerated podocyte injury and reduced nephrin, acetylated nephrin, and miR-29a levels in primary renal glomeruli from streptozotocin-induced diabetic mice. Diabetic miR-29a transgenic mice had better nephrin levels, podocyte viability, and renal function and less glomerular fibrosis and inflammation reaction compared with diabetic wild-type mice. Overexpression of miR-29a attenuated the promotion of HDAC4 signaling, nephrin ubiquitination, and urinary nephrin excretion associated with diabetes and restored nephrin acetylation. Knockdown of miR-29a by antisense oligonucleotides promoted HDAC4 action, nephrin loss, podocyte apoptosis, and proteinuria in nondiabetic mice. In vitro , interruption of HDAC4 signaling alleviated the high glucose–induced apoptosis and inhibition of nephrin acetylation in podocyte cultures. Furthermore, HDAC4 interference increased the acetylation status of histone H3 at lysine 9 (H3K9Ac), the enrichment of H3K9Ac in miR-29a proximal promoter, and miR-29a transcription in high glucose–stressed podocytes. In conclusion, hyperglycemia impairs miR-29a signaling to intensify HDAC4 actions that contribute to podocyte protein deacetylation and degradation as well as renal dysfunction. HDAC4, via epigenetic H3K9 hypoacetylation, reduces miR-29a transcription. The renoprotective effects of miR-29a in diabetes-induced loss of podocyte integrity and renal homeostasis highlights the importance of post-translational acetylation reactions in podocyte microenvironments. Increasing miR-29a action may protect against diabetic podocytopathy.
Podocyte dysfunction is a detrimental feature in diabetic nephropathy, with loss of nephrin integrity contributing to diabetic podocytopathy. MicroRNAs (miRs) reportedly modulate the hyperglycemia-induced perturbation of renal tissue homeostasis. This study investigated whether regulation of histone deacetylase (HDAC) actions and nephrin acetylation by miR-29 contributes to podocyte homeostasis and renal function in diabetic kidneys. Hyperglycemia accelerated podocyte injury and reduced nephrin, acetylated nephrin, and miR-29a levels in primary renal glomeruli from streptozotocin-induced diabetic mice. Diabetic miR-29a transgenic mice had better nephrin levels, podocyte viability, and renal function and less glomerular fibrosis and inflammation reaction compared with diabetic wild-type mice. Overexpression of miR-29a attenuated the promotion of HDAC4 signaling, nephrin ubiquitination, and urinary nephrin excretion associated with diabetes and restored nephrin acetylation. Knockdown of miR-29a by antisense oligonucleotides promoted HDAC4 action, nephrin loss, podocyte apoptosis, and proteinuria in nondiabetic mice. In vitro, interruption of HDAC4 signaling alleviated the high glucose-induced apoptosis and inhibition of nephrin acetylation in podocyte cultures. Furthermore, HDAC4 interference increased the acetylation status of histone H3 at lysine 9 (H3K9Ac), the enrichment of H3K9Ac in miR-29a proximal promoter, and miR-29a transcription in high glucose-stressed podocytes. In conclusion, hyperglycemia impairs miR-29a signaling to intensify HDAC4 actions that contribute to podocyte protein deacetylation and degradation as well as renal dysfunction. HDAC4, via epigenetic H3K9 hypoacetylation, reduces miR-29a transcription. The renoprotective effects of miR-29a in diabetes-induced loss of podocyte integrity and renal homeostasis highlights the importance of post-translational acetylation reactions in podocyte microenvironments. Increasing miR-29a action may protect against diabetic podocytopathy.Podocyte dysfunction is a detrimental feature in diabetic nephropathy, with loss of nephrin integrity contributing to diabetic podocytopathy. MicroRNAs (miRs) reportedly modulate the hyperglycemia-induced perturbation of renal tissue homeostasis. This study investigated whether regulation of histone deacetylase (HDAC) actions and nephrin acetylation by miR-29 contributes to podocyte homeostasis and renal function in diabetic kidneys. Hyperglycemia accelerated podocyte injury and reduced nephrin, acetylated nephrin, and miR-29a levels in primary renal glomeruli from streptozotocin-induced diabetic mice. Diabetic miR-29a transgenic mice had better nephrin levels, podocyte viability, and renal function and less glomerular fibrosis and inflammation reaction compared with diabetic wild-type mice. Overexpression of miR-29a attenuated the promotion of HDAC4 signaling, nephrin ubiquitination, and urinary nephrin excretion associated with diabetes and restored nephrin acetylation. Knockdown of miR-29a by antisense oligonucleotides promoted HDAC4 action, nephrin loss, podocyte apoptosis, and proteinuria in nondiabetic mice. In vitro, interruption of HDAC4 signaling alleviated the high glucose-induced apoptosis and inhibition of nephrin acetylation in podocyte cultures. Furthermore, HDAC4 interference increased the acetylation status of histone H3 at lysine 9 (H3K9Ac), the enrichment of H3K9Ac in miR-29a proximal promoter, and miR-29a transcription in high glucose-stressed podocytes. In conclusion, hyperglycemia impairs miR-29a signaling to intensify HDAC4 actions that contribute to podocyte protein deacetylation and degradation as well as renal dysfunction. HDAC4, via epigenetic H3K9 hypoacetylation, reduces miR-29a transcription. The renoprotective effects of miR-29a in diabetes-induced loss of podocyte integrity and renal homeostasis highlights the importance of post-translational acetylation reactions in podocyte microenvironments. Increasing miR-29a action may protect against diabetic podocytopathy.
Podocyte dysfunction is a detrimental feature in diabetic nephropathy, with loss of nephrin integrity contributing to diabetic podocytopathy. MicroRNAs (miRs) reportedly modulate the hyperglycemia-induced perturbation of renal tissue homeostasis. This study investigated whether regulation of histone deacetylase (HDAC) actions and nephrin acetylation by miR-29 contributes to podocyte homeostasis and renal function in diabetic kidneys. Hyperglycemia accelerated podocyte injury and reduced nephrin, acetylated nephrin, and miR-29a levels in primary renal glomeruli from streptozotocin-induced diabetic mice. Diabetic miR-29a transgenic mice had better nephrin levels, podocyte viability, and renal function and less glomerular fibrosis and inflammation reaction compared with diabetic wild-type mice. Overexpression of miR-29a attenuated the promotion of HDAC4 signaling, nephrin ubiquitination, and urinary nephrin excretion associated with diabetes and restored nephrin acetylation. Knockdown of miR-29a by antisense oligonucleotides promoted HDAC4 action, nephrin loss, podocyte apoptosis, and proteinuria in nondiabetic mice. In vitro, interruption of HDAC4 signaling alleviated the high glucose-induced apoptosis and inhibition of nephrin acetylation in podocyte cultures. Furthermore, HDAC4 interference increased the acetylation status of histone H3 at lysine 9 (H3K9Ac), the enrichment of H3K9Ac in miR-29a proximal promoter, and miR-29a transcription in high glucose-stressed podocytes. In conclusion, hyperglycemia impairs miR-29a signaling to intensify HDAC4 actions that contribute to podocyte protein deacetylation and degradation as well as renal dysfunction. HDAC4, via epigenetic H3K9 hypoacetylation, reduces miR-29a transcription. The renoprotective effects of miR-29a in diabetes-induced loss of podocyte integrity and renal homeostasis highlights the importance of post-translational acetylation reactions in podocyte microenvironments. Increasing miR-29a action may protect against diabetic podocytopathy.
Author Huang, Yu-Ting
Chiang, Wen-Chih
Reiser, Jochen
Hsu, Yung-Chien
Chen, Yu-Shan
Lei, Chen-Chou
Chuang, Pei-Chin
Lee, Pei-Hsien
Wang, Feng-Sheng
Wang, Shao-Yu
Wu, Shin-Long
Lin, Chun-Liang
Ko, Jih-Yang
Author_xml – sequence: 1
  givenname: Chun-Liang
  surname: Lin
  fullname: Lin, Chun-Liang
– sequence: 2
  givenname: Pei-Hsien
  surname: Lee
  fullname: Lee, Pei-Hsien
– sequence: 3
  givenname: Yung-Chien
  surname: Hsu
  fullname: Hsu, Yung-Chien
– sequence: 4
  givenname: Chen-Chou
  surname: Lei
  fullname: Lei, Chen-Chou
– sequence: 5
  givenname: Jih-Yang
  surname: Ko
  fullname: Ko, Jih-Yang
– sequence: 6
  givenname: Pei-Chin
  surname: Chuang
  fullname: Chuang, Pei-Chin
– sequence: 7
  givenname: Yu-Ting
  surname: Huang
  fullname: Huang, Yu-Ting
– sequence: 8
  givenname: Shao-Yu
  surname: Wang
  fullname: Wang, Shao-Yu
– sequence: 9
  givenname: Shin-Long
  surname: Wu
  fullname: Wu, Shin-Long
– sequence: 10
  givenname: Yu-Shan
  surname: Chen
  fullname: Chen, Yu-Shan
– sequence: 11
  givenname: Wen-Chih
  surname: Chiang
  fullname: Chiang, Wen-Chih
– sequence: 12
  givenname: Jochen
  surname: Reiser
  fullname: Reiser, Jochen
– sequence: 13
  givenname: Feng-Sheng
  surname: Wang
  fullname: Wang, Feng-Sheng
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28732720$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24578127$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS1URB-wZYmyQWKTwY84TjZIUSm0UhkqHmvrzrXTGiX2YCdI-ff1tFMKSKxs2d859-ieY3Lgg7eEvGR0xeqGve2-rlecMkEllVw9IUdMClGKStKDfKdVXda1EofkOKUflLLMqGfkkFdSNYyrI2I-OYzhy7oreQvFVQxjmFzwReiLtd3eROeLDu20DHD33I12cCHCZFNxvmxtvB4WtKOD8sKbGa0proIJuEy2eL-kfva4kz0nT3sYkn2xP0_I9w9n307Py8vPHy9Ou8sSq6aeygax5rVBJiXbAG9yxpZBY8BUxirgtAVUylApatb2mFGLYFphUDXANkqckHf3vtt5M1qD1k8RBr2NboS46ABO__3j3Y2-Dr90xVhNJcsGb_YGMfycbZr06BLaYQBvw5z0LhnlkrI2o6_-nPV7yMNqM_B6D0BCGPoIHl165BoluOI0c9U9l3tIKdpeo5vutp0jukEzqndN69y0fmw6y1b_yB6c_yO4BcDpqzk
CODEN JASNEU
CitedBy_id crossref_primary_10_4103_1110_7782_193890
crossref_primary_10_1007_s40620_015_0258_1
crossref_primary_10_1016_j_kint_2024_10_031
crossref_primary_10_1016_j_biopha_2024_117010
crossref_primary_10_1016_j_phrs_2019_01_043
crossref_primary_10_3349_ymj_2021_62_5_453
crossref_primary_10_2147_DDDT_S286606
crossref_primary_10_1007_s00109_022_02247_7
crossref_primary_10_1016_j_biocel_2016_02_016
crossref_primary_10_3390_ijms19071889
crossref_primary_10_1172_JCI95946
crossref_primary_10_3389_fphys_2022_941143
crossref_primary_10_1016_j_mce_2018_06_005
crossref_primary_10_1002_smll_202306721
crossref_primary_10_3390_cells8101298
crossref_primary_10_18632_oncotarget_12498
crossref_primary_10_1177_1535370217741500
crossref_primary_10_3390_diagnostics9030070
crossref_primary_10_1016_j_heliyon_2024_e33997
crossref_primary_10_3389_fphar_2023_1238706
crossref_primary_10_1016_j_bbrc_2023_05_045
crossref_primary_10_3390_genes5040926
crossref_primary_10_3390_ijms241713038
crossref_primary_10_1002_cbf_3555
crossref_primary_10_1159_000507117
crossref_primary_10_3389_fphar_2022_778776
crossref_primary_10_1111_jcmm_14558
crossref_primary_10_3892_ijmm_2017_3152
crossref_primary_10_3389_fphys_2015_00050
crossref_primary_10_1096_fj_201700891R
crossref_primary_10_1016_j_bbrc_2016_02_028
crossref_primary_10_3390_genes14071415
crossref_primary_10_1016_j_ncrna_2023_08_009
crossref_primary_10_1155_2019_2697672
crossref_primary_10_1159_000499646
crossref_primary_10_1080_14728222_2022_2133698
crossref_primary_10_1016_j_yexcr_2024_114238
crossref_primary_10_3390_ijms23169407
crossref_primary_10_1007_s00109_021_02066_2
crossref_primary_10_1007_s12272_017_0998_7
crossref_primary_10_1016_j_addr_2021_114045
crossref_primary_10_1016_j_biopha_2021_111454
crossref_primary_10_1002_jcb_29896
crossref_primary_10_1016_j_lfs_2020_118997
crossref_primary_10_2174_0929867330666230519112312
crossref_primary_10_1007_s11356_021_17954_w
crossref_primary_10_3390_medicina59020354
crossref_primary_10_1016_j_bbrc_2017_11_057
crossref_primary_10_3389_fphar_2020_00191
crossref_primary_10_3389_fendo_2023_1157194
crossref_primary_10_1038_ki_2015_148
crossref_primary_10_1016_j_coph_2016_02_001
crossref_primary_10_3390_ijms232113263
crossref_primary_10_1007_s11033_023_09127_4
crossref_primary_10_1039_D0QM01009J
crossref_primary_10_2147_DMSO_S355783
crossref_primary_10_1097_MD_0000000000016225
crossref_primary_10_15252_emmm_201809828
crossref_primary_10_1155_2018_2931049
crossref_primary_10_3390_ijms222111857
crossref_primary_10_1002_jcp_25854
crossref_primary_10_3390_molecules24020264
crossref_primary_10_1007_s00592_018_1216_x
crossref_primary_10_1293_tox_2017_0051
crossref_primary_10_1002_prca_201400201
crossref_primary_10_1371_journal_pone_0136453
crossref_primary_10_1038_srep27945
crossref_primary_10_3390_pr9040694
crossref_primary_10_1152_physiolgenomics_00039_2017
crossref_primary_10_1016_j_lfs_2021_119671
crossref_primary_10_1007_s00441_017_2588_x
crossref_primary_10_1007_s40620_018_0511_5
crossref_primary_10_1002_jcla_24210
crossref_primary_10_1007_s11892_016_0724_8
crossref_primary_10_1038_s41392_023_01379_7
crossref_primary_10_1186_s12967_015_0710_y
crossref_primary_10_3390_ijms20225742
crossref_primary_10_1038_s41419_018_1178_5
crossref_primary_10_1002_mrd_23706
crossref_primary_10_1016_j_bbrc_2020_09_121
crossref_primary_10_3389_fphar_2020_587689
crossref_primary_10_1007_s40200_019_00469_0
crossref_primary_10_1038_s41598_021_81519_7
crossref_primary_10_1007_s11892_019_1129_2
crossref_primary_10_3390_ijms24076214
crossref_primary_10_1042_CS20210470
crossref_primary_10_1093_hmg_ddw016
crossref_primary_10_1016_j_ymthe_2016_08_001
crossref_primary_10_1038_s41419_019_1942_1
crossref_primary_10_1007_s11626_023_00814_x
crossref_primary_10_1111_nep_13451
crossref_primary_10_1111_1440_1681_12532
crossref_primary_10_3892_mmr_2017_6939
crossref_primary_10_1007_s40200_019_00409_y
crossref_primary_10_1016_j_bone_2015_06_022
crossref_primary_10_1186_s40001_022_00679_y
crossref_primary_10_1016_j_kint_2015_12_058
crossref_primary_10_1096_fj_201901080R
crossref_primary_10_1186_s13104_021_05703_8
crossref_primary_10_3389_fncel_2015_00042
crossref_primary_10_3892_mmr_2017_7224
crossref_primary_10_1038_s41598_020_60336_4
crossref_primary_10_1681_ASN_2020010031
crossref_primary_10_1002_cbf_4053
crossref_primary_10_1038_srep30575
crossref_primary_10_3892_etm_2017_5465
crossref_primary_10_1155_2015_373708
crossref_primary_10_1038_nrneph_2014_202
crossref_primary_10_3390_ijms23020843
crossref_primary_10_1152_ajprenal_00523_2015
crossref_primary_10_3390_ncrna1030192
crossref_primary_10_1681_ASN_2016101117
crossref_primary_10_4103_ejim_ejim_9_18
crossref_primary_10_1016_j_jdiacomp_2015_07_015
crossref_primary_10_1016_j_bcp_2019_05_016
crossref_primary_10_1080_15476286_2019_1667215
crossref_primary_10_3390_ph17111416
crossref_primary_10_3892_mmr_2017_7513
crossref_primary_10_1002_kjm2_12431
crossref_primary_10_1002_mnfr_202200348
crossref_primary_10_1007_s10753_014_9961_7
crossref_primary_10_1097_MNH_0000000000000825
crossref_primary_10_1007_s40495_023_00345_9
crossref_primary_10_1016_j_diabres_2020_108010
crossref_primary_10_1113_JP274492
crossref_primary_10_3389_fendo_2021_636220
crossref_primary_10_4103_imna_imna_28_21
crossref_primary_10_14341_DM8237
crossref_primary_10_1007_s10753_015_0151_z
crossref_primary_10_1371_journal_pone_0218468
crossref_primary_10_1080_10408363_2020_1746735
crossref_primary_10_3390_ijms24119158
crossref_primary_10_1155_2014_920134
crossref_primary_10_1016_j_amjms_2018_03_005
crossref_primary_10_3390_ijms24066007
crossref_primary_10_1155_2018_6890501
crossref_primary_10_1172_JCI81061
crossref_primary_10_1097_MNH_0000000000000935
crossref_primary_10_1038_s41598_017_03616_w
crossref_primary_10_36485_1561_6274_2020_24_1_9_21
Cites_doi 10.1016/j.cell.2011.03.043
10.1074/jbc.M110.192625
10.1002/hep.24606
10.1681/ASN.2010111196
10.1007/978-1-61779-316-5_17
10.1016/j.stem.2011.03.001
10.1182/blood-2010-10-314773
10.1016/j.febslet.2009.12.053
10.1074/jbc.M111.257055
10.1016/S0002-9440(10)64239-3
10.1681/ASN.2012050445
10.1074/jbc.M110.194969
10.1074/jbc.M109.087239
10.1016/j.ccr.2010.03.008
10.1681/ASN.2011010055
10.1681/ASN.2008101059
10.1016/j.cell.2012.09.037
10.1172/JCI44771
10.1681/ASN.2010121278
10.1074/jbc.M110.204024
10.1159/000343452
10.1038/nrg3074
10.1038/ki.2011.39
10.1159/000066790
10.1002/path.2661
10.1006/excr.1997.3739
10.1681/ASN.2010121308
10.1002/art.33457
10.1681/ASN.2009010019
10.1002/gene.20038
10.1681/ASN.2011121170
10.1681/ASN.2008111219
10.1111/j.1742-4658.2012.08682.x
10.1002/jcb.24195
10.2337/db09-0663
10.1016/j.cmet.2012.01.009
10.1172/JCI60070
10.1074/jbc.M111.248278
10.1073/pnas.1112257109
10.1681/ASN.2009050530
10.2337/diabetes.54.9.2628
10.1681/ASN.2011090947
10.1038/nm.2709
10.1681/ASN.2009010011
10.1182/blood-2011-05-351510
10.2337/db10-1110
10.1096/fj.11-202994
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright © 2014 by the American Society of Nephrology.
Copyright © 2014 by the American Society of Nephrology 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright © 2014 by the American Society of Nephrology.
– notice: Copyright © 2014 by the American Society of Nephrology 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1681/ASN.2013050527
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1533-3450
EndPage 1709
ExternalDocumentID PMC4116051
24578127
28732720
10_1681_ASN_2013050527
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
.GJ
0R~
18M
29L
2WC
34G
39C
53G
5GY
5RE
5VS
6PF
AAQQT
AAUIN
AAWTL
AAYXX
ABBLC
ABJNI
ABOCM
ABXYN
ACGFO
ACLDA
ACZKN
ADBBV
AENEX
AFEXH
AFFNX
AFNMH
AHOMT
AHQVU
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
BYPQX
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
ERAAH
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
O9-
OK1
OVD
P0W
P2P
RHI
RPM
TEORI
TNP
TR2
W8F
X7M
XVB
YFH
ZGI
ACIJW
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c486t-8cc626dc1551ba2857891a8dad4de7a209ac77d053619fc26decad93dc78a1b73
ISSN 1046-6673
1533-3450
IngestDate Thu Aug 21 14:01:00 EDT 2025
Thu Jul 10 22:34:40 EDT 2025
Mon Jul 21 06:04:24 EDT 2025
Wed Apr 02 07:25:22 EDT 2025
Tue Jul 01 04:34:32 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Transmembrane protein
Nephrology
RNA interference
Micro RNA
Kidney
Urology
Renal glomerulus
Podocyte
Gene silencing
Hyperglycemia
Nephrin
Urinary system
Dysfunction
Acetylation
Language English
License CC BY 4.0
Copyright © 2014 by the American Society of Nephrology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c486t-8cc626dc1551ba2857891a8dad4de7a209ac77d053619fc26decad93dc78a1b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4116051
PMID 24578127
PQID 1551025019
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4116051
proquest_miscellaneous_1551025019
pubmed_primary_24578127
pascalfrancis_primary_28732720
crossref_citationtrail_10_1681_ASN_2013050527
crossref_primary_10_1681_ASN_2013050527
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of the American Society of Nephrology
PublicationTitleAlternate J Am Soc Nephrol
PublicationYear 2014
Publisher American Society of Nephrology
Publisher_xml – name: American Society of Nephrology
References Du (R28-14-20230208) 2010; 584
Dai (R2-14-20230208) 2009; 20
Wang (R29-14-20230208) 2011; 22
Hussain (R8-14-20230208) 2009; 20
George (R33-14-20230208) 2012; 122
Rivetti di Val Cervo (R38-14-20230208) 2012; 109
Yuen (R1-14-20230208) 2012; 23
Van Beneden (R19-14-20230208) 2011; 22
Wang (R32-14-20230208) 2012; 36
Golos (R44-14-20230208) 2002; 25
Anokye-Danso (R37-14-20230208) 2011; 8
Pichaiwong (R27-14-20230208) 2013; 24
Liu (R10-14-20230208) 2012; 113
Esteller (R21-14-20230208) 2011; 12
Kajiho (R34-14-20230208) 2012; 279
Quack (R14-14-20230208) 2011; 286
Hsiao (R42-14-20230208) 2004; 39
Yuan (R18-14-20230208) 2011; 54
Mundel (R46-14-20230208) 1997; 236
Geng (R36-14-20230208) 2011; 286
Wang (R4-14-20230208) 2011; 117
Tossidou (R12-14-20230208) 2010; 285
Herman-Edelstein (R3-14-20230208) 2011; 60
Gilbert (R20-14-20230208) 2011; 79
Mima (R5-14-20230208) 2012; 26
Krupa (R22-14-20230208) 2010; 21
Long (R31-14-20230208) 2011; 286
Qin (R11-14-20230208) 2009; 20
Lin (R41-14-20230208) 2010; 21
Winbanks (R24-14-20230208) 2011; 286
Mihaylova (R15-14-20230208) 2011; 145
Takemoto (R43-14-20230208) 2002; 161
Li (R17-14-20230208) 2012; 18
Liu (R25-14-20230208) 2010; 17
Lin (R26-14-20230208) 2010; 59
Chen (R35-14-20230208) 2011; 286
Ko (R45-14-20230208) 2012; 64
Weinhold (R13-14-20230208) 2012; 23
Inoki (R9-14-20230208) 2011; 121
Qi (R40-14-20230208) 2005; 54
Qin (R23-14-20230208) 2011; 22
Sampath (R39-14-20230208) 2012; 119
Sando (R16-14-20230208) 2012; 151
Wang (R30-14-20230208) 2012; 23
de Medeiros (R47-14-20230208) 2011; 791
Wang (R6-14-20230208) 2012; 15
Welsh (R7-14-20230208) 2010; 220
16123351 - Diabetes. 2005 Sep;54(9):2628-37
22095944 - J Am Soc Nephrol. 2012 Feb;23(2):252-65
22614921 - J Cell Biochem. 2012 Oct;113(10):3186-96
20385359 - Cancer Cell. 2010 Apr 13;17(4):333-47
22326220 - Cell Metab. 2012 Feb 8;15(2):186-200
21778236 - J Biol Chem. 2011 Sep 16;286(37):32775-89
22127784 - Arthritis Rheum. 2012 Apr;64(4):1204-14
20056746 - J Am Soc Nephrol. 2010 Mar;21(3):438-47
21565617 - Cell. 2011 May 13;145(4):607-21
22466704 - Nat Med. 2012 May;18(5):783-90
20522599 - Diabetes. 2010 Aug;59(8):1915-25
22094949 - Nat Rev Genet. 2011 Dec;12(12):861-74
21606597 - J Clin Invest. 2011 Jun;121(6):2181-96
15170698 - Genesis. 2004 Jun;39(2):122-9
21324893 - J Biol Chem. 2011 Apr 22;286(16):13805-14
20067797 - FEBS Lett. 2010 Feb 19;584(4):811-6
21784902 - J Am Soc Nephrol. 2011 Aug;22(8):1462-74
22499584 - FASEB J. 2012 Jul;26(7):2963-74
21321125 - J Biol Chem. 2011 Apr 15;286(15):12959-70
22997257 - J Am Soc Nephrol. 2012 Nov;23(11):1810-23
23108026 - Am J Nephrol. 2012;36(5):412-8
22747997 - FEBS J. 2012 Sep;279(17):3010-21
21917920 - J Biol Chem. 2011 Nov 4;286(44):38095-102
12213707 - Am J Pathol. 2002 Sep;161(3):799-805
22096249 - Blood. 2012 Feb 2;119(5):1162-72
20457601 - J Biol Chem. 2010 Aug 13;285(33):25285-95
21389321 - Blood. 2011 May 12;117(19):5231-42
22251701 - J Clin Invest. 2012 Feb;122(2):674-92
19497968 - J Am Soc Nephrol. 2009 Aug;20(8):1733-43
23141539 - Cell. 2012 Nov 9;151(4):821-34
9344605 - Exp Cell Res. 1997 Oct 10;236(1):248-58
21965375 - J Am Soc Nephrol. 2011 Nov;22(11):2068-76
12435875 - Kidney Blood Press Res. 2002;25(5):296-302
21913083 - Methods Mol Biol. 2011;791:225-37
20019166 - J Am Soc Nephrol. 2010 Jan;21(1):124-35
23641056 - J Am Soc Nephrol. 2013 Jun;24(7):1088-102
19950250 - J Pathol. 2010 Feb;220(3):328-37
21868496 - J Am Soc Nephrol. 2011 Oct;22(10):1863-75
19850954 - J Am Soc Nephrol. 2009 Dec;20(12):2534-45
21389970 - Kidney Int. 2011 Jun;79(12):1312-21
21310958 - J Biol Chem. 2011 Apr 1;286(13):11837-48
21474102 - Cell Stem Cell. 2011 Apr 8;8(4):376-88
22745475 - J Am Soc Nephrol. 2012 Aug;23(8):1319-28
21521871 - Diabetes. 2011 Jun;60(6):1779-88
21837748 - Hepatology. 2011 Dec;54(6):2025-35
22228303 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1133-8
19628668 - J Am Soc Nephrol. 2009 Sep;20(9):1997-2008
References_xml – volume: 145
  start-page: 607
  year: 2011
  ident: R15-14-20230208
  article-title: Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis.
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.043
– volume: 286
  start-page: 13805
  year: 2011
  ident: R24-14-20230208
  article-title: TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.192625
– volume: 54
  start-page: 2025
  year: 2011
  ident: R18-14-20230208
  article-title: The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma.
  publication-title: Hepatology
  doi: 10.1002/hep.24606
– volume: 22
  start-page: 1863
  year: 2011
  ident: R19-14-20230208
  article-title: Valproic acid attenuates proteinuria and kidney injury.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2010111196
– volume: 791
  start-page: 225
  year: 2011
  ident: R47-14-20230208
  article-title: Sequential chromatin immunoprecipitation assay and analysis.
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-61779-316-5_17
– volume: 8
  start-page: 376
  year: 2011
  ident: R37-14-20230208
  article-title: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.03.001
– volume: 117
  start-page: 5231
  year: 2011
  ident: R4-14-20230208
  article-title: Low but sustained coagulation activation ameliorates glucose-induced podocyte apoptosis: Protective effect of factor V Leiden in diabetic nephropathy.
  publication-title: Blood
  doi: 10.1182/blood-2010-10-314773
– volume: 584
  start-page: 811
  year: 2010
  ident: R28-14-20230208
  article-title: High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells.
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2009.12.053
– volume: 286
  start-page: 38095
  year: 2011
  ident: R36-14-20230208
  article-title: HDAC4 protein regulates HIF1α protein lysine acetylation and cancer cell response to hypoxia.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.257055
– volume: 161
  start-page: 799
  year: 2002
  ident: R43-14-20230208
  article-title: A new method for large scale isolation of kidney glomeruli from mice.
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)64239-3
– volume: 24
  start-page: 1088
  year: 2013
  ident: R27-14-20230208
  article-title: Reversibility of structural and functional damage in a model of advanced diabetic nephropathy.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2012050445
– volume: 286
  start-page: 11837
  year: 2011
  ident: R31-14-20230208
  article-title: MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.194969
– volume: 285
  start-page: 25285
  year: 2010
  ident: R12-14-20230208
  article-title: CIN85/RukL is a novel binding partner of nephrin and podocin and mediates slit diaphragm turnover in podocytes.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.087239
– volume: 17
  start-page: 333
  year: 2010
  ident: R25-14-20230208
  article-title: Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia.
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.03.008
– volume: 23
  start-page: 252
  year: 2012
  ident: R30-14-20230208
  article-title: Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2011010055
– volume: 21
  start-page: 124
  year: 2010
  ident: R41-14-20230208
  article-title: Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2008101059
– volume: 151
  start-page: 821
  year: 2012
  ident: R16-14-20230208
  article-title: HDAC4 governs a transcriptional program essential for synaptic plasticity and memory.
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.037
– volume: 121
  start-page: 2181
  year: 2011
  ident: R9-14-20230208
  article-title: mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice.
  publication-title: J Clin Invest
  doi: 10.1172/JCI44771
– volume: 22
  start-page: 2068
  year: 2011
  ident: R29-14-20230208
  article-title: Decreased miR-29 suppresses myogenesis in CKD.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2010121278
– volume: 286
  start-page: 12959
  year: 2011
  ident: R14-14-20230208
  article-title: PKC alpha mediates beta-arrestin2-dependent nephrin endocytosis in hyperglycemia.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.204024
– volume: 36
  start-page: 412
  year: 2012
  ident: R32-14-20230208
  article-title: Urinary miR-21, miR-29, and miR-93: Novel biomarkers of fibrosis.
  publication-title: Am J Nephrol
  doi: 10.1159/000343452
– volume: 12
  start-page: 861
  year: 2011
  ident: R21-14-20230208
  article-title: Non-coding RNAs in human disease.
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3074
– volume: 79
  start-page: 1312
  year: 2011
  ident: R20-14-20230208
  article-title: Histone deacetylase inhibition attenuates diabetes-associated kidney growth: Potential role for epigenetic modification of the epidermal growth factor receptor.
  publication-title: Kidney Int
  doi: 10.1038/ki.2011.39
– volume: 25
  start-page: 296
  year: 2002
  ident: R44-14-20230208
  article-title: Effect of angiotensin II on ANP-dependent guanylyl cyclase activity in cultured mouse and rat podocytes.
  publication-title: Kidney Blood Press Res
  doi: 10.1159/000066790
– volume: 220
  start-page: 328
  year: 2010
  ident: R7-14-20230208
  article-title: Nephrin-signature molecule of the glomerular podocyte?
  publication-title: J Pathol
  doi: 10.1002/path.2661
– volume: 236
  start-page: 248
  year: 1997
  ident: R46-14-20230208
  article-title: Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines.
  publication-title: Exp Cell Res
  doi: 10.1006/excr.1997.3739
– volume: 22
  start-page: 1462
  year: 2011
  ident: R23-14-20230208
  article-title: TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2010121308
– volume: 64
  start-page: 1204
  year: 2012
  ident: R45-14-20230208
  article-title: Cannabinoid receptor 1 mediates glucocorticoid-induced bone loss in rats by perturbing bone mineral acquisition and marrow adipogenesis.
  publication-title: Arthritis Rheum
  doi: 10.1002/art.33457
– volume: 20
  start-page: 1997
  year: 2009
  ident: R2-14-20230208
  article-title: Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2009010019
– volume: 39
  start-page: 122
  year: 2004
  ident: R42-14-20230208
  article-title: Coat color-tagged green mouse with EGFP expressed from the RNA polymerase II promoter.
  publication-title: Genesis
  doi: 10.1002/gene.20038
– volume: 23
  start-page: 1810
  year: 2012
  ident: R1-14-20230208
  article-title: eNOS deficiency predisposes podocytes to injury in diabetes.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2011121170
– volume: 20
  start-page: 1733
  year: 2009
  ident: R8-14-20230208
  article-title: Nephrin deficiency activates NF-kappaB and promotes glomerular injury.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2008111219
– volume: 279
  start-page: 3010
  year: 2012
  ident: R34-14-20230208
  article-title: SIRPα interacts with nephrin at the podocyte slit diaphragm.
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2012.08682.x
– volume: 113
  start-page: 3186
  year: 2012
  ident: R10-14-20230208
  article-title: Nestin protects mouse podocytes against high glucose-induced apoptosis by a Cdk5-dependent mechanism.
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.24195
– volume: 59
  start-page: 1915
  year: 2010
  ident: R26-14-20230208
  article-title: Modulation of notch-1 signaling alleviates vascular endothelial growth factor-mediated diabetic nephropathy.
  publication-title: Diabetes
  doi: 10.2337/db09-0663
– volume: 15
  start-page: 186
  year: 2012
  ident: R6-14-20230208
  article-title: Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells.
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2012.01.009
– volume: 122
  start-page: 674
  year: 2012
  ident: R33-14-20230208
  article-title: Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease.
  publication-title: J Clin Invest
  doi: 10.1172/JCI60070
– volume: 286
  start-page: 32775
  year: 2011
  ident: R35-14-20230208
  article-title: Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.248278
– volume: 109
  start-page: 1133
  year: 2012
  ident: R38-14-20230208
  article-title: p63-microRNA feedback in kerationcyte senescence.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1112257109
– volume: 21
  start-page: 438
  year: 2010
  ident: R22-14-20230208
  article-title: Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2009050530
– volume: 54
  start-page: 2628
  year: 2005
  ident: R40-14-20230208
  article-title: Characterization of susceptibility of inbred mouse strains to diabetic nephropathy.
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.9.2628
– volume: 23
  start-page: 1319
  year: 2012
  ident: R13-14-20230208
  article-title: Deficits in sialylation impair podocyte maturation.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2011090947
– volume: 18
  start-page: 783
  year: 2012
  ident: R17-14-20230208
  article-title: Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia.
  publication-title: Nat Med
  doi: 10.1038/nm.2709
– volume: 20
  start-page: 2534
  year: 2009
  ident: R11-14-20230208
  article-title: Phosphorylation of nephrin triggers its internalization by raft-mediated endocytosis.
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2009010011
– volume: 119
  start-page: 1162
  year: 2012
  ident: R39-14-20230208
  article-title: Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia.
  publication-title: Blood
  doi: 10.1182/blood-2011-05-351510
– volume: 60
  start-page: 1779
  year: 2011
  ident: R3-14-20230208
  article-title: Dedifferentiation of immortalized human podocytes in response to transforming growth factor-β: A model for diabetic podocytopathy.
  publication-title: Diabetes
  doi: 10.2337/db10-1110
– volume: 26
  start-page: 2963
  year: 2012
  ident: R5-14-20230208
  article-title: Glomerular VEGF resistance induced by PKCδ/SHP-1 activation and contribution to diabetic nephropathy.
  publication-title: FASEB J
  doi: 10.1096/fj.11-202994
– reference: 21389970 - Kidney Int. 2011 Jun;79(12):1312-21
– reference: 21521871 - Diabetes. 2011 Jun;60(6):1779-88
– reference: 22997257 - J Am Soc Nephrol. 2012 Nov;23(11):1810-23
– reference: 21784902 - J Am Soc Nephrol. 2011 Aug;22(8):1462-74
– reference: 22095944 - J Am Soc Nephrol. 2012 Feb;23(2):252-65
– reference: 16123351 - Diabetes. 2005 Sep;54(9):2628-37
– reference: 20457601 - J Biol Chem. 2010 Aug 13;285(33):25285-95
– reference: 21474102 - Cell Stem Cell. 2011 Apr 8;8(4):376-88
– reference: 21321125 - J Biol Chem. 2011 Apr 15;286(15):12959-70
– reference: 22326220 - Cell Metab. 2012 Feb 8;15(2):186-200
– reference: 22614921 - J Cell Biochem. 2012 Oct;113(10):3186-96
– reference: 12435875 - Kidney Blood Press Res. 2002;25(5):296-302
– reference: 20067797 - FEBS Lett. 2010 Feb 19;584(4):811-6
– reference: 21965375 - J Am Soc Nephrol. 2011 Nov;22(11):2068-76
– reference: 20019166 - J Am Soc Nephrol. 2010 Jan;21(1):124-35
– reference: 21565617 - Cell. 2011 May 13;145(4):607-21
– reference: 21837748 - Hepatology. 2011 Dec;54(6):2025-35
– reference: 21778236 - J Biol Chem. 2011 Sep 16;286(37):32775-89
– reference: 19628668 - J Am Soc Nephrol. 2009 Sep;20(9):1997-2008
– reference: 22747997 - FEBS J. 2012 Sep;279(17):3010-21
– reference: 23641056 - J Am Soc Nephrol. 2013 Jun;24(7):1088-102
– reference: 22096249 - Blood. 2012 Feb 2;119(5):1162-72
– reference: 19850954 - J Am Soc Nephrol. 2009 Dec;20(12):2534-45
– reference: 22745475 - J Am Soc Nephrol. 2012 Aug;23(8):1319-28
– reference: 22228303 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1133-8
– reference: 20385359 - Cancer Cell. 2010 Apr 13;17(4):333-47
– reference: 21389321 - Blood. 2011 May 12;117(19):5231-42
– reference: 21868496 - J Am Soc Nephrol. 2011 Oct;22(10):1863-75
– reference: 20056746 - J Am Soc Nephrol. 2010 Mar;21(3):438-47
– reference: 19950250 - J Pathol. 2010 Feb;220(3):328-37
– reference: 19497968 - J Am Soc Nephrol. 2009 Aug;20(8):1733-43
– reference: 9344605 - Exp Cell Res. 1997 Oct 10;236(1):248-58
– reference: 22466704 - Nat Med. 2012 May;18(5):783-90
– reference: 21917920 - J Biol Chem. 2011 Nov 4;286(44):38095-102
– reference: 21324893 - J Biol Chem. 2011 Apr 22;286(16):13805-14
– reference: 21606597 - J Clin Invest. 2011 Jun;121(6):2181-96
– reference: 12213707 - Am J Pathol. 2002 Sep;161(3):799-805
– reference: 20522599 - Diabetes. 2010 Aug;59(8):1915-25
– reference: 22127784 - Arthritis Rheum. 2012 Apr;64(4):1204-14
– reference: 22499584 - FASEB J. 2012 Jul;26(7):2963-74
– reference: 21913083 - Methods Mol Biol. 2011;791:225-37
– reference: 22094949 - Nat Rev Genet. 2011 Dec;12(12):861-74
– reference: 22251701 - J Clin Invest. 2012 Feb;122(2):674-92
– reference: 21310958 - J Biol Chem. 2011 Apr 1;286(13):11837-48
– reference: 23141539 - Cell. 2012 Nov 9;151(4):821-34
– reference: 23108026 - Am J Nephrol. 2012;36(5):412-8
– reference: 15170698 - Genesis. 2004 Jun;39(2):122-9
SSID ssj0015277
Score 2.5304768
Snippet Podocyte dysfunction is a detrimental feature in diabetic nephropathy, with loss of nephrin integrity contributing to diabetic podocytopathy. MicroRNAs (miRs)...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1698
SubjectTerms Acetylation
Animals
Basic Research
Biological and medical sciences
Diabetes Mellitus, Experimental - etiology
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Experimental - pathology
Histone Deacetylases - physiology
Histones - physiology
Hyperglycemia - etiology
Hyperglycemia - metabolism
Hyperglycemia - pathology
Male
Medical sciences
Membrane Proteins - metabolism
Mice, Transgenic
MicroRNAs - physiology
Nephrology. Urinary tract diseases
Podocytes - physiology
Signal Transduction - physiology
Title MicroRNA-29a Promotion of Nephrin Acetylation Ameliorates Hyperglycemia-Induced Podocyte Dysfunction
URI https://www.ncbi.nlm.nih.gov/pubmed/24578127
https://www.proquest.com/docview/1551025019
https://pubmed.ncbi.nlm.nih.gov/PMC4116051
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1533-3450
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015277
  issn: 1046-6673
  databaseCode: KQ8
  dateStart: 19900701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1533-3450
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0015277
  issn: 1046-6673
  databaseCode: DIK
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1533-3450
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015277
  issn: 1046-6673
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1533-3450
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0015277
  issn: 1046-6673
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBASQnzTAVOQEDxU3uIki5PHatqoUFsQtFLfIsd21khdWtbkofwN_NHc1Wk-tiINXqIqduI0v8v5zv7dHSEfnIQFmDWcKjDGKWYDoUKLkEplJ0p73JMxxg6Pxv5g6n2Znc46nd8N1lKRx8fy1964kv9BFc4Brhgl-w_IVjeFE_Ab8IUjIAzHO2E8Qjbd93GfOqFAppUpybPlZmgAKc16Qup8Y-huPXGlFxiQjyutc3A_ry8XG6mvUkHBLy-QB7ACH1Vuct1TmzVOeBVot63XRkRKVlE_cfUBB24t1Q_Tcl-_yOgQhPHyBgfom07pYJ3WIWmDdbGdGEAN0bN5o2GoU3MnnUHDsmiuWDCv4svVStalrmcSzh7rPedKzWxCoksJDBpqlvmmdPUt_e8HqP_7P8ZI2nO3Vfp4PdPtdvfHX6OL6XAYTc5nk4-rnxRrkOFefVmQ5R6573Dfx3oYn2cVYQjr_3KTfdc8aZkCFIY8aQ_YMnEercQavrbElEnZ58fcpOM27JvJE_K4hNbqGyl7Sjo6e0YejErqxXOimsJmVcJmLROrFDarIWxWQ9isvcJm7YTNagjbCzK9OJ-cDWhZooNKL_BzGkgJHrGSaHjHwglA_4dMBEooT2kuHDsUknMFmh4c9URCVy2FCl0leSBYzN2X5CBbZvo1sbTNY7B-3ThJpAdGMlysbT_2bc2YdIKwS-jurUayzF-PZVQWEfqxgEIEKEQ1Cl3yqeq_Mplb_trzqAVS1d0JuIs8hS55v0MtAu2LW2oi08tiHeH_Ri-CweO9MijWV3vwNhjenrfwrTpgZvd2S5bOtxnePcZ8mC0P7zDuG_Kw_sbekoP8utDvwE7O46Ot-P4B-P3Djg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-29a+promotion+of+nephrin+acetylation+ameliorates+hyperglycemia-induced+podocyte+dysfunction&rft.jtitle=Journal+of+the+American+Society+of+Nephrology&rft.au=Lin%2C+Chun-Liang&rft.au=Lee%2C+Pei-Hsien&rft.au=Hsu%2C+Yung-Chien&rft.au=Lei%2C+Chen-Chou&rft.date=2014-08-01&rft.issn=1533-3450&rft.eissn=1533-3450&rft.volume=25&rft.issue=8&rft.spage=1698&rft_id=info:doi/10.1681%2FASN.2013050527&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-6673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-6673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-6673&client=summon