11 TOPS photonic convolutional accelerator for optical neural networks
Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great inte...
        Saved in:
      
    
          | Published in | Nature (London) Vol. 589; no. 7840; pp. 44 - 51 | 
|---|---|
| Main Authors | , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Nature Publishing Group UK
    
        07.01.2021
     Nature Publishing Group  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0028-0836 1476-4687 1476-4687  | 
| DOI | 10.1038/s41586-020-03063-0 | 
Cover
| Abstract | Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis
1
–
7
. Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (10
12
) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels—sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition.
An optical vector convolutional accelerator operating at more than ten trillion operations per second is used to create an optical convolutional neural network that can successfully recognize handwritten digit images with 88 per cent accuracy. | 
    
|---|---|
| AbstractList | Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis
1
–
7
. Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (10
12
) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels—sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition.
An optical vector convolutional accelerator operating at more than ten trillion operations per second is used to create an optical convolutional neural network that can successfully recognize handwritten digit images with 88 per cent accuracy. Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis . Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (10 ) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels-sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition. Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis. Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (10) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels-sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition. Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis1-7. Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (1012) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels-sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition.Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to provide greatly reduced parametric complexity and to enhance the accuracy of prediction. They are of great interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis1-7. Optical neural networks offer the promise of dramatically accelerating computing speed using the broad optical bandwidths available. Here we demonstrate a universal optical vector convolutional accelerator operating at more than ten TOPS (trillions (1012) of operations per second, or tera-ops per second), generating convolutions of images with 250,000 pixels-sufficiently large for facial image recognition. We use the same hardware to sequentially form an optical convolutional neural network with ten output neurons, achieving successful recognition of handwritten digit images at 88 per cent accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as autonomous vehicles and real-time video recognition.  | 
    
| Author | Mitchell, Arnan Morandotti, Roberto Xu, Xingyuan Chu, Sai T. Corcoran, Bill Wu, Jiayang Hicks, Damien G. Moss, David J. Boes, Andreas Little, Brent E. Tan, Mengxi Nguyen, Thach G.  | 
    
| Author_xml | – sequence: 1 givenname: Xingyuan orcidid: 0000-0002-8190-4700 surname: Xu fullname: Xu, Xingyuan organization: Optical Sciences Centre, Swinburne University of Technology, Electro-Photonics Laboratory, Department of Electrical and Computer Systems Engineering, Monash University – sequence: 2 givenname: Mengxi surname: Tan fullname: Tan, Mengxi organization: Optical Sciences Centre, Swinburne University of Technology – sequence: 3 givenname: Bill orcidid: 0000-0001-8653-3999 surname: Corcoran fullname: Corcoran, Bill organization: Department of Electrical and Computer Systems Engineering, Monash University – sequence: 4 givenname: Jiayang surname: Wu fullname: Wu, Jiayang organization: Optical Sciences Centre, Swinburne University of Technology – sequence: 5 givenname: Andreas orcidid: 0000-0001-8443-3396 surname: Boes fullname: Boes, Andreas organization: School of Engineering, RMIT University – sequence: 6 givenname: Thach G. surname: Nguyen fullname: Nguyen, Thach G. organization: School of Engineering, RMIT University – sequence: 7 givenname: Sai T. orcidid: 0000-0001-8263-8507 surname: Chu fullname: Chu, Sai T. organization: Department of Physics, City University of Hong Kong – sequence: 8 givenname: Brent E. surname: Little fullname: Little, Brent E. organization: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences – sequence: 9 givenname: Damien G. orcidid: 0000-0001-8322-9983 surname: Hicks fullname: Hicks, Damien G. organization: Optical Sciences Centre, Swinburne University of Technology, Bioinformatics Division, Walter & Eliza Hall Institute of Medical Research – sequence: 10 givenname: Roberto orcidid: 0000-0001-7717-1519 surname: Morandotti fullname: Morandotti, Roberto organization: INRS-Énergie, Matériaux et Télécommunications, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 11 givenname: Arnan orcidid: 0000-0002-2463-2956 surname: Mitchell fullname: Mitchell, Arnan organization: School of Engineering, RMIT University – sequence: 12 givenname: David J. orcidid: 0000-0001-5195-1744 surname: Moss fullname: Moss, David J. email: dmoss@swin.edu.au organization: Optical Sciences Centre, Swinburne University of Technology  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33408378$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkc1u1TAQRi1URG9veQEWKBIbNoHxT-LJElUUkCoViXYdTRwHUnLtYDut-va4zYVKXVRd2CONzmePj4_YgfPOMvaGwwcOEj9GxSusSxBQgoRalvCCbbjSdalq1AdsAyCwBJT1ITuK8QoAKq7VK3YopcptjRt2ynlxcf79RzH_8sm70RTGu2s_LWn0jqaCjLGTDZR8KIa8_JxGk_vOLuG-pBsffsdj9nKgKdrX-7pll6efL06-lmfnX76dfDorjcIqlX3XCyKErhp0I7HHxupKESkBWnKqBRgDwA0NlrBrOCkDFnuOXHSD1lZumVzPXdxMtzc0Te0cxh2F25ZDe2elXa202Up7byXvW_Z-Tc3B_1lsTO1ujPldEznrl9iK7IwLlLLJ6LtH6JVfQjaxUlg3HFWm3u6ppdvZ_v8M_7xmQKyACT7GYIfnjYmPQmZMdPcRKdA4PR3de4n5HvfThoexn0j9BUZ3qpk | 
    
| CitedBy_id | crossref_primary_10_1002_lpor_202100732 crossref_primary_10_1016_j_optlastec_2022_108422 crossref_primary_10_3390_photonics9020120 crossref_primary_10_1016_j_optlastec_2021_107175 crossref_primary_10_1038_s42005_023_01368_w crossref_primary_10_2528_PIER22092907 crossref_primary_10_1109_JLT_2022_3227090 crossref_primary_10_1089_big_2022_0287 crossref_primary_10_1038_s42005_023_01453_0 crossref_primary_10_1364_PRJ_515349 crossref_primary_10_1364_OE_476556 crossref_primary_10_1109_JLT_2021_3066256 crossref_primary_10_1117_1_APN_2_4_046008 crossref_primary_10_1109_JLT_2021_3076070 crossref_primary_10_1186_s13634_023_01073_4 crossref_primary_10_1038_s41377_022_00809_5 crossref_primary_10_1080_09205071_2024_2360554 crossref_primary_10_1002_lpor_202200213 crossref_primary_10_1126_sciadv_ads4224 crossref_primary_10_1002_lpor_202200698 crossref_primary_10_1016_j_eng_2024_08_016 crossref_primary_10_1364_OME_522184 crossref_primary_10_1126_sciadv_adi4956 crossref_primary_10_1109_ACCESS_2023_3287094 crossref_primary_10_1109_JLT_2024_3422223 crossref_primary_10_1140_epjd_s10053_023_00748_9 crossref_primary_10_1364_OME_450923 crossref_primary_10_1016_j_rinp_2023_107198 crossref_primary_10_1021_acsphotonics_3c01164 crossref_primary_10_1038_s41598_024_79395_y crossref_primary_10_3788_LOP222304 crossref_primary_10_1002_adma_202405030 crossref_primary_10_1007_s11433_022_1957_3 crossref_primary_10_1515_nanoph_2024_0149 crossref_primary_10_3788_PI_2024_R09 crossref_primary_10_1021_acsphotonics_2c01529 crossref_primary_10_1109_JLT_2024_3467128 crossref_primary_10_1364_PRJ_538355 crossref_primary_10_1103_PhysRevLett_133_237101 crossref_primary_10_1002_adma_202301063 crossref_primary_10_2139_ssrn_4104931 crossref_primary_10_1038_s41467_024_55558_3 crossref_primary_10_1364_OE_524947 crossref_primary_10_1364_OL_451087 crossref_primary_10_1364_OPTICA_489501 crossref_primary_10_1063_5_0156189 crossref_primary_10_1515_nanoph_2024_0498 crossref_primary_10_1364_OE_523619 crossref_primary_10_1109_JLT_2024_3438939 crossref_primary_10_1021_acsphotonics_2c01543 crossref_primary_10_1109_JSTQE_2023_3245626 crossref_primary_10_1145_3606949 crossref_primary_10_1364_PRJ_472741 crossref_primary_10_1016_j_yofte_2021_102626 crossref_primary_10_1038_s41377_022_00752_5 crossref_primary_10_1103_PhysRevResearch_6_043151 crossref_primary_10_1063_5_0071885 crossref_primary_10_3390_mi13122125 crossref_primary_10_1109_JLT_2021_3116614 crossref_primary_10_1364_PRJ_458472 crossref_primary_10_1038_s41467_024_48224_1 crossref_primary_10_1117_1_APN_3_1_016010 crossref_primary_10_1109_TCYB_2021_3105568 crossref_primary_10_1038_s41467_025_58052_6 crossref_primary_10_1063_5_0203036 crossref_primary_10_1364_OPTICA_495053 crossref_primary_10_1109_TASLP_2024_3374064 crossref_primary_10_1364_OL_454235 crossref_primary_10_1038_s41566_021_00803_0 crossref_primary_10_1186_s43593_021_00002_y crossref_primary_10_1364_PRJ_473609 crossref_primary_10_1002_aelm_202100706 crossref_primary_10_1038_s41598_022_08087_2 crossref_primary_10_1063_5_0232917 crossref_primary_10_1364_OE_423949 crossref_primary_10_1038_s41467_023_40152_w crossref_primary_10_1364_OPTICA_500523 crossref_primary_10_1080_23746149_2022_2067487 crossref_primary_10_1002_advs_202200992 crossref_primary_10_1016_j_optcom_2024_131231 crossref_primary_10_1088_1674_1056_ada2ef crossref_primary_10_1038_s41566_024_01418_x crossref_primary_10_1016_j_neucom_2025_129830 crossref_primary_10_1002_adma_202308840 crossref_primary_10_3390_mi13091509 crossref_primary_10_1109_JLT_2024_3409208 crossref_primary_10_1364_PRJ_484662 crossref_primary_10_1038_s41467_023_38396_7 crossref_primary_10_1126_sciadv_abo6410 crossref_primary_10_1364_OE_516173 crossref_primary_10_1364_OPTICA_475493 crossref_primary_10_1038_s41377_024_01590_3 crossref_primary_10_1038_s41566_023_01170_8 crossref_primary_10_1126_sciadv_adi9127 crossref_primary_10_1038_s41467_023_38473_x crossref_primary_10_1002_adom_202300215 crossref_primary_10_1002_lpor_202400604 crossref_primary_10_1038_s41598_024_75667_9 crossref_primary_10_1364_OPTICA_451418 crossref_primary_10_1142_S0217984924502348 crossref_primary_10_2139_ssrn_4802512 crossref_primary_10_3390_photonics9100698 crossref_primary_10_1038_s41566_023_01313_x crossref_primary_10_1109_JSTQE_2022_3226138 crossref_primary_10_1016_j_nanoen_2024_109799 crossref_primary_10_1109_JSTQE_2022_3203159 crossref_primary_10_1038_s41566_024_01493_0 crossref_primary_10_1002_lpor_202200662 crossref_primary_10_1126_sciadv_adf8437 crossref_primary_10_1038_s41467_022_32739_6 crossref_primary_10_1002_lpor_202400972 crossref_primary_10_1038_s41566_023_01227_8 crossref_primary_10_1088_2634_4386_ac1a7f crossref_primary_10_1364_PRJ_470243 crossref_primary_10_1364_OL_498296 crossref_primary_10_1088_2040_8986_ac1772 crossref_primary_10_1063_5_0067352 crossref_primary_10_1364_OE_531679 crossref_primary_10_1103_PhysRevApplied_21_014028 crossref_primary_10_1002_adom_202200714 crossref_primary_10_1038_s41566_023_01303_z crossref_primary_10_1088_2040_8986_ac1773 crossref_primary_10_1364_OPTICA_477433 crossref_primary_10_1038_s44172_023_00135_7 crossref_primary_10_1126_sciadv_adf8666 crossref_primary_10_1109_TIM_2024_3398088 crossref_primary_10_3389_fphy_2022_1051941 crossref_primary_10_1088_0256_307X_40_3_034201 crossref_primary_10_1103_PhysRevApplied_18_034088 crossref_primary_10_1515_nanoph_2023_0513 crossref_primary_10_1016_j_optcom_2025_131622 crossref_primary_10_1364_OE_476110 crossref_primary_10_1364_OE_530355 crossref_primary_10_1364_OL_530189 crossref_primary_10_1364_OE_480835 crossref_primary_10_1063_5_0173301 crossref_primary_10_26599_AIR_2022_9150004 crossref_primary_10_1038_s41467_022_30906_3 crossref_primary_10_1038_s41586_023_06558_8 crossref_primary_10_1002_sstr_202200064 crossref_primary_10_1364_OE_433535 crossref_primary_10_1364_PRJ_527762 crossref_primary_10_1038_s41566_024_01549_1 crossref_primary_10_1038_s41377_024_01395_4 crossref_primary_10_1364_OE_430281 crossref_primary_10_1109_LPT_2025_3545867 crossref_primary_10_3788_AOS240782 crossref_primary_10_1038_s41586_024_07687_4 crossref_primary_10_1038_s41467_024_55220_y crossref_primary_10_1021_acsphotonics_1c02005 crossref_primary_10_1063_5_0217968 crossref_primary_10_1038_s41566_021_00942_4 crossref_primary_10_1364_OPTICA_485883 crossref_primary_10_1587_transfun_2023GCI0001 crossref_primary_10_1364_PRJ_511389 crossref_primary_10_1002_adfm_202313507 crossref_primary_10_1364_OE_503072 crossref_primary_10_1038_s41467_023_42289_0 crossref_primary_10_1364_OL_431667 crossref_primary_10_1364_PRJ_454816 crossref_primary_10_1088_2634_4386_ac724d crossref_primary_10_1364_OE_540382 crossref_primary_10_1038_s41467_022_29431_0 crossref_primary_10_1140_epjb_s10051_024_00703_6 crossref_primary_10_1109_JLT_2025_3532315 crossref_primary_10_1002_advs_202414319 crossref_primary_10_1364_OL_427386 crossref_primary_10_1103_PhysRevApplied_15_054034 crossref_primary_10_1088_1361_6463_ac931d crossref_primary_10_1063_5_0174697 crossref_primary_10_1109_JLT_2024_3437420 crossref_primary_10_3788_CJL221209 crossref_primary_10_3788_LOP241576 crossref_primary_10_1364_OL_464214 crossref_primary_10_1038_s41467_022_30901_8 crossref_primary_10_3390_life13051148 crossref_primary_10_1038_s41467_022_28702_0 crossref_primary_10_1103_PhysRevApplied_17_054037 crossref_primary_10_1126_sciadv_abq6198 crossref_primary_10_3390_nano11071683 crossref_primary_10_1364_OL_543024 crossref_primary_10_1364_PRJ_525448 crossref_primary_10_1088_2515_7647_ac5f17 crossref_primary_10_29026_oes_2024_240012 crossref_primary_10_1109_JSTQE_2022_3171167 crossref_primary_10_1080_23746149_2020_1838946 crossref_primary_10_2139_ssrn_3860550 crossref_primary_10_1360_TB_2024_0692 crossref_primary_10_1002_aelm_202200808 crossref_primary_10_1364_OPTICA_523225 crossref_primary_10_3390_fractalfract7010012 crossref_primary_10_1364_OE_539487 crossref_primary_10_1364_OL_422842 crossref_primary_10_1364_OPTICA_522378 crossref_primary_10_1109_JPHOT_2022_3163793 crossref_primary_10_1038_s41377_025_01814_0 crossref_primary_10_1109_JSTQE_2023_3234641 crossref_primary_10_1364_OE_446527 crossref_primary_10_1126_sciadv_abn3243 crossref_primary_10_1063_5_0173243 crossref_primary_10_1002_adom_202301028 crossref_primary_10_1515_nanoph_2022_0197 crossref_primary_10_3390_nano13243139 crossref_primary_10_1021_acsphotonics_4c01099 crossref_primary_10_1364_PRJ_536785 crossref_primary_10_29026_oes_2023_230050 crossref_primary_10_1038_s41467_024_46026_z crossref_primary_10_1002_lpor_202200754 crossref_primary_10_1038_s41467_022_35506_9 crossref_primary_10_1007_s12200_022_00009_4 crossref_primary_10_1016_j_optlastec_2022_109104 crossref_primary_10_1364_OL_477624 crossref_primary_10_1038_s41377_024_01386_5 crossref_primary_10_1103_PhysRevLett_132_013801 crossref_primary_10_1364_OL_518837 crossref_primary_10_1038_s41566_023_01233_w crossref_primary_10_1109_JSTQE_2023_3279586 crossref_primary_10_1103_PhysRevApplied_16_064038 crossref_primary_10_1038_s41467_024_55172_3 crossref_primary_10_1364_OPTCON_511737 crossref_primary_10_1007_s11432_021_3235_7 crossref_primary_10_1109_JSTQE_2024_3379937 crossref_primary_10_1021_acs_nanolett_4c05414 crossref_primary_10_1088_2631_7990_ad1575 crossref_primary_10_1109_JLT_2024_3415436 crossref_primary_10_1016_j_jpowsour_2023_233474 crossref_primary_10_1109_JSTQE_2022_3217011 crossref_primary_10_1364_OL_488464 crossref_primary_10_1364_PRJ_474535 crossref_primary_10_1109_JSTQE_2023_3266276 crossref_primary_10_1016_j_matdes_2023_112610 crossref_primary_10_3788_CJL231227 crossref_primary_10_3788_LOP230535 crossref_primary_10_1063_5_0144854 crossref_primary_10_1109_JSTQE_2023_3239918 crossref_primary_10_1038_s41377_024_01376_7 crossref_primary_10_1364_OE_499085 crossref_primary_10_1364_OL_506704 crossref_primary_10_1002_aisy_202300229 crossref_primary_10_1016_j_chip_2023_100061 crossref_primary_10_1002_lpor_202301363 crossref_primary_10_1038_s41467_025_58039_3 crossref_primary_10_1186_s43074_021_00042_0 crossref_primary_10_2139_ssrn_4164864 crossref_primary_10_1038_s41467_021_27774_8 crossref_primary_10_1038_s41467_022_33132_z crossref_primary_10_1145_3711845 crossref_primary_10_1109_JPROC_2023_3276941 crossref_primary_10_1515_nanoph_2022_0294 crossref_primary_10_1038_s41566_023_01367_x crossref_primary_10_1038_s41467_024_53261_x crossref_primary_10_3788_COL202422_090003 crossref_primary_10_1038_s41586_022_04714_0 crossref_primary_10_1038_s41598_021_94952_5 crossref_primary_10_1038_s41467_023_37472_2 crossref_primary_10_1364_OE_471519 crossref_primary_10_1063_5_0215752 crossref_primary_10_1126_sciadv_adn2031 crossref_primary_10_1364_OE_539235 crossref_primary_10_1002_adfm_202425559 crossref_primary_10_1364_OL_487676 crossref_primary_10_2139_ssrn_4164853 crossref_primary_10_1002_lpor_202301367 crossref_primary_10_1109_JSTQE_2024_3398419 crossref_primary_10_3390_photonics11121164 crossref_primary_10_1038_s41467_024_55162_5 crossref_primary_10_1038_s41586_022_04957_x crossref_primary_10_1364_OE_492551 crossref_primary_10_1007_s40820_022_00957_8 crossref_primary_10_2139_ssrn_4164854 crossref_primary_10_1364_PRJ_527940 crossref_primary_10_1002_adma_202312825 crossref_primary_10_1088_2634_4386_ac4a83 crossref_primary_10_1002_lpor_202402072 crossref_primary_10_1021_acsphotonics_2c01188 crossref_primary_10_3390_photonics10111283 crossref_primary_10_1038_s41467_024_48544_2 crossref_primary_10_1109_LPT_2025_3541048 crossref_primary_10_1109_JLT_2021_3101292 crossref_primary_10_1364_OE_519759 crossref_primary_10_1364_OPTICA_434918 crossref_primary_10_3389_fphy_2021_786028 crossref_primary_10_1002_advs_202310262 crossref_primary_10_1088_2634_4386_abfca6 crossref_primary_10_1007_s11042_023_14375_4 crossref_primary_10_1038_s41566_021_00945_1 crossref_primary_10_1002_lpor_202300001 crossref_primary_10_1016_j_optlaseng_2022_107410 crossref_primary_10_1039_D2SC01947G crossref_primary_10_1063_5_0173287 crossref_primary_10_1038_s41377_022_00945_y crossref_primary_10_1038_s41377_024_01573_4 crossref_primary_10_1109_JLT_2024_3427716 crossref_primary_10_1364_OME_502179 crossref_primary_10_1016_j_yofte_2024_103864 crossref_primary_10_3389_fphy_2024_1369099 crossref_primary_10_1364_OE_489246 crossref_primary_10_1007_s12200_024_00115_5 crossref_primary_10_1364_OE_539339 crossref_primary_10_1016_j_photonics_2023_101107 crossref_primary_10_1002_lpor_202301221 crossref_primary_10_1038_s42256_022_00502_7 crossref_primary_10_1109_JSTQE_2023_3271818 crossref_primary_10_1117_1_AP_5_4_046004 crossref_primary_10_1126_sciadv_adg4391 crossref_primary_10_1364_OE_460609 crossref_primary_10_3390_photonics10090972 crossref_primary_10_1190_geo2022_0196_1 crossref_primary_10_1364_OPTICA_536866 crossref_primary_10_1186_s43074_021_00044_y crossref_primary_10_1364_OE_543941 crossref_primary_10_1038_s41467_022_35728_x crossref_primary_10_1038_s41377_024_01561_8 crossref_primary_10_1063_5_0105164 crossref_primary_10_1016_j_optlastec_2023_109118 crossref_primary_10_1109_JLT_2024_3405799 crossref_primary_10_1088_2040_8986_ac2eab crossref_primary_10_34133_icomputing_0067 crossref_primary_10_1038_s41467_024_55321_8 crossref_primary_10_1186_s43593_022_00027_x crossref_primary_10_1364_OE_520805 crossref_primary_10_1007_s11432_023_3810_9 crossref_primary_10_1038_s41467_024_53371_6 crossref_primary_10_3390_photonics12030278 crossref_primary_10_3389_fphy_2022_1064693 crossref_primary_10_1088_1402_4896_adb651 crossref_primary_10_1515_nanoph_2022_0137 crossref_primary_10_1038_s42256_023_00723_4 crossref_primary_10_1063_5_0158939 crossref_primary_10_1109_TIM_2023_3289549 crossref_primary_10_1364_OPTICA_468347 crossref_primary_10_1002_lpor_202300984 crossref_primary_10_1002_lpor_202100184 crossref_primary_10_1002_lpor_202300627 crossref_primary_10_1016_j_eng_2021_06_021 crossref_primary_10_1145_3550273 crossref_primary_10_29026_oes_2022_220010 crossref_primary_10_1364_OE_559380 crossref_primary_10_1364_OL_451673 crossref_primary_10_1126_sciadv_adt9159 crossref_primary_10_34133_icomputing_0070 crossref_primary_10_1038_s42005_024_01773_9 crossref_primary_10_3788_AOS240954 crossref_primary_10_1515_nanoph_2022_0485 crossref_primary_10_1364_OE_479038 crossref_primary_10_1088_1361_6528_acde83 crossref_primary_10_1038_s41377_023_01161_y crossref_primary_10_1126_sciadv_adn2205 crossref_primary_10_1364_OPTICA_537231 crossref_primary_10_1364_OPTICA_435525 crossref_primary_10_3390_mi14020307 crossref_primary_10_1038_s44287_024_00050_9 crossref_primary_10_1038_s41377_022_00849_x crossref_primary_10_1002_lpor_202400376 crossref_primary_10_1038_s41377_024_01706_9 crossref_primary_10_1364_PRJ_536939 crossref_primary_10_1515_nanoph_2022_0358 crossref_primary_10_3390_photonics12030253 crossref_primary_10_1038_s41467_024_46468_5 crossref_primary_10_1002_lpor_202100399 crossref_primary_10_1103_PhysRevApplied_16_024045 crossref_primary_10_1364_AOP_470264 crossref_primary_10_1364_OE_452803 crossref_primary_10_1109_JSTQE_2024_3377249 crossref_primary_10_1109_JLT_2023_3317090 crossref_primary_10_3389_fmats_2021_791296 crossref_primary_10_3390_s23249767 crossref_primary_10_1364_OL_505232 crossref_primary_10_1021_acsnano_2c02235 crossref_primary_10_1038_s41566_022_01003_0 crossref_primary_10_3390_photonics8090363 crossref_primary_10_1186_s43593_022_00013_3 crossref_primary_10_2184_lsj_50_5_254 crossref_primary_10_1109_JLT_2024_3407820 crossref_primary_10_1515_nanoph_2022_0109 crossref_primary_10_1109_JSTQE_2022_3207056 crossref_primary_10_1038_s41467_024_45305_z crossref_primary_10_1002_rpm_20230017 crossref_primary_10_1080_23746149_2021_1981155 crossref_primary_10_1038_s41467_022_34308_3 crossref_primary_10_1002_qute_202400074 crossref_primary_10_1038_s41467_022_33259_z crossref_primary_10_1364_OL_517583 crossref_primary_10_1364_PRJ_513845 crossref_primary_10_1063_5_0174044 crossref_primary_10_1186_s43593_024_00062_w crossref_primary_10_1063_5_0158926 crossref_primary_10_1038_s41586_024_07078_9 crossref_primary_10_1109_JLT_2021_3101816 crossref_primary_10_1515_nanoph_2021_0521 crossref_primary_10_1021_acsphotonics_4c02212 crossref_primary_10_1109_TCAD_2023_3297969 crossref_primary_10_1364_OME_463211 crossref_primary_10_1038_s41566_024_01567_z crossref_primary_10_1117_1_OE_61_6_061409 crossref_primary_10_1038_s41467_024_50677_3 crossref_primary_10_1021_acs_jctc_1c00726 crossref_primary_10_1038_s41566_022_01059_y crossref_primary_10_1515_nanoph_2022_0575 crossref_primary_10_1364_OL_540184 crossref_primary_10_1038_s43588_024_00644_1 crossref_primary_10_1038_s41566_024_01599_5 crossref_primary_10_1021_acsphotonics_4c01594 crossref_primary_10_1364_OE_470376 crossref_primary_10_1038_s41377_022_00717_8 crossref_primary_10_1063_5_0197033 crossref_primary_10_1109_JSTQE_2022_3219288 crossref_primary_10_1515_nanoph_2021_0332 crossref_primary_10_1038_s41467_024_55139_4 crossref_primary_10_34133_icomputing_0032 crossref_primary_10_1109_JPHOT_2024_3361930 crossref_primary_10_3390_fractalfract7050364 crossref_primary_10_1371_journal_pone_0307211 crossref_primary_10_1364_OL_484435 crossref_primary_10_1364_OL_539338 crossref_primary_10_1016_j_optlastec_2024_111646 crossref_primary_10_1364_OE_449528 crossref_primary_10_1038_s41377_024_01651_7 crossref_primary_10_1038_s44172_023_00151_7 crossref_primary_10_1038_s41467_023_42984_y crossref_primary_10_1088_1674_4926_42_4_041305 crossref_primary_10_1038_s42005_023_01437_0 crossref_primary_10_1515_nanoph_2022_0441 crossref_primary_10_1515_nanoph_2024_0504 crossref_primary_10_1002_inf2_12264 crossref_primary_10_1088_1674_4926_42_4_041302 crossref_primary_10_1016_j_yofte_2024_103928 crossref_primary_10_1360_SSI_2022_0226 crossref_primary_10_1364_OE_495425 crossref_primary_10_1364_OE_522087 crossref_primary_10_1021_acsphotonics_4c01342 crossref_primary_10_29026_oes_2023_230024 crossref_primary_10_1021_acsphotonics_4c00015 crossref_primary_10_1515_nanoph_2023_0298 crossref_primary_10_1088_2634_4386_ac77b2 crossref_primary_10_1063_5_0170965 crossref_primary_10_1038_s41467_024_52269_7 crossref_primary_10_1038_s42254_022_00518_3 crossref_primary_10_1515_nanoph_2022_0437 crossref_primary_10_1364_OME_452138 crossref_primary_10_1364_OPTICA_506603 crossref_primary_10_1109_JSTQE_2025_3534636 crossref_primary_10_1002_inf2_12399 crossref_primary_10_1109_JLT_2024_3363648 crossref_primary_10_1021_acsphotonics_4c00003 crossref_primary_10_29026_oes_2023_230017 crossref_primary_10_1109_ACCESS_2021_3076411 crossref_primary_10_1364_PRJ_435837 crossref_primary_10_1002_qute_202300055 crossref_primary_10_3389_fphy_2023_1112295 crossref_primary_10_1117_1_AP_5_1_016003 crossref_primary_10_1038_s41566_023_01253_6 crossref_primary_10_1103_PhysRevApplied_18_064038 crossref_primary_10_1364_OPTICA_514341 crossref_primary_10_29026_oea_2023_230140 crossref_primary_10_1364_JOSAB_547482 crossref_primary_10_1038_s41377_022_01052_8 crossref_primary_10_1002_aisy_202200417 crossref_primary_10_1364_AOP_450345 crossref_primary_10_1038_s41467_022_35723_2 crossref_primary_10_1063_5_0157639 crossref_primary_10_1016_j_optcom_2023_129870 crossref_primary_10_1364_OL_496438 crossref_primary_10_3390_app13137523 crossref_primary_10_1002_adpr_202000212 crossref_primary_10_1038_s41467_023_38786_x crossref_primary_10_1021_acsphotonics_4c01688 crossref_primary_10_1364_OL_474307 crossref_primary_10_1038_s42005_024_01558_0 crossref_primary_10_1038_s41467_024_55058_4 crossref_primary_10_1021_acsphotonics_3c01694 crossref_primary_10_1126_sciadv_abl9874 crossref_primary_10_1364_PRJ_519666 crossref_primary_10_1088_2058_9565_ad5907 crossref_primary_10_1063_5_0190398 crossref_primary_10_3390_photonics12010026 crossref_primary_10_1364_OPTICA_507525 crossref_primary_10_1109_TCSII_2022_3171170 crossref_primary_10_1016_j_chinastron_2023_03_008 crossref_primary_10_1109_TCSI_2023_3284858 crossref_primary_10_1038_s41377_024_01555_6 crossref_primary_10_34133_adi_0041 crossref_primary_10_1002_apxr_202400084 crossref_primary_10_1002_lpor_202401975 crossref_primary_10_1016_j_revip_2024_100093 crossref_primary_10_1364_OE_511245 crossref_primary_10_1109_JLT_2023_3314526 crossref_primary_10_1364_PRJ_483948 crossref_primary_10_3788_CJL240780 crossref_primary_10_1038_d41586_020_03572_y crossref_primary_10_1364_PRJ_423531 crossref_primary_10_1021_acsphotonics_4c01422 crossref_primary_10_1109_JLT_2024_3420794 crossref_primary_10_1364_PRJ_472932 crossref_primary_10_1016_j_watres_2024_121679 crossref_primary_10_3788_AOS241178 crossref_primary_10_1109_LPT_2021_3087323 crossref_primary_10_1103_PhysRevResearch_5_013172 crossref_primary_10_1038_s41467_023_39229_3 crossref_primary_10_1038_s42254_023_00645_5 crossref_primary_10_3390_app12010214 crossref_primary_10_1016_j_optcom_2023_130121 crossref_primary_10_1364_OE_537622 crossref_primary_10_1126_sciadv_adp0391 crossref_primary_10_1364_OME_498931 crossref_primary_10_1038_s41565_023_01557_2 crossref_primary_10_1038_s41570_022_00458_7 crossref_primary_10_3788_COL202321_101901 crossref_primary_10_1007_s11431_024_2833_y crossref_primary_10_1109_TED_2022_3154668 crossref_primary_10_34133_icomputing_0006 crossref_primary_10_1016_j_optlaseng_2024_108740 crossref_primary_10_1364_PRJ_507227 crossref_primary_10_1109_JSTQE_2022_3217819 crossref_primary_10_1038_s41565_023_01339_w crossref_primary_10_1364_OE_503637 crossref_primary_10_3390_photonics12010039 crossref_primary_10_1364_PRJ_519679 crossref_primary_10_1051_bioconf_202410806002 crossref_primary_10_1364_OPTICA_506635 crossref_primary_10_15625_2525_2518_17417 crossref_primary_10_3389_fphy_2022_908141 crossref_primary_10_1038_s41467_021_21973_z crossref_primary_10_29026_oea_2024_230005 crossref_primary_10_1038_s41467_024_49324_8 crossref_primary_10_1109_TCAD_2022_3197538 crossref_primary_10_37188_lam_2023_039 crossref_primary_10_1364_OE_464657 crossref_primary_10_2139_ssrn_4749422 crossref_primary_10_1002_lpor_202400435 crossref_primary_10_1364_OE_439212 crossref_primary_10_2139_ssrn_4749420 crossref_primary_10_3389_fphy_2023_1199022 crossref_primary_10_1038_s41586_022_04579_3 crossref_primary_10_1063_5_0250589 crossref_primary_10_1002_lpor_202401520 crossref_primary_10_1126_science_adh0724 crossref_primary_10_12677_mos_2024_133350 crossref_primary_10_1038_s41377_021_00655_x crossref_primary_10_1109_JLT_2022_3171831 crossref_primary_10_1364_OE_497576 crossref_primary_10_1016_j_optlaseng_2024_108524 crossref_primary_10_1038_s41598_022_11331_4 crossref_primary_10_1186_s43593_024_00071_9 crossref_primary_10_1364_PRJ_422235 crossref_primary_10_1016_j_rinp_2024_107968 crossref_primary_10_1103_PhysRevApplied_22_014009 crossref_primary_10_1103_PhysRevLett_128_073901 crossref_primary_10_1038_s41467_025_56899_3 crossref_primary_10_1109_JLT_2024_3408877 crossref_primary_10_1016_j_eng_2024_01_008 crossref_primary_10_1021_acsphotonics_4c01874 crossref_primary_10_1038_s41377_024_01511_4 crossref_primary_10_1038_s42005_023_01372_0 crossref_primary_10_1007_s43673_023_00077_4 crossref_primary_10_1364_OE_500544 crossref_primary_10_1515_nanoph_2023_0579 crossref_primary_10_2139_ssrn_3935111 crossref_primary_10_1038_s41377_021_00666_8 crossref_primary_10_1038_s41467_024_46537_9 crossref_primary_10_1038_s41377_025_01753_w crossref_primary_10_1063_5_0123236 crossref_primary_10_1103_PhysRevApplied_17_024011 crossref_primary_10_1021_acsami_2c20451 crossref_primary_10_1126_science_adi8474 crossref_primary_10_1038_s41377_024_01390_9 crossref_primary_10_1021_acs_nanolett_2c02995 crossref_primary_10_1016_j_device_2024_100411 crossref_primary_10_1109_JLT_2023_3241434 crossref_primary_10_1016_j_jnlest_2022_100157 crossref_primary_10_1364_PRJ_478370 crossref_primary_10_1364_OPTICA_456108 crossref_primary_10_1038_s41467_022_35216_2 crossref_primary_10_1117_1_AP_6_5_050500 crossref_primary_10_1021_acsphotonics_1c01777 crossref_primary_10_1063_5_0134156 crossref_primary_10_1002_adfm_202301142 crossref_primary_10_1063_5_0226172 crossref_primary_10_1126_science_adl1203 crossref_primary_10_1002_adma_202419444 crossref_primary_10_1117_1_AP_7_1_016004 crossref_primary_10_3390_mi14091794 crossref_primary_10_3390_mi15060808 crossref_primary_10_1117_1_AP_7_1_016007 crossref_primary_10_1364_OE_451239 crossref_primary_10_1364_OE_449280 crossref_primary_10_1038_s42005_024_01549_1 crossref_primary_10_1038_s41598_022_09370_y crossref_primary_10_1117_1_APN_4_1_016010 crossref_primary_10_1126_sciadv_abm2956 crossref_primary_10_1109_JLT_2023_3287647 crossref_primary_10_1364_OPTICA_516241 crossref_primary_10_29026_oea_2025_240135 crossref_primary_10_1021_acsphotonics_2c01516 crossref_primary_10_1051_jeos_2023001 crossref_primary_10_1109_JPHOT_2021_3109016 crossref_primary_10_1007_s00521_022_07243_z crossref_primary_10_1038_s41566_024_01401_6 crossref_primary_10_1038_s44310_024_00009_6 crossref_primary_10_1063_5_0134147 crossref_primary_10_1364_OL_448326 crossref_primary_10_1063_5_0072090 crossref_primary_10_1038_s41377_024_01546_7 crossref_primary_10_2139_ssrn_4833890 crossref_primary_10_1103_PhysRevApplied_17_024030  | 
    
| Cites_doi | 10.1073/pnas.1604850113 10.1126/science.aat8084 10.1038/nphoton.2017.93 10.1038/s41586-020-1942-4 10.1038/nature22387 10.1038/nature26000 10.1038/s41598-018-30619-y 10.1038/s41586-018-0065-7 10.1038/nature21056 10.1109/JSTQE.2018.2793945 10.1109/72.554195 10.1038/nphoton.2013.183 10.1364/OE.24.023925 10.1016/j.physrep.2017.08.004 10.1038/nature14236 10.1038/s41566-019-0363-0 10.1038/s41586-019-1157-8 10.1038/ncomms2368 10.1364/OE.23.012758 10.1038/s41586-018-0180-5 10.1038/ncomms4541 10.1145/3065386 10.1038/s41586-018-0598-9 10.1038/s41566-017-0009-z 10.1038/ncomms1476 10.1038/nature20101 10.1103/PhysRevLett.101.093902 10.1109/JLT.2017.2647779 10.1038/nature24270 10.1038/s41586-018-0551-y 10.1038/nature14539 10.1063/1.4982157 10.1126/science.aan8083 10.1002/lpor.202000070 10.1002/9780470050118.ecse302  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 Copyright Nature Publishing Group Jan 7, 2021  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: Copyright Nature Publishing Group Jan 7, 2021  | 
    
| DBID | AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1038/s41586-020-03063-0 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed Agricultural Science Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Physics  | 
    
| EISSN | 1476-4687 | 
    
| EndPage | 51 | 
    
| ExternalDocumentID | oai:ir.opt.ac.cn:181661/94263 33408378 10_1038_s41586_020_03063_0  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO TUS .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK ABUFD AGSTI C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 ADTOC ADXHL AFKWF AGQPQ ESTFP UNPAY  | 
    
| ID | FETCH-LOGICAL-c485t-dbd2aa80b5f7938d89e754aa420731a620cc001cafea8b91a4c0e8d1812bf77e3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0028-0836 1476-4687  | 
    
| IngestDate | Sun Oct 26 02:25:05 EDT 2025 Thu Oct 02 08:47:29 EDT 2025 Tue Oct 07 07:06:27 EDT 2025 Thu Apr 03 07:04:46 EDT 2025 Wed Oct 01 03:13:17 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Fri Feb 21 02:37:48 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7840 | 
    
| Language | English | 
    
| License | cc-by-nc-sa | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c485t-dbd2aa80b5f7938d89e754aa420731a620cc001cafea8b91a4c0e8d1812bf77e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-8322-9983 0000-0001-7717-1519 0000-0001-8443-3396 0000-0002-2463-2956 0000-0001-8263-8507 0000-0002-8190-4700 0000-0001-5195-1744 0000-0001-8653-3999  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://ir.opt.ac.cn/handle/181661/94263 | 
    
| PMID | 33408378 | 
    
| PQID | 2476869184 | 
    
| PQPubID | 40569 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1038_s41586_020_03063_0 proquest_miscellaneous_2476128339 proquest_journals_2476869184 pubmed_primary_33408378 crossref_primary_10_1038_s41586_020_03063_0 crossref_citationtrail_10_1038_s41586_020_03063_0 springer_journals_10_1038_s41586_020_03063_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-01-07 | 
    
| PublicationDateYYYYMMDD | 2021-01-07 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-07 day: 07  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationSubtitle | International weekly journal of science | 
    
| PublicationTitle | Nature (London) | 
    
| PublicationTitleAbbrev | Nature | 
    
| PublicationTitleAlternate | Nature | 
    
| PublicationYear | 2021 | 
    
| Publisher | Nature Publishing Group UK Nature Publishing Group  | 
    
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group  | 
    
| References | Sahin, Ooi, Png, Tan (CR36) 2017; 110 Marin-Palomo (CR28) 2017; 546 Kues (CR29) 2019; 13 Wu (CR32) 2018; 24 Lin (CR11) 2018; 361 Peng, Nahmias, de Lima, Tait, Shastri (CR10) 2018; 24 Metcalf (CR34) 2016; 24 Cole, Lamb, Del’Haye, Diddams, Papp (CR30) 2017; 11 CR35 Wang (CR38) 2018; 562 CR33 Krizhevsky, Sutskever, Hinton (CR5) 2017; 60 Lawrence, Giles, Tsoi, Back (CR7) 1997; 8 Moss, Morandotti, Gaeta, Lipson (CR24) 2013; 7 Shen (CR8) 2017; 11 Tait, Chang, Shastri, Nahmias, Prucnal (CR21) 2015; 23 Silver (CR4) 2017; 550 Savchenkov (CR26) 2008; 101 Spencer (CR27) 2018; 557 Feldmann, Youngblood, Wright, Bhaskaran, Pernice (CR12) 2019; 569 Kippenberg, Gaeta, Lipson, Gorodetsky (CR25) 2018; 361 Capper (CR40) 2018; 555 Chang, Sitzmann, Dun, Heidrich, Wetzstein (CR18) 2018; 8 LeCun, Bengio, Hinton (CR1) 2015; 521 Stern, Ji, Okawachi, Gaeta, Lipson (CR31) 2018; 562 CR2 Appeltant (CR17) 2011; 2 Esteva (CR39) 2017; 542 Brunner, Soriano, Mirasso, Fischer (CR20) 2013; 4 Roeloffzen (CR37) 2018; 24 Miller (CR16) 2017; 35 Ambrogio (CR13) 2018; 558 Vandoorne (CR19) 2014; 5 CR22 Larger (CR9) 2017; 7 Graves (CR15) 2016; 538 Pasquazi (CR23) 2018; 729 Yao (CR6) 2020; 577 Esser (CR14) 2016; 113 Mnih (CR3) 2015; 518 DT Spencer (3063_CR27) 2018; 557 P Yao (3063_CR6) 2020; 577 Y Shen (3063_CR8) 2017; 11 J Wu (3063_CR32) 2018; 24 DJ Moss (3063_CR24) 2013; 7 AJ Metcalf (3063_CR34) 2016; 24 CGH Roeloffzen (3063_CR37) 2018; 24 J Chang (3063_CR18) 2018; 8 M Kues (3063_CR29) 2019; 13 D Brunner (3063_CR20) 2013; 4 TJ Kippenberg (3063_CR25) 2018; 361 J Feldmann (3063_CR12) 2019; 569 DC Cole (3063_CR30) 2017; 11 H-T Peng (3063_CR10) 2018; 24 C Wang (3063_CR38) 2018; 562 AN Tait (3063_CR21) 2015; 23 X Lin (3063_CR11) 2018; 361 B Stern (3063_CR31) 2018; 562 3063_CR33 3063_CR2 A Krizhevsky (3063_CR5) 2017; 60 3063_CR35 Y LeCun (3063_CR1) 2015; 521 A Esteva (3063_CR39) 2017; 542 K Vandoorne (3063_CR19) 2014; 5 D Silver (3063_CR4) 2017; 550 L Larger (3063_CR9) 2017; 7 S Ambrogio (3063_CR13) 2018; 558 D Capper (3063_CR40) 2018; 555 A Graves (3063_CR15) 2016; 538 V Mnih (3063_CR3) 2015; 518 S Lawrence (3063_CR7) 1997; 8 P Marin-Palomo (3063_CR28) 2017; 546 SK Esser (3063_CR14) 2016; 113 L Appeltant (3063_CR17) 2011; 2 A Pasquazi (3063_CR23) 2018; 729 AA Savchenkov (3063_CR26) 2008; 101 E Sahin (3063_CR36) 2017; 110 3063_CR22 DAB Miller (3063_CR16) 2017; 35 33408372 - Nature. 2021 Jan;589(7840):25-26  | 
    
| References_xml | – ident: CR22 – volume: 113 start-page: 11441 year: 2016 end-page: 11446 ident: CR14 article-title: Convolutional networks for fast, energy-efficient neuromorphic computing publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1604850113 – volume: 361 start-page: 1004 year: 2018 end-page: 1008 ident: CR11 article-title: All-optical machine learning using diffractive deep neural networks publication-title: Science doi: 10.1126/science.aat8084 – volume: 11 start-page: 441 year: 2017 end-page: 446 ident: CR8 article-title: Deep learning with coherent nanophotonic circuits publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.93 – ident: CR2 – volume: 577 start-page: 641 year: 2020 end-page: 646 ident: CR6 article-title: Fully hardware-implemented memristor convolutional neural network publication-title: Nature doi: 10.1038/s41586-020-1942-4 – volume: 546 start-page: 274 year: 2017 end-page: 279 ident: CR28 article-title: Microresonator-based solitons for massively parallel coherent optical communications publication-title: Nature doi: 10.1038/nature22387 – volume: 555 start-page: 469 year: 2018 end-page: 474 ident: CR40 article-title: DNA methylation-based classification of central nervous system tumours publication-title: Nature doi: 10.1038/nature26000 – volume: 8 year: 2018 ident: CR18 article-title: Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification publication-title: Sci. Rep. doi: 10.1038/s41598-018-30619-y – volume: 557 start-page: 81 year: 2018 end-page: 85 ident: CR27 article-title: An optical-frequency synthesizer using integrated photonics publication-title: Nature doi: 10.1038/s41586-018-0065-7 – ident: CR33 – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: CR39 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: CR35 – volume: 24 start-page: 6101715 year: 2018 ident: CR10 article-title: Neuromorphic photonic integrated circuits publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 24 start-page: 1 year: 2018 end-page: 21 ident: CR37 article-title: Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2018.2793945 – volume: 8 start-page: 98 year: 1997 end-page: 113 ident: CR7 article-title: Face recognition: a convolutional neural-network approach publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.554195 – volume: 7 start-page: 597 year: 2013 end-page: 607 ident: CR24 article-title: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.183 – volume: 24 start-page: 23925 year: 2016 end-page: 23940 ident: CR34 article-title: Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering publication-title: Opt. Express doi: 10.1364/OE.24.023925 – volume: 729 start-page: 1 year: 2018 end-page: 81 ident: CR23 article-title: Micro-combs: a novel generation of optical sources publication-title: Phys. Rep. doi: 10.1016/j.physrep.2017.08.004 – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: CR3 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 13 start-page: 170 year: 2019 end-page: 179 ident: CR29 article-title: Quantum optical microcombs publication-title: Nat. Photon. doi: 10.1038/s41566-019-0363-0 – volume: 569 start-page: 208 year: 2019 end-page: 214 ident: CR12 article-title: All-optical spiking neurosynaptic networks with self-learning capabilities publication-title: Nature doi: 10.1038/s41586-019-1157-8 – volume: 4 year: 2013 ident: CR20 article-title: Parallel photonic information processing at gigabyte per second data rates using transient states publication-title: Nat. Commun. doi: 10.1038/ncomms2368 – volume: 23 start-page: 12758 year: 2015 end-page: 12765 ident: CR21 article-title: Demonstration of WDM weighted addition for principal component analysis publication-title: Opt. Express doi: 10.1364/OE.23.012758 – volume: 558 start-page: 60 year: 2018 end-page: 67 ident: CR13 article-title: Equivalent-accuracy accelerated neural-network training using analogue memory publication-title: Nature doi: 10.1038/s41586-018-0180-5 – volume: 5 year: 2014 ident: CR19 article-title: Experimental demonstration of reservoir computing on a silicon photonics chip publication-title: Nat. Commun. doi: 10.1038/ncomms4541 – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: CR5 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 562 start-page: 401 year: 2018 end-page: 405 ident: CR31 article-title: Battery-operated integrated frequency comb generator publication-title: Nature doi: 10.1038/s41586-018-0598-9 – volume: 11 start-page: 671 year: 2017 end-page: 676 ident: CR30 article-title: Soliton crystals in Kerr resonators publication-title: Nat. Photon. doi: 10.1038/s41566-017-0009-z – volume: 2 year: 2011 ident: CR17 article-title: Information processing using a single dynamical node as complex system publication-title: Nat. Commun. doi: 10.1038/ncomms1476 – volume: 7 start-page: 011015 year: 2017 ident: CR9 article-title: High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second classification publication-title: Phys. Rev. X – volume: 538 start-page: 471 year: 2016 end-page: 476 ident: CR15 article-title: Hybrid computing using a neural network with dynamic external memory publication-title: Nature doi: 10.1038/nature20101 – volume: 101 start-page: 093902 year: 2008 ident: CR26 article-title: Tunable optical frequency comb with a crystalline whispering gallery mode resonator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.093902 – volume: 35 start-page: 346 year: 2017 end-page: 396 ident: CR16 article-title: Attojoule optoelectronics for low-energy information processing and communications publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2647779 – volume: 550 start-page: 354 year: 2017 end-page: 359 ident: CR4 article-title: Mastering the game of Go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – volume: 24 start-page: 1 year: 2018 end-page: 20 ident: CR32 article-title: RF photonics: an optical microcombs’ perspective publication-title: IEEE J. Sel. Top. Quant. Electron. – volume: 562 start-page: 101 year: 2018 end-page: 104 ident: CR38 article-title: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages publication-title: Nature doi: 10.1038/s41586-018-0551-y – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR1 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 110 start-page: 161113 year: 2017 ident: CR36 article-title: Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip publication-title: Appl. Phys. Lett. doi: 10.1063/1.4982157 – volume: 361 start-page: eaan8083 year: 2018 ident: CR25 article-title: Dissipative Kerr solitons in optical microresonators publication-title: Science doi: 10.1126/science.aan8083 – volume: 11 start-page: 671 year: 2017 ident: 3063_CR30 publication-title: Nat. Photon. doi: 10.1038/s41566-017-0009-z – volume: 24 start-page: 1 year: 2018 ident: 3063_CR37 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2018.2793945 – volume: 562 start-page: 401 year: 2018 ident: 3063_CR31 publication-title: Nature doi: 10.1038/s41586-018-0598-9 – volume: 113 start-page: 11441 year: 2016 ident: 3063_CR14 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1604850113 – volume: 538 start-page: 471 year: 2016 ident: 3063_CR15 publication-title: Nature doi: 10.1038/nature20101 – volume: 23 start-page: 12758 year: 2015 ident: 3063_CR21 publication-title: Opt. Express doi: 10.1364/OE.23.012758 – volume: 7 start-page: 597 year: 2013 ident: 3063_CR24 publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.183 – ident: 3063_CR35 – ident: 3063_CR22 doi: 10.1002/lpor.202000070 – volume: 518 start-page: 529 year: 2015 ident: 3063_CR3 publication-title: Nature doi: 10.1038/nature14236 – volume: 60 start-page: 84 year: 2017 ident: 3063_CR5 publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 4 year: 2013 ident: 3063_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms2368 – volume: 24 start-page: 1 year: 2018 ident: 3063_CR32 publication-title: IEEE J. Sel. Top. Quant. Electron. – volume: 110 start-page: 161113 year: 2017 ident: 3063_CR36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4982157 – volume: 546 start-page: 274 year: 2017 ident: 3063_CR28 publication-title: Nature doi: 10.1038/nature22387 – volume: 555 start-page: 469 year: 2018 ident: 3063_CR40 publication-title: Nature doi: 10.1038/nature26000 – volume: 2 year: 2011 ident: 3063_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms1476 – volume: 11 start-page: 441 year: 2017 ident: 3063_CR8 publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.93 – volume: 7 start-page: 011015 year: 2017 ident: 3063_CR9 publication-title: Phys. Rev. X – volume: 558 start-page: 60 year: 2018 ident: 3063_CR13 publication-title: Nature doi: 10.1038/s41586-018-0180-5 – volume: 35 start-page: 346 year: 2017 ident: 3063_CR16 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2647779 – volume: 361 start-page: eaan8083 year: 2018 ident: 3063_CR25 publication-title: Science doi: 10.1126/science.aan8083 – volume: 521 start-page: 436 year: 2015 ident: 3063_CR1 publication-title: Nature doi: 10.1038/nature14539 – volume: 24 start-page: 6101715 year: 2018 ident: 3063_CR10 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 8 start-page: 98 year: 1997 ident: 3063_CR7 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.554195 – volume: 101 start-page: 093902 year: 2008 ident: 3063_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.093902 – volume: 550 start-page: 354 year: 2017 ident: 3063_CR4 publication-title: Nature doi: 10.1038/nature24270 – volume: 569 start-page: 208 year: 2019 ident: 3063_CR12 publication-title: Nature doi: 10.1038/s41586-019-1157-8 – volume: 8 year: 2018 ident: 3063_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-018-30619-y – volume: 24 start-page: 23925 year: 2016 ident: 3063_CR34 publication-title: Opt. Express doi: 10.1364/OE.24.023925 – ident: 3063_CR33 – volume: 562 start-page: 101 year: 2018 ident: 3063_CR38 publication-title: Nature doi: 10.1038/s41586-018-0551-y – volume: 5 year: 2014 ident: 3063_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms4541 – volume: 13 start-page: 170 year: 2019 ident: 3063_CR29 publication-title: Nat. Photon. doi: 10.1038/s41566-019-0363-0 – volume: 557 start-page: 81 year: 2018 ident: 3063_CR27 publication-title: Nature doi: 10.1038/s41586-018-0065-7 – volume: 542 start-page: 115 year: 2017 ident: 3063_CR39 publication-title: Nature doi: 10.1038/nature21056 – volume: 361 start-page: 1004 year: 2018 ident: 3063_CR11 publication-title: Science doi: 10.1126/science.aat8084 – ident: 3063_CR2 doi: 10.1002/9780470050118.ecse302 – volume: 577 start-page: 641 year: 2020 ident: 3063_CR6 publication-title: Nature doi: 10.1038/s41586-020-1942-4 – volume: 729 start-page: 1 year: 2018 ident: 3063_CR23 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2017.08.004 – reference: 33408372 - Nature. 2021 Jan;589(7840):25-26  | 
    
| SSID | ssj0005174 | 
    
| Score | 2.743855 | 
    
| Snippet | Convolutional neural networks, inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the... | 
    
| SourceID | unpaywall proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 44 | 
    
| SubjectTerms | 639/166/987 639/624/1111/1112 Accuracy Artificial neural networks Bands Bandwidths Cognitive tasks Complexity Computer vision Feature extraction Handwriting recognition Humanities and Social Sciences Learning algorithms Machine learning Medical imaging multidisciplinary Neural networks Object recognition Optical communication Pattern recognition Power Science Science (multidisciplinary) Speech recognition Temporal lobe Visual cortex Voice recognition  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrRBwQLS8AgUZiQOIWnViJ3EOCAHqquKwVNBKvUWOH-KwSgLZFeLfM3ac3QLSilMOSRxnPOP57Bl_A_CSl5nTuWuos6qiQpcFrVzTUFO6nClcUDQmsH0uirNL8ekqv9qDxXQWxqdVTnNimKhNp_0e-UkmEBgXFS5I3vXfqa8a5aOrUwkNFUsrmLeBYuwG7GeeGWsG-x9OF-dftkkff_Eyx2M0jMuTAV2Z9Am5jHoczSn701X9gz-vxU7vwK1126tfP9Vyec09ze_B3YgryftREQ5gz7aHcDPkd-rhEA6iDQ_kVSSafn0f5mlKLj6ffyX9t27lKXKJz0GPuoiN4e-iUwpxeILYlnR92PgmngMzXEIG-fAALuenFx_PaKyrQLWQ-YqaxmRKSdbkDq1TGlnZMhdKiQztPVVFxrRG76UVjp9sqlQJzaw0Hgs0riwtfwiztmvtYyBMWM0Ms046LhDZVIjmuOev0YUpJbMJpJMIax1Jx33ti2Udgt9c1qPYaxR7HcReswTebN7pR8qNnU8fTSNTR_Mb6q2yJPBicxsNx0dDVGu79fgMOmfOqwQejSO6-Rzngnmm_QSOpyHeNr6rL8cbNfiPrj_Z3fWncDvzCTR-v6c8gtnqx9o-QwS0ap5Htf4NYB39nQ priority: 102 providerName: ProQuest  | 
    
| Title | 11 TOPS photonic convolutional accelerator for optical neural networks | 
    
| URI | https://link.springer.com/article/10.1038/s41586-020-03063-0 https://www.ncbi.nlm.nih.gov/pubmed/33408378 https://www.proquest.com/docview/2476869184 https://www.proquest.com/docview/2476128339 http://ir.opt.ac.cn/handle/181661/94263  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 589 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: AFBBN dateStart: 20190103 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1476-4687 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8FG dateStart: 19900104 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6xVojxsLGxQcaogsQDiKV1Yid2HrdppeKhVLBK5SmyHUcgqrRaUiH49ZwTtyuaNODFeYhjX3R3uc-582eA15RHhY4LFRRGpgHTPAnSQqkg50VMJC4oVN6wfY6T0ZR9mMWzW5Kkbzf9xbIp3NDloOUZGIQ2tRUOUkstvgPdJEbQ3YHudDw5_7LNsdzsI8K5WCK42x5DqBhUGKKELbQlgcXHNCB_hqA7uHIrJ_oYHq3Kpfz5Q87nW2FnuA-j9eadttrke39Vq77-dZfL8W9v9AT2HPT0z1tbOYAHpjyEh00JqK4O4cC5eeW_cVzUb5_CMAz964-Tz_7y66K2LLq-LVN35oqDSa0xbjWpeh_hr49CWK37liazuTRF5tURTIdX15ejwB29EGgm4jrIVR5JKYiKC3RgkYvU8JhJySL8JIQyiYjWGOC0RBULlYaSaWJEbuGCKjg39Bg65aI0z8EnzGiSE1OIgjIEPykCPmopbnSSc0GMB-FaG5l2vOT2eIx51uTHqchaDWaowazRYEY8eLd5Ztmyctzb-3St5Mx5aJVFaCoiSXGB68GrzW30LZswkaVZrNo-GL8pTT141hrHZjpKGbFk_B6cra3ldvD7ZDnbWNQ_iH7yf91fwG5ka27sLyJ-Cp36ZmVeImiqVQ92-IxjKy5D2w7f96B7cTWefOo5V_oNJ3AOOQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQ4IFoeDRQwEkggatWJndg5IISA1ZaWgsRW2ltwHEccVklKdlX1T_EbGTvJbgFpxaWnHOI41rztGX8D8JzLqDRxmdPS6pQKIxOalnlOC1nGTOOGIi882udJMj4Vn6bxdAN-DXdhXFnlYBO9oS5q487IDyKBgXGS4obkbXNGXdcol10dWmh0YnFkL85xy9a-OfyA_H0RRaOPk_dj2ncVoEaoeE6LvIi0ViyPS5RNVajUylhoLSKU9lAnETMGbbfRuHqVp6EWhllVOE-Yl1JajvNeg-uCoy1B_ZFTuSop-Qv1ub-kw7g6aNFRKlfuy6iL0jllfzrCf6LbS5nZW7C1qBp9ca5ns0vOb3QHbvdRK3nXidk2bNhqB2746lHT7sB2byFa8rKHsX51F0ZhSCZfvn4jzY967gB4iatw7yUdJ9PGoMvzWX6CkTOpG3-sThzCpn_4-vT2HpxeCX3vw2ZVV3YXCBPWsILZUpVcYNyUYqzIHTqOSQqpmA0gHEiYmR7S3HXWmGU-tc5V1pE9Q7JnnuwZC-D18pumA_RYO3pv4EzWK3ebrUQxgGfL16iWLteiK1svujHo-jlPA3jQcXT5O84Fczj-AewPLF5Nvm4t-0sx-I-lP1y_9KewNZ58Ps6OD0-OHsHNyJXquJMluQeb858L-xhjrXn-xAs4ge9XrVG_ASXMNL8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIr4OiJavQAEjgQSi1jqxEzsHhBBl1VJUKtFKewuOY4vDahPIrqr-NX4dYyfZLSCtuPSUQxLHGY89z57nZ4AXXCbOpK6kzuqcCiMzmruypJV0KdM4oSiroPZ5lO2fik-TdLIBv4a9MJ5WOYyJYaCuauPXyEeJQGCc5TghGbmeFnG8N37X_KD-BCmfaR2O0-hc5NCen-H0rX17sIdt_TJJxh9PPuzT_oQBaoRK57Qqq0RrxcrUoZ-qSuVWpkJrkaDnxzpLmDE4jhuNf6LKPNbCMKsqHxVLJ6XlWO4VuCo5zz2dUE7kil7ylwJ0v2GHcTVqMWgqT_1l1CN2TtmfQfEfpHshS3sLbixmjT4_09PphUA4vgO3ewRL3ncutwUbdrYN1wKT1LTbsNWPFi151Utav74L4zgmJ1-Ov5Lmez33YrzEs917r8fCtDEY_kLGnyCKJnUTltiJV9sMl8BVb-_B6aXY9z5szuqZfQiECWtYxaxTjgvEUDniRu6VckxWScVsBPFgwsL08ub-lI1pEdLsXBWd2Qs0exHMXrAI3izfaTpxj7VP7wwtU_QdvS1WbhnB8-Vt7KI-76Jntl50zyAMQCeJ4EHXosvPcS6Y1_SPYHdo4lXh6-qyu3SD_6j6o_VVfwbXsS8Vnw-ODh_DzcSzdvwik9yBzfnPhX2CsGtePg3-TeDbZXeo3wKbOQI | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH6CTgg4ABu_AgMZiQOIuXViJ3aOE6KqOIxJrNI4RbZjC0SVVksqBH89z4nbFU0acMohju3ovZf3Oe_zZ4DXXGbe5t5Q73RJhZUFLb0xtJY-ZxoXFKbu1T5PitlcfDzPzy9Fkr5djJernrhhm8mgMzBJQ2krnZRBWvwm7BU5gu4R7M1PTo-_7Gos9_uIcCxRKBm3xzCuJi2mKBWItowGfMwp-zMFXcGVOzXRu3B73az0zx96sdhJO9P7MNts3hnYJt_H686M7a-rWo5_e6MHcC9CT3I8-Mo-3HDNAdzqKaC2PYD9GOYteRO1qN8-hGmakrNPp5_J6uuyCyq6JNDUo7tiZ9pazFt9qZ4g_CU4iWB1EmQy-0tPMm8fwXz64ez9jMajF6gVKu9obepMa8VM7jGAVa1KJ3Ohtcjwk5DqImPWYoKzGk2sTJlqYZlTdYALxkvp-GMYNcvGPQXChLOsZs4rzwWCnxIBHw8SN7aopWIugXRjjcpGXfJwPMai6uvjXFWDBSu0YNVbsGIJvNs-sxpUOa5tfbgxchUjtK0ydBVVlLjATeDV9jbGViiY6MYt10MbzN-clwk8GZxjOxznggUx_gSONt5y2fl1cznaetQ_TP3Z_zV_DneywLkJv4jkIYy6i7V7gaCpMy9jwPwG_LAKBQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=11+TOPS+photonic+convolutional+accelerator+for+optical+neural+networks&rft.jtitle=Nature+%28London%29&rft.au=Xu%2C+Xingyuan&rft.au=Tan%2C+Mengxi&rft.au=Corcoran%2C+Bill&rft.au=Wu%2C+Jiayang&rft.date=2021-01-07&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=589&rft.issue=7840&rft.spage=44&rft.epage=51&rft_id=info:doi/10.1038%2Fs41586-020-03063-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_020_03063_0 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |