Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect

The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hy...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrodynamics. Series B Vol. 28; no. 1; pp. 23 - 32
Main Author 张明亮 许媛媛 乔洋 姜恒志 张钟哲 张国胜
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.02.2016
Springer Singapore
Subjects
Online AccessGet full text
ISSN1001-6058
1878-0342
DOI10.1016/S1001-6058(16)60604-2

Cover

Abstract The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer(HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition.
AbstractList The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dam-break flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer (HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition.
The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer(HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition.
The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer (HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition.
Author 张明亮 许媛媛 乔洋 姜恒志 张钟哲 张国胜
AuthorAffiliation School of Ocean Science and Environment, Dalian Ocean University, Dalian 116023, China National Marine Environmental Monitoring Center, Dalian 116023, China
Author_xml – sequence: 1
  fullname: 张明亮 许媛媛 乔洋 姜恒志 张钟哲 张国胜
BookMark eNqFkU1v1DAQhiNUJNrCT0CyOBWJwDhxHEccEKrKh1TBAThbjjPOeknsrZ10u_x6nKaAxGVPtqXnmRnPe5adOO8wy55TeE2B8jffKADNOVTigvKXHDiwvHiUnVJRixxKVpyk-x_kSXYW4xag5A2w08x8mUcMVquBRDvOg5qsd8QbYga_J8p1pMWOjD7sNn7w_YFYR6YNEq0iLlinRtIGVD8XwXeR7O20IbfY47SWQmNQT0-zx0YNEZ89nOfZjw9X3y8_5ddfP36-fH-dayb4lLNKa8SSc610SUGVtWJVXSGva24Mw7o1nBZNw4BTQdvSCMY7Coa3uqIoVHmevVrr7pUzyvVy6-fgUkcZu-HusD1sf0ks0tIgLYQl_GLFd8HfzBgnOdqocRiUQz9HSQUI4I2A8jhaN9CwgtYL-nZFdfAxBjRS23UbU1B2kBTkkpu8z00uocj0us9NFsmu_rN3wY4qHI56fPVi4l2P4d_fj4nvVhFTMLc2iVFbdBo7G1J0svP2aIUXDyNvvOtvUve_M3MuikrUVVX-BscKzVM
CitedBy_id crossref_primary_10_1007_s42241_018_0086_6
crossref_primary_10_1007_s42241_018_0020_y
crossref_primary_10_1051_e3sconf_202560304002
crossref_primary_10_1016_S1001_6058_16_60643_1
crossref_primary_10_1007_s42241_018_0060_3
crossref_primary_10_1016_S1001_6058_16_60642_X
crossref_primary_10_1063_5_0255537
crossref_primary_10_1007_s40430_017_0776_y
crossref_primary_10_1016_j_jhydrol_2022_128395
crossref_primary_10_1016_j_jhydrol_2019_124381
crossref_primary_10_2478_johh_2020_0026
crossref_primary_10_1002_eco_1961
crossref_primary_10_1063_5_0209188
crossref_primary_10_1007_s11069_020_04479_7
crossref_primary_10_1007_s11629_019_5897_6
crossref_primary_10_2208_journalofjsce_24_16142
crossref_primary_10_1002_eco_2740
crossref_primary_10_1007_s10666_017_9585_z
crossref_primary_10_1007_s42241_018_0069_7
Cites_doi 10.1017/S0022112002008455
10.1016/j.apm.2012.02.049
10.1061/(ASCE)0733-9429(2007)133:1(48)
10.1016/j.advwatres.2009.11.004
10.1061/(ASCE)0733-9429(2002)128:11(956)
10.1002/fld.2300
10.1016/j.apm.2011.11.088
10.1061/(ASCE)0733-9429(2004)130:7(689)
10.1016/S1001-6058(15)60453-X
10.1080/19942060.2009.11015264
10.1016/j.advwatres.2009.02.010
10.1016/S1001-6058(11)60391-1
10.1016/j.advwatres.2008.06.001
10.1061/(ASCE)0733-9429(1998)124:5(493)
10.1007/s11433-013-5294-z
10.1016/S1001-6058(11)60370-4
10.1007/s11431-011-4643-2
ContentType Journal Article
Copyright 2016 Publishing House for Journal of Hydrodynamics
China Ship Scientific Research Center 2016
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2016 Publishing House for Journal of Hydrodynamics
– notice: China Ship Scientific Research Center 2016
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H96
L.G
SOI
7TB
7U5
8FD
FR3
H8D
KR7
L7M
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S1001-6058(16)60604-2
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList


Aerospace Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect
EISSN 1878-0342
EndPage 32
ExternalDocumentID sdlxyjyjz_e201601004
10_1016_S1001_6058_16_60604_2
S1001605816606042
668258755
GrantInformation_xml – fundername: Program for Liaoning Province Excellent Talents in University
  grantid: Grant No. LJQ2013077
– fundername: Science and Technology Foundation of Dalian City
  grantid: Grant No. 2013J21DW009
– fundername: Natural Science Foundation of Liaoning Province
  grantid: Grant No. 2014020148
– fundername: Public Science and Technology Research Funds Projects of Ocean
  grantid: Grant No. 201205023
– fundername: the Public Science and Technology Research Funds Projects of Ocean; the Program for Liaoning Province Excellent Talents in University; the Science and Technology Founda- tion of Dalian City; the Natu- ral Science Foundation of Liaoning Province
  funderid: (Grant 201205023); (Grant LJQ2013077); (Grant 2013J21DW009); (Grant 2014020148)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92H
92I
92L
92M
9D9
9DA
AABNK
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABXDB
ABXPI
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADEZE
ADHHG
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEJRE
AEKER
AENEX
AEPYU
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IHE
IKXTQ
IWAJR
J-C
J1W
JJJVA
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O9-
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPZ
RSV
RT1
S..
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
T8Q
TCJ
TGT
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
W92
Z5O
Z7R
ZMTXR
~LB
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ADMLS
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
7QH
7ST
7UA
C1K
EFKBS
F1W
H96
L.G
SOI
7TB
7U5
8FD
FR3
H8D
KR7
L7M
4A8
93N
PSX
ID FETCH-LOGICAL-c486t-45ccee366cac310a37a4575e6776ff4e7bf61299406181b3f846d10f6bc51e8a3
IEDL.DBID AIKHN
ISSN 1001-6058
IngestDate Thu May 29 04:08:10 EDT 2025
Fri Sep 05 11:19:23 EDT 2025
Thu Sep 04 17:25:29 EDT 2025
Tue Jul 01 02:16:48 EDT 2025
Thu Apr 24 23:12:10 EDT 2025
Fri Feb 21 02:30:57 EST 2025
Fri Feb 23 02:34:37 EST 2024
Wed Feb 14 10:20:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords vegetation effect
sediment transport
finite volume method
Harten-Lax-Van Leer (HLL) approximate Riemann solver
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-45ccee366cac310a37a4575e6776ff4e7bf61299406181b3f846d10f6bc51e8a3
Notes 31-1563/T
The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The generalized shallow water equations are solved using an explicit finite volume method with unstructured quadtree rectangular grid, and in the hydrodynamic model, a Harten-Lax-Van Leer(HLL) approximate Riemann solver is used to calculate the intercell flux for capturing the dry-to-wet moving boundary. The sediment transport and bed variation equations in a coupled fashion are calculated by including the bed variation and the variable flow density in the flow continuity and momentum equations. The drag force of vegetation is modeled as the sink terms in the momentum equations. The developed model is tested against lab experiments of the dam-break flows over a fix bed and a movable bed in vegetated and non-vegetated channels. The results are compared with experimental data, and good agreement is obtained. It is shown that the reduced velocity under vegetated conditions leads to a decrease of the peak discharge and a rise of the water level of rivers and also an enhancement of the sediment deposition.
finite volume method Harten-Lax-Van Leer(HLL) approximate Riemann solver sediment transport vegetation effect
Ming-liang ZHANG , Yuan-yuan XU ,Yang QIAO , Heng-zhi JIANG, Zhong-zhe ZHANG, Guo-sheng ZHANG(1. School of Ocean Science and Environment, Dalian Ocean University, Dalian 116023, China;2. National Marine Environmental Monitoring Center, Dalian 116023, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1790942173
PQPubID 23462
PageCount 10
ParticipantIDs wanfang_journals_sdlxyjyjz_e201601004
proquest_miscellaneous_1808069803
proquest_miscellaneous_1790942173
crossref_citationtrail_10_1016_S1001_6058_16_60604_2
crossref_primary_10_1016_S1001_6058_16_60604_2
springer_journals_10_1016_S1001_6058_16_60604_2
elsevier_sciencedirect_doi_10_1016_S1001_6058_16_60604_2
chongqing_primary_668258755
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of hydrodynamics. Series B
PublicationTitleAbbrev J Hydrodyn
PublicationTitleAlternate Journal of Hydrodynamics
PublicationYear 2016
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References WANG, ZHENG, WANG (bib15) 2015; 27
ZHANG, WU, LIN (bib13) 2012; 55
NADAOKA, YAGI (bib10) 1996; 124
SOARES-FRAZÃO, ZECH (bib14) 2002; 128
LAI, KHAN (bib5) 2013; 25
CAO, PENDER, WALLIS (bib6) 2004; 130
LEU, CHAN, JIA (bib1) 2008; 31
XIA, LIN, FALCONER (bib8) 2010; 33
SOARES-FRAZÃO, ZECH (bib9) 2011; 66
ZHANG, XU, HAO (bib18) 2014; 57
YUAN, SUN, YUAN (bib4) 2013; 25
LIANG, MARCHE (bib3) 2009; 32
YING, JORGESON, WANG (bib2) 2009; 3
ZHANG, LI, SHEN (bib11) 2013; 37
BENKHALDOUN, SARI, SEAID (bib7) 2012; 36
FRACCAROLLO, CAPART (bib16) 2002; 461
LI, VRIEND, WANG (bib12) 2013; 49
WU, WANG (bib17) 2007; 133
Zhang, Li, Shen (CR11) 2013; 37
Zhang, Wu, Lin (CR13) 2012; 55
Leu, Chan, Jia (CR1) 2008; 31
Zhang, Xu, Hao (CR18) 2014; 57
Li, Vriend, Wang (CR12) 2013; 49
Benkhaldoun, Sari, Seaid (CR7) 2012; 36
Soares-Frazão, Zech (CR9) 2011; 66
Liang, Marche (CR3) 2009; 32
Fraccarollo, Capart (CR16) 2002; 461
Nadaoka, Yagi (CR10) 1996; 124
Ying, Jorgeson, Wang (CR2) 2009; 3
Wang, Zheng, Wang (CR15) 2015; 27
Wu, Wang (CR17) 2007; 133
Xia, Lin, Falconer (CR8) 2010; 33
Cao, Pender, Wallis (CR6) 2004; 130
Soares-Frazão, Zech (CR14) 2002; 128
Yuan, Sun, Yuan (CR4) 2013; 25
Lai, Khan (CR5) 2013; 25
M-l Zhang (2801023_CR18) 2014; 57
J M Leu (2801023_CR1) 2008; 31
Q Liang (2801023_CR3) 2009; 32
J Xia (2801023_CR8) 2010; 33
C Wang (2801023_CR15) 2015; 27
K Nadaoka (2801023_CR10) 1996; 124
S Soares-Frazão (2801023_CR9) 2011; 66
M Zhang (2801023_CR11) 2013; 37
B Yuan (2801023_CR4) 2013; 25
M-l Zhang (2801023_CR13) 2012; 55
X Ying (2801023_CR2) 2009; 3
W Wu (2801023_CR17) 2007; 133
L Fraccarollo (2801023_CR16) 2002; 461
S Soares-Frazão (2801023_CR14) 2002; 128
F Benkhaldoun (2801023_CR7) 2012; 36
W Lai (2801023_CR5) 2013; 25
Z Cao (2801023_CR6) 2004; 130
W Li (2801023_CR12) 2013; 49
References_xml – volume: 124
  start-page: 493
  year: 1996
  end-page: 500
  ident: bib10
  article-title: Shallow-water turbulence modelling and horizontal large-eddy computation of river flow[J]
  publication-title: Journal of Hydraulic Engineering, ASCE
– volume: 133
  start-page: 48
  year: 2007
  end-page: 58
  ident: bib17
  article-title: One-dimensional modeling of dam break flow over movable beds[J]
  publication-title: Journal of Hydraulic Engineering, ASCE
– volume: 128
  start-page: 956
  year: 2002
  end-page: 968
  ident: bib14
  article-title: Dam break in channels with bend[J]
  publication-title: Journal of Hydraulic Engineering, ASCE
– volume: 36
  start-page: 4847
  year: 2012
  end-page: 4861
  ident: bib7
  article-title: A fluxlimiter method for dam-break flows over erodible sediment beds[J]
  publication-title: Applied Mathematical Modelling
– volume: 57
  start-page: 774
  year: 2014
  end-page: 783
  ident: bib18
  article-title: Integrating 1D and 2D hydrodynamic, sediment transport model for dam-break flow using finite volume method[J]
  publication-title: Science China Physics, Mechanics and Astronomy
– volume: 33
  start-page: 171
  year: 2010
  end-page: 183
  ident: bib8
  article-title: Modelling dam-break flows over mobile beds using a 2D coupled approach[J]
  publication-title: Advances in Water Resources
– volume: 27
  start-page: 24
  year: 2015
  end-page: 37
  ident: bib15
  article-title: Interactions between vegetation, water flow and sediment transport: A review[J]
  publication-title: Journal of Hydrodynamics
– volume: 461
  start-page: 183
  year: 2002
  end-page: 228
  ident: bib16
  article-title: Riemann wave descryption of erosional dam-break flows[J]
  publication-title: Journal of Fluid Mechanics
– volume: 3
  start-page: 184
  year: 2009
  end-page: 194
  ident: bib2
  article-title: Modeling dam-break flows using finite volume method on unstructured grid[J]
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 49
  start-page: 1
  year: 2013
  end-page: 19
  ident: bib12
  article-title: Morphological modeling using a fully coupled, total variation diminishing upwind-biased centered scheme[J]
  publication-title: Water Resources Research
– volume: 130
  start-page: 689
  year: 2004
  end-page: 703
  ident: bib6
  article-title: Computational dam-break hydraulics over mobile sediment bed[J]
  publication-title: Journal of Hydraulic Engineering, ASCE
– volume: 55
  start-page: 568
  year: 2012
  end-page: 580
  ident: bib13
  article-title: Coupling of wave and current numerical model with unstructured quadtree grid for nearshore coastal waters[J]
  publication-title: Science China Technological Sciences
– volume: 32
  start-page: 873
  year: 2009
  end-page: 884
  ident: bib3
  article-title: Numerical resolution of well-balanced shallow water equations with complex source terms[J]
  publication-title: Advances in Water Resources
– volume: 37
  start-page: 540
  year: 2013
  end-page: 553
  ident: bib11
  article-title: Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation[J]
  publication-title: Applied Mathematical Modelling
– volume: 66
  start-page: 1019
  year: 2011
  end-page: 1036
  ident: bib9
  article-title: HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water flow on erodible bed[J]
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 25
  start-page: 321
  year: 2013
  end-page: 329
  ident: bib5
  article-title: Time stepping in discontinuous Galerkin method[J]
  publication-title: Journal of Hydrodynamics
– volume: 25
  start-page: 520
  year: 2013
  end-page: 527
  ident: bib4
  article-title: Numerical simulation of shallow-water flooding using a two-dimensional finite volume model[J]
  publication-title: Journal of Hydrodynamics
– volume: 31
  start-page: 1299
  year: 2008
  end-page: 1308
  ident: bib1
  article-title: Cutting management of riparian vesgetation by using hydrodynamic model simulations[J]
  publication-title: Advances in Water Resources
– volume: 461
  start-page: 183
  year: 2002
  end-page: 228
  ident: CR16
  article-title: Riemann wave descryption of erosional dam-break flows[J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112002008455
– volume: 37
  start-page: 540
  issue: 1–2
  year: 2013
  end-page: 553
  ident: CR11
  article-title: Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation[J]
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2012.02.049
– volume: 133
  start-page: 48
  issue: 1
  year: 2007
  end-page: 58
  ident: CR17
  article-title: One-dimensional modeling of dam break flow over movable beds[J]
  publication-title: Journal of Hydraulic Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9429(2007)133:1(48)
– volume: 33
  start-page: 171
  issue: 2
  year: 2010
  end-page: 183
  ident: CR8
  article-title: Modelling dam-break flows over mobile beds using a 2D coupled approach[J]
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2009.11.004
– volume: 128
  start-page: 956
  issue: 11
  year: 2002
  end-page: 968
  ident: CR14
  article-title: Dam break in channels with bend[J]
  publication-title: Journal of Hydraulic Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9429(2002)128:11(956)
– volume: 66
  start-page: 1019
  issue: 8
  year: 2011
  end-page: 1036
  ident: CR9
  article-title: HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water flow on erodible bed[J]
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.2300
– volume: 36
  start-page: 4847
  issue: 36
  year: 2012
  end-page: 4861
  ident: CR7
  article-title: A fluxlimiter method for dam-break flows over erodible sediment beds[J]
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2011.11.088
– volume: 130
  start-page: 689
  issue: 7
  year: 2004
  end-page: 703
  ident: CR6
  article-title: Computational dam-break hydraulics over mobile sediment bed[J]
  publication-title: Journal of Hydraulic Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9429(2004)130:7(689)
– volume: 27
  start-page: 24
  issue: 1
  year: 2015
  end-page: 37
  ident: CR15
  article-title: Interactions between vegetation, water flow and sediment transport: A review[J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(15)60453-X
– volume: 3
  start-page: 184
  issue: 2
  year: 2009
  end-page: 194
  ident: CR2
  article-title: Modeling dam-break flows using finite volume method on unstructured grid[J]
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2009.11015264
– volume: 32
  start-page: 873
  issue: 6
  year: 2009
  end-page: 884
  ident: CR3
  article-title: Numerical resolution of well-balanced shallow water equations with complex source terms[J]
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2009.02.010
– volume: 25
  start-page: 520
  issue: 4
  year: 2013
  end-page: 527
  ident: CR4
  article-title: Numerical simulation of shallow-water flooding using a two-dimensional finite volume model[J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(11)60391-1
– volume: 31
  start-page: 1299
  issue: 10
  year: 2008
  end-page: 1308
  ident: CR1
  article-title: Cutting management of riparian vegetation by using hydrodynamic model simulations[J]
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2008.06.001
– volume: 124
  start-page: 493
  issue: 5
  year: 1996
  end-page: 500
  ident: CR10
  article-title: Shallow-water turbulence modelling and horizontal large-eddy computation of river flow[J]
  publication-title: Journal of Hydraulic Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9429(1998)124:5(493)
– volume: 57
  start-page: 774
  issue: 4
  year: 2014
  end-page: 783
  ident: CR18
  article-title: Integrating 1D and 2D hydrodynamic, sediment transport model for dam-break flow using finite volume method[J]
  publication-title: Science China Physics, Mechanics and Astronomy
  doi: 10.1007/s11433-013-5294-z
– volume: 25
  start-page: 321
  issue: 3
  year: 2013
  end-page: 329
  ident: CR5
  article-title: Time stepping in discontinuous Galerkin method[J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(11)60370-4
– volume: 55
  start-page: 568
  issue: 2
  year: 2012
  end-page: 580
  ident: CR13
  article-title: Coupling of wave and current numerical model with unstructured quadtree grid for nearshore coastal waters[J]
  publication-title: Science China Technological Sciences
  doi: 10.1007/s11431-011-4643-2
– volume: 49
  start-page: 1
  issue: 6
  year: 2013
  end-page: 19
  ident: CR12
  article-title: Morphological modeling using a fully coupled, total variation diminishing upwind-biased centered scheme[J]
  publication-title: Water Resources Research
– volume: 55
  start-page: 568
  issue: 2
  year: 2012
  ident: 2801023_CR13
  publication-title: Science China Technological Sciences
  doi: 10.1007/s11431-011-4643-2
– volume: 32
  start-page: 873
  issue: 6
  year: 2009
  ident: 2801023_CR3
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2009.02.010
– volume: 66
  start-page: 1019
  issue: 8
  year: 2011
  ident: 2801023_CR9
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.2300
– volume: 27
  start-page: 24
  issue: 1
  year: 2015
  ident: 2801023_CR15
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(15)60453-X
– volume: 3
  start-page: 184
  issue: 2
  year: 2009
  ident: 2801023_CR2
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2009.11015264
– volume: 124
  start-page: 493
  issue: 5
  year: 1996
  ident: 2801023_CR10
  publication-title: Journal of Hydraulic Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9429(1998)124:5(493)
– volume: 133
  start-page: 48
  issue: 1
  year: 2007
  ident: 2801023_CR17
  publication-title: Journal of Hydraulic Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9429(2007)133:1(48)
– volume: 25
  start-page: 520
  issue: 4
  year: 2013
  ident: 2801023_CR4
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(11)60391-1
– volume: 128
  start-page: 956
  issue: 11
  year: 2002
  ident: 2801023_CR14
  publication-title: Journal of Hydraulic Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9429(2002)128:11(956)
– volume: 31
  start-page: 1299
  issue: 10
  year: 2008
  ident: 2801023_CR1
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2008.06.001
– volume: 57
  start-page: 774
  issue: 4
  year: 2014
  ident: 2801023_CR18
  publication-title: Science China Physics, Mechanics and Astronomy
  doi: 10.1007/s11433-013-5294-z
– volume: 461
  start-page: 183
  year: 2002
  ident: 2801023_CR16
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112002008455
– volume: 33
  start-page: 171
  issue: 2
  year: 2010
  ident: 2801023_CR8
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2009.11.004
– volume: 49
  start-page: 1
  issue: 6
  year: 2013
  ident: 2801023_CR12
  publication-title: Water Resources Research
– volume: 37
  start-page: 540
  issue: 1–2
  year: 2013
  ident: 2801023_CR11
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2012.02.049
– volume: 130
  start-page: 689
  issue: 7
  year: 2004
  ident: 2801023_CR6
  publication-title: Journal of Hydraulic Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9429(2004)130:7(689)
– volume: 36
  start-page: 4847
  issue: 36
  year: 2012
  ident: 2801023_CR7
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2011.11.088
– volume: 25
  start-page: 321
  issue: 3
  year: 2013
  ident: 2801023_CR5
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(11)60370-4
SSID ssj0036904
Score 2.1253943
Snippet The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dambreak flows with vegetation effect. The...
The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dam-break flows with vegetation effect. The...
The purpose of this study is to establish a depth-averaged 2-D hydrodynamic and sediment transport model for the dam- break flows with vegetation effect. The...
SourceID wanfang
proquest
crossref
springer
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23
SubjectTerms Channels
Computational fluid dynamics
Engineering
Engineering Fluid Dynamics
finite volume method
Fluid flow
Freshwater
Harten-Lax-Van Leer (HLL) approximate Riemann solver
Hydrodynamics
Hydrology/Water Resources
Mathematical analysis
Mathematical models
Numerical and Computational Physics
Sediment transport
Simulation
Vegetation
vegetation effect
动量方程
数值模拟
植被效应
水动力模型
浅水方程
溃坝洪水
运输模型
非结构化网格
Title Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect
URI http://lib.cqvip.com/qk/86648X/201601/668258755.html
https://dx.doi.org/10.1016/S1001-6058(16)60604-2
https://link.springer.com/article/10.1016/S1001-6058(16)60604-2
https://www.proquest.com/docview/1790942173
https://www.proquest.com/docview/1808069803
https://d.wanfangdata.com.cn/periodical/sdlxyjyjz-e201601004
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGd4HDNL5E2ZiMBBIcsubDceLjNDEVKnoAJnazbMfuOtpkIy3bOPC3817idOUAlTg1jfzcxs9-7_fynn8m5JXONMwD7YLEpUnA8tAFIok0XGVKZFqYuCGr_jjmw1P24Sw92yLH3V4YLKv0tr-16Y219ncGfjQHl9Pp4HPUnJGcYuILGWDADm_H4O3zHtk-ej8ajjuDnEAA2CSXsXoIBe428rSdNDffRPxt008QI83CeVVOrsB5_M1drcHRVQa12fdTOlVO1lzUyS7Z8diSHrV__yHZsuUj8mCNcfAxceNlm6KZ0Xo690d30cpRN6uuqSoLqm1B5xWMfvO-nU5LChCRGnB22KxQcwpBtPqGAlVRU3yPS3_Yia9apG19yBNyevLuy_Ew8EctBIblfBGw1IC3TDg3ygDgU0mmGAA5y7OMO8dsph1AISHQ_QPQTRzAliIKHdcmjWyukqekV1alfUaoLcIiD7liWiimBCjdxo4XmXA5N2ms-mRvNbrysqXUkJxDpAqhU9onrBtvaTxLOR6WMZOrcjRUmUSVSfjWqEzGfXK4Euv63CCQd8qUf8w3Ca5kk-jLTvkS1iImWFRpq2Utke1MMAjykn-0QSJPLvIQ2gy6mSO94ag3_fJrP8HuBOpidnN7cXvxU9oY1wMyAD7__4fbI_exm7YufZ_0Ft-X9gXAroU-IPcOf0UHfnHh5-jT19Fv1k4knA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7QE4IJ5iKQ8jgQSHsHk4TnysKqotbfdCK_Vm2bG9bNlNCtkFyq9nxnG2ywFW4pZEHifx2PPwjL8h5LUuNMwD7aLM5VnEythFIks0XBVKFFpUqQerPp3w8Tn7eJFf7JCD_iwMplUG2d_JdC-tw5NRGM3R1Ww2-pT4Gsk5Br4QAQbk8C7DotYDsrt_dDye9AI5AwfQB5cxewgJbg7ydJ34h28T_s73E6UIs_C5qadfQXn8TV1tmKPrCKo_91M7VU83VNThPXI32JZ0v_v8-2TH1g_InQ3EwYfETVZdiGZO29kilO6ijaNu3vygqjZUW0MXDYy-32-ns5qCiUgrUHbYzKgFBSdafUGCxrQU93HpdzsNWYu0yw95RM4PP5wdjKNQaiGqWMmXEcsr0JYZ55WqwOBTWaEYGHKWFwV3jtlCOzCFhED1D4Zu5sBsMUnsuK7yxJYqe0wGdVPbJ4RaE5sy5oppoZgSwHSbOm4K4Upe5akakr316MqrDlJDcg6eKrhO-ZCwfrxlFVDKsVjGXK7T0ZBlElkm4c6zTKZD8n5N1ve5haDsmSn_mG8SVMk20lc98yWsRQywqNo2q1Yi2plg4ORl_2iDQJ5clDG0GfUzRwbB0W5785swwW4IWjP_eX15fflL2hTXAyIAPv3_n3tJbo3PTk_kydHkeI_cxi67HPVnZLD8trLPwQRb6hdhif0Gj2wk3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+flow+and+bed+morphology+in+the+case+of+dam+break+floods+with+vegetation+effect&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=ZHANG%2C+Ming-liang&rft.au=XU%2C+Yuan-yuan&rft.au=QIAO%2C+Yang&rft.au=JIANG%2C+Heng-zhi&rft.date=2016-02-01&rft.pub=Elsevier+Ltd&rft.issn=1001-6058&rft.volume=28&rft.issue=1&rft.spage=23&rft.epage=32&rft_id=info:doi/10.1016%2FS1001-6058%2816%2960604-2&rft.externalDocID=S1001605816606042
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsdlxyjyjz-e%2Fsdlxyjyjz-e.jpg