A Data Enhancement Algorithm for DDoS Attacks Using IoT

With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS) and other cyber attacks on the internet has significantly increased. In the actual attack process, the small pe...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 17; p. 7496
Main Authors Lv, Haibin, Du, Yanhui, Zhou, Xing, Ni, Wenkai, Ma, Xingbang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.08.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23177496

Cover

Abstract With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS) and other cyber attacks on the internet has significantly increased. In the actual attack process, the small percentage of attack packets in IoT leads to low accuracy of intrusion detection. Based on this problem, the paper proposes an oversampling algorithm, KG-SMOTE, based on Gaussian distribution and K-means clustering, which inserts synthetic samples through Gaussian probability distribution, extends the clustering nodes in minority class samples in the same proportion, increases the density of minority class samples, and improves the amount of minority class sample data in order to provide data support for IoT-based DDoS attack detection. Experiments show that the balanced dataset generated by this method effectively improves the intrusion detection accuracy in each category and effectively solves the data imbalance problem.
AbstractList With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS) and other cyber attacks on the internet has significantly increased. In the actual attack process, the small percentage of attack packets in IoT leads to low accuracy of intrusion detection. Based on this problem, the paper proposes an oversampling algorithm, KG-SMOTE, based on Gaussian distribution and K-means clustering, which inserts synthetic samples through Gaussian probability distribution, extends the clustering nodes in minority class samples in the same proportion, increases the density of minority class samples, and improves the amount of minority class sample data in order to provide data support for IoT-based DDoS attack detection. Experiments show that the balanced dataset generated by this method effectively improves the intrusion detection accuracy in each category and effectively solves the data imbalance problem.
With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS) and other cyber attacks on the internet has significantly increased. In the actual attack process, the small percentage of attack packets in IoT leads to low accuracy of intrusion detection. Based on this problem, the paper proposes an oversampling algorithm, KG-SMOTE, based on Gaussian distribution and K-means clustering, which inserts synthetic samples through Gaussian probability distribution, extends the clustering nodes in minority class samples in the same proportion, increases the density of minority class samples, and improves the amount of minority class sample data in order to provide data support for IoT-based DDoS attack detection. Experiments show that the balanced dataset generated by this method effectively improves the intrusion detection accuracy in each category and effectively solves the data imbalance problem.With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed denial-of-service attacks (DDoS) and other cyber attacks on the internet has significantly increased. In the actual attack process, the small percentage of attack packets in IoT leads to low accuracy of intrusion detection. Based on this problem, the paper proposes an oversampling algorithm, KG-SMOTE, based on Gaussian distribution and K-means clustering, which inserts synthetic samples through Gaussian probability distribution, extends the clustering nodes in minority class samples in the same proportion, increases the density of minority class samples, and improves the amount of minority class sample data in order to provide data support for IoT-based DDoS attack detection. Experiments show that the balanced dataset generated by this method effectively improves the intrusion detection accuracy in each category and effectively solves the data imbalance problem.
Audience Academic
Author Ma, Xingbang
Lv, Haibin
Du, Yanhui
Zhou, Xing
Ni, Wenkai
AuthorAffiliation College of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China; 18259568358@163.com (H.L.); 2021212347@stu.ppsuc.edu.cn (X.Z.); 2021211449@stu.ppsuc.edu.cn (W.N.); 2021212361@stu.ppsuc.edu.cn (X.M.)
AuthorAffiliation_xml – name: College of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China; 18259568358@163.com (H.L.); 2021212347@stu.ppsuc.edu.cn (X.Z.); 2021211449@stu.ppsuc.edu.cn (W.N.); 2021212361@stu.ppsuc.edu.cn (X.M.)
Author_xml – sequence: 1
  givenname: Haibin
  surname: Lv
  fullname: Lv, Haibin
– sequence: 2
  givenname: Yanhui
  surname: Du
  fullname: Du, Yanhui
– sequence: 3
  givenname: Xing
  surname: Zhou
  fullname: Zhou, Xing
– sequence: 4
  givenname: Wenkai
  surname: Ni
  fullname: Ni, Wenkai
– sequence: 5
  givenname: Xingbang
  surname: Ma
  fullname: Ma, Xingbang
BookMark eNp1kktv1DAUhSNURB-w4B9EYgNI0zp-Z4WiToGRKrGgXVs3jp3xkNiDnYD67_E0VUUrkBe2rs_9fO6RT4sjH7wpircVOiekRhcJk0oIWvMXxUlFMV1JjNHRX-fj4jSlHUKYECJfFcdEcClqhk8K0ZRrmKC88lvw2ozGT2Uz9CG6aTuWNsRyvQ7fy2aaQP9I5W1yvi834eZ18dLCkMybh_2suP18dXP5dXX97cvmsrleaSr5tKKtNSBMxQlnppOagm215q2saq7BSgnGVnXbCdQRkLbuDFQgEUhqORYak7Nis3C7ADu1j26EeKcCOHVfCLFXECenB6M6LXgl25YJMJTbFiRDrKsQZoZLxHRmfVxYs9_D3W8YhkdghdQhSfWYZBZ_WsT7uR1Np3MwEYYnDp7eeLdVffiVUbRGXNaZ8P6BEMPP2aRJjS5pMwzgTZiTwpITggilLEvfPZPuwhx9DvagwoJgRg9ZnC-qHvK4ztuQH9Z5dWZ0On8J63K9EZxSzti9g4ulQceQUjRWaTfB5MLBsRv-OfWHZx3_T-gPe1rCWg
CitedBy_id crossref_primary_10_3390_math12091294
crossref_primary_10_1016_j_ins_2024_120410
crossref_primary_10_3390_app131810455
Cites_doi 10.1109/ICOASE.2018.8548877
10.1109/TKDE.2008.239
10.1016/j.comnet.2020.107315
10.1016/j.ins.2019.10.017
10.1613/jair.953
10.1016/j.bdr.2015.12.001
10.1007/978-3-642-25853-4
10.1080/03610918.2012.728274
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23177496
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_dc7618bb57ae46fba8505d1025e6805c
10.3390/s23177496
PMC10490689
A764465589
10_3390_s23177496
GrantInformation_xml – fundername: Double First-Class Innovation Research Project for People’s Public Security University of China
  grantid: 2023SYL***
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c486t-4bfea7e16365ed8c4afbcc6b8196caf88aef19bd70d3a8f9dea1a80a84f627c23
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:27 EDT 2025
Sun Oct 26 03:52:41 EDT 2025
Tue Sep 30 17:25:16 EDT 2025
Wed Oct 01 13:53:52 EDT 2025
Tue Oct 07 07:14:23 EDT 2025
Mon Oct 20 17:15:54 EDT 2025
Thu Oct 16 04:35:43 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-4bfea7e16365ed8c4afbcc6b8196caf88aef19bd70d3a8f9dea1a80a84f627c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/23/17/7496/pdf?version=1693295443
PMID 37687952
PQID 2862732542
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_dc7618bb57ae46fba8505d1025e6805c
unpaywall_primary_10_3390_s23177496
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10490689
proquest_miscellaneous_2863303445
proquest_journals_2862732542
gale_infotracacademiconefile_A764465589
crossref_citationtrail_10_3390_s23177496
crossref_primary_10_3390_s23177496
PublicationCentury 2000
PublicationDate 20230829
PublicationDateYYYYMMDD 2023-08-29
PublicationDate_xml – month: 8
  year: 2023
  text: 20230829
  day: 29
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zou (ref_23) 2016; 5
Zhong (ref_21) 2021; 42
Kamalov (ref_15) 2020; 512
Yu (ref_6) 2020; 19
ref_12
Li (ref_18) 2019; 42
ref_11
ref_22
Xue (ref_7) 2016; 45
Hassan (ref_17) 2021; 69
ref_20
ref_1
Jiang (ref_14) 2022; 39
ref_2
Yehui (ref_10) 2022; 21
Li (ref_4) 2017; 37
Li (ref_5) 2019; 34
He (ref_8) 2009; 21
ref_16
Zhang (ref_13) 2021; 41
Zhang (ref_3) 2019; 39
Chawla (ref_9) 2002; 16
Zhang (ref_19) 2020; 177
References_xml – ident: ref_20
  doi: 10.1109/ICOASE.2018.8548877
– volume: 42
  start-page: 136
  year: 2021
  ident: ref_21
  article-title: Improvement of K-Means Algorithm for Adaptive K Value in Machine Learning
  publication-title: Comput. Eng. Des.
– ident: ref_2
– volume: 21
  start-page: 1263
  year: 2009
  ident: ref_8
  article-title: Learning from Imbalanced Data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 37
  start-page: 1246
  year: 2017
  ident: ref_4
  article-title: Research on Intrusion Detection Method Based on Second Training Techniques
  publication-title: J. Beijing Inst. Technol.
– volume: 177
  start-page: 107315
  year: 2020
  ident: ref_19
  article-title: An Effective Convolutional Neural Network Based on SMOTE and Gaussian Mixture Model for Intrusion Detection in Imbalanced Dataset
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107315
– ident: ref_12
– ident: ref_11
– volume: 512
  start-page: 1192
  year: 2020
  ident: ref_15
  article-title: Kernel Density Estimation Based Sampling for Imbalanced Class Distribution
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.017
– volume: 21
  start-page: 110
  year: 2022
  ident: ref_10
  article-title: An Improved SMOTE Algorithm Based on Gaussian Hybrid Clustering for Unbalanced Data
  publication-title: Softw. Guide
– volume: 41
  start-page: 513
  year: 2021
  ident: ref_13
  article-title: A Gaussian Oversampling-based Ensemble Learning Algorithm
  publication-title: Syst. Eng. Theory Pract.
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_9
  article-title: SMOTE: Synthetic Minority Over-Sampling Technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 5
  start-page: 2
  year: 2016
  ident: ref_23
  article-title: Finding the Best Classification Threshold in Imbalanced Classification
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2015.12.001
– volume: 34
  start-page: 673
  year: 2019
  ident: ref_5
  article-title: A Review of Unbalanced Data Classification Methods
  publication-title: Control. Decis. Mak.
– ident: ref_1
– volume: 42
  start-page: 65
  year: 2019
  ident: ref_18
  article-title: Research on Improved SMOTE Algorithm Based on Probability Density Estimation
  publication-title: J. Nanjing Normal Univ. (Nat. Sci. Ed.)
– ident: ref_22
– volume: 19
  start-page: 205
  year: 2020
  ident: ref_6
  article-title: An Improved Undersampling Algorithm for Unbalanced Data in K-means Clustering
  publication-title: Softw. Guide
– volume: 39
  start-page: 1258
  year: 2019
  ident: ref_3
  article-title: Network Intrusion Detection Based on SMOTE and Machine Learning
  publication-title: J. Beijing Inst. Technol.
– ident: ref_16
  doi: 10.1007/978-3-642-25853-4
– volume: 69
  start-page: 451
  year: 2021
  ident: ref_17
  article-title: Oversampling method based on Gaussian distribution and K-Means clustering
  publication-title: Comput. Mater. Contin.
– volume: 39
  start-page: 391
  year: 2022
  ident: ref_14
  article-title: An Oversampling Method for Intrusion Detection Data Based on Highest Density Points
  publication-title: Comput. Simul.
– volume: 45
  start-page: 1160
  year: 2016
  ident: ref_7
  article-title: Dealing with Imbalanced Dataset: A Resampling Method Based on the Improved SMOTE Algorithm
  publication-title: Commun. Stat.-Simul. Comput.
  doi: 10.1080/03610918.2012.728274
SSID ssj0023338
Score 2.4339979
Snippet With the rapid development of the Internet of Things (IoT), the frequency of attackers using botnets to control IoT devices in order to perform distributed...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7496
SubjectTerms Accuracy
Algorithms
Classification
Clustering
Cyberterrorism
Datasets
Denial of service attacks
imbalanced classification
Internet of Things
Intrusion detection systems
Methods
Normal distribution
oversampling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8RQppTIPCS5R83CcyTFlWxUkuNBKvVljx2aRlqRqs0L8e2aSbLSrgrhwjUeKM58nM58fn4V464JimbgqhkAjWDWpjq3OythrzLzTzqthHvLzF312oT5dFpdbV33xnrBRHnh03FHjiGiDtUWJXulgEShnN5QWC68hKRz_fROoNmRqolo5Ma9RRygnUn90Q1UM1TmszL-VfQaR_tu_4tvbI--u2yv89RNXq63cc_pQPJiKRlmPnX0k7vj2sbi_JSX4RJS1XGCP8qRdMo485yfr1beOuP_yh6TKVC4W3VdZ9z0fqpfDTgH5sTt_Ki5OT84_nMXTpQixU6D7WNngsfRURunCN-AUBuuctpTZtcMAgD6klW3KpMkRQtV4TBESBBUIA5flz8Re27X-uZAARRM0NlAhKs7dkKhA9VOwpQeXp5F4v3GWcZNiOF9csTLEHNivZvZrJF7PplejTMafjI7Z47MBK1sPDwhvM-Ft_oV3JN4xXobjjzrjcDpGQJ_ESlamLvWgCQdVJA42kJopMG9MRgyuzIkVZ5F4NTdTSPE6Cba-Ww82ec5SiEUkYGco7HR9t6X9vhzEuVNeStX89jfzqPm7S_b_h0teiHsZwccz3Vl1IPb667V_SaVSbw-HqPgNomoRHQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEE81tCDzkOASdZM4jnNAKGW3KkisELRSb9H41UVakm2bFeLfM5NNwq4KXGNLsefh-caPbxh7bbwgmrg8VB4tWNhIhlrGWegkxM5I40S7D_l5Jk_OxKfz9HyHzfq3MHStsl8T24Xa1ob2yA9jhN5ZgulM_H55GVLVKDpd7UtoQFdawb5rKcZusd2YmLFGbPdoOvvydUjBEszI1vxCCSb7h9eIbhD_EGP_RlRqyftvLtE3r03eXlVL-PUTFouNmHR8n93rwCQv1tp_wHZc9ZDd3aAYfMSygk-gAT6t5qRf2gvkxeICZ9bMf3BErHwyqb_xomnosT1vbxDwj_XpY3Z2PD39cBJ2xRJCI5RsQqG9g8whvJKps8oI8NoYqTHiSwNeKXA-yrXNxjYB5XPrIAI1BiU8CtbEyRM2qurK7TGuVGq9BKtyAEExXY2FR1zldeaUSaKAve2FVZqOSZwKWixKzChIruUg14C9HLou1_QZf-t0RBIfOhDjdfuhvrooOwcqrclkpLROM3BCeg0KsZtFeJQ6qcapCdgb0ldJfomDMdA9L8ApEcNVWWSy5YpTecAOepWWncNel3_MK2AvhmZ0NTo_gcrVq7ZPkhBFYhowtWUKW0Pfbqm-z1vS7oiOWCX9_dVgNf8WydP_j3Gf3aGy97S3HecHbNRcrdwzBEeNft5Z_G-7vw8K
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAexudExkDhQ4KXLF-O7TyhQDcNJCYkVmk8RWfHXitKUnUpCP567tK0ahlISLwml8TOne3fne9-ZuyFcZxo4vJAObRgXsUi0CKRgRWQWCOM5V0c8sOpOBnx9-fZ-UYVP6VVois-6SZpqsIKcAWLwiQNYxlKnotwVrnX3_pYEjGJ0EYVT6-zHZEhGh-wndHpx-JzV1TUP70kFErRuw8vEc5Ies3WMtSx9V-dk6_mSd5Y1DP48R2m041F6Pg2g1Xzl7knXw4XrT40P39jdvyf_t1huz1C9YulSd1l12x9j93a4C28z2ThD6EF_6gek9FQgNEvphfNfNKOv_oIg_3hsPnkF21LFfx-l5bgv2vOHrDR8dHZ25OgP4EhMFyJNuDaWZAWMZvIbKUMB6eNERphhDDglALr4lxXMqpSUC6vLMSgIlDcocJNku6xQd3U9iHzlcoqJ6BSOQAnoKAi7hCsOS2tMmnssVcrhZSmpyenUzKmJboppLtyrTuPPVuLzpacHH8SekNaXQsQjXZ3oZlflP2oLCsjRay0ziRYLpwGhYCwQsyVWaGizHjsJdlESYMdG2Ogr1nALhFtVllI0RHQqdxjByuzKftZ4LJM0F2UKbrgiceerm_j-KVNGahts-hk0pR4FzOPqS1z22r69p16Mu6YwGPatxX09edry_z7L9n_J6lH7GaC-qG4eZIfsEE7X9jHCLxa_aQfW78ASRUmyQ
  priority: 102
  providerName: Unpaywall
Title A Data Enhancement Algorithm for DDoS Attacks Using IoT
URI https://www.proquest.com/docview/2862732542
https://www.proquest.com/docview/2863303445
https://pubmed.ncbi.nlm.nih.gov/PMC10490689
https://www.mdpi.com/1424-8220/23/17/7496/pdf?version=1693295443
https://doaj.org/article/dc7618bb57ae46fba8505d1025e6805c
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t4wF4QHyKjFGFDwEvgSZxbOcBoYy2DKRVE6xS9xQ5jr1OKknXpYL999ylabRoQ-IlD7aV2Hfn3O_88TuAN9oyoomLPWnRglnucy_jgfAMV4HRXBtWr0MejfnhhH2fRtMt2BxrbgR4eWtoR_mkJsv5hz8XV59xwn-iiBND9o-XiFEQxcT87eLCo3xStO_aJNfYhl30WTEldThi7f5CEIZ1jmu65uWhi-yvOYe6b-t4qprQ_-Zv--ZRyjurYqGufqv5_JqfGj2A-w3AdJO1RTyELVM8gnvXaAcfg0jcgaqUOyxmpHNaH3ST-RmOqZr9chHFuoNB-dNNqoou4Lv1qQL3W3nyBCaj4cmXQ69JoOBpJnnlscwaJQxCLh6ZXGqmbKY1zxAFcK2slMpYP85y0c9DJW2cG-Ur2VeSWdSXDsKnsFOUhXkGrpRRbrnKZawUIz8v-8wi1rKZMFKHvgPvN8JKdcMuTkku5ilGGSTXtJWrA6_apos1pcZtjQ5I4m0DYsGuC8rlWdpMqjTXgvsyyyKhDOM2UxLxXI6QKTJc9iPtwDvSV0rWg53RqrlygEMi1qs0Ebzmj5OxA_sblaYbG0wDjPZEiBF04MDLthqnH-2pqMKUq7pNGBJtYuSA7JhCp-vdmuJ8VhN5-7Ttyunrr1ur-bdI9v6jE8_hboDaoUXvIN6HnWq5Mi8QNVVZD7bFVOBTjr72YPdgOD7-0atXIHr11MCyyfg4Of0LDxIbZg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5V5VA4IFZhKDBsgotVL-Px-ICQIa0SulxIpdyG8SwNUrBD46jqn-I38p5ju4kK3Hq1n-Txm7d8b5bvEfJWO4Y0cZkvHFgwMyH3Cx6lvuUqsppry5p1yOMTPjxlXyfJZIv87u7C4LHKLiY2gdpUGtfI9yKA3mkM5Uz0af7Lx65RuLvatdBYmcWhvbyAkm3xcTSA-X0XRQf74y9Dv-0q4GsmeO2zwlmVWsAhPLFGaKZcoTUvIDVyrZwQyrowK0wamFgJlxmrQiUCJZiDEWgkOoCQf4vFEEvAf9LJVYEXQ723Yi-K4yzYWwB2AnSF_QDWcl7TGuB6Arh-KHNnWc7V5YWazdYy3sE9creFqjRf2dZ9smXLB-TOGoHhQ5LmdKBqRffLKVoPrjTSfHYGequnPyngYToYVN9oXtd4lZ825xPoqBo_Iqc3orTHZLusSvuEUCES47gyIlOKIWIQAXOA2lyRWqHj0CMfOmVJ3fKUY7uMmYR6BfUqe7165HUvOl-Rc_xN6DNqvBdAPu3mQXV-Jlv3lEanPBRFkaTKMu4KJQAZGgBfieUiSLRH3uN8SfR6GIxW7eUF-CXkz5J5yhsmOpF5ZLebUtmGg4W8Ml6PvOpfgyPj7owqbbVsZOIYCRgTj4gNU9gY-uab8se0oQQPcQOX49ff9Fbzb5U8_f8YX5Kd4fj4SB6NTg6fkdsRTBKuokfZLtmuz5f2OcCwunjR2D4l32_a2f4AZ5lIQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIfHxgPgUgQHmS_ASNR-O7TwgFOiqlcGExCb1LbMde0UqSVlTTfvX-Ou4S5Os1YC3vdaWcj2f735nn39HyGvjGNLEpb50YMGsCLmveSR8y1VkDTeWNeeQXw_43hH7PEkmW-R39xYGyyo7n9g46qIyeEY-iAB6ixjSmWjg2rKIb8PRh_kvHztI4U1r105jZSL79vwM0rfF-_EQ1vpNFI12Dz_t-W2HAd8wyWufaWeVsIBJeGILaZhy2hiuIUxyo5yUyrow1YUIilhJlxZWhUoGSjIH0hgkPQD3f03EcYrlhGJykezFkPutmIxgMBgsAEcB0sLeAGvxr2kTcDkYXC7QvLEs5-r8TM1ma9FvdIfcbmErzVZ2dpds2fIeubVGZnifiIwOVa3objlFS8JTR5rNTkBv9fQnBWxMh8PqO83qGp_106ZWgY6rwwfk6EqU9pBsl1VpHxEqZVI4rgqZKsUQPciAOUBwTgsrTRx65F2nrNy0nOXYOmOWQ-6Ces17vXrkZT91viLq-Nukj6jxfgJyazc_VKcnebtV88IIHkqtE6Es404rCSixACCWWC6DxHjkLa5Xjh4AhDGqfcgAfwm5tPJM8IaVTqYe2emWNG9dwyK_MGSPvOiHYVPjTY0qbbVs5sQxkjEmHpEbprAh-uZI-WPa0IOHeJnL8euveqv5t0oe_1_G5-Q6bLP8y_hg_wm5GcEa4YF6lO6Q7fp0aZ8CIqv1s8b0KTm-6r32B6LVTIY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAexudExkDhQ4KXLF-O7TyhQDcNJCYkVmk8RWfHXitKUnUpCP567tK0ahlISLwml8TOne3fne9-ZuyFcZxo4vJAObRgXsUi0CKRgRWQWCOM5V0c8sOpOBnx9-fZ-UYVP6VVois-6SZpqsIKcAWLwiQNYxlKnotwVrnX3_pYEjGJ0EYVT6-zHZEhGh-wndHpx-JzV1TUP70kFErRuw8vEc5Ies3WMtSx9V-dk6_mSd5Y1DP48R2m041F6Pg2g1Xzl7knXw4XrT40P39jdvyf_t1huz1C9YulSd1l12x9j93a4C28z2ThD6EF_6gek9FQgNEvphfNfNKOv_oIg_3hsPnkF21LFfx-l5bgv2vOHrDR8dHZ25OgP4EhMFyJNuDaWZAWMZvIbKUMB6eNERphhDDglALr4lxXMqpSUC6vLMSgIlDcocJNku6xQd3U9iHzlcoqJ6BSOQAnoKAi7hCsOS2tMmnssVcrhZSmpyenUzKmJboppLtyrTuPPVuLzpacHH8SekNaXQsQjXZ3oZlflP2oLCsjRay0ziRYLpwGhYCwQsyVWaGizHjsJdlESYMdG2Ogr1nALhFtVllI0RHQqdxjByuzKftZ4LJM0F2UKbrgiceerm_j-KVNGahts-hk0pR4FzOPqS1z22r69p16Mu6YwGPatxX09edry_z7L9n_J6lH7GaC-qG4eZIfsEE7X9jHCLxa_aQfW78ASRUmyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data+Enhancement+Algorithm+for+DDoS+Attacks+Using+IoT&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lv%2C+Haibin&rft.au=Du%2C+Yanhui&rft.au=Zhou%2C+Xing&rft.au=Ni%2C+Wenkai&rft.date=2023-08-29&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=17&rft_id=info:doi/10.3390%2Fs23177496&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon