Damage Monitoring of Braided Composites Using CNT Yarn Sensor Based on Artificial Fish Swarm Algorithm

This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring safety and reliability in the aerospace field. To address the limitations and assumptions of traditional monitoring methods, carbon nanotube...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 16; p. 7067
Main Authors Wang, Hongxia, Jia, Yungang, Jia, Minrui, Pei, Xiaoyuan, Wan, Zhenkai
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23167067

Cover

Abstract This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring safety and reliability in the aerospace field. To address the limitations and assumptions of traditional monitoring methods, carbon nanotube (CNT) yarn sensors are used as key elements. These sensors are woven with carbon fiber yarns using a three-dimensional six-way braiding process and cured with resin composites. To optimize the sensor configuration, an artificial fish swarm algorithm (AFSA) is introduced, simulating the foraging behavior of fish to determine the best position and number of CNT yarn sensors. Experimental simulations are conducted on 3D braided composites of varying sizes, including penetration hole damage, line damage, and folded wire-mounted damage, to analyze the changes in the resistance data of carbon nanosensors within the damaged material. The results demonstrate that the optimized configuration of CNT yarn sensors based on AFSA is suitable for damage monitoring in 3D woven composites. The experimental positioning errors range from 0.224 to 0.510 mm, with all error values being less than 1 mm, thus achieving minimum sensor coverage for a maximum area. This result not only effectively reduces the cost of the monitoring system, but also improves the accuracy and reliability of the monitoring process.
AbstractList This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring safety and reliability in the aerospace field. To address the limitations and assumptions of traditional monitoring methods, carbon nanotube (CNT) yarn sensors are used as key elements. These sensors are woven with carbon fiber yarns using a three-dimensional six-way braiding process and cured with resin composites. To optimize the sensor configuration, an artificial fish swarm algorithm (AFSA) is introduced, simulating the foraging behavior of fish to determine the best position and number of CNT yarn sensors. Experimental simulations are conducted on 3D braided composites of varying sizes, including penetration hole damage, line damage, and folded wire-mounted damage, to analyze the changes in the resistance data of carbon nanosensors within the damaged material. The results demonstrate that the optimized configuration of CNT yarn sensors based on AFSA is suitable for damage monitoring in 3D woven composites. The experimental positioning errors range from 0.224 to 0.510 mm, with all error values being less than 1 mm, thus achieving minimum sensor coverage for a maximum area. This result not only effectively reduces the cost of the monitoring system, but also improves the accuracy and reliability of the monitoring process.
This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring safety and reliability in the aerospace field. To address the limitations and assumptions of traditional monitoring methods, carbon nanotube (CNT) yarn sensors are used as key elements. These sensors are woven with carbon fiber yarns using a three-dimensional six-way braiding process and cured with resin composites. To optimize the sensor configuration, an artificial fish swarm algorithm (AFSA) is introduced, simulating the foraging behavior of fish to determine the best position and number of CNT yarn sensors. Experimental simulations are conducted on 3D braided composites of varying sizes, including penetration hole damage, line damage, and folded wire-mounted damage, to analyze the changes in the resistance data of carbon nanosensors within the damaged material. The results demonstrate that the optimized configuration of CNT yarn sensors based on AFSA is suitable for damage monitoring in 3D woven composites. The experimental positioning errors range from 0.224 to 0.510 mm, with all error values being less than 1 mm, thus achieving minimum sensor coverage for a maximum area. This result not only effectively reduces the cost of the monitoring system, but also improves the accuracy and reliability of the monitoring process.This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring safety and reliability in the aerospace field. To address the limitations and assumptions of traditional monitoring methods, carbon nanotube (CNT) yarn sensors are used as key elements. These sensors are woven with carbon fiber yarns using a three-dimensional six-way braiding process and cured with resin composites. To optimize the sensor configuration, an artificial fish swarm algorithm (AFSA) is introduced, simulating the foraging behavior of fish to determine the best position and number of CNT yarn sensors. Experimental simulations are conducted on 3D braided composites of varying sizes, including penetration hole damage, line damage, and folded wire-mounted damage, to analyze the changes in the resistance data of carbon nanosensors within the damaged material. The results demonstrate that the optimized configuration of CNT yarn sensors based on AFSA is suitable for damage monitoring in 3D woven composites. The experimental positioning errors range from 0.224 to 0.510 mm, with all error values being less than 1 mm, thus achieving minimum sensor coverage for a maximum area. This result not only effectively reduces the cost of the monitoring system, but also improves the accuracy and reliability of the monitoring process.
Audience Academic
Author Wang, Hongxia
Pei, Xiaoyuan
Jia, Yungang
Wan, Zhenkai
Jia, Minrui
AuthorAffiliation 2 National Experimental Teaching Demonstration Center for Engineering Training, Tianjin 300387, China
4 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; peixiaoyuan@tiangong.edu.cn
3 Tianjin Branch of National Computer Network Emergency Response Technical Team/Coordination Center of China, Tianjin 300100, China
1 Engineering Teaching Practice Training Center, Tiangong University, Tianjin 300387, China jiaminrui@tiangong.edu.cn (M.J.)
AuthorAffiliation_xml – name: 3 Tianjin Branch of National Computer Network Emergency Response Technical Team/Coordination Center of China, Tianjin 300100, China
– name: 2 National Experimental Teaching Demonstration Center for Engineering Training, Tianjin 300387, China
– name: 4 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; peixiaoyuan@tiangong.edu.cn
– name: 1 Engineering Teaching Practice Training Center, Tiangong University, Tianjin 300387, China jiaminrui@tiangong.edu.cn (M.J.)
Author_xml – sequence: 1
  givenname: Hongxia
  surname: Wang
  fullname: Wang, Hongxia
– sequence: 2
  givenname: Yungang
  surname: Jia
  fullname: Jia, Yungang
– sequence: 3
  givenname: Minrui
  orcidid: 0000-0003-2420-4481
  surname: Jia
  fullname: Jia, Minrui
– sequence: 4
  givenname: Xiaoyuan
  surname: Pei
  fullname: Pei, Xiaoyuan
– sequence: 5
  givenname: Zhenkai
  surname: Wan
  fullname: Wan, Zhenkai
BookMark eNp9kktv1DAQgCNURB9w4B9Y4gJI2zq2YzsntF0oVCpwaHvgFE38yHqV2Fs7oeq_x-lWFa0Q8sHW-JvPMyMfFns-eFMUb0t8TGmNTxKhJReYixfFQckIW0hC8N5f5_3iMKUNxoRSKl8V-1TwnIHZQWE_wwCdQd-Dd2OIzncoWHQawWmj0SoM25DcaBK6TvPd6scV-gXRo0vjU4joFFLGgkfLODrrlIMenbm0Rpe3EAe07LvsHNfD6-KlhT6ZNw_7UXF99uVq9W1x8fPr-Wp5sVBM8nEhhdZaEYVbBkK1VAG2GCsr27qqLJdEG2G0FswaJiSXlpIWDBalYJxyUdKj4nzn1QE2zTa6AeJdE8A194EQuwZypao3TUssgOac1bxlRpvagGgrQYxoFWZlm10fd67Jb-HuFvr-UVjiZh588zj4DH_awdupHYxWxo8R-icVPL3xbt104XdWsUrmGrLh_YMhhpvJpLEZXFKm78GbMKWGyEpIRkU5o--eoZswRZ8He08xxms6U8c7qoPcrvM25IdVXtoMTuUfZF2OLwUnFRM1mYf3YZegYkgpGvvffk-escqNMLowd-f6f2T8AR3h078
CitedBy_id crossref_primary_10_3390_s23239353
Cites_doi 10.1016/j.ijfatigue.2021.106566
10.3390/jcs4040179
10.1177/0021998312463407
10.3390/app12010051
10.3390/electronics11244222
10.4028/www.scientific.net/JNanoR.37.42
10.1016/j.compositesb.2011.04.028
10.1177/1550147721992298
10.3390/wevj13030049
10.1155/2018/7815257
10.3390/ma15238534
10.1177/00405175211030882
10.1016/j.compositesb.2020.107906
10.3390/polym14194210
10.3390/app11083466
10.1109/JLT.2022.3186912
10.1016/j.yofte.2021.102583
10.1021/acssensors.2c01743
10.3390/polym12092147
10.1155/2021/2427954
10.3390/ma15155332
10.1016/j.compstruct.2017.11.067
10.3390/jcs2040065
10.1016/j.compositesb.2016.10.025
10.1007/s10462-022-10214-4
10.1155/2021/5529527
10.3390/e22121347
10.3390/ma15010222
10.1515/secm-2013-0284
10.1177/0142331220979498
10.3390/ma14020271
10.1177/00405175221148263
10.2112/JCR-SI115-064.1
10.3390/polym14091916
10.14257/ijfgcn.2014.7.5.09
10.1016/j.compositesa.2020.105913
10.1016/j.rinp.2018.02.058
10.1007/s00366-021-01567-5
10.3390/jmse10121819
10.3390/app13042398
10.3390/ecsa-9-13354
10.3390/s23010410
10.1109/ACCESS.2020.2970208
10.3390/nano12040593
10.1016/j.compstruct.2018.09.065
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23167067
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b2faad66496b4ede9ea7b572e7bc041b
10.3390/s23167067
PMC10458496
A762547921
10_3390_s23167067
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 12102300
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c486t-87dddc2c0b4a7cb3ca0f00cf8b955f682de7edd74fe47868f32bae07174636713
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:37:11 EDT 2025
Sun Oct 26 04:15:15 EDT 2025
Tue Sep 30 17:11:54 EDT 2025
Fri Sep 05 14:24:39 EDT 2025
Tue Oct 07 07:49:12 EDT 2025
Mon Oct 20 17:15:16 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
Thu Oct 16 04:36:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-87dddc2c0b4a7cb3ca0f00cf8b955f682de7edd74fe47868f32bae07174636713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2420-4481
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/23/16/7067/pdf?version=1691648167
PMID 37631604
PQID 2857446936
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b2faad66496b4ede9ea7b572e7bc041b
unpaywall_primary_10_3390_s23167067
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10458496
proquest_miscellaneous_2857843716
proquest_journals_2857446936
gale_infotracacademiconefile_A762547921
crossref_primary_10_3390_s23167067
crossref_citationtrail_10_3390_s23167067
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gu (ref_2) 2019; 207
Huang (ref_18) 2022; 154
Feng (ref_36) 2020; 8
Chen (ref_39) 2021; 43
Mei (ref_19) 2020; 189
Yasser (ref_44) 2021; 24
ref_14
ref_13
Pourpanah (ref_31) 2023; 56
ref_35
ref_34
ref_11
Ubertini (ref_26) 2017; 108
Bai (ref_30) 2021; 2021
Daneshvar (ref_33) 2023; 39
Sikdar (ref_20) 2018; 185
ref_17
ref_16
Ma (ref_27) 2018; 9
ref_38
ref_15
Zhang (ref_29) 2023; 93
Wang (ref_32) 2021; 17
Zhou (ref_40) 2021; 2021
Qin (ref_47) 2018; 2018
Yasuhide (ref_43) 2012; 43
Carvelli (ref_10) 2013; 47
Meng (ref_41) 2020; 115
Wang (ref_24) 2020; 135
Son (ref_28) 2023; 8
ref_23
ref_45
Hong (ref_46) 2014; 7
ref_22
Wan (ref_25) 2017; 24
ref_42
Guo (ref_5) 2022; 92
ref_1
Nisha (ref_12) 2016; 37
ref_3
Anelli (ref_21) 2022; 40
ref_9
Huang (ref_37) 2021; 65
ref_8
ref_4
ref_7
ref_6
References_xml – volume: 154
  start-page: 106566
  year: 2022
  ident: ref_18
  article-title: Damage evolution of 3D woven carbon/epoxy composites under the tension-compression fatigue loading based on multi damage information
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2021.106566
– ident: ref_6
  doi: 10.3390/jcs4040179
– volume: 47
  start-page: 3195
  year: 2013
  ident: ref_10
  article-title: Quasi-static and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998312463407
– ident: ref_11
  doi: 10.3390/app12010051
– ident: ref_34
  doi: 10.3390/electronics11244222
– volume: 37
  start-page: 42
  year: 2016
  ident: ref_12
  article-title: Manufacturing of Smart Nano Materials for structural Health Monitoring (SHM) in Aerospace application using CNT and CNF
  publication-title: J. Nano Res.
  doi: 10.4028/www.scientific.net/JNanoR.37.42
– volume: 43
  start-page: 39
  year: 2012
  ident: ref_43
  article-title: Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2011.04.028
– volume: 17
  start-page: 1550147721992298
  year: 2021
  ident: ref_32
  article-title: A novel topology optimization of coverage-oriented strategy for wireless sensor networks
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147721992298
– ident: ref_35
  doi: 10.3390/wevj13030049
– volume: 2018
  start-page: 7815257
  year: 2018
  ident: ref_47
  article-title: An Adaptive Fish Swarm-Based Mobile Coverage in WSNs
  publication-title: Wireless Commun. Mob. Comput.
  doi: 10.1155/2018/7815257
– ident: ref_14
– ident: ref_45
  doi: 10.3390/ma15238534
– volume: 92
  start-page: 196
  year: 2022
  ident: ref_5
  article-title: Failure behaviors of 3D braided composites with defects in different locations under low-velocity impact compression
  publication-title: Text. Res. J.
  doi: 10.1177/00405175211030882
– volume: 189
  start-page: 107906
  year: 2020
  ident: ref_19
  article-title: Pure S0 and SH0 detections of various damage types in aerospace composites
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2020.107906
– ident: ref_3
  doi: 10.3390/polym14194210
– ident: ref_7
  doi: 10.3390/app11083466
– volume: 40
  start-page: 5986
  year: 2022
  ident: ref_21
  article-title: Design of Microstructured Flat Optical Fiber for Multiaxial Strain Monitoring in Composite Materials
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2022.3186912
– volume: 65
  start-page: 102583
  year: 2021
  ident: ref_37
  article-title: Layout optimization of fiber Bragg grating strain sensor network based on modified artificial fish swarm algorithm
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2021.102583
– volume: 8
  start-page: 94
  year: 2023
  ident: ref_28
  article-title: PdO-Nanoparticle-Embedded Carbon Nanotube Yarns for Wearable Hydrogen Gas Sensing Platforms with Fast and Sensitive Responses
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.2c01743
– ident: ref_8
  doi: 10.3390/polym12092147
– volume: 2021
  start-page: 2427954
  year: 2021
  ident: ref_30
  article-title: Strain-Sensing Characteristics of Carbon Nanotube Yarns Embedded in Three-Dimensional Braided Composites under Cyclic Loading
  publication-title: Discret. Dyn. Nat. Soc.
  doi: 10.1155/2021/2427954
– ident: ref_1
  doi: 10.3390/ma15155332
– volume: 24
  start-page: 605
  year: 2021
  ident: ref_44
  article-title: Formulation of tunneling resistance between neighboring carbon nanotubes in polymer nanocomposites
  publication-title: Eng. Sci. Technol.
– volume: 185
  start-page: 646
  year: 2018
  ident: ref_20
  article-title: Online detection of barely visible low-speed impact damage in 3D-core sandwich composite structure
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.11.067
– ident: ref_13
  doi: 10.3390/jcs2040065
– volume: 108
  start-page: 451
  year: 2017
  ident: ref_26
  article-title: Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2016.10.025
– volume: 56
  start-page: 1867
  year: 2023
  ident: ref_31
  article-title: A review of artificial fish swarm algorithms: Recent advances and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10214-4
– volume: 2021
  start-page: 5529527
  year: 2021
  ident: ref_40
  article-title: A Chaotic Parallel Artificial Fish Swarm Algorithm for Water Quality Monitoring Sensor Networks 3D Coverage Optimization
  publication-title: J. Sens.
  doi: 10.1155/2021/5529527
– ident: ref_38
  doi: 10.3390/e22121347
– ident: ref_22
  doi: 10.3390/ma15010222
– volume: 24
  start-page: 213
  year: 2017
  ident: ref_25
  article-title: Damage detection of three-dimensional braided composite materials using carbon nanotube thread
  publication-title: Sci. Eng. Compos. Mater.
  doi: 10.1515/secm-2013-0284
– volume: 43
  start-page: 1843
  year: 2021
  ident: ref_39
  article-title: Soft sensor hybrid model of dynamic liquid level for sucker rod pump oil wells
  publication-title: Trans. Inst. Meas. Control.
  doi: 10.1177/0142331220979498
– ident: ref_9
  doi: 10.3390/ma14020271
– volume: 93
  start-page: 2918
  year: 2023
  ident: ref_29
  article-title: A review of wearable carbon-based sensors for strain detection: Fabrication methods, properties, and mechanisms
  publication-title: Text. Res. J.
  doi: 10.1177/00405175221148263
– volume: 115
  start-page: 205
  year: 2020
  ident: ref_41
  article-title: Research on Optimization of Port Logistics Distribution Path Planning Based on Intelligent Group Classification Algorithm
  publication-title: J. Coast. Res.
  doi: 10.2112/JCR-SI115-064.1
– ident: ref_4
  doi: 10.3390/polym14091916
– volume: 7
  start-page: 105
  year: 2014
  ident: ref_46
  article-title: Coverage Optimization Scheme Based on Artificial Fish Swarm Algorithm for Wireless Sensor Networks in Complicated Environment
  publication-title: Int. J. Future Gener. Commun. Netw.
  doi: 10.14257/ijfgcn.2014.7.5.09
– volume: 135
  start-page: 105913
  year: 2020
  ident: ref_24
  article-title: Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2020.105913
– volume: 9
  start-page: 231
  year: 2018
  ident: ref_27
  article-title: Piezoresistive effect of the carbon nanotube yarn embedded axially into the 3D braided composite
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.02.058
– volume: 39
  start-page: 2067
  year: 2023
  ident: ref_33
  article-title: Damage identification of structural systems by modal strain energy and an optimization-based iterative regularization method
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01567-5
– ident: ref_15
  doi: 10.3390/jmse10121819
– ident: ref_17
  doi: 10.3390/app13042398
– ident: ref_16
  doi: 10.3390/ecsa-9-13354
– ident: ref_23
  doi: 10.3390/s23010410
– volume: 8
  start-page: 42864
  year: 2020
  ident: ref_36
  article-title: Analysis of Network Coverage Optimization Based on Feedback K-Means Clustering and Artificial Fish Swarm Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970208
– ident: ref_42
  doi: 10.3390/nano12040593
– volume: 207
  start-page: 119
  year: 2019
  ident: ref_2
  article-title: Structural modeling and mechanical characterizing of three-dimensional four-step braided composites: A review
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.09.065
SSID ssj0023338
Score 2.4100518
Snippet This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7067
SubjectTerms Accuracy
Algorithms
Analysis
artificial fish swarm algorithm (AFSA)
Braided composites
carbon nanotube yarn (CNT yarn)
Composite materials
damage location source
Energy consumption
Fault diagnosis
Fire prevention
Mechanical properties
Nanotubes
Neural networks
Optimization
optimized configuration of sensors
Regularization methods
Sensors
Yarn
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8RSBgsxDgkvUrO3YznG3UFVI9NJWKifLr1Ck3aTK7qrqv-9MnA27KogLV9tJnHnZnzz-hpCPNY-lnnCZM1VWuSi9zx1sS3NvvdOMe1v0PNvfT-Txufh2UV5slfrCnLBED5wEd-BYbW2QUlTSiRhiFa1ypWJROV-IicPoW-hqA6YGqMUBeSUeIQ6g_mDJ8MJ30ReT_7369CT9d0Px3fTI--vmyt5c2_l8a-05ekweDZtGOk2TfULuxeYpebhFJfiM1F_sAkIDTT6KbbSt6axDBshA0esxOysuaZ8jQA9PzugP2zX0FGBs29EZLGaBtk3_jUQqQbEqOj29tt2CTuc_4Z2ry8Vzcn709ezwOB9qKOReaLmCYBdC8MwXTljlHQq_Lgpfa1eVZS01C1HFEJSoo1Ba6pozZyOCPGQSAwT7guw1bRNfEorUeErDhtAKKTSSNSnmCitAQ5xHpTPyeSNb4weCcaxzMTcANFANZlRDRt6PQ68Sq8afBs1QQeMAJMLuG8A8zGAe5l_mkZFPqF6D7gqTARNMtw7gl5D4ykxhMSiFqtgkI_sbCzCDHy8N06UCwFxxmZF3Yzd4IB6r2Ca26zRGCw7AMyN6x3J2pr7b0_y67Lm8J_1BdQWPfhiN7O8iefU_RPKaPGDgISmLcZ_srbp1fAM7q5V72zvRLTi-IxE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZG9wA8TFy1sIHMRYKXaKnt2M4DQu3YNCFRIbZJ4ynyLRtSm5S01cS_55wkzVYNeLWd2PG52F98_B1C3hU8pHrIZcxUmsUidS62sC2NnXFWM-5M0vBsf53Ik3Px5SK92CKT9V0YDKtc-8TGUfvK4T_yA6ZTBdAl4_LT_FeMWaPwdHWdQsN0qRX8x4Zi7B7ZZsiMNSDb46PJt-89BOOAyFp-IQ5g_2DB8CJ40iSZv1mVGvL-uy76btjk_VU5N7-vzXR6a006fkR2us0kHbXSf0y2QvmEPLxFMfiUFJ_NDFwGbW0Xy2hV0HGNzJCeojfAqK2woE3sAD2cnNEfpi7pKcDbqqZjWOQ8rcqmj5ZsgmK2dHp6beoZHU0v4Z3Lq9kzcn58dHZ4Ene5FWIntFyCE_TeO-YSK4xyFoVSJIkrtM3StJCa-aCC90oUQSgtdcGZNQHBHzKMAbJ9TgZlVYZdQpEyT2nYKBohhUYSJ8VsYoRlBedB6Yh8WM9t7jriccx_Mc0BgKAY8l4MEXnTN523bBt_azRGAfUNkCC7Kajqy7yztxw6N8ZLKTJpRfAhC0bZVLGgrEvE0EbkPYo3RzOGwYBqtrcR4JOQECsfwSKRCpWxYUT21xqQd_a9yG-0MSKv-2qwTDxuMWWoVm0bLTgA0ojoDc3ZGPpmTfnzquH4HjYH2Bk8-rZXsn9PyYv_j3GPPGCg-23c4j4ZLOtVeAl7qaV91RnIH2DkH5Q
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOvCsMBS0PCS5u7PV6d31CSaGqkIiQ2kjtydqX24rEjpyECn49M7YTEgoSEtf12N7H7Dcz9sy3hLwpEp-qOBEhk2kW8tTa0IBbGlptjWKJ1VHDs_15JI7G_NNperpRxY9plRCKXzYgjVVYIViwqM-Sfiz6EqC1P3PF-2_dtyRkehFcxULeJDsiBW-8R3bGoy-Ds6aoqLu7JRRKILrvzxlWfkfNqfK_zFDD1n8dk6_nSd5aljP9_UpPJhtG6PAe0avut7knX_eXC7Nvf_zG7Pg_47tP7nYeKh20KvWA3PDlQ3Jng7fwESk-6CngEG0BAdtoVdBhjXSTjiLEYCqYn9MmIYEejE7oma5Legwxc1XTIVhOR6uyeUfLYEHxCHZ6fKXrKR1MzuGZi4vpYzI-_HhycBR2BzaEliuxAGR1zllmI8O1tAZXuogiWyiTpWkhFHNeeuckLzyXSqgiYUZ7jCiRtgzC5V3SK6vSPyEUefikAu9Tc5gAZIaSzESaG1YkiZcqIO9W65fbjs0cD9WY5BDV4FLn66UOyKu16Kyl8PiT0BCVYC2ArNtNQ1Wf590mzuHlWjsheCYM985nXkuTSualsRGPTUDeogrliA3QGdD3tsQBhoQsW_kALE_KZcbigOyttCzvQGOeM5VKiM6zRATk5foybHf8h6NLXy1bGcUTiHIDora0c6vr21fKy4uGODxu_opncOvrtSL_fUqe_pPUM3Kbgd_X5kTukd6iXvrn4KctzItuK_4EDsY3Kg
  priority: 102
  providerName: Unpaywall
Title Damage Monitoring of Braided Composites Using CNT Yarn Sensor Based on Artificial Fish Swarm Algorithm
URI https://www.proquest.com/docview/2857446936
https://www.proquest.com/docview/2857843716
https://pubmed.ncbi.nlm.nih.gov/PMC10458496
https://www.mdpi.com/1424-8220/23/16/7067/pdf?version=1691648167
https://doaj.org/article/b2faad66496b4ede9ea7b572e7bc041b
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7a5QF4QFxFYFTmIsFLIHWc2HlAqB0rE9Kqia1S9xTZjrMhpclIW439e85J2mjVhsRLHmwnTnxu_mL7OwDv89BFqh_GPpdR4ovIWt_gtNS32hrFQ6uDhmf7aBwfTsSPaTTdgnWOzdUAzu-EdpRPalIXn_78vv6KBv-FECdC9s9zTse50e1uwy4GqIQyOByJbjGBh2GT0JrOdPkYD4OWYGjz1o2w1LD33_bRt_dN3luWl_r6ShfFjaA0egQPV7NJNmjF_xi2XPkEHtzgGHwK-Tc9Q5_BWuOlMlblbFgTNWTGyB3Qti03Z83mAbY_PmVnui7ZCeLbqmZDjHIZq8qmj5ZtglG6dHZypesZGxTn-MzFxewZTEYHp_uH_iq5gm-FihfoBbMss9wGRmhpDUklDwKbK5NEUR4rnjnpskyK3AmpYpWH3GhH6I8oxhDaPoedsirdC2DEmScVzhS1iIUiFifJTaCF4XkYOqk8-Lge29SumMcpAUaRIgIhMaSdGDx42zW9bOk27mo0JAF1DYghuymo6vN0ZXApdq51FsciiY1wmUucliaS3EljA9E3Hnwg8aakWfgyqJvtcQT8JGLESgcYJSIhE973YG-tAelaP1OuIolIOgljD9501WiatN6iS1ct2zZKhIhIPVAbmrPx6ps15a-LhuS736xgJ3jru07J_j0kL_9n3F7BfY7W0G5f3IOdRb10r3FKtTA92JZTiVc1-t6D3eHB-Phnr_k90WtMCcsm4-PB2V8wXyO2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeBg8IK4iMMDcBC_RUtuJnQeE2o2pY1tf1knjKfMtG1KblLRVtT_Fb-ScpJdVA972GjuJ43PzFx9_h5APOfexavEkZDJOQxFbGxpYloZWW6MYtzqqebaPe0n3VHw_i882yO_FWRhMq1z4xNpRu9LiP_IdpmIJ0CXlydfRrxCrRuHu6qKERqMWh_5qBpBt_OVgD-T7kbH9b_3dbjivKhBaoZIJmL9zzjIbGaGlNTicPIpsrkwax3mimPPSOydF7oVUico5M9oj7EFuLcB08Nw75K7g4EvAfuTZCuBxwHsNexHnabQzZnjMPKpL2K9iXl0a4GYAuJmUuTUtRvpqpgeDaxFv_yF5MF-q0najW4_Ihi8ek_vXCAyfkHxPD8Eh0cYz4DVa5rRTIe-ko-hrMCfMj2mdmUB3e336Q1cFPQHwXFa0AyHU0bKo39FQWVCsxU5PZroa0vbgAp45uRw-Jae3MsfPyGZRFv45oUjIJxUsQ7VIhEKKKMlMpIVhOedeqoB8XsxtZue05lhdY5ABvEExZEsxBOTdsuuo4fL4W6cOCmjZAem36wtldZHNrTmDl2vtkkSkiRHe-dRraWLJvDQ2Ei0TkE8o3gydBAwGFL856wCfhHRbWRtCUCxkyloB2V5oQDb3HuNspesBebtsBrvHzRxd-HLa9FGCA9wNiFrTnLWhr7cUPy9rBvFWvT2ewq3vl0r27yl58f8xviFb3f7xUXZ00Dt8Se4xsIMmQ3KbbE6qqX8Fq7aJeV2bCiXnt22bfwClCVbr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IK4iY4C5CV6ipo4TOw8ItSvVxqBC2iaVp-BbtkltUtJW1f4av45zkrRdNeBtr7GTOD43f_Hxdwh5m4Uuku0w9pmIEp9HxvgalqW-UUZLFhoVVDzb3wbx_gn_MoyGW-T38iwMplUufWLlqG1h8B95i8lIAHRJwriVNWkR33v9T5NfPlaQwp3WZTmNWkUO3cUC4Nv040EPZP2Osf7n4719v6kw4Bsu4xm4AmutYSbQXAmjcWhZEJhM6iSKslgy64SzVvDMcSFjmYVMK4cQCHm2AN_Bc2-QmyIME0wnFMM12AsB-9VMRtAYtKYMj5wHVTn7dfyrygRcDQZXEzRvz_OJulio0ehS9OvfJ_eaZSvt1Hr2gGy5_CG5e4nM8BHJemoMzonWXgKv0SKj3RI5KC1Fv4P5YW5KqywFujc4pj9UmdMjANJFSbsQTi0t8uodNa0Fxbrs9GihyjHtjE7hmbOz8WNyci1z_IRs50XunhKK5HxCwpJU8ZhLpIsSTAeKa5aFoRPSIx-Wc5uahuIcK22MUoA6KIZ0JQaPvF51ndS8Hn_r1EUBrTogFXd1oShP08ayU3i5UjaOeRJr7qxLnBI6EswJbQLe1h55j-JN0WHAYMAI6nMP8ElIvZV2IBxFXCSs7ZHdpQakjSeZpmu998irVTP4ANzYUbkr5nUfyUOAvh6RG5qzMfTNlvz8rGITb1db5Qnc-malZP-ekp3_j_EluQVWmX49GBw-I3cYmEGdLLlLtmfl3D2HBdxMv6gshZKf122afwCqElsu
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOvCsMBS0PCS5u7PV6d31CSaGqkIiQ2kjtydqX24rEjpyECn49M7YTEgoSEtf12N7H7Dcz9sy3hLwpEp-qOBEhk2kW8tTa0IBbGlptjWKJ1VHDs_15JI7G_NNperpRxY9plRCKXzYgjVVYIViwqM-Sfiz6EqC1P3PF-2_dtyRkehFcxULeJDsiBW-8R3bGoy-Ds6aoqLu7JRRKILrvzxlWfkfNqfK_zFDD1n8dk6_nSd5aljP9_UpPJhtG6PAe0avut7knX_eXC7Nvf_zG7Pg_47tP7nYeKh20KvWA3PDlQ3Jng7fwESk-6CngEG0BAdtoVdBhjXSTjiLEYCqYn9MmIYEejE7oma5Legwxc1XTIVhOR6uyeUfLYEHxCHZ6fKXrKR1MzuGZi4vpYzI-_HhycBR2BzaEliuxAGR1zllmI8O1tAZXuogiWyiTpWkhFHNeeuckLzyXSqgiYUZ7jCiRtgzC5V3SK6vSPyEUefikAu9Tc5gAZIaSzESaG1YkiZcqIO9W65fbjs0cD9WY5BDV4FLn66UOyKu16Kyl8PiT0BCVYC2ArNtNQ1Wf590mzuHlWjsheCYM985nXkuTSualsRGPTUDeogrliA3QGdD3tsQBhoQsW_kALE_KZcbigOyttCzvQGOeM5VKiM6zRATk5foybHf8h6NLXy1bGcUTiHIDora0c6vr21fKy4uGODxu_opncOvrtSL_fUqe_pPUM3Kbgd_X5kTukd6iXvrn4KctzItuK_4EDsY3Kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damage+Monitoring+of+Braided+Composites+Using+CNT+Yarn+Sensor+Based+on+Artificial+Fish+Swarm+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Hongxia&rft.au=Jia%2C+Yungang&rft.au=Jia%2C+Minrui&rft.au=Pei%2C+Xiaoyuan&rft.date=2023-08-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=16&rft.spage=7067&rft_id=info:doi/10.3390%2Fs23167067&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23167067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon