A Data Enhancement Algorithm for DDoS Attacks Using IoT
With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS) and other cyber attacks on the internet has significantly increased. In the actual attack process, the small pe...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 17; p. 7496 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
29.08.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23177496 |
Cover
| Abstract | With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS) and other cyber attacks on the internet has significantly increased. In the actual attack process, the small percentage of attack packets in IoT leads to low accuracy of intrusion detection. Based on this problem, the paper proposes an oversampling algorithm, KG-SMOTE, based on Gaussian distribution and K-means clustering, which inserts synthetic samples through Gaussian probability distribution, extends the clustering nodes in minority class samples in the same proportion, increases the density of minority class samples, and improves the amount of minority class sample data in order to provide data support for IoT-based DDoS attack detection. Experiments show that the balanced dataset generated by this method effectively improves the intrusion detection accuracy in each category and effectively solves the data imbalance problem. |
|---|---|
| AbstractList | With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS) and other cyber attacks on the internet has significantly increased. In the actual attack process, the small percentage of attack packets in IoT leads to low accuracy of intrusion detection. Based on this problem, the paper proposes an oversampling algorithm, KG-SMOTE, based on Gaussian distribution and K-means clustering, which inserts synthetic samples through Gaussian probability distribution, extends the clustering nodes in minority class samples in the same proportion, increases the density of minority class samples, and improves the amount of minority class sample data in order to provide data support for IoT-based DDoS attack detection. Experiments show that the balanced dataset generated by this method effectively improves the intrusion detection accuracy in each category and effectively solves the data imbalance problem. With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS) and other cyber attacks on the internet has significantly increased. In the actual attack process, the small percentage of attack packets in IoT leads to low accuracy of intrusion detection. Based on this problem, the paper proposes an oversampling algorithm, KG-SMOTE, based on Gaussian distribution and K-means clustering, which inserts synthetic samples through Gaussian probability distribution, extends the clustering nodes in minority class samples in the same proportion, increases the density of minority class samples, and improves the amount of minority class sample data in order to provide data support for IoT-based DDoS attack detection. Experiments show that the balanced dataset generated by this method effectively improves the intrusion detection accuracy in each category and effectively solves the data imbalance problem.With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS) and other cyber attacks on the internet has significantly increased. In the actual attack process, the small percentage of attack packets in IoT leads to low accuracy of intrusion detection. Based on this problem, the paper proposes an oversampling algorithm, KG-SMOTE, based on Gaussian distribution and K-means clustering, which inserts synthetic samples through Gaussian probability distribution, extends the clustering nodes in minority class samples in the same proportion, increases the density of minority class samples, and improves the amount of minority class sample data in order to provide data support for IoT-based DDoS attack detection. Experiments show that the balanced dataset generated by this method effectively improves the intrusion detection accuracy in each category and effectively solves the data imbalance problem. |
| Audience | Academic |
| Author | Ma, Xingbang Lv, Haibin Du, Yanhui Zhou, Xing Ni, Wenkai |
| AuthorAffiliation | College of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China; 18259568358@163.com (H.L.); 2021212347@stu.ppsuc.edu.cn (X.Z.); 2021211449@stu.ppsuc.edu.cn (W.N.); 2021212361@stu.ppsuc.edu.cn (X.M.) |
| AuthorAffiliation_xml | – name: College of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China; 18259568358@163.com (H.L.); 2021212347@stu.ppsuc.edu.cn (X.Z.); 2021211449@stu.ppsuc.edu.cn (W.N.); 2021212361@stu.ppsuc.edu.cn (X.M.) |
| Author_xml | – sequence: 1 givenname: Haibin surname: Lv fullname: Lv, Haibin – sequence: 2 givenname: Yanhui surname: Du fullname: Du, Yanhui – sequence: 3 givenname: Xing surname: Zhou fullname: Zhou, Xing – sequence: 4 givenname: Wenkai surname: Ni fullname: Ni, Wenkai – sequence: 5 givenname: Xingbang surname: Ma fullname: Ma, Xingbang |
| BookMark | eNp1kktv1DAUhSNURB-w4B9EYgNI0zp-Z4WiToGRKrGgXVs3jp3xkNiDnYD67_E0VUUrkBe2rs_9fO6RT4sjH7wpircVOiekRhcJk0oIWvMXxUlFMV1JjNHRX-fj4jSlHUKYECJfFcdEcClqhk8K0ZRrmKC88lvw2ozGT2Uz9CG6aTuWNsRyvQ7fy2aaQP9I5W1yvi834eZ18dLCkMybh_2suP18dXP5dXX97cvmsrleaSr5tKKtNSBMxQlnppOagm215q2saq7BSgnGVnXbCdQRkLbuDFQgEUhqORYak7Nis3C7ADu1j26EeKcCOHVfCLFXECenB6M6LXgl25YJMJTbFiRDrKsQZoZLxHRmfVxYs9_D3W8YhkdghdQhSfWYZBZ_WsT7uR1Np3MwEYYnDp7eeLdVffiVUbRGXNaZ8P6BEMPP2aRJjS5pMwzgTZiTwpITggilLEvfPZPuwhx9DvagwoJgRg9ZnC-qHvK4ztuQH9Z5dWZ0On8J63K9EZxSzti9g4ulQceQUjRWaTfB5MLBsRv-OfWHZx3_T-gPe1rCWg |
| CitedBy_id | crossref_primary_10_3390_math12091294 crossref_primary_10_1016_j_ins_2024_120410 crossref_primary_10_3390_app131810455 |
| Cites_doi | 10.1109/ICOASE.2018.8548877 10.1109/TKDE.2008.239 10.1016/j.comnet.2020.107315 10.1016/j.ins.2019.10.017 10.1613/jair.953 10.1016/j.bdr.2015.12.001 10.1007/978-3-642-25853-4 10.1080/03610918.2012.728274 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23177496 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_dc7618bb57ae46fba8505d1025e6805c 10.3390/s23177496 PMC10490689 A764465589 10_3390_s23177496 |
| GrantInformation_xml | – fundername: Double First-Class Innovation Research Project for People’s Public Security University of China grantid: 2023SYL*** |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c486t-4bfea7e16365ed8c4afbcc6b8196caf88aef19bd70d3a8f9dea1a80a84f627c23 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:27 EDT 2025 Sun Oct 26 03:52:41 EDT 2025 Tue Sep 30 17:25:16 EDT 2025 Wed Oct 01 13:53:52 EDT 2025 Tue Oct 07 07:14:23 EDT 2025 Mon Oct 20 17:15:54 EDT 2025 Thu Oct 16 04:35:43 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c486t-4bfea7e16365ed8c4afbcc6b8196caf88aef19bd70d3a8f9dea1a80a84f627c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/23/17/7496/pdf?version=1693295443 |
| PMID | 37687952 |
| PQID | 2862732542 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dc7618bb57ae46fba8505d1025e6805c unpaywall_primary_10_3390_s23177496 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10490689 proquest_miscellaneous_2863303445 proquest_journals_2862732542 gale_infotracacademiconefile_A764465589 crossref_citationtrail_10_3390_s23177496 crossref_primary_10_3390_s23177496 |
| PublicationCentury | 2000 |
| PublicationDate | 20230829 |
| PublicationDateYYYYMMDD | 2023-08-29 |
| PublicationDate_xml | – month: 8 year: 2023 text: 20230829 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zou (ref_23) 2016; 5 Zhong (ref_21) 2021; 42 Kamalov (ref_15) 2020; 512 Yu (ref_6) 2020; 19 ref_12 Li (ref_18) 2019; 42 ref_11 ref_22 Xue (ref_7) 2016; 45 Hassan (ref_17) 2021; 69 ref_20 ref_1 Jiang (ref_14) 2022; 39 ref_2 Yehui (ref_10) 2022; 21 Li (ref_4) 2017; 37 Li (ref_5) 2019; 34 He (ref_8) 2009; 21 ref_16 Zhang (ref_13) 2021; 41 Zhang (ref_3) 2019; 39 Chawla (ref_9) 2002; 16 Zhang (ref_19) 2020; 177 |
| References_xml | – ident: ref_20 doi: 10.1109/ICOASE.2018.8548877 – volume: 42 start-page: 136 year: 2021 ident: ref_21 article-title: Improvement of K-Means Algorithm for Adaptive K Value in Machine Learning publication-title: Comput. Eng. Des. – ident: ref_2 – volume: 21 start-page: 1263 year: 2009 ident: ref_8 article-title: Learning from Imbalanced Data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 37 start-page: 1246 year: 2017 ident: ref_4 article-title: Research on Intrusion Detection Method Based on Second Training Techniques publication-title: J. Beijing Inst. Technol. – volume: 177 start-page: 107315 year: 2020 ident: ref_19 article-title: An Effective Convolutional Neural Network Based on SMOTE and Gaussian Mixture Model for Intrusion Detection in Imbalanced Dataset publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107315 – ident: ref_12 – ident: ref_11 – volume: 512 start-page: 1192 year: 2020 ident: ref_15 article-title: Kernel Density Estimation Based Sampling for Imbalanced Class Distribution publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.017 – volume: 21 start-page: 110 year: 2022 ident: ref_10 article-title: An Improved SMOTE Algorithm Based on Gaussian Hybrid Clustering for Unbalanced Data publication-title: Softw. Guide – volume: 41 start-page: 513 year: 2021 ident: ref_13 article-title: A Gaussian Oversampling-based Ensemble Learning Algorithm publication-title: Syst. Eng. Theory Pract. – volume: 16 start-page: 321 year: 2002 ident: ref_9 article-title: SMOTE: Synthetic Minority Over-Sampling Technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 5 start-page: 2 year: 2016 ident: ref_23 article-title: Finding the Best Classification Threshold in Imbalanced Classification publication-title: Big Data Res. doi: 10.1016/j.bdr.2015.12.001 – volume: 34 start-page: 673 year: 2019 ident: ref_5 article-title: A Review of Unbalanced Data Classification Methods publication-title: Control. Decis. Mak. – ident: ref_1 – volume: 42 start-page: 65 year: 2019 ident: ref_18 article-title: Research on Improved SMOTE Algorithm Based on Probability Density Estimation publication-title: J. Nanjing Normal Univ. (Nat. Sci. Ed.) – ident: ref_22 – volume: 19 start-page: 205 year: 2020 ident: ref_6 article-title: An Improved Undersampling Algorithm for Unbalanced Data in K-means Clustering publication-title: Softw. Guide – volume: 39 start-page: 1258 year: 2019 ident: ref_3 article-title: Network Intrusion Detection Based on SMOTE and Machine Learning publication-title: J. Beijing Inst. Technol. – ident: ref_16 doi: 10.1007/978-3-642-25853-4 – volume: 69 start-page: 451 year: 2021 ident: ref_17 article-title: Oversampling method based on Gaussian distribution and K-Means clustering publication-title: Comput. Mater. Contin. – volume: 39 start-page: 391 year: 2022 ident: ref_14 article-title: An Oversampling Method for Intrusion Detection Data Based on Highest Density Points publication-title: Comput. Simul. – volume: 45 start-page: 1160 year: 2016 ident: ref_7 article-title: Dealing with Imbalanced Dataset: A Resampling Method Based on the Improved SMOTE Algorithm publication-title: Commun. Stat.-Simul. Comput. doi: 10.1080/03610918.2012.728274 |
| SSID | ssj0023338 |
| Score | 2.4339979 |
| Snippet | With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7496 |
| SubjectTerms | Accuracy Algorithms Classification Clustering Cyberterrorism Datasets Denial of service attacks imbalanced classification Internet of Things Intrusion detection systems Methods Normal distribution oversampling |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8RQppTIPCS5R83CcyTFlWxUkuNBKvVljx2aRlqRqs0L8e2aSbLSrgrhwjUeKM58nM58fn4V464JimbgqhkAjWDWpjq3OythrzLzTzqthHvLzF312oT5dFpdbV33xnrBRHnh03FHjiGiDtUWJXulgEShnN5QWC68hKRz_fROoNmRqolo5Ma9RRygnUn90Q1UM1TmszL-VfQaR_tu_4tvbI--u2yv89RNXq63cc_pQPJiKRlmPnX0k7vj2sbi_JSX4RJS1XGCP8qRdMo485yfr1beOuP_yh6TKVC4W3VdZ9z0fqpfDTgH5sTt_Ki5OT84_nMXTpQixU6D7WNngsfRURunCN-AUBuuctpTZtcMAgD6klW3KpMkRQtV4TBESBBUIA5flz8Re27X-uZAARRM0NlAhKs7dkKhA9VOwpQeXp5F4v3GWcZNiOF9csTLEHNivZvZrJF7PplejTMafjI7Z47MBK1sPDwhvM-Ft_oV3JN4xXobjjzrjcDpGQJ_ESlamLvWgCQdVJA42kJopMG9MRgyuzIkVZ5F4NTdTSPE6Cba-Ww82ec5SiEUkYGco7HR9t6X9vhzEuVNeStX89jfzqPm7S_b_h0teiHsZwccz3Vl1IPb667V_SaVSbw-HqPgNomoRHQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEE81tCDzkOASdZM4jnNAKGW3KkisELRSb9H41UVakm2bFeLfM5NNwq4KXGNLsefh-caPbxh7bbwgmrg8VB4tWNhIhlrGWegkxM5I40S7D_l5Jk_OxKfz9HyHzfq3MHStsl8T24Xa1ob2yA9jhN5ZgulM_H55GVLVKDpd7UtoQFdawb5rKcZusd2YmLFGbPdoOvvydUjBEszI1vxCCSb7h9eIbhD_EGP_RlRqyftvLtE3r03eXlVL-PUTFouNmHR8n93rwCQv1tp_wHZc9ZDd3aAYfMSygk-gAT6t5qRf2gvkxeICZ9bMf3BErHwyqb_xomnosT1vbxDwj_XpY3Z2PD39cBJ2xRJCI5RsQqG9g8whvJKps8oI8NoYqTHiSwNeKXA-yrXNxjYB5XPrIAI1BiU8CtbEyRM2qurK7TGuVGq9BKtyAEExXY2FR1zldeaUSaKAve2FVZqOSZwKWixKzChIruUg14C9HLou1_QZf-t0RBIfOhDjdfuhvrooOwcqrclkpLROM3BCeg0KsZtFeJQ6qcapCdgb0ldJfomDMdA9L8ApEcNVWWSy5YpTecAOepWWncNel3_MK2AvhmZ0NTo_gcrVq7ZPkhBFYhowtWUKW0Pfbqm-z1vS7oiOWCX9_dVgNf8WydP_j3Gf3aGy97S3HecHbNRcrdwzBEeNft5Z_G-7vw8K priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAexudExkDhQ4KXLF-O7TyhQDcNJCYkVmk8RWfHXitKUnUpCP567tK0ahlISLwml8TOne3fne9-ZuyFcZxo4vJAObRgXsUi0CKRgRWQWCOM5V0c8sOpOBnx9-fZ-UYVP6VVois-6SZpqsIKcAWLwiQNYxlKnotwVrnX3_pYEjGJ0EYVT6-zHZEhGh-wndHpx-JzV1TUP70kFErRuw8vEc5Ies3WMtSx9V-dk6_mSd5Y1DP48R2m041F6Pg2g1Xzl7knXw4XrT40P39jdvyf_t1huz1C9YulSd1l12x9j93a4C28z2ThD6EF_6gek9FQgNEvphfNfNKOv_oIg_3hsPnkF21LFfx-l5bgv2vOHrDR8dHZ25OgP4EhMFyJNuDaWZAWMZvIbKUMB6eNERphhDDglALr4lxXMqpSUC6vLMSgIlDcocJNku6xQd3U9iHzlcoqJ6BSOQAnoKAi7hCsOS2tMmnssVcrhZSmpyenUzKmJboppLtyrTuPPVuLzpacHH8SekNaXQsQjXZ3oZlflP2oLCsjRay0ziRYLpwGhYCwQsyVWaGizHjsJdlESYMdG2Ogr1nALhFtVllI0RHQqdxjByuzKftZ4LJM0F2UKbrgiceerm_j-KVNGahts-hk0pR4FzOPqS1z22r69p16Mu6YwGPatxX09edry_z7L9n_J6lH7GaC-qG4eZIfsEE7X9jHCLxa_aQfW78ASRUmyQ priority: 102 providerName: Unpaywall |
| Title | A Data Enhancement Algorithm for DDoS Attacks Using IoT |
| URI | https://www.proquest.com/docview/2862732542 https://www.proquest.com/docview/2863303445 https://pubmed.ncbi.nlm.nih.gov/PMC10490689 https://www.mdpi.com/1424-8220/23/17/7496/pdf?version=1693295443 https://doaj.org/article/dc7618bb57ae46fba8505d1025e6805c |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t4wF4QHyKjFGFDwEvgSZxbOcBoYy2DKRVE6xS9xQ5jr1OKknXpYL999ylabRoQ-IlD7aV2Hfn3O_88TuAN9oyoomLPWnRglnucy_jgfAMV4HRXBtWr0MejfnhhH2fRtMt2BxrbgR4eWtoR_mkJsv5hz8XV59xwn-iiBND9o-XiFEQxcT87eLCo3xStO_aJNfYhl30WTEldThi7f5CEIZ1jmu65uWhi-yvOYe6b-t4qprQ_-Zv--ZRyjurYqGufqv5_JqfGj2A-w3AdJO1RTyELVM8gnvXaAcfg0jcgaqUOyxmpHNaH3ST-RmOqZr9chHFuoNB-dNNqoou4Lv1qQL3W3nyBCaj4cmXQ69JoOBpJnnlscwaJQxCLh6ZXGqmbKY1zxAFcK2slMpYP85y0c9DJW2cG-Ur2VeSWdSXDsKnsFOUhXkGrpRRbrnKZawUIz8v-8wi1rKZMFKHvgPvN8JKdcMuTkku5ilGGSTXtJWrA6_apos1pcZtjQ5I4m0DYsGuC8rlWdpMqjTXgvsyyyKhDOM2UxLxXI6QKTJc9iPtwDvSV0rWg53RqrlygEMi1qs0Ebzmj5OxA_sblaYbG0wDjPZEiBF04MDLthqnH-2pqMKUq7pNGBJtYuSA7JhCp-vdmuJ8VhN5-7Ttyunrr1ur-bdI9v6jE8_hboDaoUXvIN6HnWq5Mi8QNVVZD7bFVOBTjr72YPdgOD7-0atXIHr11MCyyfg4Of0LDxIbZg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5V5VA4IFZhKDBsgotVL-Px-ICQIa0SulxIpdyG8SwNUrBD46jqn-I38p5ju4kK3Hq1n-Txm7d8b5bvEfJWO4Y0cZkvHFgwMyH3Cx6lvuUqsppry5p1yOMTPjxlXyfJZIv87u7C4LHKLiY2gdpUGtfI9yKA3mkM5Uz0af7Lx65RuLvatdBYmcWhvbyAkm3xcTSA-X0XRQf74y9Dv-0q4GsmeO2zwlmVWsAhPLFGaKZcoTUvIDVyrZwQyrowK0wamFgJlxmrQiUCJZiDEWgkOoCQf4vFEEvAf9LJVYEXQ723Yi-K4yzYWwB2AnSF_QDWcl7TGuB6Arh-KHNnWc7V5YWazdYy3sE9creFqjRf2dZ9smXLB-TOGoHhQ5LmdKBqRffLKVoPrjTSfHYGequnPyngYToYVN9oXtd4lZ825xPoqBo_Iqc3orTHZLusSvuEUCES47gyIlOKIWIQAXOA2lyRWqHj0CMfOmVJ3fKUY7uMmYR6BfUqe7165HUvOl-Rc_xN6DNqvBdAPu3mQXV-Jlv3lEanPBRFkaTKMu4KJQAZGgBfieUiSLRH3uN8SfR6GIxW7eUF-CXkz5J5yhsmOpF5ZLebUtmGg4W8Ml6PvOpfgyPj7owqbbVsZOIYCRgTj4gNU9gY-uab8se0oQQPcQOX49ff9Fbzb5U8_f8YX5Kd4fj4SB6NTg6fkdsRTBKuokfZLtmuz5f2OcCwunjR2D4l32_a2f4AZ5lIQw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIfHxgPgUgQHmS_ASNR-O7TwgFOiqlcGExCb1LbMde0UqSVlTTfvX-Ou4S5Os1YC3vdaWcj2f735nn39HyGvjGNLEpb50YMGsCLmveSR8y1VkDTeWNeeQXw_43hH7PEkmW-R39xYGyyo7n9g46qIyeEY-iAB6ixjSmWjg2rKIb8PRh_kvHztI4U1r105jZSL79vwM0rfF-_EQ1vpNFI12Dz_t-W2HAd8wyWufaWeVsIBJeGILaZhy2hiuIUxyo5yUyrow1YUIilhJlxZWhUoGSjIH0hgkPQD3f03EcYrlhGJykezFkPutmIxgMBgsAEcB0sLeAGvxr2kTcDkYXC7QvLEs5-r8TM1ma9FvdIfcbmErzVZ2dpds2fIeubVGZnifiIwOVa3objlFS8JTR5rNTkBv9fQnBWxMh8PqO83qGp_106ZWgY6rwwfk6EqU9pBsl1VpHxEqZVI4rgqZKsUQPciAOUBwTgsrTRx65F2nrNy0nOXYOmOWQ-6Ces17vXrkZT91viLq-Nukj6jxfgJyazc_VKcnebtV88IIHkqtE6Es404rCSixACCWWC6DxHjkLa5Xjh4AhDGqfcgAfwm5tPJM8IaVTqYe2emWNG9dwyK_MGSPvOiHYVPjTY0qbbVs5sQxkjEmHpEbprAh-uZI-WPa0IOHeJnL8euveqv5t0oe_1_G5-Q6bLP8y_hg_wm5GcEa4YF6lO6Q7fp0aZ8CIqv1s8b0KTm-6r32B6LVTIY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAexudExkDhQ4KXLF-O7TyhQDcNJCYkVmk8RWfHXitKUnUpCP567tK0ahlISLwml8TOne3fne9-ZuyFcZxo4vJAObRgXsUi0CKRgRWQWCOM5V0c8sOpOBnx9-fZ-UYVP6VVois-6SZpqsIKcAWLwiQNYxlKnotwVrnX3_pYEjGJ0EYVT6-zHZEhGh-wndHpx-JzV1TUP70kFErRuw8vEc5Ies3WMtSx9V-dk6_mSd5Y1DP48R2m041F6Pg2g1Xzl7knXw4XrT40P39jdvyf_t1huz1C9YulSd1l12x9j93a4C28z2ThD6EF_6gek9FQgNEvphfNfNKOv_oIg_3hsPnkF21LFfx-l5bgv2vOHrDR8dHZ25OgP4EhMFyJNuDaWZAWMZvIbKUMB6eNERphhDDglALr4lxXMqpSUC6vLMSgIlDcocJNku6xQd3U9iHzlcoqJ6BSOQAnoKAi7hCsOS2tMmnssVcrhZSmpyenUzKmJboppLtyrTuPPVuLzpacHH8SekNaXQsQjXZ3oZlflP2oLCsjRay0ziRYLpwGhYCwQsyVWaGizHjsJdlESYMdG2Ogr1nALhFtVllI0RHQqdxjByuzKftZ4LJM0F2UKbrgiceerm_j-KVNGahts-hk0pR4FzOPqS1z22r69p16Mu6YwGPatxX09edry_z7L9n_J6lH7GaC-qG4eZIfsEE7X9jHCLxa_aQfW78ASRUmyQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data+Enhancement+Algorithm+for+DDoS+Attacks+Using+IoT&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lv%2C+Haibin&rft.au=Du%2C+Yanhui&rft.au=Zhou%2C+Xing&rft.au=Ni%2C+Wenkai&rft.date=2023-08-29&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=17&rft_id=info:doi/10.3390%2Fs23177496&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |