Damage Monitoring of Braided Composites Using CNT Yarn Sensor Based on Artificial Fish Swarm Algorithm
This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring safety and reliability in the aerospace field. To address the limitations and assumptions of traditional monitoring methods, carbon nanotube...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 16; p. 7067 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23167067 |
Cover
| Abstract | This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring safety and reliability in the aerospace field. To address the limitations and assumptions of traditional monitoring methods, carbon nanotube (CNT) yarn sensors are used as key elements. These sensors are woven with carbon fiber yarns using a three-dimensional six-way braiding process and cured with resin composites. To optimize the sensor configuration, an artificial fish swarm algorithm (AFSA) is introduced, simulating the foraging behavior of fish to determine the best position and number of CNT yarn sensors. Experimental simulations are conducted on 3D braided composites of varying sizes, including penetration hole damage, line damage, and folded wire-mounted damage, to analyze the changes in the resistance data of carbon nanosensors within the damaged material. The results demonstrate that the optimized configuration of CNT yarn sensors based on AFSA is suitable for damage monitoring in 3D woven composites. The experimental positioning errors range from 0.224 to 0.510 mm, with all error values being less than 1 mm, thus achieving minimum sensor coverage for a maximum area. This result not only effectively reduces the cost of the monitoring system, but also improves the accuracy and reliability of the monitoring process. |
|---|---|
| AbstractList | This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring safety and reliability in the aerospace field. To address the limitations and assumptions of traditional monitoring methods, carbon nanotube (CNT) yarn sensors are used as key elements. These sensors are woven with carbon fiber yarns using a three-dimensional six-way braiding process and cured with resin composites. To optimize the sensor configuration, an artificial fish swarm algorithm (AFSA) is introduced, simulating the foraging behavior of fish to determine the best position and number of CNT yarn sensors. Experimental simulations are conducted on 3D braided composites of varying sizes, including penetration hole damage, line damage, and folded wire-mounted damage, to analyze the changes in the resistance data of carbon nanosensors within the damaged material. The results demonstrate that the optimized configuration of CNT yarn sensors based on AFSA is suitable for damage monitoring in 3D woven composites. The experimental positioning errors range from 0.224 to 0.510 mm, with all error values being less than 1 mm, thus achieving minimum sensor coverage for a maximum area. This result not only effectively reduces the cost of the monitoring system, but also improves the accuracy and reliability of the monitoring process. This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring safety and reliability in the aerospace field. To address the limitations and assumptions of traditional monitoring methods, carbon nanotube (CNT) yarn sensors are used as key elements. These sensors are woven with carbon fiber yarns using a three-dimensional six-way braiding process and cured with resin composites. To optimize the sensor configuration, an artificial fish swarm algorithm (AFSA) is introduced, simulating the foraging behavior of fish to determine the best position and number of CNT yarn sensors. Experimental simulations are conducted on 3D braided composites of varying sizes, including penetration hole damage, line damage, and folded wire-mounted damage, to analyze the changes in the resistance data of carbon nanosensors within the damaged material. The results demonstrate that the optimized configuration of CNT yarn sensors based on AFSA is suitable for damage monitoring in 3D woven composites. The experimental positioning errors range from 0.224 to 0.510 mm, with all error values being less than 1 mm, thus achieving minimum sensor coverage for a maximum area. This result not only effectively reduces the cost of the monitoring system, but also improves the accuracy and reliability of the monitoring process.This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring safety and reliability in the aerospace field. To address the limitations and assumptions of traditional monitoring methods, carbon nanotube (CNT) yarn sensors are used as key elements. These sensors are woven with carbon fiber yarns using a three-dimensional six-way braiding process and cured with resin composites. To optimize the sensor configuration, an artificial fish swarm algorithm (AFSA) is introduced, simulating the foraging behavior of fish to determine the best position and number of CNT yarn sensors. Experimental simulations are conducted on 3D braided composites of varying sizes, including penetration hole damage, line damage, and folded wire-mounted damage, to analyze the changes in the resistance data of carbon nanosensors within the damaged material. The results demonstrate that the optimized configuration of CNT yarn sensors based on AFSA is suitable for damage monitoring in 3D woven composites. The experimental positioning errors range from 0.224 to 0.510 mm, with all error values being less than 1 mm, thus achieving minimum sensor coverage for a maximum area. This result not only effectively reduces the cost of the monitoring system, but also improves the accuracy and reliability of the monitoring process. |
| Audience | Academic |
| Author | Wang, Hongxia Pei, Xiaoyuan Jia, Yungang Wan, Zhenkai Jia, Minrui |
| AuthorAffiliation | 2 National Experimental Teaching Demonstration Center for Engineering Training, Tianjin 300387, China 4 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; peixiaoyuan@tiangong.edu.cn 3 Tianjin Branch of National Computer Network Emergency Response Technical Team/Coordination Center of China, Tianjin 300100, China 1 Engineering Teaching Practice Training Center, Tiangong University, Tianjin 300387, China jiaminrui@tiangong.edu.cn (M.J.) |
| AuthorAffiliation_xml | – name: 3 Tianjin Branch of National Computer Network Emergency Response Technical Team/Coordination Center of China, Tianjin 300100, China – name: 2 National Experimental Teaching Demonstration Center for Engineering Training, Tianjin 300387, China – name: 4 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; peixiaoyuan@tiangong.edu.cn – name: 1 Engineering Teaching Practice Training Center, Tiangong University, Tianjin 300387, China jiaminrui@tiangong.edu.cn (M.J.) |
| Author_xml | – sequence: 1 givenname: Hongxia surname: Wang fullname: Wang, Hongxia – sequence: 2 givenname: Yungang surname: Jia fullname: Jia, Yungang – sequence: 3 givenname: Minrui orcidid: 0000-0003-2420-4481 surname: Jia fullname: Jia, Minrui – sequence: 4 givenname: Xiaoyuan surname: Pei fullname: Pei, Xiaoyuan – sequence: 5 givenname: Zhenkai surname: Wan fullname: Wan, Zhenkai |
| BookMark | eNp9kktv1DAQgCNURB9w4B9Y4gJI2zq2YzsntF0oVCpwaHvgFE38yHqV2Fs7oeq_x-lWFa0Q8sHW-JvPMyMfFns-eFMUb0t8TGmNTxKhJReYixfFQckIW0hC8N5f5_3iMKUNxoRSKl8V-1TwnIHZQWE_wwCdQd-Dd2OIzncoWHQawWmj0SoM25DcaBK6TvPd6scV-gXRo0vjU4joFFLGgkfLODrrlIMenbm0Rpe3EAe07LvsHNfD6-KlhT6ZNw_7UXF99uVq9W1x8fPr-Wp5sVBM8nEhhdZaEYVbBkK1VAG2GCsr27qqLJdEG2G0FswaJiSXlpIWDBalYJxyUdKj4nzn1QE2zTa6AeJdE8A194EQuwZypao3TUssgOac1bxlRpvagGgrQYxoFWZlm10fd67Jb-HuFvr-UVjiZh588zj4DH_awdupHYxWxo8R-icVPL3xbt104XdWsUrmGrLh_YMhhpvJpLEZXFKm78GbMKWGyEpIRkU5o--eoZswRZ8He08xxms6U8c7qoPcrvM25IdVXtoMTuUfZF2OLwUnFRM1mYf3YZegYkgpGvvffk-escqNMLowd-f6f2T8AR3h078 |
| CitedBy_id | crossref_primary_10_3390_s23239353 |
| Cites_doi | 10.1016/j.ijfatigue.2021.106566 10.3390/jcs4040179 10.1177/0021998312463407 10.3390/app12010051 10.3390/electronics11244222 10.4028/www.scientific.net/JNanoR.37.42 10.1016/j.compositesb.2011.04.028 10.1177/1550147721992298 10.3390/wevj13030049 10.1155/2018/7815257 10.3390/ma15238534 10.1177/00405175211030882 10.1016/j.compositesb.2020.107906 10.3390/polym14194210 10.3390/app11083466 10.1109/JLT.2022.3186912 10.1016/j.yofte.2021.102583 10.1021/acssensors.2c01743 10.3390/polym12092147 10.1155/2021/2427954 10.3390/ma15155332 10.1016/j.compstruct.2017.11.067 10.3390/jcs2040065 10.1016/j.compositesb.2016.10.025 10.1007/s10462-022-10214-4 10.1155/2021/5529527 10.3390/e22121347 10.3390/ma15010222 10.1515/secm-2013-0284 10.1177/0142331220979498 10.3390/ma14020271 10.1177/00405175221148263 10.2112/JCR-SI115-064.1 10.3390/polym14091916 10.14257/ijfgcn.2014.7.5.09 10.1016/j.compositesa.2020.105913 10.1016/j.rinp.2018.02.058 10.1007/s00366-021-01567-5 10.3390/jmse10121819 10.3390/app13042398 10.3390/ecsa-9-13354 10.3390/s23010410 10.1109/ACCESS.2020.2970208 10.3390/nano12040593 10.1016/j.compstruct.2018.09.065 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23167067 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_b2faad66496b4ede9ea7b572e7bc041b 10.3390/s23167067 PMC10458496 A762547921 10_3390_s23167067 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 12102300 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c486t-87dddc2c0b4a7cb3ca0f00cf8b955f682de7edd74fe47868f32bae07174636713 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:37:11 EDT 2025 Sun Oct 26 04:15:15 EDT 2025 Tue Sep 30 17:11:54 EDT 2025 Fri Sep 05 14:24:39 EDT 2025 Tue Oct 07 07:49:12 EDT 2025 Mon Oct 20 17:15:16 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 Thu Oct 16 04:36:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-87dddc2c0b4a7cb3ca0f00cf8b955f682de7edd74fe47868f32bae07174636713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2420-4481 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/23/16/7067/pdf?version=1691648167 |
| PMID | 37631604 |
| PQID | 2857446936 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b2faad66496b4ede9ea7b572e7bc041b unpaywall_primary_10_3390_s23167067 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10458496 proquest_miscellaneous_2857843716 proquest_journals_2857446936 gale_infotracacademiconefile_A762547921 crossref_primary_10_3390_s23167067 crossref_citationtrail_10_3390_s23167067 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Gu (ref_2) 2019; 207 Huang (ref_18) 2022; 154 Feng (ref_36) 2020; 8 Chen (ref_39) 2021; 43 Mei (ref_19) 2020; 189 Yasser (ref_44) 2021; 24 ref_14 ref_13 Pourpanah (ref_31) 2023; 56 ref_35 ref_34 ref_11 Ubertini (ref_26) 2017; 108 Bai (ref_30) 2021; 2021 Daneshvar (ref_33) 2023; 39 Sikdar (ref_20) 2018; 185 ref_17 ref_16 Ma (ref_27) 2018; 9 ref_38 ref_15 Zhang (ref_29) 2023; 93 Wang (ref_32) 2021; 17 Zhou (ref_40) 2021; 2021 Qin (ref_47) 2018; 2018 Yasuhide (ref_43) 2012; 43 Carvelli (ref_10) 2013; 47 Meng (ref_41) 2020; 115 Wang (ref_24) 2020; 135 Son (ref_28) 2023; 8 ref_23 ref_45 Hong (ref_46) 2014; 7 ref_22 Wan (ref_25) 2017; 24 ref_42 Guo (ref_5) 2022; 92 ref_1 Nisha (ref_12) 2016; 37 ref_3 Anelli (ref_21) 2022; 40 ref_9 Huang (ref_37) 2021; 65 ref_8 ref_4 ref_7 ref_6 |
| References_xml | – volume: 154 start-page: 106566 year: 2022 ident: ref_18 article-title: Damage evolution of 3D woven carbon/epoxy composites under the tension-compression fatigue loading based on multi damage information publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2021.106566 – ident: ref_6 doi: 10.3390/jcs4040179 – volume: 47 start-page: 3195 year: 2013 ident: ref_10 article-title: Quasi-static and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite publication-title: J. Compos. Mater. doi: 10.1177/0021998312463407 – ident: ref_11 doi: 10.3390/app12010051 – ident: ref_34 doi: 10.3390/electronics11244222 – volume: 37 start-page: 42 year: 2016 ident: ref_12 article-title: Manufacturing of Smart Nano Materials for structural Health Monitoring (SHM) in Aerospace application using CNT and CNF publication-title: J. Nano Res. doi: 10.4028/www.scientific.net/JNanoR.37.42 – volume: 43 start-page: 39 year: 2012 ident: ref_43 article-title: Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2011.04.028 – volume: 17 start-page: 1550147721992298 year: 2021 ident: ref_32 article-title: A novel topology optimization of coverage-oriented strategy for wireless sensor networks publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147721992298 – ident: ref_35 doi: 10.3390/wevj13030049 – volume: 2018 start-page: 7815257 year: 2018 ident: ref_47 article-title: An Adaptive Fish Swarm-Based Mobile Coverage in WSNs publication-title: Wireless Commun. Mob. Comput. doi: 10.1155/2018/7815257 – ident: ref_14 – ident: ref_45 doi: 10.3390/ma15238534 – volume: 92 start-page: 196 year: 2022 ident: ref_5 article-title: Failure behaviors of 3D braided composites with defects in different locations under low-velocity impact compression publication-title: Text. Res. J. doi: 10.1177/00405175211030882 – volume: 189 start-page: 107906 year: 2020 ident: ref_19 article-title: Pure S0 and SH0 detections of various damage types in aerospace composites publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2020.107906 – ident: ref_3 doi: 10.3390/polym14194210 – ident: ref_7 doi: 10.3390/app11083466 – volume: 40 start-page: 5986 year: 2022 ident: ref_21 article-title: Design of Microstructured Flat Optical Fiber for Multiaxial Strain Monitoring in Composite Materials publication-title: J. Light. Technol. doi: 10.1109/JLT.2022.3186912 – volume: 65 start-page: 102583 year: 2021 ident: ref_37 article-title: Layout optimization of fiber Bragg grating strain sensor network based on modified artificial fish swarm algorithm publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2021.102583 – volume: 8 start-page: 94 year: 2023 ident: ref_28 article-title: PdO-Nanoparticle-Embedded Carbon Nanotube Yarns for Wearable Hydrogen Gas Sensing Platforms with Fast and Sensitive Responses publication-title: ACS Sens. doi: 10.1021/acssensors.2c01743 – ident: ref_8 doi: 10.3390/polym12092147 – volume: 2021 start-page: 2427954 year: 2021 ident: ref_30 article-title: Strain-Sensing Characteristics of Carbon Nanotube Yarns Embedded in Three-Dimensional Braided Composites under Cyclic Loading publication-title: Discret. Dyn. Nat. Soc. doi: 10.1155/2021/2427954 – ident: ref_1 doi: 10.3390/ma15155332 – volume: 24 start-page: 605 year: 2021 ident: ref_44 article-title: Formulation of tunneling resistance between neighboring carbon nanotubes in polymer nanocomposites publication-title: Eng. Sci. Technol. – volume: 185 start-page: 646 year: 2018 ident: ref_20 article-title: Online detection of barely visible low-speed impact damage in 3D-core sandwich composite structure publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.11.067 – ident: ref_13 doi: 10.3390/jcs2040065 – volume: 108 start-page: 451 year: 2017 ident: ref_26 article-title: Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2016.10.025 – volume: 56 start-page: 1867 year: 2023 ident: ref_31 article-title: A review of artificial fish swarm algorithms: Recent advances and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10214-4 – volume: 2021 start-page: 5529527 year: 2021 ident: ref_40 article-title: A Chaotic Parallel Artificial Fish Swarm Algorithm for Water Quality Monitoring Sensor Networks 3D Coverage Optimization publication-title: J. Sens. doi: 10.1155/2021/5529527 – ident: ref_38 doi: 10.3390/e22121347 – ident: ref_22 doi: 10.3390/ma15010222 – volume: 24 start-page: 213 year: 2017 ident: ref_25 article-title: Damage detection of three-dimensional braided composite materials using carbon nanotube thread publication-title: Sci. Eng. Compos. Mater. doi: 10.1515/secm-2013-0284 – volume: 43 start-page: 1843 year: 2021 ident: ref_39 article-title: Soft sensor hybrid model of dynamic liquid level for sucker rod pump oil wells publication-title: Trans. Inst. Meas. Control. doi: 10.1177/0142331220979498 – ident: ref_9 doi: 10.3390/ma14020271 – volume: 93 start-page: 2918 year: 2023 ident: ref_29 article-title: A review of wearable carbon-based sensors for strain detection: Fabrication methods, properties, and mechanisms publication-title: Text. Res. J. doi: 10.1177/00405175221148263 – volume: 115 start-page: 205 year: 2020 ident: ref_41 article-title: Research on Optimization of Port Logistics Distribution Path Planning Based on Intelligent Group Classification Algorithm publication-title: J. Coast. Res. doi: 10.2112/JCR-SI115-064.1 – ident: ref_4 doi: 10.3390/polym14091916 – volume: 7 start-page: 105 year: 2014 ident: ref_46 article-title: Coverage Optimization Scheme Based on Artificial Fish Swarm Algorithm for Wireless Sensor Networks in Complicated Environment publication-title: Int. J. Future Gener. Commun. Netw. doi: 10.14257/ijfgcn.2014.7.5.09 – volume: 135 start-page: 105913 year: 2020 ident: ref_24 article-title: Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2020.105913 – volume: 9 start-page: 231 year: 2018 ident: ref_27 article-title: Piezoresistive effect of the carbon nanotube yarn embedded axially into the 3D braided composite publication-title: Results Phys. doi: 10.1016/j.rinp.2018.02.058 – volume: 39 start-page: 2067 year: 2023 ident: ref_33 article-title: Damage identification of structural systems by modal strain energy and an optimization-based iterative regularization method publication-title: Eng. Comput. doi: 10.1007/s00366-021-01567-5 – ident: ref_15 doi: 10.3390/jmse10121819 – ident: ref_17 doi: 10.3390/app13042398 – ident: ref_16 doi: 10.3390/ecsa-9-13354 – ident: ref_23 doi: 10.3390/s23010410 – volume: 8 start-page: 42864 year: 2020 ident: ref_36 article-title: Analysis of Network Coverage Optimization Based on Feedback K-Means Clustering and Artificial Fish Swarm Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970208 – ident: ref_42 doi: 10.3390/nano12040593 – volume: 207 start-page: 119 year: 2019 ident: ref_2 article-title: Structural modeling and mechanical characterizing of three-dimensional four-step braided composites: A review publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.09.065 |
| SSID | ssj0023338 |
| Score | 2.4100518 |
| Snippet | This study aims to enable intelligent structural health monitoring of internal damage in aerospace structural components, providing a crucial means of assuring... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7067 |
| SubjectTerms | Accuracy Algorithms Analysis artificial fish swarm algorithm (AFSA) Braided composites carbon nanotube yarn (CNT yarn) Composite materials damage location source Energy consumption Fault diagnosis Fire prevention Mechanical properties Nanotubes Neural networks Optimization optimized configuration of sensors Regularization methods Sensors Yarn |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8RSBgsxDgkvUrO3YznG3UFVI9NJWKifLr1Ck3aTK7qrqv-9MnA27KogLV9tJnHnZnzz-hpCPNY-lnnCZM1VWuSi9zx1sS3NvvdOMe1v0PNvfT-Txufh2UV5slfrCnLBED5wEd-BYbW2QUlTSiRhiFa1ypWJROV-IicPoW-hqA6YGqMUBeSUeIQ6g_mDJ8MJ30ReT_7369CT9d0Px3fTI--vmyt5c2_l8a-05ekweDZtGOk2TfULuxeYpebhFJfiM1F_sAkIDTT6KbbSt6axDBshA0esxOysuaZ8jQA9PzugP2zX0FGBs29EZLGaBtk3_jUQqQbEqOj29tt2CTuc_4Z2ry8Vzcn709ezwOB9qKOReaLmCYBdC8MwXTljlHQq_Lgpfa1eVZS01C1HFEJSoo1Ba6pozZyOCPGQSAwT7guw1bRNfEorUeErDhtAKKTSSNSnmCitAQ5xHpTPyeSNb4weCcaxzMTcANFANZlRDRt6PQ68Sq8afBs1QQeMAJMLuG8A8zGAe5l_mkZFPqF6D7gqTARNMtw7gl5D4ykxhMSiFqtgkI_sbCzCDHy8N06UCwFxxmZF3Yzd4IB6r2Ca26zRGCw7AMyN6x3J2pr7b0_y67Lm8J_1BdQWPfhiN7O8iefU_RPKaPGDgISmLcZ_srbp1fAM7q5V72zvRLTi-IxE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZG9wA8TFy1sIHMRYKXaKnt2M4DQu3YNCFRIbZJ4ynyLRtSm5S01cS_55wkzVYNeLWd2PG52F98_B1C3hU8pHrIZcxUmsUidS62sC2NnXFWM-5M0vBsf53Ik3Px5SK92CKT9V0YDKtc-8TGUfvK4T_yA6ZTBdAl4_LT_FeMWaPwdHWdQsN0qRX8x4Zi7B7ZZsiMNSDb46PJt-89BOOAyFp-IQ5g_2DB8CJ40iSZv1mVGvL-uy76btjk_VU5N7-vzXR6a006fkR2us0kHbXSf0y2QvmEPLxFMfiUFJ_NDFwGbW0Xy2hV0HGNzJCeojfAqK2woE3sAD2cnNEfpi7pKcDbqqZjWOQ8rcqmj5ZsgmK2dHp6beoZHU0v4Z3Lq9kzcn58dHZ4Ene5FWIntFyCE_TeO-YSK4xyFoVSJIkrtM3StJCa-aCC90oUQSgtdcGZNQHBHzKMAbJ9TgZlVYZdQpEyT2nYKBohhUYSJ8VsYoRlBedB6Yh8WM9t7jriccx_Mc0BgKAY8l4MEXnTN523bBt_azRGAfUNkCC7Kajqy7yztxw6N8ZLKTJpRfAhC0bZVLGgrEvE0EbkPYo3RzOGwYBqtrcR4JOQECsfwSKRCpWxYUT21xqQd_a9yG-0MSKv-2qwTDxuMWWoVm0bLTgA0ojoDc3ZGPpmTfnzquH4HjYH2Bk8-rZXsn9PyYv_j3GPPGCg-23c4j4ZLOtVeAl7qaV91RnIH2DkH5Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOvCsMBS0PCS5u7PV6d31CSaGqkIiQ2kjtydqX24rEjpyECn49M7YTEgoSEtf12N7H7Dcz9sy3hLwpEp-qOBEhk2kW8tTa0IBbGlptjWKJ1VHDs_15JI7G_NNperpRxY9plRCKXzYgjVVYIViwqM-Sfiz6EqC1P3PF-2_dtyRkehFcxULeJDsiBW-8R3bGoy-Ds6aoqLu7JRRKILrvzxlWfkfNqfK_zFDD1n8dk6_nSd5aljP9_UpPJhtG6PAe0avut7knX_eXC7Nvf_zG7Pg_47tP7nYeKh20KvWA3PDlQ3Jng7fwESk-6CngEG0BAdtoVdBhjXSTjiLEYCqYn9MmIYEejE7oma5Legwxc1XTIVhOR6uyeUfLYEHxCHZ6fKXrKR1MzuGZi4vpYzI-_HhycBR2BzaEliuxAGR1zllmI8O1tAZXuogiWyiTpWkhFHNeeuckLzyXSqgiYUZ7jCiRtgzC5V3SK6vSPyEUefikAu9Tc5gAZIaSzESaG1YkiZcqIO9W65fbjs0cD9WY5BDV4FLn66UOyKu16Kyl8PiT0BCVYC2ArNtNQ1Wf590mzuHlWjsheCYM985nXkuTSualsRGPTUDeogrliA3QGdD3tsQBhoQsW_kALE_KZcbigOyttCzvQGOeM5VKiM6zRATk5foybHf8h6NLXy1bGcUTiHIDora0c6vr21fKy4uGODxu_opncOvrtSL_fUqe_pPUM3Kbgd_X5kTukd6iXvrn4KctzItuK_4EDsY3Kg priority: 102 providerName: Unpaywall |
| Title | Damage Monitoring of Braided Composites Using CNT Yarn Sensor Based on Artificial Fish Swarm Algorithm |
| URI | https://www.proquest.com/docview/2857446936 https://www.proquest.com/docview/2857843716 https://pubmed.ncbi.nlm.nih.gov/PMC10458496 https://www.mdpi.com/1424-8220/23/16/7067/pdf?version=1691648167 https://doaj.org/article/b2faad66496b4ede9ea7b572e7bc041b |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7a5QF4QFxFYFTmIsFLIHWc2HlAqB0rE9Kqia1S9xTZjrMhpclIW439e85J2mjVhsRLHmwnTnxu_mL7OwDv89BFqh_GPpdR4ovIWt_gtNS32hrFQ6uDhmf7aBwfTsSPaTTdgnWOzdUAzu-EdpRPalIXn_78vv6KBv-FECdC9s9zTse50e1uwy4GqIQyOByJbjGBh2GT0JrOdPkYD4OWYGjz1o2w1LD33_bRt_dN3luWl_r6ShfFjaA0egQPV7NJNmjF_xi2XPkEHtzgGHwK-Tc9Q5_BWuOlMlblbFgTNWTGyB3Qti03Z83mAbY_PmVnui7ZCeLbqmZDjHIZq8qmj5ZtglG6dHZypesZGxTn-MzFxewZTEYHp_uH_iq5gm-FihfoBbMss9wGRmhpDUklDwKbK5NEUR4rnjnpskyK3AmpYpWH3GhH6I8oxhDaPoedsirdC2DEmScVzhS1iIUiFifJTaCF4XkYOqk8-Lge29SumMcpAUaRIgIhMaSdGDx42zW9bOk27mo0JAF1DYghuymo6vN0ZXApdq51FsciiY1wmUucliaS3EljA9E3Hnwg8aakWfgyqJvtcQT8JGLESgcYJSIhE973YG-tAelaP1OuIolIOgljD9501WiatN6iS1ct2zZKhIhIPVAbmrPx6ps15a-LhuS736xgJ3jru07J_j0kL_9n3F7BfY7W0G5f3IOdRb10r3FKtTA92JZTiVc1-t6D3eHB-Phnr_k90WtMCcsm4-PB2V8wXyO2 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeBg8IK4iMMDcBC_RUtuJnQeE2o2pY1tf1knjKfMtG1KblLRVtT_Fb-ScpJdVA972GjuJ43PzFx9_h5APOfexavEkZDJOQxFbGxpYloZWW6MYtzqqebaPe0n3VHw_i882yO_FWRhMq1z4xNpRu9LiP_IdpmIJ0CXlydfRrxCrRuHu6qKERqMWh_5qBpBt_OVgD-T7kbH9b_3dbjivKhBaoZIJmL9zzjIbGaGlNTicPIpsrkwax3mimPPSOydF7oVUico5M9oj7EFuLcB08Nw75K7g4EvAfuTZCuBxwHsNexHnabQzZnjMPKpL2K9iXl0a4GYAuJmUuTUtRvpqpgeDaxFv_yF5MF-q0najW4_Ihi8ek_vXCAyfkHxPD8Eh0cYz4DVa5rRTIe-ko-hrMCfMj2mdmUB3e336Q1cFPQHwXFa0AyHU0bKo39FQWVCsxU5PZroa0vbgAp45uRw-Jae3MsfPyGZRFv45oUjIJxUsQ7VIhEKKKMlMpIVhOedeqoB8XsxtZue05lhdY5ABvEExZEsxBOTdsuuo4fL4W6cOCmjZAem36wtldZHNrTmDl2vtkkSkiRHe-dRraWLJvDQ2Ei0TkE8o3gydBAwGFL856wCfhHRbWRtCUCxkyloB2V5oQDb3HuNspesBebtsBrvHzRxd-HLa9FGCA9wNiFrTnLWhr7cUPy9rBvFWvT2ewq3vl0r27yl58f8xviFb3f7xUXZ00Dt8Se4xsIMmQ3KbbE6qqX8Fq7aJeV2bCiXnt22bfwClCVbr |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IK4iY4C5CV6ipo4TOw8ItSvVxqBC2iaVp-BbtkltUtJW1f4av45zkrRdNeBtr7GTOD43f_Hxdwh5m4Uuku0w9pmIEp9HxvgalqW-UUZLFhoVVDzb3wbx_gn_MoyGW-T38iwMplUufWLlqG1h8B95i8lIAHRJwriVNWkR33v9T5NfPlaQwp3WZTmNWkUO3cUC4Nv040EPZP2Osf7n4719v6kw4Bsu4xm4AmutYSbQXAmjcWhZEJhM6iSKslgy64SzVvDMcSFjmYVMK4cQCHm2AN_Bc2-QmyIME0wnFMM12AsB-9VMRtAYtKYMj5wHVTn7dfyrygRcDQZXEzRvz_OJulio0ehS9OvfJ_eaZSvt1Hr2gGy5_CG5e4nM8BHJemoMzonWXgKv0SKj3RI5KC1Fv4P5YW5KqywFujc4pj9UmdMjANJFSbsQTi0t8uodNa0Fxbrs9GihyjHtjE7hmbOz8WNyci1z_IRs50XunhKK5HxCwpJU8ZhLpIsSTAeKa5aFoRPSIx-Wc5uahuIcK22MUoA6KIZ0JQaPvF51ndS8Hn_r1EUBrTogFXd1oShP08ayU3i5UjaOeRJr7qxLnBI6EswJbQLe1h55j-JN0WHAYMAI6nMP8ElIvZV2IBxFXCSs7ZHdpQakjSeZpmu998irVTP4ANzYUbkr5nUfyUOAvh6RG5qzMfTNlvz8rGITb1db5Qnc-malZP-ekp3_j_EluQVWmX49GBw-I3cYmEGdLLlLtmfl3D2HBdxMv6gshZKf122afwCqElsu |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOvCsMBS0PCS5u7PV6d31CSaGqkIiQ2kjtydqX24rEjpyECn49M7YTEgoSEtf12N7H7Dcz9sy3hLwpEp-qOBEhk2kW8tTa0IBbGlptjWKJ1VHDs_15JI7G_NNperpRxY9plRCKXzYgjVVYIViwqM-Sfiz6EqC1P3PF-2_dtyRkehFcxULeJDsiBW-8R3bGoy-Ds6aoqLu7JRRKILrvzxlWfkfNqfK_zFDD1n8dk6_nSd5aljP9_UpPJhtG6PAe0avut7knX_eXC7Nvf_zG7Pg_47tP7nYeKh20KvWA3PDlQ3Jng7fwESk-6CngEG0BAdtoVdBhjXSTjiLEYCqYn9MmIYEejE7oma5Legwxc1XTIVhOR6uyeUfLYEHxCHZ6fKXrKR1MzuGZi4vpYzI-_HhycBR2BzaEliuxAGR1zllmI8O1tAZXuogiWyiTpWkhFHNeeuckLzyXSqgiYUZ7jCiRtgzC5V3SK6vSPyEUefikAu9Tc5gAZIaSzESaG1YkiZcqIO9W65fbjs0cD9WY5BDV4FLn66UOyKu16Kyl8PiT0BCVYC2ArNtNQ1Wf590mzuHlWjsheCYM985nXkuTSualsRGPTUDeogrliA3QGdD3tsQBhoQsW_kALE_KZcbigOyttCzvQGOeM5VKiM6zRATk5foybHf8h6NLXy1bGcUTiHIDora0c6vr21fKy4uGODxu_opncOvrtSL_fUqe_pPUM3Kbgd_X5kTukd6iXvrn4KctzItuK_4EDsY3Kg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damage+Monitoring+of+Braided+Composites+Using+CNT+Yarn+Sensor+Based+on+Artificial+Fish+Swarm+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Hongxia&rft.au=Jia%2C+Yungang&rft.au=Jia%2C+Minrui&rft.au=Pei%2C+Xiaoyuan&rft.date=2023-08-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=16&rft.spage=7067&rft_id=info:doi/10.3390%2Fs23167067&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23167067 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |