Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application

Background Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-c...

Full description

Saved in:
Bibliographic Details
Published in3D printing in medicine Vol. 10; no. 1; pp. 13 - 10
Main Authors Maintz, Michaela, Tourbier, Céline, de Wild, Michael, Cattin, Philippe C., Beyer, Michel, Seiler, Daniel, Honigmann, Philipp, Sharma, Neha, Thieringer, Florian M.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 19.04.2024
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN2365-6271
2365-6271
DOI10.1186/s41205-024-00207-0

Cover

Abstract Background Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations. Methods This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient’s computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit. Results 3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels. Conclusions This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed.
AbstractList Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations.BACKGROUNDBioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations.This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient's computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit.METHODSThis study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient's computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit.3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels.RESULTS3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels.This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed.CONCLUSIONSThis study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed.
Abstract Background Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations. Methods This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient’s computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit. Results 3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels. Conclusions This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed.
Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations. This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient's computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit. 3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels. This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed.
BackgroundBioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations.MethodsThis study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient’s computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit.Results3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels.ConclusionsThis study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed.
Background Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations. Methods This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient’s computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit. Results 3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels. Conclusions This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed.
ArticleNumber 13
Author Beyer, Michel
Honigmann, Philipp
Seiler, Daniel
Thieringer, Florian M.
Cattin, Philippe C.
Sharma, Neha
Tourbier, Céline
de Wild, Michael
Maintz, Michaela
Author_xml – sequence: 1
  givenname: Michaela
  surname: Maintz
  fullname: Maintz, Michaela
  organization: Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel, Institute for Medical Engineering and Medical Informatics IM², University of Applied Sciences and Arts Northwestern Switzerland FHNW
– sequence: 2
  givenname: Céline
  surname: Tourbier
  fullname: Tourbier, Céline
  email: celine.tourbier@usb.ch
  organization: Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel
– sequence: 3
  givenname: Michael
  surname: de Wild
  fullname: de Wild, Michael
  organization: Institute for Medical Engineering and Medical Informatics IM², University of Applied Sciences and Arts Northwestern Switzerland FHNW
– sequence: 4
  givenname: Philippe C.
  surname: Cattin
  fullname: Cattin, Philippe C.
  organization: Department of Biomedical Engineering, Center of Medical Image Analysis and Navigation (CIAN), University of Basel
– sequence: 5
  givenname: Michel
  surname: Beyer
  fullname: Beyer, Michel
  organization: Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel
– sequence: 6
  givenname: Daniel
  surname: Seiler
  fullname: Seiler, Daniel
  organization: Institute for Medical Engineering and Medical Informatics IM², University of Applied Sciences and Arts Northwestern Switzerland FHNW
– sequence: 7
  givenname: Philipp
  surname: Honigmann
  fullname: Honigmann, Philipp
  organization: Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel, Department of Orthopaedic Surgery and Traumatology, Hand- and peripheral Nerve Surgery, Kantonsspital Baselland, Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam
– sequence: 8
  givenname: Neha
  surname: Sharma
  fullname: Sharma, Neha
  organization: Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel
– sequence: 9
  givenname: Florian M.
  surname: Thieringer
  fullname: Thieringer, Florian M.
  organization: Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38639834$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEgEkJ-gAOyxIVDBvxa28MNhVekSHCAs-VHe-PVzHiwvYf9DP4Y724CKIdIlty2qsrd5Xrencxphq57SfBbQpR4VziheNVjynuMKZY9ftKdUSZWvaCSnPxXn3YXpWwwxkQwSah81p0yJdigGD_rfn83NcJc-7KAiyE6FKdlNHMtaDIeUAqIfURLjnMFj2xMGUrK1tgR0JLG3QS5IFNRvd2fG6pPoXcmw_vGr5CjGS9RBXc7pzGtd5fIzB4Vl5aDdNnmdXRmRGZZxlbUmOYX3dNgxgIXd_t59_Pzpx9XX_ubb1-urz7c9I6rVe39oLDxWEAwXjrMrSPOEsykBS-5t4FhwANzUgRlqRVBUC7bAreiSlnCzrvro65PZqPbhJPJO51M1IeLlNfa5BrdCLq55WwgYRhAcUG48oaLwQ5KOk-pG5rWm6PWktOvLZSqp1gcjM1ISNuiGeYMS0bE_tnXD6CbtM1zm3SPIhLTgbOGenWH2toJ_N_27j-uAdQR4HIqJUPQLtaDfzWbOGqC9T4m-hgT3WKiDzHRuFHpA-q9-qMkdiSVfRbWkP-1_QjrD_7Pz30
CitedBy_id crossref_primary_10_3389_fopht_2025_1506445
crossref_primary_10_3390_met15030320
crossref_primary_10_1007_s11548_024_03298_6
crossref_primary_10_18231_j_ijmi_2024_011
crossref_primary_10_1111_eve_14143
Cites_doi 10.1016/j.jcms.2023.01.015
10.3390/jfb14030159
10.1136/bjophthalmol-2016-309330
10.1177/1090820x14528503
10.1016/j.bioactmat.2021.03.035
10.1016/j.ijom.2019.11.009
10.1080/17434440.2021.1935875
10.1016/j.compositesb.2020.108238
10.1016/j.jcms.2015.04.028
10.1001/archfacial.2010.91
10.1016/0266-4356(93)90114-C
10.1016/S2589-7500(19)30067-6
10.1016/j.compstruct.2014.08.029
10.1016/j.stlm.2022.100059
10.1016/j.injury.2021.02.041
10.1001/archfacial.2011.1280
10.1038/s41415-022-4242-6
10.1038/s41578-019-0150-z
10.2147/orr.S99614
10.1016/j.jcms.2021.04.008
10.1016/j.jmbbm.2023.106120
10.1016/j.joms.2020.04.006
10.1002/adma.201902516
10.1208/s12249-020-01905-8
10.1097/SCS.0b013e3181d7ad06
10.1016/j.cej.2018.01.010
10.1038/nmat2542
10.1016/j.actbio.2014.04.007
10.1111/coa.14000
10.1016/j.bjoms.2020.08.088
10.1111/j.1744-7402.2005.02020.x
10.1016/j.joms.2005.09.013
10.1016/j.coms.2019.07.010
10.4012/dmj.2016-306
10.1186/s40001-020-00471-w
10.1016/j.addr.2012.07.009
10.1016/j.bjoms.2020.06.038
10.1021/acsbiomaterials.7b00542
10.1016/j.jcms.2016.11.015
10.1016/j.bioactmat.2021.01.011
10.1016/j.procir.2016.01.078
10.1016/j.jcms.2022.05.010
10.1016/j.msec.2014.05.044
10.1097/SCS.0000000000005228
10.1016/j.jmbbm.2021.104641
10.1186/s12891-021-04224-6
10.1016/j.joms.2021.12.003
10.3390/ma10040334
10.1023/b:abme.0000017544.36001.8e
10.1007/978-3-540-92841-6_366
10.1016/S0161-6420(92)31760-9
10.3390/jfb8040044
10.3390/ma15165615
10.1016/j.acra.2019.08.011
10.1016/j.surg.2015.12.017
10.1186/s41205-016-0005-9
10.26153/tsw/17308
10.1097/BOT.0b013e3181cec4a1
10.1016/j.biomaterials.2009.09.065
10.3390/met7100402
10.3390/nano11020303
10.1016/j.joms.2018.05.009
10.3390/polym12112677
10.1097/gox.0000000000001975
10.1002/adem.202200279
10.3390/polym14142782
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
LK8
M0S
M7P
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOA
DOI 10.1186/s41205-024-00207-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Engineering Database
ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 2365-6271
EndPage 10
ExternalDocumentID oai_doaj_org_article_863cbf1f99e846148da469b987cd22c9
38639834
10_1186_s41205_024_00207_0
Genre Journal Article
GrantInformation_xml – fundername: University of Basel
GroupedDBID 0R~
7X7
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADUKV
AFGXO
AFKRA
AFPKN
AHBYD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
EBLON
EBS
EHE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KB.
M7P
M7S
M~E
OK1
PDBOC
PGMZT
PIMPY
PQQKQ
PROAC
PTHSS
RPM
RSV
SOJ
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PQGLB
3V.
7XB
8FE
8FG
8FH
8FK
AZQEC
D1I
DWQXO
GNUQQ
K9.
L6V
LK8
P62
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c485t-d980ad06efad7c04bc1cb1037bed74dbf30e093c76f8b2b6f6247247ec5288b13
IEDL.DBID C6C
ISSN 2365-6271
IngestDate Wed Aug 27 01:23:42 EDT 2025
Thu Sep 04 15:47:06 EDT 2025
Fri Jul 25 11:04:10 EDT 2025
Mon Jul 21 06:03:41 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
Tue Jul 01 02:02:39 EDT 2025
Fri Feb 21 02:41:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 3D Printing
Regeneration
Composites
Three-dimensional
Defect
Osteosynthesis
Computer-aided design
Bone
Hospital
Polymers
Point-of-care
Lattice
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-d980ad06efad7c04bc1cb1037bed74dbf30e093c76f8b2b6f6247247ec5288b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s41205-024-00207-0
PMID 38639834
PQID 3041702943
PQPubID 4402902
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_863cbf1f99e846148da469b987cd22c9
proquest_miscellaneous_3043073161
proquest_journals_3041702943
pubmed_primary_38639834
crossref_citationtrail_10_1186_s41205_024_00207_0
crossref_primary_10_1186_s41205_024_00207_0
springer_journals_10_1186_s41205_024_00207_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-19
PublicationDateYYYYMMDD 2024-04-19
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-19
  day: 19
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle 3D printing in medicine
PublicationTitleAbbrev 3D Print Med
PublicationTitleAlternate 3D Print Med
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
BMC
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: BMC
References Lieger, Schaller, Zix, Kellner, Iizuka (CR56) 2010; 12
Hardy (CR8) 2014; 34
Young, Sundar, Lim, Lang, Thomas, Amrith (CR57) 2017; 101
Alonso-Rodriguez, Cebrián, Nieto, Del Castillo, Hernández-Godoy, Burgueño (CR50) 2015; 43
Holzapfel (CR25) 2013; 65
Giordano Ii (CR26) 2022; 232
CR37
CR36
CR35
Schlittler, Vig, Burkhard, Lieger, Michel, Holmes (CR52) 2020; 58
Al-Sukhun, Törnwall, Lindqvist, Kontio (CR58) 2006; 64
Williams, Hammer, Wentland, Kim (CR63) 2020; 78
CR32
Kraus (CR21) 2014; 10
Li (CR31) 2020; 5
CR30
Korn, Jehn, Nejati-Rad, Winterboer, Gellrich, Spalthoff (CR61) 2022; 80
Ansoms, Barzegari, Sloten, Geris (CR70) 2023; 147
Teo, Ng, Peng, O’NEILL (CR60) 2021
CR72
Chandra, Pandey (CR69) 2021; 18
Irawati (CR7) 2023; 48
Taalab, Shehab, Atef, Shehab (CR3) 2023; 51
Cornelsen (CR34) 2017; 36
Prendergast, Burdick (CR49) 2020; 32
CR5
Tatum (CR13) 2012; 14
CR9
CR47
CR46
CR45
CR44
CR43
Xia, Yang, Zheng, Liu, Zhou (CR18) 2021; 6
CR42
Sánchez-Jáuregui, Baranda- Manterola, Ranz- Colio, Bueno de, Vicente, Acero, Sanz (CR12) 2022; 50
CR40
Mehboob, Chang (CR71) 2015; 119
Vaz, Kumar (CR48) 2021; 22
Nikunen, Rajantie, Marttila, Snäll (CR51) 2021; 49
Huang, Alfi, Alfi, Huang (CR1) 2019; 31
CR19
Gareb, van Bakelen, Dijkstra, Vissink, Bos, van Minnen (CR29) 2020; 49
Liu, Qin, He, Zhou, Qin, Wang (CR16) 2020; 199
Ballard (CR4) 2010; 21
CR15
Chua, Chui (CR24) 2016; 40
CR59
Wong (CR2) 2016; 8
Zhang (CR23) 2021; 6
Zberg, Uggowitzer, Löffler (CR20) 2009; 8
CR54
Kobbe, Laubach, Hutmacher, Alabdulrahman, Sellei, Hildebrand (CR6) 2020; 25
Essig (CR10) 2017; 45
Modrák, Trebuňová, Balogová, Hudák, Živčák (CR17) 2023; 14
Willemsen, Nizak, Noordmans, Castelein, Weinans, Kruyt (CR39) 2019; 1
Goodson (CR53) 2021; 59
U, Mehrotra, Howlader, Singh, Gupta (CR11) 2019; 30
CR28
Zhao (CR38) 2017; 3
CR67
Zhang, Li, Li, Sun (CR14) 2014; 42
CR22
CR66
CR65
Vautrin, Wesseling, Wirix-Speetjens, Gomez-Benito (CR68) 2021; 121
CR62
Murtezani, Sharma, Thieringer (CR64) 2022; 6
Calvo-Haro (CR41) 2021; 22
Brown, Banks (CR55) 1993; 31
Hing (CR27) 2005; 2
da Silva (CR33) 2018; 340
207_CR36
207_CR37
M Modrák (207_CR17) 2023; 14
207_CR30
207_CR72
P Ansoms (207_CR70) 2023; 147
207_CR35
207_CR32
I Murtezani (207_CR64) 2022; 6
MCH Chua (207_CR24) 2016; 40
N Irawati (207_CR7) 2023; 48
G Chandra (207_CR69) 2021; 18
M Cornelsen (207_CR34) 2017; 36
VN U (207_CR11) 2019; 30
AMC Goodson (207_CR53) 2021; 59
KL Hardy (207_CR8) 2014; 34
207_CR47
AE Brown (207_CR55) 1993; 31
D da Silva (207_CR33) 2018; 340
207_CR42
FC Williams (207_CR63) 2020; 78
207_CR40
207_CR45
SA Tatum (207_CR13) 2012; 14
207_CR46
207_CR43
O Lieger (207_CR56) 2010; 12
207_CR44
207_CR5
KC Wong (207_CR2) 2016; 8
207_CR9
J Zhang (207_CR23) 2021; 6
MF Huang (207_CR1) 2019; 31
207_CR15
207_CR59
E Sánchez-Jáuregui (207_CR12) 2022; 50
SM Young (207_CR57) 2017; 101
207_CR19
P Kobbe (207_CR6) 2020; 25
B Gareb (207_CR29) 2020; 49
K Willemsen (207_CR39) 2019; 1
207_CR54
D Xia (207_CR18) 2021; 6
P Korn (207_CR61) 2022; 80
M Nikunen (207_CR51) 2021; 49
AQA Teo (207_CR60) 2021
T Kraus (207_CR21) 2014; 10
E Alonso-Rodriguez (207_CR50) 2015; 43
H Mehboob (207_CR71) 2015; 119
207_CR28
VM Vaz (207_CR48) 2021; 22
S Liu (207_CR16) 2020; 199
ME Prendergast (207_CR49) 2020; 32
J Al-Sukhun (207_CR58) 2006; 64
H Essig (207_CR10) 2017; 45
B Zberg (207_CR20) 2009; 8
R Giordano Ii (207_CR26) 2022; 232
C Li (207_CR31) 2020; 5
DA Taalab (207_CR3) 2023; 51
A Vautrin (207_CR68) 2021; 121
H Zhao (207_CR38) 2017; 3
207_CR62
207_CR67
207_CR65
207_CR22
JA Calvo-Haro (207_CR41) 2021; 22
207_CR66
X Zhang (207_CR14) 2014; 42
F Schlittler (207_CR52) 2020; 58
TNS Ballard (207_CR4) 2010; 21
BM Holzapfel (207_CR25) 2013; 65
KA Hing (207_CR27) 2005; 2
References_xml – ident: CR45
– ident: CR22
– volume: 51
  start-page: 217
  issue: 4
  year: 2023
  end-page: 23
  ident: CR3
  article-title: Comparative study between patient specific titanium plates versus conventional miniplates for treatment of mandibular fractures: randomized clinical trial
  publication-title: J Cranio-Maxillofacial Surg
  doi: 10.1016/j.jcms.2023.01.015
– volume: 14
  start-page: 159
  issue: 3
  year: 2023
  ident: CR17
  article-title: Biodegradable materials for tissue Engineering: Development, classification and current applications
  publication-title: J Funct Biomaterials
  doi: 10.3390/jfb14030159
– volume: 101
  start-page: 1080
  issue: 8
  year: 2017
  end-page: 5
  ident: CR57
  article-title: Use of bioresorbable implants for orbital fracture reconstruction
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2016-309330
– volume: 34
  start-page: 614
  issue: 4
  year: 2014
  end-page: 22
  ident: CR8
  article-title: The impact of Operative Time on complications after plastic surgery: a Multivariate Regression Analysis of 1753 cases
  publication-title: Aesthetic Surg J
  doi: 10.1177/1090820x14528503
– volume: 6
  start-page: 4027
  issue: 11
  year: 2021
  end-page: 52
  ident: CR23
  article-title: Biodegradable metals for bone defect repair: a systematic review and meta-analysis based on animal studies
  publication-title: Bioactive Mater
  doi: 10.1016/j.bioactmat.2021.03.035
– volume: 49
  start-page: 914
  issue: 7
  year: 2020
  end-page: 31
  ident: CR29
  article-title: Biodegradable versus titanium osteosynthesis in maxillofacial traumatology: a systematic review with meta-analysis and trial sequential analysis
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2019.11.009
– volume: 18
  start-page: 629
  issue: 7
  year: 2021
  end-page: 47
  ident: CR69
  article-title: Design approaches and challenges for biodegradable bone implants: a review
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2021.1935875
– volume: 199
  start-page: 108238
  year: 2020
  ident: CR16
  article-title: Current applications of poly(lactic acid) composites in tissue engineering and drug delivery
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2020.108238
– ident: CR35
– ident: CR54
– volume: 43
  start-page: 1232
  issue: 7
  year: 2015
  end-page: 8
  ident: CR50
  article-title: Polyetheretherketone custom-made implants for craniofacial defects: report of 14 cases and review of the literature
  publication-title: J Craniomaxillofac Surg
  doi: 10.1016/j.jcms.2015.04.028
– ident: CR42
– volume: 12
  start-page: 399
  issue: 6
  year: 2010
  end-page: 404
  ident: CR56
  article-title: Repair of orbital floor fractures using bioresorbable poly-L/DL-lactide plates
  publication-title: Arch Facial Plast Surg
  doi: 10.1001/archfacial.2010.91
– volume: 31
  start-page: 154
  issue: 3
  year: 1993
  end-page: 7
  ident: CR55
  article-title: Late extrusion of alloplastic orbital floor implants
  publication-title: Br J Oral Maxillofac Surg
  doi: 10.1016/0266-4356(93)90114-C
– volume: 1
  start-page: e163
  issue: 4
  year: 2019
  end-page: e
  ident: CR39
  article-title: Challenges in the design and regulatory approval of 3D-printed surgical implants: a two-case series
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(19)30067-6
– ident: CR46
– ident: CR19
– volume: 119
  start-page: 166
  year: 2015
  end-page: 73
  ident: CR71
  article-title: Optimal design of a functionally graded biodegradable composite bone plate by using the Taguchi method and finite element analysis
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2014.08.029
– ident: CR67
– volume: 6
  start-page: 100059
  year: 2022
  ident: CR64
  article-title: Medical 3D printing with a focus on point-of-care in Cranio- and maxillofacial surgery. A systematic review of literature
  publication-title: Annals 3D Print Med
  doi: 10.1016/j.stlm.2022.100059
– ident: CR15
– year: 2021
  ident: CR60
  article-title: Point-of-care 3D Printing: a feasibility study of using 3D Printing for Orthopaedic Trauma
  publication-title: Injury
  doi: 10.1016/j.injury.2021.02.041
– ident: CR9
– ident: CR32
– volume: 14
  start-page: 11
  issue: 1
  year: 2012
  end-page: 3
  ident: CR13
  article-title: Retrospective review of resorbable plate fixation in pediatric craniofacial surgery: long-term outcome
  publication-title: Arch Facial Plast Surg
  doi: 10.1001/archfacial.2011.1280
– volume: 232
  start-page: 658
  issue: 9
  year: 2022
  end-page: 63
  ident: CR26
  article-title: Ceramics overview
  publication-title: Br Dent J
  doi: 10.1038/s41415-022-4242-6
– ident: CR36
– ident: CR5
– volume: 5
  start-page: 61
  issue: 1
  year: 2020
  end-page: 81
  ident: CR31
  article-title: Design of biodegradable, implantable devices towards clinical translation
  publication-title: Nat Reviews Mater
  doi: 10.1038/s41578-019-0150-z
– volume: 8
  start-page: 57
  year: 2016
  end-page: 66
  ident: CR2
  article-title: 3D-printed patient-specific applications in orthopedics
  publication-title: Orthop Res Rev
  doi: 10.2147/orr.S99614
– ident: CR43
– volume: 49
  start-page: 837
  issue: 9
  year: 2021
  end-page: 44
  ident: CR51
  article-title: Implant malposition and revision surgery in primary orbital fracture reconstructions
  publication-title: J Cranio-Maxillofacial Surg
  doi: 10.1016/j.jcms.2021.04.008
– ident: CR66
– ident: CR47
– volume: 147
  start-page: 106120
  year: 2023
  ident: CR70
  article-title: Coupling biomechanical models of implants with biodegradation models: a case study for biodegradable mandibular bone fixation plates
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2023.106120
– ident: CR72
– volume: 78
  start-page: 1320
  issue: 8
  year: 2020
  end-page: 7
  ident: CR63
  article-title: Immediate Teeth in Fibulas: planning and Digital Workflow with Point-of-care 3D Printing
  publication-title: J Oral Maxillofac Surg
  doi: 10.1016/j.joms.2020.04.006
– ident: CR37
– ident: CR30
– volume: 32
  start-page: 1902516
  issue: 13
  year: 2020
  ident: CR49
  article-title: Recent advances in enabling technologies in 3D printing for precision medicine
  publication-title: Adv Mater
  doi: 10.1002/adma.201902516
– volume: 22
  start-page: 49
  issue: 1
  year: 2021
  ident: CR48
  article-title: 3D Printing as a Promising Tool in Personalized Medicine
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-020-01905-8
– volume: 21
  start-page: 644
  issue: 3
  year: 2010
  end-page: 7
  ident: CR4
  article-title: Absorbable plate strength loss during molding
  publication-title: J Craniofac Surg
  doi: 10.1097/SCS.0b013e3181d7ad06
– ident: CR40
– volume: 340
  start-page: 9
  year: 2018
  end-page: 14
  ident: CR33
  article-title: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.01.010
– volume: 8
  start-page: 887
  issue: 11
  year: 2009
  end-page: 91
  ident: CR20
  article-title: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants
  publication-title: Nat Mater
  doi: 10.1038/nmat2542
– volume: 10
  start-page: 3346
  issue: 7
  year: 2014
  end-page: 53
  ident: CR21
  article-title: Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52weeks
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2014.04.007
– volume: 48
  start-page: 175
  issue: 2
  year: 2023
  end-page: 81
  ident: CR7
  article-title: Effect of operative time on complications associated with free flap reconstruction of the head and neck
  publication-title: Clin Otolaryngol
  doi: 10.1111/coa.14000
– volume: 59
  start-page: 320
  issue: 3
  year: 2021
  end-page: 8
  ident: CR53
  article-title: Printed titanium implants in UK craniomaxillofacial surgery. Part II: perceived performance (outcomes, logistics, and costs)
  publication-title: Br J Oral Maxillofac Surg
  doi: 10.1016/j.bjoms.2020.08.088
– ident: CR44
– volume: 2
  start-page: 184
  issue: 3
  year: 2005
  end-page: 99
  ident: CR27
  article-title: Bioceramic bone graft substitutes: influence of Porosity and Chemistry
  publication-title: Int J Appl Ceram Technol
  doi: 10.1111/j.1744-7402.2005.02020.x
– ident: CR65
– volume: 64
  start-page: 47
  issue: 1
  year: 2006
  end-page: 55
  ident: CR58
  article-title: Bioresorbable Poly-l/dl-Lactide (P[L/DL]LA 70/30) plates are Reliable for repairing large Inferior Orbital Wall Bony defects: a pilot study
  publication-title: J Oral Maxillofac Surg
  doi: 10.1016/j.joms.2005.09.013
– volume: 31
  start-page: 593
  issue: 4
  year: 2019
  end-page: 600
  ident: CR1
  article-title: The Use of patient-specific implants in oral and maxillofacial surgery
  publication-title: Oral Maxillofacial Surg Clin
  doi: 10.1016/j.coms.2019.07.010
– volume: 36
  start-page: 553
  issue: 5
  year: 2017
  end-page: 9
  ident: CR34
  article-title: Mechanical and biological effects of infiltration with biopolymers on 3D printed tricalciumphosphate scaffolds
  publication-title: Dent Mater J
  doi: 10.4012/dmj.2016-306
– volume: 25
  start-page: 70
  issue: 1
  year: 2020
  ident: CR6
  article-title: Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft
  publication-title: Eur J Med Res
  doi: 10.1186/s40001-020-00471-w
– volume: 65
  start-page: 581
  issue: 4
  year: 2013
  end-page: 603
  ident: CR25
  article-title: How smart do biomaterials need to be? A translational science and clinical point of view
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2012.07.009
– volume: 58
  start-page: e80
  issue: 9
  year: 2020
  end-page: e
  ident: CR52
  article-title: What are the limitations of the non-patient-specific implant in titanium reconstruction of the orbit?
  publication-title: Br J Oral Maxillofac Surg
  doi: 10.1016/j.bjoms.2020.06.038
– volume: 3
  start-page: 3083
  issue: 12
  year: 2017
  end-page: 97
  ident: CR38
  article-title: Printing@Clinic: from Medical models to organ implants
  publication-title: ACS Biomaterials Sci Eng
  doi: 10.1021/acsbiomaterials.7b00542
– volume: 45
  start-page: 216
  issue: 2
  year: 2017
  end-page: 22
  ident: CR10
  article-title: Patient-specific biodegradable implant in pediatric craniofacial surgery
  publication-title: J Cranio-Maxillofacial Surg
  doi: 10.1016/j.jcms.2016.11.015
– volume: 6
  start-page: 4186
  issue: 11
  year: 2021
  end-page: 208
  ident: CR18
  article-title: Research status of biodegradable metals designed for oral and maxillofacial applications: a review
  publication-title: Bioactive Mater
  doi: 10.1016/j.bioactmat.2021.01.011
– volume: 40
  start-page: 402
  year: 2016
  end-page: 6
  ident: CR24
  article-title: Optimization of patient-specific design of medical implants for manufacturing
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.01.078
– volume: 50
  start-page: 609
  issue: 8
  year: 2022
  end-page: 14
  ident: CR12
  article-title: Custom made cutting guides and osteosynthesis plates versus CAD/CAM occlusal splints in positioning and fixation of the maxilla in orthognathic surgery: a prospective randomized study
  publication-title: J Cranio-Maxillofacial Surg
  doi: 10.1016/j.jcms.2022.05.010
– volume: 42
  start-page: 362
  year: 2014
  end-page: 7
  ident: CR14
  article-title: Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering
  publication-title: Mater Sci Engineering: C
  doi: 10.1016/j.msec.2014.05.044
– volume: 30
  start-page: e308
  issue: 4
  year: 2019
  end-page: e
  ident: CR11
  article-title: Patient specific three-Dimensional Implant for Reconstruction of Complex Mandibular defect
  publication-title: J Craniofac Surg
  doi: 10.1097/SCS.0000000000005228
– ident: CR59
– volume: 121
  start-page: 104641
  year: 2021
  ident: CR68
  article-title: Time-dependent in silico modelling of orthognathic surgery to support the design of biodegradable bone plates
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2021.104641
– ident: CR28
– ident: CR62
– volume: 22
  start-page: 360
  issue: 1
  year: 2021
  ident: CR41
  article-title: Conceptual evolution of 3D printing in orthopedic surgery and traumatology: from do it yourself to point of care manufacturing
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-021-04224-6
– volume: 80
  start-page: 676
  issue: 4
  year: 2022
  end-page: 81
  ident: CR61
  article-title: Pitfalls of surgeon-engineer communication and the Effect of In-House engineer training during Digital Planning of patient-specific implants for Orbital Reconstruction
  publication-title: J Oral Maxillofac Surg
  doi: 10.1016/j.joms.2021.12.003
– ident: 207_CR28
  doi: 10.3390/ma10040334
– volume: 43
  start-page: 1232
  issue: 7
  year: 2015
  ident: 207_CR50
  publication-title: J Craniomaxillofac Surg
  doi: 10.1016/j.jcms.2015.04.028
– volume: 6
  start-page: 100059
  year: 2022
  ident: 207_CR64
  publication-title: Annals 3D Print Med
  doi: 10.1016/j.stlm.2022.100059
– ident: 207_CR32
  doi: 10.1023/b:abme.0000017544.36001.8e
– volume: 30
  start-page: e308
  issue: 4
  year: 2019
  ident: 207_CR11
  publication-title: J Craniofac Surg
  doi: 10.1097/SCS.0000000000005228
– ident: 207_CR35
  doi: 10.1007/978-3-540-92841-6_366
– volume: 232
  start-page: 658
  issue: 9
  year: 2022
  ident: 207_CR26
  publication-title: Br Dent J
  doi: 10.1038/s41415-022-4242-6
– volume: 31
  start-page: 154
  issue: 3
  year: 1993
  ident: 207_CR55
  publication-title: Br J Oral Maxillofac Surg
  doi: 10.1016/0266-4356(93)90114-C
– ident: 207_CR67
– volume: 45
  start-page: 216
  issue: 2
  year: 2017
  ident: 207_CR10
  publication-title: J Cranio-Maxillofacial Surg
  doi: 10.1016/j.jcms.2016.11.015
– ident: 207_CR54
  doi: 10.1016/S0161-6420(92)31760-9
– volume: 22
  start-page: 360
  issue: 1
  year: 2021
  ident: 207_CR41
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-021-04224-6
– ident: 207_CR15
  doi: 10.3390/jfb8040044
– ident: 207_CR47
– ident: 207_CR72
– volume: 21
  start-page: 644
  issue: 3
  year: 2010
  ident: 207_CR4
  publication-title: J Craniofac Surg
  doi: 10.1097/SCS.0b013e3181d7ad06
– volume: 18
  start-page: 629
  issue: 7
  year: 2021
  ident: 207_CR69
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2021.1935875
– volume: 8
  start-page: 57
  year: 2016
  ident: 207_CR2
  publication-title: Orthop Res Rev
  doi: 10.2147/orr.S99614
– volume: 8
  start-page: 887
  issue: 11
  year: 2009
  ident: 207_CR20
  publication-title: Nat Mater
  doi: 10.1038/nmat2542
– ident: 207_CR42
  doi: 10.1016/S2589-7500(19)30067-6
– volume: 1
  start-page: e163
  issue: 4
  year: 2019
  ident: 207_CR39
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(19)30067-6
– volume: 5
  start-page: 61
  issue: 1
  year: 2020
  ident: 207_CR31
  publication-title: Nat Reviews Mater
  doi: 10.1038/s41578-019-0150-z
– ident: 207_CR45
  doi: 10.3390/ma15165615
– ident: 207_CR37
  doi: 10.1016/j.acra.2019.08.011
– volume: 119
  start-page: 166
  year: 2015
  ident: 207_CR71
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2014.08.029
– volume: 49
  start-page: 837
  issue: 9
  year: 2021
  ident: 207_CR51
  publication-title: J Cranio-Maxillofacial Surg
  doi: 10.1016/j.jcms.2021.04.008
– volume: 101
  start-page: 1080
  issue: 8
  year: 2017
  ident: 207_CR57
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2016-309330
– volume: 14
  start-page: 11
  issue: 1
  year: 2012
  ident: 207_CR13
  publication-title: Arch Facial Plast Surg
  doi: 10.1001/archfacial.2011.1280
– ident: 207_CR65
– volume: 147
  start-page: 106120
  year: 2023
  ident: 207_CR70
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2023.106120
– volume: 199
  start-page: 108238
  year: 2020
  ident: 207_CR16
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2020.108238
– volume: 59
  start-page: 320
  issue: 3
  year: 2021
  ident: 207_CR53
  publication-title: Br J Oral Maxillofac Surg
  doi: 10.1016/j.bjoms.2020.08.088
– volume: 40
  start-page: 402
  year: 2016
  ident: 207_CR24
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.01.078
– volume: 2
  start-page: 184
  issue: 3
  year: 2005
  ident: 207_CR27
  publication-title: Int J Appl Ceram Technol
  doi: 10.1111/j.1744-7402.2005.02020.x
– volume: 121
  start-page: 104641
  year: 2021
  ident: 207_CR68
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2021.104641
– ident: 207_CR40
  doi: 10.1016/j.surg.2015.12.017
– volume: 340
  start-page: 9
  year: 2018
  ident: 207_CR33
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.01.010
– volume: 64
  start-page: 47
  issue: 1
  year: 2006
  ident: 207_CR58
  publication-title: J Oral Maxillofac Surg
  doi: 10.1016/j.joms.2005.09.013
– volume: 34
  start-page: 614
  issue: 4
  year: 2014
  ident: 207_CR8
  publication-title: Aesthetic Surg J
  doi: 10.1177/1090820x14528503
– volume: 31
  start-page: 593
  issue: 4
  year: 2019
  ident: 207_CR1
  publication-title: Oral Maxillofacial Surg Clin
  doi: 10.1016/j.coms.2019.07.010
– volume: 22
  start-page: 49
  issue: 1
  year: 2021
  ident: 207_CR48
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-020-01905-8
– volume: 78
  start-page: 1320
  issue: 8
  year: 2020
  ident: 207_CR63
  publication-title: J Oral Maxillofac Surg
  doi: 10.1016/j.joms.2020.04.006
– ident: 207_CR66
  doi: 10.1186/s41205-016-0005-9
– volume: 25
  start-page: 70
  issue: 1
  year: 2020
  ident: 207_CR6
  publication-title: Eur J Med Res
  doi: 10.1186/s40001-020-00471-w
– volume: 6
  start-page: 4186
  issue: 11
  year: 2021
  ident: 207_CR18
  publication-title: Bioactive Mater
  doi: 10.1016/j.bioactmat.2021.01.011
– ident: 207_CR59
  doi: 10.26153/tsw/17308
– volume: 3
  start-page: 3083
  issue: 12
  year: 2017
  ident: 207_CR38
  publication-title: ACS Biomaterials Sci Eng
  doi: 10.1021/acsbiomaterials.7b00542
– volume: 49
  start-page: 914
  issue: 7
  year: 2020
  ident: 207_CR29
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1016/j.ijom.2019.11.009
– year: 2021
  ident: 207_CR60
  publication-title: Injury
  doi: 10.1016/j.injury.2021.02.041
– ident: 207_CR5
  doi: 10.1097/BOT.0b013e3181cec4a1
– ident: 207_CR19
  doi: 10.1016/j.biomaterials.2009.09.065
– volume: 58
  start-page: e80
  issue: 9
  year: 2020
  ident: 207_CR52
  publication-title: Br J Oral Maxillofac Surg
  doi: 10.1016/j.bjoms.2020.06.038
– ident: 207_CR22
  doi: 10.3390/met7100402
– volume: 32
  start-page: 1902516
  issue: 13
  year: 2020
  ident: 207_CR49
  publication-title: Adv Mater
  doi: 10.1002/adma.201902516
– volume: 6
  start-page: 4027
  issue: 11
  year: 2021
  ident: 207_CR23
  publication-title: Bioactive Mater
  doi: 10.1016/j.bioactmat.2021.03.035
– volume: 42
  start-page: 362
  year: 2014
  ident: 207_CR14
  publication-title: Mater Sci Engineering: C
  doi: 10.1016/j.msec.2014.05.044
– volume: 36
  start-page: 553
  issue: 5
  year: 2017
  ident: 207_CR34
  publication-title: Dent Mater J
  doi: 10.4012/dmj.2016-306
– ident: 207_CR36
  doi: 10.3390/nano11020303
– volume: 12
  start-page: 399
  issue: 6
  year: 2010
  ident: 207_CR56
  publication-title: Arch Facial Plast Surg
  doi: 10.1001/archfacial.2010.91
– ident: 207_CR62
  doi: 10.1016/j.joms.2018.05.009
– volume: 14
  start-page: 159
  issue: 3
  year: 2023
  ident: 207_CR17
  publication-title: J Funct Biomaterials
  doi: 10.3390/jfb14030159
– ident: 207_CR43
  doi: 10.3390/polym12112677
– ident: 207_CR46
– ident: 207_CR9
  doi: 10.1097/gox.0000000000001975
– ident: 207_CR44
  doi: 10.1002/adem.202200279
– volume: 10
  start-page: 3346
  issue: 7
  year: 2014
  ident: 207_CR21
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2014.04.007
– volume: 80
  start-page: 676
  issue: 4
  year: 2022
  ident: 207_CR61
  publication-title: J Oral Maxillofac Surg
  doi: 10.1016/j.joms.2021.12.003
– ident: 207_CR30
  doi: 10.3390/polym14142782
– volume: 48
  start-page: 175
  issue: 2
  year: 2023
  ident: 207_CR7
  publication-title: Clin Otolaryngol
  doi: 10.1111/coa.14000
– volume: 50
  start-page: 609
  issue: 8
  year: 2022
  ident: 207_CR12
  publication-title: J Cranio-Maxillofacial Surg
  doi: 10.1016/j.jcms.2022.05.010
– volume: 65
  start-page: 581
  issue: 4
  year: 2013
  ident: 207_CR25
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2012.07.009
– volume: 51
  start-page: 217
  issue: 4
  year: 2023
  ident: 207_CR3
  publication-title: J Cranio-Maxillofacial Surg
  doi: 10.1016/j.jcms.2023.01.015
SSID ssj0001637127
Score 2.3624141
Snippet Background Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the...
Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges...
BackgroundBioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the...
Abstract Background Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13
SubjectTerms 3-D printers
3D Printing
Alveolar bone
Biocompatibility
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Bone
Bone grafts
Bone growth
Bone implants
Calcium phosphates
Computed tomography
Computer-aided design
Cortical bone
Defect
Feasibility studies
Fractures
Imaging
Maxillofacial
Medicine
Medicine & Public Health
Osteosynthesis
Patients
Plates
Polymers
Printing
Radiology
Regeneration
Regeneration (physiology)
Software
Substitute bone
Surgery
Surgical implants
Surgical mesh
Three dimensional printing
Three-dimensional
Tricalcium phosphate
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvEkpyEjcWKt-xQ9uvKoKCcSBSr1Z8UuqtN2sdrMHfgb_mLGTDYt4XZBySTJxbM94PGPPfEbohdWgDrPVpFUhEmk8DCnDLSnIL1anKBQrCc4fP6nzC_nhsr08OOqrxISN8MBjx50aJYLPLFubYKoE4z124NF5cJVD5DzU1D1q6YEzVVdXlIBK6H2WjFGnW8l4iVPjkhQTSRP600xUAft_Z2X-skNaJ56zO-j2ZDHi12NN76IbaXUP3TrAEbyPvn0e0VFJyZsssT_46nq9LBEu-LqLCfcZi3e4lA_2JfZXPfjY_caXrCm87pdfy9o17gYMxiDcAxXpMykxYa_g-6HK6AIP8yL8AneriGs-Syl6u9tU9YkPNsMfoIuz91_enpPprAUSpGkHEq2hXaQq5S7qQKUPLPiSQ-hT1DL6LGiiVgStsvHcq6y41HCl0HJjPBMP0dGqX6XHCGdQoox5aToTpQT_kZsMasGCJ57bEHWD2L7fXZiAyMt5GEtXHRKj3MgrB7xylVeONujl_M16hOH4K_Wbws6ZskBo1wcgWG4SLPcvwWrQyV4Y3DSut05QyTTlVooGPZ9fw4gs2yzdKvW7SlMUJ5jSDXo0CtFcEwF_tUbIBi32UvWj8D836Ph_NOgJusmr-EvC7Ak6Gja79BQsqsE_q4PnO_oTGZE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3JbtQw1IJygQNiJ1CQkbgxVmPH44ULYhsqJBAHKvUWxVtVaZoMM5kDn8Ef854nyRQBlXJJ8uI4eYvfbkJeWg3iMFnN5soHJo0DljLCMuz8YnUMleJY4Pzlqzo-kZ9P56eDw20zpFWOMjEL6tB59JEfgdnNdSmsrN6sfjDcNQqjq8MWGtfJDS5grcVK8cWnvY9FVTAVPdbKGHW0kVxgtpqQDBUlzco_1qPctv9fuuZfcdK8_CzukNuD3kjf7hB9l1yL7T1y61I3wfvk17ddj1SG1ZOYAUTPL1ZLzHOhF02ItEu0-kBxfNAyqTvvwNLu1g5rp-iqW_5EDzZtegoqIZwDFOsSw8yw1_B8nyl1RvvJFT-jTRtormrBoTfbdRai9FJI_AE5WXz8_v6YDTsuMC_NvGfBmrIJpYqpCdqX0nnuHVYSuhi0DC5VZSxt5bVKxgmnkhJSwxH9XBjjePWQHLRdGx8TmkCUcu6kaUyQEqxIYRIIBwv2eJr7oAvCx_9e-6EdOe6KsayzWWJUvcNVDbiqM67qsiCvpmdWu2YcV0K_Q3ROkNhIO1_o1mf1wJe1UZV3iSdrI2hiYBuGRirrrNE-COFtQQ5HYqgH7t7Ue1osyIvpNvAlBluaNnbbDIPiExTqgjzaEdE0kwreak0lCzIbqWo_-P8_6MnVc3lKbopM2JJxe0gO-vU2PgONqXfPM1v8Bm0wEQY
  priority: 102
  providerName: ProQuest
Title Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application
URI https://link.springer.com/article/10.1186/s41205-024-00207-0
https://www.ncbi.nlm.nih.gov/pubmed/38639834
https://www.proquest.com/docview/3041702943
https://www.proquest.com/docview/3043073161
https://doaj.org/article/863cbf1f99e846148da469b987cd22c9
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3batswVGwtjO1hbN3NWxc02NsiZsmyLntLs2Yl0FK2FfJmrBsUUjskzsM-Y3-8I8VJM9YNBsbG8pFkcy46R-dihN5rCeIwaElKYR3hygBLKaZJrPyipXeFoDHB-fxCnF3x6ayc9WVyYi7Mvv-eKvFxxSmL4WWMk6jZSALm-WEJgjdS81iMb_dTRAHTym1ezJ1df1t7Uon-u_TKP3yiaamZPEGPex0RjzZIfYru-eYIPdqrHHiEHpz3PvFn6OflpjQqiUmTMfAHX98s5jG8Bd_UzuM24OIzjlOBconNdQsGdrs0MWUKL9r5j7hxjesOgyYI9wBF2kBiQNgn6N8lAh3ibrcDP8R143BKZolDr9bLJDvxnif8ObqanH4fn5H-RwvEclV2xGmV1y4XPtRO2pwbS62JCYTGO8mdCUXuc11YKYIyzIggGJdweFsypQwtXqCDpm38K4QDSFBKDVe1cpyD8chUAJmgwQwPpXUyQ3SLgsr2VcjjzzDmVbJGlKg2aKsAbVVCW5Vn6MOuz2JTg-Of0CcRszvIWD87NQBZVT07VkoU1gQatPaggIFJ6GoutNFKWseY1Rk63tJF1TP1qipyTmXONC8y9G73GNgx-ljqxrfrBBOlJujRGXq5oafdmxQwq1YFz9BwS2C3g__9g17_H_gb9JAlmueE6mN00C3X_i0oTp0ZoPtyJuGsJl8G6HA0mn6bwvXk9OLyK7SOGR8knhqkjYlfN98Ttw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBibWa2F4_kBACyrKlD3Fopd5C_KoqbTfb3axQfwZ_hN_I2NnsFgG9Vcolie3YmfHnGXseCL3SEuAwaEn6wjrClYEppagmMfKLlt4xUUQH5719MTzkX4_6R2voV-cLE80qO0xMQO1qG_fIN0HtLmRONWfvJ2ckZo2Kp6tdCo2WLXb8-Q9Q2WbvtreAvq8pHXw--DQki6wCxHLVb4jTKq9cLnyonLQ5N7awJnrLGe8kdyaw3IOab6UIylAjgqBcwuVtnyplCgbtXkPXOWMsmhCqwZfVno5gMHTZ-eYosTnjBY3WcZSTKJhJkv-x_qU0Af-Sbf86l03L3eAOur2QU_GHlrHuojU_voduXYheeB_9_NbGZCXRWzNaHOGT08ko2tXg08p5XAfMtnBsH6RabE5q0OzrqYm-WnhSj87jjjmuGgwiKNxDKVIHEi3R3kL9Js2MHm6WW_89XI0dTl40senZfJpAG184gn-ADq-EFg_R-rge-8cIB4DuojBcVcpxDlorVQHASIP-H_rWyQwV3X8v7SL8eczCMSqTGqRE2dKqBFqViVZlnqE3yzqTNvjHpaU_RnIuS8bA3elBPT0uFzhQKsGsCUXQ2oPkB7qoq7jQRitpHaVWZ2ijY4ZygSazcsX7GXq5fA04EA93qrGv56lMhGsQ4DP0qGWiZU8YfFUrxjPU67hq1fj_B_Tk8r68QDeGB3u75e72_s5TdJMmJuek0BtovZnO_TOQ1hrzPE0RjL5f9Zz8DRHMTsQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkSo4ICivQAEjcWOtJrbXD26wZVUerXqgUm9W_EKVtslqN3voz-g_Zuxkt4soSEi5JBnnoXl4xjPzGaF3WoI5jFqSsXCecGVBpRTVJCG_aBk8E1VqcD4-EUdn_Ov5-Hyriz9Xu69Tkn1PQ0JparqDuY-9iitxsOQVTUVnlJPk70gCQfvdhNWVivomYnKzyiIYfIxcd8vcOvS3GSkD99_mbf6RKc0T0PQhejB4jvhjz-pH6E5o9tD9LTzBPbR7PGTKH6Pr0x4wlaRWylQOhC8u57NU9IIvax9wGzE7xOlV4HJie9FC2N0ubGqkwvN2dpWWs3HdYfAP4RyoSBtJKhP7AOO7LLYj3G3W5Ue4bjzOLS7p0cvVIltUvJUff4LOpp9_TI7IsP0CcVyNO-K1KmtfihBrL13JraucTW2FNnjJvY2sDKVmToqoLLUiCsolHMGNqVK2Yk_RTtM24TnCEexqVVmuauU5h5CSqgiWQkNwHsfOywJVaxYYN2CTpy0yZibHKEqYnm0G2GYy20xZoPebMfMemeOf1J8SZzeUCVU7X2gXP82gpEYJ5mysotYB3DIIFH3NhbZaSecpdbpA-2u5MIOqLw0reSVLqjkr0NvNbVDSlHmpm9CuMk2ypeBdF-hZL0-bL2HwVq0YL9BoLWA3D__7D734P_I3aPf0cGq-fzn59hLdo1n8Oan0PtrpFqvwCjyrzr7OyvMLv20YRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient-specific+implants+made+of+3D+printed+bioresorbable+polymers+at+the+point-of-care%3A+material%2C+technology%2C+and+scope+of+surgical+application&rft.jtitle=3D+printing+in+medicine&rft.au=Maintz%2C+Michaela&rft.au=Tourbier%2C+C%C3%A9line&rft.au=de+Wild%2C+Michael&rft.au=Cattin%2C+Philippe+C.&rft.date=2024-04-19&rft.issn=2365-6271&rft.eissn=2365-6271&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs41205-024-00207-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s41205_024_00207_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6271&client=summon