Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect
The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hy...
Saved in:
Published in | Journal of hydrodynamics. Series B Vol. 28; no. 1; pp. 23 - 32 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier Ltd
01.02.2016
Springer Singapore |
Subjects | |
Online Access | Get full text |
ISSN | 1001-6058 1878-0342 |
DOI | 10.1016/S1001-6058(16)60604-2 |
Cover
Abstract | The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer(HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition. |
---|---|
AbstractList | The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dam-break flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer (HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition. The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer(HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition. The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer (HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition. |
Author | 张明亮 许媛媛 乔洋 姜恒志 张钟哲 张国胜 |
AuthorAffiliation | School of Ocean Science and Environment, Dalian Ocean University, Dalian 116023, China National Marine Environmental Monitoring Center, Dalian 116023, China |
Author_xml | – sequence: 1 fullname: 张明亮 许媛媛 乔洋 姜恒志 张钟哲 张国胜 |
BookMark | eNqFkU1v1DAQhiNUJNrCT0CyOBWJwDhxHEccEKrKh1TBAThbjjPOeknsrZ10u_x6nKaAxGVPtqXnmRnPe5adOO8wy55TeE2B8jffKADNOVTigvKXHDiwvHiUnVJRixxKVpyk-x_kSXYW4xag5A2w08x8mUcMVquBRDvOg5qsd8QbYga_J8p1pMWOjD7sNn7w_YFYR6YNEq0iLlinRtIGVD8XwXeR7O20IbfY47SWQmNQT0-zx0YNEZ89nOfZjw9X3y8_5ddfP36-fH-dayb4lLNKa8SSc610SUGVtWJVXSGva24Mw7o1nBZNw4BTQdvSCMY7Coa3uqIoVHmevVrr7pUzyvVy6-fgUkcZu-HusD1sf0ks0tIgLYQl_GLFd8HfzBgnOdqocRiUQz9HSQUI4I2A8jhaN9CwgtYL-nZFdfAxBjRS23UbU1B2kBTkkpu8z00uocj0us9NFsmu_rN3wY4qHI56fPVi4l2P4d_fj4nvVhFTMLc2iVFbdBo7G1J0svP2aIUXDyNvvOtvUve_M3MuikrUVVX-BscKzVM |
CitedBy_id | crossref_primary_10_1007_s42241_018_0086_6 crossref_primary_10_1007_s42241_018_0020_y crossref_primary_10_1051_e3sconf_202560304002 crossref_primary_10_1016_S1001_6058_16_60643_1 crossref_primary_10_1007_s42241_018_0060_3 crossref_primary_10_1016_S1001_6058_16_60642_X crossref_primary_10_1063_5_0255537 crossref_primary_10_1007_s40430_017_0776_y crossref_primary_10_1016_j_jhydrol_2022_128395 crossref_primary_10_1016_j_jhydrol_2019_124381 crossref_primary_10_2478_johh_2020_0026 crossref_primary_10_1002_eco_1961 crossref_primary_10_1063_5_0209188 crossref_primary_10_1007_s11069_020_04479_7 crossref_primary_10_1007_s11629_019_5897_6 crossref_primary_10_2208_journalofjsce_24_16142 crossref_primary_10_1002_eco_2740 crossref_primary_10_1007_s10666_017_9585_z crossref_primary_10_1007_s42241_018_0069_7 |
Cites_doi | 10.1017/S0022112002008455 10.1016/j.apm.2012.02.049 10.1061/(ASCE)0733-9429(2007)133:1(48) 10.1016/j.advwatres.2009.11.004 10.1061/(ASCE)0733-9429(2002)128:11(956) 10.1002/fld.2300 10.1016/j.apm.2011.11.088 10.1061/(ASCE)0733-9429(2004)130:7(689) 10.1016/S1001-6058(15)60453-X 10.1080/19942060.2009.11015264 10.1016/j.advwatres.2009.02.010 10.1016/S1001-6058(11)60391-1 10.1016/j.advwatres.2008.06.001 10.1061/(ASCE)0733-9429(1998)124:5(493) 10.1007/s11433-013-5294-z 10.1016/S1001-6058(11)60370-4 10.1007/s11431-011-4643-2 |
ContentType | Journal Article |
Copyright | 2016 Publishing House for Journal of Hydrodynamics China Ship Scientific Research Center 2016 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2016 Publishing House for Journal of Hydrodynamics – notice: China Ship Scientific Research Center 2016 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7QH 7ST 7UA C1K F1W H96 L.G SOI 7TB 7U5 8FD FR3 H8D KR7 L7M 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/S1001-6058(16)60604-2 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect |
EISSN | 1878-0342 |
EndPage | 32 |
ExternalDocumentID | sdlxyjyjz_e201601004 10_1016_S1001_6058_16_60604_2 S1001605816606042 668258755 |
GrantInformation_xml | – fundername: Program for Liaoning Province Excellent Talents in University grantid: Grant No. LJQ2013077 – fundername: Science and Technology Foundation of Dalian City grantid: Grant No. 2013J21DW009 – fundername: Natural Science Foundation of Liaoning Province grantid: Grant No. 2014020148 – fundername: Public Science and Technology Research Funds Projects of Ocean grantid: Grant No. 201205023 – fundername: the Public Science and Technology Research Funds Projects of Ocean; the Program for Liaoning Province Excellent Talents in University; the Science and Technology Founda- tion of Dalian City; the Natu- ral Science Foundation of Liaoning Province funderid: (Grant 201205023); (Grant LJQ2013077); (Grant 2013J21DW009); (Grant 2014020148) |
GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 5XL 7-5 71M 8P~ 92H 92I 92L 92M 9D9 9DA AABNK AACTN AAEDT AAEDW AAFGU AAHNG AAIAL AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABDZT ABECU ABFGW ABFTV ABJOX ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABXDB ABXPI ABYKQ ACAOD ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACMLO ACNNM ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADEZE ADHHG ADKNI ADMDM ADMUD ADOXG ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFTE AEJRE AEKER AENEX AEPYU AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AHJVU AIAKS AIEXJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF AXJTR AXYYD BGNMA BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HVGLF HZ~ IHE IKXTQ IWAJR J-C J1W JJJVA JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O9- OAUVE OZT P-8 P-9 PC. PT4 Q-- Q-0 Q38 R-A REI RIG RLLFE ROL RPZ RSV RT1 S.. SDC SDF SDG SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K T8Q TCJ TGT TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW W92 Z5O Z7R ZMTXR ~LB ~WA AGQEE FIGPU AACDK AAJBT AASML AAXDM AAXKI ABAKF ABJNI ABWVN ACDTI ACPIV ACRPL ADMLS ADNMO AEFQL AEIPS AEMSY AFBBN AGRTI AIGIU AKRWK ANKPU SJYHP AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH 7QH 7ST 7UA C1K EFKBS F1W H96 L.G SOI 7TB 7U5 8FD FR3 H8D KR7 L7M 4A8 93N PSX |
ID | FETCH-LOGICAL-c486t-45ccee366cac310a37a4575e6776ff4e7bf61299406181b3f846d10f6bc51e8a3 |
IEDL.DBID | AIKHN |
ISSN | 1001-6058 |
IngestDate | Thu May 29 04:08:10 EDT 2025 Fri Sep 05 11:19:23 EDT 2025 Thu Sep 04 17:25:29 EDT 2025 Tue Jul 01 02:16:48 EDT 2025 Thu Apr 24 23:12:10 EDT 2025 Fri Feb 21 02:30:57 EST 2025 Fri Feb 23 02:34:37 EST 2024 Wed Feb 14 10:20:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | vegetation effect sediment transport finite volume method Harten-Lax-Van Leer (HLL) approximate Riemann solver |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-45ccee366cac310a37a4575e6776ff4e7bf61299406181b3f846d10f6bc51e8a3 |
Notes | 31-1563/T The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer(HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition. finite volume method Harten-Lax-Van Leer(HLL) approximate Riemann solver sediment transport vegetation effect Ming-liang ZHANG , Yuan-yuan XU ,Yang QIAO , Heng-zhi JIANG, Zhong-zhe ZHANG, Guo-sheng ZHANG(1. School of Ocean Science and Environment, Dalian Ocean University, Dalian 116023, China;2. National Marine Environmental Monitoring Center, Dalian 116023, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1790942173 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_sdlxyjyjz_e201601004 proquest_miscellaneous_1808069803 proquest_miscellaneous_1790942173 crossref_citationtrail_10_1016_S1001_6058_16_60604_2 crossref_primary_10_1016_S1001_6058_16_60604_2 springer_journals_10_1016_S1001_6058_16_60604_2 elsevier_sciencedirect_doi_10_1016_S1001_6058_16_60604_2 chongqing_primary_668258755 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of hydrodynamics. Series B |
PublicationTitleAbbrev | J Hydrodyn |
PublicationTitleAlternate | Journal of Hydrodynamics |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Springer Singapore |
Publisher_xml | – name: Elsevier Ltd – name: Springer Singapore |
References | WANG, ZHENG, WANG (bib15) 2015; 27 ZHANG, WU, LIN (bib13) 2012; 55 NADAOKA, YAGI (bib10) 1996; 124 SOARES-FRAZÃO, ZECH (bib14) 2002; 128 LAI, KHAN (bib5) 2013; 25 CAO, PENDER, WALLIS (bib6) 2004; 130 LEU, CHAN, JIA (bib1) 2008; 31 XIA, LIN, FALCONER (bib8) 2010; 33 SOARES-FRAZÃO, ZECH (bib9) 2011; 66 ZHANG, XU, HAO (bib18) 2014; 57 YUAN, SUN, YUAN (bib4) 2013; 25 LIANG, MARCHE (bib3) 2009; 32 YING, JORGESON, WANG (bib2) 2009; 3 ZHANG, LI, SHEN (bib11) 2013; 37 BENKHALDOUN, SARI, SEAID (bib7) 2012; 36 FRACCAROLLO, CAPART (bib16) 2002; 461 LI, VRIEND, WANG (bib12) 2013; 49 WU, WANG (bib17) 2007; 133 Zhang, Li, Shen (CR11) 2013; 37 Zhang, Wu, Lin (CR13) 2012; 55 Leu, Chan, Jia (CR1) 2008; 31 Zhang, Xu, Hao (CR18) 2014; 57 Li, Vriend, Wang (CR12) 2013; 49 Benkhaldoun, Sari, Seaid (CR7) 2012; 36 Soares-Frazão, Zech (CR9) 2011; 66 Liang, Marche (CR3) 2009; 32 Fraccarollo, Capart (CR16) 2002; 461 Nadaoka, Yagi (CR10) 1996; 124 Ying, Jorgeson, Wang (CR2) 2009; 3 Wang, Zheng, Wang (CR15) 2015; 27 Wu, Wang (CR17) 2007; 133 Xia, Lin, Falconer (CR8) 2010; 33 Cao, Pender, Wallis (CR6) 2004; 130 Soares-Frazão, Zech (CR14) 2002; 128 Yuan, Sun, Yuan (CR4) 2013; 25 Lai, Khan (CR5) 2013; 25 M-l Zhang (2801023_CR18) 2014; 57 J M Leu (2801023_CR1) 2008; 31 Q Liang (2801023_CR3) 2009; 32 J Xia (2801023_CR8) 2010; 33 C Wang (2801023_CR15) 2015; 27 K Nadaoka (2801023_CR10) 1996; 124 S Soares-Frazão (2801023_CR9) 2011; 66 M Zhang (2801023_CR11) 2013; 37 B Yuan (2801023_CR4) 2013; 25 M-l Zhang (2801023_CR13) 2012; 55 X Ying (2801023_CR2) 2009; 3 W Wu (2801023_CR17) 2007; 133 L Fraccarollo (2801023_CR16) 2002; 461 S Soares-Frazão (2801023_CR14) 2002; 128 F Benkhaldoun (2801023_CR7) 2012; 36 W Lai (2801023_CR5) 2013; 25 Z Cao (2801023_CR6) 2004; 130 W Li (2801023_CR12) 2013; 49 |
References_xml | – volume: 124 start-page: 493 year: 1996 end-page: 500 ident: bib10 article-title: Shallow-water turbulence modelling and horizontal large-eddy computation of river flow[J] publication-title: Journal of Hydraulic Engineering, ASCE – volume: 133 start-page: 48 year: 2007 end-page: 58 ident: bib17 article-title: One-dimensional modeling of dam break flow over movable beds[J] publication-title: Journal of Hydraulic Engineering, ASCE – volume: 128 start-page: 956 year: 2002 end-page: 968 ident: bib14 article-title: Dam break in channels with bend[J] publication-title: Journal of Hydraulic Engineering, ASCE – volume: 36 start-page: 4847 year: 2012 end-page: 4861 ident: bib7 article-title: A fluxlimiter method for dam-break flows over erodible sediment beds[J] publication-title: Applied Mathematical Modelling – volume: 57 start-page: 774 year: 2014 end-page: 783 ident: bib18 article-title: Integrating 1D and 2D hydrodynamic, sediment transport model for dam-break flow using finite volume method[J] publication-title: Science China Physics, Mechanics and Astronomy – volume: 33 start-page: 171 year: 2010 end-page: 183 ident: bib8 article-title: Modelling dam-break flows over mobile beds using a 2D coupled approach[J] publication-title: Advances in Water Resources – volume: 27 start-page: 24 year: 2015 end-page: 37 ident: bib15 article-title: Interactions between vegetation, water flow and sediment transport: A review[J] publication-title: Journal of Hydrodynamics – volume: 461 start-page: 183 year: 2002 end-page: 228 ident: bib16 article-title: Riemann wave descryption of erosional dam-break flows[J] publication-title: Journal of Fluid Mechanics – volume: 3 start-page: 184 year: 2009 end-page: 194 ident: bib2 article-title: Modeling dam-break flows using finite volume method on unstructured grid[J] publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 49 start-page: 1 year: 2013 end-page: 19 ident: bib12 article-title: Morphological modeling using a fully coupled, total variation diminishing upwind-biased centered scheme[J] publication-title: Water Resources Research – volume: 130 start-page: 689 year: 2004 end-page: 703 ident: bib6 article-title: Computational dam-break hydraulics over mobile sediment bed[J] publication-title: Journal of Hydraulic Engineering, ASCE – volume: 55 start-page: 568 year: 2012 end-page: 580 ident: bib13 article-title: Coupling of wave and current numerical model with unstructured quadtree grid for nearshore coastal waters[J] publication-title: Science China Technological Sciences – volume: 32 start-page: 873 year: 2009 end-page: 884 ident: bib3 article-title: Numerical resolution of well-balanced shallow water equations with complex source terms[J] publication-title: Advances in Water Resources – volume: 37 start-page: 540 year: 2013 end-page: 553 ident: bib11 article-title: Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation[J] publication-title: Applied Mathematical Modelling – volume: 66 start-page: 1019 year: 2011 end-page: 1036 ident: bib9 article-title: HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water flow on erodible bed[J] publication-title: International Journal for Numerical Methods in Fluids – volume: 25 start-page: 321 year: 2013 end-page: 329 ident: bib5 article-title: Time stepping in discontinuous Galerkin method[J] publication-title: Journal of Hydrodynamics – volume: 25 start-page: 520 year: 2013 end-page: 527 ident: bib4 article-title: Numerical simulation of shallow-water flooding using a two-dimensional finite volume model[J] publication-title: Journal of Hydrodynamics – volume: 31 start-page: 1299 year: 2008 end-page: 1308 ident: bib1 article-title: Cutting management of riparian vesgetation by using hydrodynamic model simulations[J] publication-title: Advances in Water Resources – volume: 461 start-page: 183 year: 2002 end-page: 228 ident: CR16 article-title: Riemann wave descryption of erosional dam-break flows[J] publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112002008455 – volume: 37 start-page: 540 issue: 1–2 year: 2013 end-page: 553 ident: CR11 article-title: Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation[J] publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2012.02.049 – volume: 133 start-page: 48 issue: 1 year: 2007 end-page: 58 ident: CR17 article-title: One-dimensional modeling of dam break flow over movable beds[J] publication-title: Journal of Hydraulic Engineering, ASCE doi: 10.1061/(ASCE)0733-9429(2007)133:1(48) – volume: 33 start-page: 171 issue: 2 year: 2010 end-page: 183 ident: CR8 article-title: Modelling dam-break flows over mobile beds using a 2D coupled approach[J] publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2009.11.004 – volume: 128 start-page: 956 issue: 11 year: 2002 end-page: 968 ident: CR14 article-title: Dam break in channels with bend[J] publication-title: Journal of Hydraulic Engineering, ASCE doi: 10.1061/(ASCE)0733-9429(2002)128:11(956) – volume: 66 start-page: 1019 issue: 8 year: 2011 end-page: 1036 ident: CR9 article-title: HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water flow on erodible bed[J] publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.2300 – volume: 36 start-page: 4847 issue: 36 year: 2012 end-page: 4861 ident: CR7 article-title: A fluxlimiter method for dam-break flows over erodible sediment beds[J] publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2011.11.088 – volume: 130 start-page: 689 issue: 7 year: 2004 end-page: 703 ident: CR6 article-title: Computational dam-break hydraulics over mobile sediment bed[J] publication-title: Journal of Hydraulic Engineering, ASCE doi: 10.1061/(ASCE)0733-9429(2004)130:7(689) – volume: 27 start-page: 24 issue: 1 year: 2015 end-page: 37 ident: CR15 article-title: Interactions between vegetation, water flow and sediment transport: A review[J] publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(15)60453-X – volume: 3 start-page: 184 issue: 2 year: 2009 end-page: 194 ident: CR2 article-title: Modeling dam-break flows using finite volume method on unstructured grid[J] publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2009.11015264 – volume: 32 start-page: 873 issue: 6 year: 2009 end-page: 884 ident: CR3 article-title: Numerical resolution of well-balanced shallow water equations with complex source terms[J] publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2009.02.010 – volume: 25 start-page: 520 issue: 4 year: 2013 end-page: 527 ident: CR4 article-title: Numerical simulation of shallow-water flooding using a two-dimensional finite volume model[J] publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(11)60391-1 – volume: 31 start-page: 1299 issue: 10 year: 2008 end-page: 1308 ident: CR1 article-title: Cutting management of riparian vegetation by using hydrodynamic model simulations[J] publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2008.06.001 – volume: 124 start-page: 493 issue: 5 year: 1996 end-page: 500 ident: CR10 article-title: Shallow-water turbulence modelling and horizontal large-eddy computation of river flow[J] publication-title: Journal of Hydraulic Engineering, ASCE doi: 10.1061/(ASCE)0733-9429(1998)124:5(493) – volume: 57 start-page: 774 issue: 4 year: 2014 end-page: 783 ident: CR18 article-title: Integrating 1D and 2D hydrodynamic, sediment transport model for dam-break flow using finite volume method[J] publication-title: Science China Physics, Mechanics and Astronomy doi: 10.1007/s11433-013-5294-z – volume: 25 start-page: 321 issue: 3 year: 2013 end-page: 329 ident: CR5 article-title: Time stepping in discontinuous Galerkin method[J] publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(11)60370-4 – volume: 55 start-page: 568 issue: 2 year: 2012 end-page: 580 ident: CR13 article-title: Coupling of wave and current numerical model with unstructured quadtree grid for nearshore coastal waters[J] publication-title: Science China Technological Sciences doi: 10.1007/s11431-011-4643-2 – volume: 49 start-page: 1 issue: 6 year: 2013 end-page: 19 ident: CR12 article-title: Morphological modeling using a fully coupled, total variation diminishing upwind-biased centered scheme[J] publication-title: Water Resources Research – volume: 55 start-page: 568 issue: 2 year: 2012 ident: 2801023_CR13 publication-title: Science China Technological Sciences doi: 10.1007/s11431-011-4643-2 – volume: 32 start-page: 873 issue: 6 year: 2009 ident: 2801023_CR3 publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2009.02.010 – volume: 66 start-page: 1019 issue: 8 year: 2011 ident: 2801023_CR9 publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.2300 – volume: 27 start-page: 24 issue: 1 year: 2015 ident: 2801023_CR15 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(15)60453-X – volume: 3 start-page: 184 issue: 2 year: 2009 ident: 2801023_CR2 publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2009.11015264 – volume: 124 start-page: 493 issue: 5 year: 1996 ident: 2801023_CR10 publication-title: Journal of Hydraulic Engineering, ASCE doi: 10.1061/(ASCE)0733-9429(1998)124:5(493) – volume: 133 start-page: 48 issue: 1 year: 2007 ident: 2801023_CR17 publication-title: Journal of Hydraulic Engineering, ASCE doi: 10.1061/(ASCE)0733-9429(2007)133:1(48) – volume: 25 start-page: 520 issue: 4 year: 2013 ident: 2801023_CR4 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(11)60391-1 – volume: 128 start-page: 956 issue: 11 year: 2002 ident: 2801023_CR14 publication-title: Journal of Hydraulic Engineering, ASCE doi: 10.1061/(ASCE)0733-9429(2002)128:11(956) – volume: 31 start-page: 1299 issue: 10 year: 2008 ident: 2801023_CR1 publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2008.06.001 – volume: 57 start-page: 774 issue: 4 year: 2014 ident: 2801023_CR18 publication-title: Science China Physics, Mechanics and Astronomy doi: 10.1007/s11433-013-5294-z – volume: 461 start-page: 183 year: 2002 ident: 2801023_CR16 publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112002008455 – volume: 33 start-page: 171 issue: 2 year: 2010 ident: 2801023_CR8 publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2009.11.004 – volume: 49 start-page: 1 issue: 6 year: 2013 ident: 2801023_CR12 publication-title: Water Resources Research – volume: 37 start-page: 540 issue: 1–2 year: 2013 ident: 2801023_CR11 publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2012.02.049 – volume: 130 start-page: 689 issue: 7 year: 2004 ident: 2801023_CR6 publication-title: Journal of Hydraulic Engineering, ASCE doi: 10.1061/(ASCE)0733-9429(2004)130:7(689) – volume: 36 start-page: 4847 issue: 36 year: 2012 ident: 2801023_CR7 publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2011.11.088 – volume: 25 start-page: 321 issue: 3 year: 2013 ident: 2801023_CR5 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(11)60370-4 |
SSID | ssj0036904 |
Score | 2.1253943 |
Snippet | The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The... The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dam-break flows with vegetation effect. The... The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dam- break flows with vegetation effect. The... |
SourceID | wanfang proquest crossref springer elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23 |
SubjectTerms | Channels Computational fluid dynamics Engineering Engineering Fluid Dynamics finite volume method Fluid flow Freshwater Harten-Lax-Van Leer (HLL) approximate Riemann solver Hydrodynamics Hydrology/Water Resources Mathematical analysis Mathematical models Numerical and Computational Physics Sediment transport Simulation Vegetation vegetation effect 动量方程 数值模拟 植被效应 水动力模型 浅水方程 溃坝洪水 运输模型 非结构化网格 |
Title | Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect |
URI | http://lib.cqvip.com/qk/86648X/201601/668258755.html https://dx.doi.org/10.1016/S1001-6058(16)60604-2 https://link.springer.com/article/10.1016/S1001-6058(16)60604-2 https://www.proquest.com/docview/1790942173 https://www.proquest.com/docview/1808069803 https://d.wanfangdata.com.cn/periodical/sdlxyjyjz-e201601004 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGd4HDNL5E2ZiMBBIcsubDceLjNDEVKnoAJnazbMfuOtpkIy3bOPC3817idOUAlTg1jfzcxs9-7_fynn8m5JXONMwD7YLEpUnA8tAFIok0XGVKZFqYuCGr_jjmw1P24Sw92yLH3V4YLKv0tr-16Y219ncGfjQHl9Pp4HPUnJGcYuILGWDADm_H4O3zHtk-ej8ajjuDnEAA2CSXsXoIBe428rSdNDffRPxt008QI83CeVVOrsB5_M1drcHRVQa12fdTOlVO1lzUyS7Z8diSHrV__yHZsuUj8mCNcfAxceNlm6KZ0Xo690d30cpRN6uuqSoLqm1B5xWMfvO-nU5LChCRGnB22KxQcwpBtPqGAlVRU3yPS3_Yia9apG19yBNyevLuy_Ew8EctBIblfBGw1IC3TDg3ygDgU0mmGAA5y7OMO8dsph1AISHQ_QPQTRzAliIKHdcmjWyukqekV1alfUaoLcIiD7liWiimBCjdxo4XmXA5N2ms-mRvNbrysqXUkJxDpAqhU9onrBtvaTxLOR6WMZOrcjRUmUSVSfjWqEzGfXK4Euv63CCQd8qUf8w3Ca5kk-jLTvkS1iImWFRpq2Utke1MMAjykn-0QSJPLvIQ2gy6mSO94ag3_fJrP8HuBOpidnN7cXvxU9oY1wMyAD7__4fbI_exm7YufZ_0Ft-X9gXAroU-IPcOf0UHfnHh5-jT19Fv1k4knA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7QE4IJ5iKQ8jgQSHsHk4TnysKqotbfdCK_Vm2bG9bNlNCtkFyq9nxnG2ywFW4pZEHifx2PPwjL8h5LUuNMwD7aLM5VnEythFIks0XBVKFFpUqQerPp3w8Tn7eJFf7JCD_iwMplUG2d_JdC-tw5NRGM3R1Ww2-pT4Gsk5Br4QAQbk8C7DotYDsrt_dDye9AI5AwfQB5cxewgJbg7ydJ34h28T_s73E6UIs_C5qadfQXn8TV1tmKPrCKo_91M7VU83VNThPXI32JZ0v_v8-2TH1g_InQ3EwYfETVZdiGZO29kilO6ijaNu3vygqjZUW0MXDYy-32-ns5qCiUgrUHbYzKgFBSdafUGCxrQU93HpdzsNWYu0yw95RM4PP5wdjKNQaiGqWMmXEcsr0JYZ55WqwOBTWaEYGHKWFwV3jtlCOzCFhED1D4Zu5sBsMUnsuK7yxJYqe0wGdVPbJ4RaE5sy5oppoZgSwHSbOm4K4Upe5akakr316MqrDlJDcg6eKrhO-ZCwfrxlFVDKsVjGXK7T0ZBlElkm4c6zTKZD8n5N1ve5haDsmSn_mG8SVMk20lc98yWsRQywqNo2q1Yi2plg4ORl_2iDQJ5clDG0GfUzRwbB0W5785swwW4IWjP_eX15fflL2hTXAyIAPv3_n3tJbo3PTk_kydHkeI_cxi67HPVnZLD8trLPwQRb6hdhif0Gj2wk3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+flow+and+bed+morphology+in+the+case+of+dam+break+floods+with+vegetation+effect&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=ZHANG%2C+Ming-liang&rft.au=XU%2C+Yuan-yuan&rft.au=QIAO%2C+Yang&rft.au=JIANG%2C+Heng-zhi&rft.date=2016-02-01&rft.pub=Elsevier+Ltd&rft.issn=1001-6058&rft.volume=28&rft.issue=1&rft.spage=23&rft.epage=32&rft_id=info:doi/10.1016%2FS1001-6058%2816%2960604-2&rft.externalDocID=S1001605816606042 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsdlxyjyjz-e%2Fsdlxyjyjz-e.jpg |