Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application
Background Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-c...
Saved in:
Published in | 3D printing in medicine Vol. 10; no. 1; pp. 13 - 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
19.04.2024
Springer Nature B.V BMC |
Subjects | |
Online Access | Get full text |
ISSN | 2365-6271 2365-6271 |
DOI | 10.1186/s41205-024-00207-0 |
Cover
Abstract | Background
Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations.
Methods
This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient’s computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit.
Results
3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels.
Conclusions
This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed. |
---|---|
AbstractList | Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations.BACKGROUNDBioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations.This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient's computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit.METHODSThis study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient's computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit.3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels.RESULTS3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels.This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed.CONCLUSIONSThis study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed. Abstract Background Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations. Methods This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient’s computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit. Results 3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels. Conclusions This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed. Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations. This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient's computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit. 3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels. This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed. BackgroundBioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations.MethodsThis study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient’s computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit.Results3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels.ConclusionsThis study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed. Background Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations. Methods This study describes the workflow of designing and fabricating degradable polymeric PSIs using three-dimensional (3D) printing technology. The cortical bone was segmented from the patient’s computed tomography data using Materialise Mimics software, and the PSIs were designed created using Geomagic Freeform and nTopology software. The implants were finally printed via Arburg Plastic Freeforming (APF) of medical-grade poly (L-lactide-co-D, L-lactide) with 30% β-tricalcium phosphate and evaluated for fit. Results 3D printed implants using APF technology showed surfaces with highly uniform and well-connected droplets with minimal gap formation between the printed paths. For the plates and meshes, a wall thickness down to 0.8 mm could be achieved. In this study, we successfully printed plates for osteosynthesis, implants for orbital floor fractures, meshes for alveolar bone regeneration, and bone scaffolds with interconnected channels. Conclusions This study shows the feasibility of using 3D printing to create degradable polymeric PSIs seamlessly integrated into virtual surgical planning workflows. Implementing POC 3D printing of biodegradable PSI can potentially improve therapeutic outcomes, but regulatory compliance must be addressed. |
ArticleNumber | 13 |
Author | Beyer, Michel Honigmann, Philipp Seiler, Daniel Thieringer, Florian M. Cattin, Philippe C. Sharma, Neha Tourbier, Céline de Wild, Michael Maintz, Michaela |
Author_xml | – sequence: 1 givenname: Michaela surname: Maintz fullname: Maintz, Michaela organization: Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel, Institute for Medical Engineering and Medical Informatics IM², University of Applied Sciences and Arts Northwestern Switzerland FHNW – sequence: 2 givenname: Céline surname: Tourbier fullname: Tourbier, Céline email: celine.tourbier@usb.ch organization: Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel – sequence: 3 givenname: Michael surname: de Wild fullname: de Wild, Michael organization: Institute for Medical Engineering and Medical Informatics IM², University of Applied Sciences and Arts Northwestern Switzerland FHNW – sequence: 4 givenname: Philippe C. surname: Cattin fullname: Cattin, Philippe C. organization: Department of Biomedical Engineering, Center of Medical Image Analysis and Navigation (CIAN), University of Basel – sequence: 5 givenname: Michel surname: Beyer fullname: Beyer, Michel organization: Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel – sequence: 6 givenname: Daniel surname: Seiler fullname: Seiler, Daniel organization: Institute for Medical Engineering and Medical Informatics IM², University of Applied Sciences and Arts Northwestern Switzerland FHNW – sequence: 7 givenname: Philipp surname: Honigmann fullname: Honigmann, Philipp organization: Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel, Department of Orthopaedic Surgery and Traumatology, Hand- and peripheral Nerve Surgery, Kantonsspital Baselland, Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam – sequence: 8 givenname: Neha surname: Sharma fullname: Sharma, Neha organization: Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel – sequence: 9 givenname: Florian M. surname: Thieringer fullname: Thieringer, Florian M. organization: Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (Swiss MAM), University of Basel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38639834$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuFDEQHKEgEkJ-gAOyxIVDBvxa28MNhVekSHCAs-VHe-PVzHiwvYf9DP4Y724CKIdIlty2qsrd5Xrencxphq57SfBbQpR4VziheNVjynuMKZY9ftKdUSZWvaCSnPxXn3YXpWwwxkQwSah81p0yJdigGD_rfn83NcJc-7KAiyE6FKdlNHMtaDIeUAqIfURLjnMFj2xMGUrK1tgR0JLG3QS5IFNRvd2fG6pPoXcmw_vGr5CjGS9RBXc7pzGtd5fIzB4Vl5aDdNnmdXRmRGZZxlbUmOYX3dNgxgIXd_t59_Pzpx9XX_ubb1-urz7c9I6rVe39oLDxWEAwXjrMrSPOEsykBS-5t4FhwANzUgRlqRVBUC7bAreiSlnCzrvro65PZqPbhJPJO51M1IeLlNfa5BrdCLq55WwgYRhAcUG48oaLwQ5KOk-pG5rWm6PWktOvLZSqp1gcjM1ISNuiGeYMS0bE_tnXD6CbtM1zm3SPIhLTgbOGenWH2toJ_N_27j-uAdQR4HIqJUPQLtaDfzWbOGqC9T4m-hgT3WKiDzHRuFHpA-q9-qMkdiSVfRbWkP-1_QjrD_7Pz30 |
CitedBy_id | crossref_primary_10_3389_fopht_2025_1506445 crossref_primary_10_3390_met15030320 crossref_primary_10_1007_s11548_024_03298_6 crossref_primary_10_18231_j_ijmi_2024_011 crossref_primary_10_1111_eve_14143 |
Cites_doi | 10.1016/j.jcms.2023.01.015 10.3390/jfb14030159 10.1136/bjophthalmol-2016-309330 10.1177/1090820x14528503 10.1016/j.bioactmat.2021.03.035 10.1016/j.ijom.2019.11.009 10.1080/17434440.2021.1935875 10.1016/j.compositesb.2020.108238 10.1016/j.jcms.2015.04.028 10.1001/archfacial.2010.91 10.1016/0266-4356(93)90114-C 10.1016/S2589-7500(19)30067-6 10.1016/j.compstruct.2014.08.029 10.1016/j.stlm.2022.100059 10.1016/j.injury.2021.02.041 10.1001/archfacial.2011.1280 10.1038/s41415-022-4242-6 10.1038/s41578-019-0150-z 10.2147/orr.S99614 10.1016/j.jcms.2021.04.008 10.1016/j.jmbbm.2023.106120 10.1016/j.joms.2020.04.006 10.1002/adma.201902516 10.1208/s12249-020-01905-8 10.1097/SCS.0b013e3181d7ad06 10.1016/j.cej.2018.01.010 10.1038/nmat2542 10.1016/j.actbio.2014.04.007 10.1111/coa.14000 10.1016/j.bjoms.2020.08.088 10.1111/j.1744-7402.2005.02020.x 10.1016/j.joms.2005.09.013 10.1016/j.coms.2019.07.010 10.4012/dmj.2016-306 10.1186/s40001-020-00471-w 10.1016/j.addr.2012.07.009 10.1016/j.bjoms.2020.06.038 10.1021/acsbiomaterials.7b00542 10.1016/j.jcms.2016.11.015 10.1016/j.bioactmat.2021.01.011 10.1016/j.procir.2016.01.078 10.1016/j.jcms.2022.05.010 10.1016/j.msec.2014.05.044 10.1097/SCS.0000000000005228 10.1016/j.jmbbm.2021.104641 10.1186/s12891-021-04224-6 10.1016/j.joms.2021.12.003 10.3390/ma10040334 10.1023/b:abme.0000017544.36001.8e 10.1007/978-3-540-92841-6_366 10.1016/S0161-6420(92)31760-9 10.3390/jfb8040044 10.3390/ma15165615 10.1016/j.acra.2019.08.011 10.1016/j.surg.2015.12.017 10.1186/s41205-016-0005-9 10.26153/tsw/17308 10.1097/BOT.0b013e3181cec4a1 10.1016/j.biomaterials.2009.09.065 10.3390/met7100402 10.3390/nano11020303 10.1016/j.joms.2018.05.009 10.3390/polym12112677 10.1097/gox.0000000000001975 10.1002/adem.202200279 10.3390/polym14142782 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V LK8 M0S M7P M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 DOA |
DOI | 10.1186/s41205-024-00207-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Biological Science Database Engineering Database ProQuest Central Advanced Technologies & Aerospace Database (via ProQuest) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 2365-6271 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_863cbf1f99e846148da469b987cd22c9 38639834 10_1186_s41205_024_00207_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: University of Basel |
GroupedDBID | 0R~ 7X7 8FI 8FJ AAFWJ AAJSJ AAKKN ABEEZ ABJCF ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADUKV AFGXO AFKRA AFPKN AHBYD ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU EBLON EBS EHE FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KB. M7P M7S M~E OK1 PDBOC PGMZT PIMPY PQQKQ PROAC PTHSS RPM RSV SOJ UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PQGLB 3V. 7XB 8FE 8FG 8FH 8FK AZQEC D1I DWQXO GNUQQ K9. L6V LK8 P62 PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-d980ad06efad7c04bc1cb1037bed74dbf30e093c76f8b2b6f6247247ec5288b13 |
IEDL.DBID | C6C |
ISSN | 2365-6271 |
IngestDate | Wed Aug 27 01:23:42 EDT 2025 Thu Sep 04 15:47:06 EDT 2025 Fri Jul 25 11:04:10 EDT 2025 Mon Jul 21 06:03:41 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 Tue Jul 01 02:02:39 EDT 2025 Fri Feb 21 02:41:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 3D Printing Regeneration Composites Three-dimensional Defect Osteosynthesis Computer-aided design Bone Hospital Polymers Point-of-care Lattice |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-d980ad06efad7c04bc1cb1037bed74dbf30e093c76f8b2b6f6247247ec5288b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1186/s41205-024-00207-0 |
PMID | 38639834 |
PQID | 3041702943 |
PQPubID | 4402902 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_863cbf1f99e846148da469b987cd22c9 proquest_miscellaneous_3043073161 proquest_journals_3041702943 pubmed_primary_38639834 crossref_citationtrail_10_1186_s41205_024_00207_0 crossref_primary_10_1186_s41205_024_00207_0 springer_journals_10_1186_s41205_024_00207_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-19 |
PublicationDateYYYYMMDD | 2024-04-19 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: England – name: London |
PublicationTitle | 3D printing in medicine |
PublicationTitleAbbrev | 3D Print Med |
PublicationTitleAlternate | 3D Print Med |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V BMC |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: BMC |
References | Lieger, Schaller, Zix, Kellner, Iizuka (CR56) 2010; 12 Hardy (CR8) 2014; 34 Young, Sundar, Lim, Lang, Thomas, Amrith (CR57) 2017; 101 Alonso-Rodriguez, Cebrián, Nieto, Del Castillo, Hernández-Godoy, Burgueño (CR50) 2015; 43 Holzapfel (CR25) 2013; 65 Giordano Ii (CR26) 2022; 232 CR37 CR36 CR35 Schlittler, Vig, Burkhard, Lieger, Michel, Holmes (CR52) 2020; 58 Al-Sukhun, Törnwall, Lindqvist, Kontio (CR58) 2006; 64 Williams, Hammer, Wentland, Kim (CR63) 2020; 78 CR32 Kraus (CR21) 2014; 10 Li (CR31) 2020; 5 CR30 Korn, Jehn, Nejati-Rad, Winterboer, Gellrich, Spalthoff (CR61) 2022; 80 Ansoms, Barzegari, Sloten, Geris (CR70) 2023; 147 Teo, Ng, Peng, O’NEILL (CR60) 2021 CR72 Chandra, Pandey (CR69) 2021; 18 Irawati (CR7) 2023; 48 Taalab, Shehab, Atef, Shehab (CR3) 2023; 51 Cornelsen (CR34) 2017; 36 Prendergast, Burdick (CR49) 2020; 32 CR5 Tatum (CR13) 2012; 14 CR9 CR47 CR46 CR45 CR44 CR43 Xia, Yang, Zheng, Liu, Zhou (CR18) 2021; 6 CR42 Sánchez-Jáuregui, Baranda- Manterola, Ranz- Colio, Bueno de, Vicente, Acero, Sanz (CR12) 2022; 50 CR40 Mehboob, Chang (CR71) 2015; 119 Vaz, Kumar (CR48) 2021; 22 Nikunen, Rajantie, Marttila, Snäll (CR51) 2021; 49 Huang, Alfi, Alfi, Huang (CR1) 2019; 31 CR19 Gareb, van Bakelen, Dijkstra, Vissink, Bos, van Minnen (CR29) 2020; 49 Liu, Qin, He, Zhou, Qin, Wang (CR16) 2020; 199 Ballard (CR4) 2010; 21 CR15 Chua, Chui (CR24) 2016; 40 CR59 Wong (CR2) 2016; 8 Zhang (CR23) 2021; 6 Zberg, Uggowitzer, Löffler (CR20) 2009; 8 CR54 Kobbe, Laubach, Hutmacher, Alabdulrahman, Sellei, Hildebrand (CR6) 2020; 25 Essig (CR10) 2017; 45 Modrák, Trebuňová, Balogová, Hudák, Živčák (CR17) 2023; 14 Willemsen, Nizak, Noordmans, Castelein, Weinans, Kruyt (CR39) 2019; 1 Goodson (CR53) 2021; 59 U, Mehrotra, Howlader, Singh, Gupta (CR11) 2019; 30 CR28 Zhao (CR38) 2017; 3 CR67 Zhang, Li, Li, Sun (CR14) 2014; 42 CR22 CR66 CR65 Vautrin, Wesseling, Wirix-Speetjens, Gomez-Benito (CR68) 2021; 121 CR62 Murtezani, Sharma, Thieringer (CR64) 2022; 6 Calvo-Haro (CR41) 2021; 22 Brown, Banks (CR55) 1993; 31 Hing (CR27) 2005; 2 da Silva (CR33) 2018; 340 207_CR36 207_CR37 M Modrák (207_CR17) 2023; 14 207_CR30 207_CR72 P Ansoms (207_CR70) 2023; 147 207_CR35 207_CR32 I Murtezani (207_CR64) 2022; 6 MCH Chua (207_CR24) 2016; 40 N Irawati (207_CR7) 2023; 48 G Chandra (207_CR69) 2021; 18 M Cornelsen (207_CR34) 2017; 36 VN U (207_CR11) 2019; 30 AMC Goodson (207_CR53) 2021; 59 KL Hardy (207_CR8) 2014; 34 207_CR47 AE Brown (207_CR55) 1993; 31 D da Silva (207_CR33) 2018; 340 207_CR42 FC Williams (207_CR63) 2020; 78 207_CR40 207_CR45 SA Tatum (207_CR13) 2012; 14 207_CR46 207_CR43 O Lieger (207_CR56) 2010; 12 207_CR44 207_CR5 KC Wong (207_CR2) 2016; 8 207_CR9 J Zhang (207_CR23) 2021; 6 MF Huang (207_CR1) 2019; 31 207_CR15 207_CR59 E Sánchez-Jáuregui (207_CR12) 2022; 50 SM Young (207_CR57) 2017; 101 207_CR19 P Kobbe (207_CR6) 2020; 25 B Gareb (207_CR29) 2020; 49 K Willemsen (207_CR39) 2019; 1 207_CR54 D Xia (207_CR18) 2021; 6 P Korn (207_CR61) 2022; 80 M Nikunen (207_CR51) 2021; 49 AQA Teo (207_CR60) 2021 T Kraus (207_CR21) 2014; 10 E Alonso-Rodriguez (207_CR50) 2015; 43 H Mehboob (207_CR71) 2015; 119 207_CR28 VM Vaz (207_CR48) 2021; 22 S Liu (207_CR16) 2020; 199 ME Prendergast (207_CR49) 2020; 32 J Al-Sukhun (207_CR58) 2006; 64 H Essig (207_CR10) 2017; 45 B Zberg (207_CR20) 2009; 8 R Giordano Ii (207_CR26) 2022; 232 C Li (207_CR31) 2020; 5 DA Taalab (207_CR3) 2023; 51 A Vautrin (207_CR68) 2021; 121 H Zhao (207_CR38) 2017; 3 207_CR62 207_CR67 207_CR65 207_CR22 JA Calvo-Haro (207_CR41) 2021; 22 207_CR66 X Zhang (207_CR14) 2014; 42 F Schlittler (207_CR52) 2020; 58 TNS Ballard (207_CR4) 2010; 21 BM Holzapfel (207_CR25) 2013; 65 KA Hing (207_CR27) 2005; 2 |
References_xml | – ident: CR45 – ident: CR22 – volume: 51 start-page: 217 issue: 4 year: 2023 end-page: 23 ident: CR3 article-title: Comparative study between patient specific titanium plates versus conventional miniplates for treatment of mandibular fractures: randomized clinical trial publication-title: J Cranio-Maxillofacial Surg doi: 10.1016/j.jcms.2023.01.015 – volume: 14 start-page: 159 issue: 3 year: 2023 ident: CR17 article-title: Biodegradable materials for tissue Engineering: Development, classification and current applications publication-title: J Funct Biomaterials doi: 10.3390/jfb14030159 – volume: 101 start-page: 1080 issue: 8 year: 2017 end-page: 5 ident: CR57 article-title: Use of bioresorbable implants for orbital fracture reconstruction publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2016-309330 – volume: 34 start-page: 614 issue: 4 year: 2014 end-page: 22 ident: CR8 article-title: The impact of Operative Time on complications after plastic surgery: a Multivariate Regression Analysis of 1753 cases publication-title: Aesthetic Surg J doi: 10.1177/1090820x14528503 – volume: 6 start-page: 4027 issue: 11 year: 2021 end-page: 52 ident: CR23 article-title: Biodegradable metals for bone defect repair: a systematic review and meta-analysis based on animal studies publication-title: Bioactive Mater doi: 10.1016/j.bioactmat.2021.03.035 – volume: 49 start-page: 914 issue: 7 year: 2020 end-page: 31 ident: CR29 article-title: Biodegradable versus titanium osteosynthesis in maxillofacial traumatology: a systematic review with meta-analysis and trial sequential analysis publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2019.11.009 – volume: 18 start-page: 629 issue: 7 year: 2021 end-page: 47 ident: CR69 article-title: Design approaches and challenges for biodegradable bone implants: a review publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2021.1935875 – volume: 199 start-page: 108238 year: 2020 ident: CR16 article-title: Current applications of poly(lactic acid) composites in tissue engineering and drug delivery publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2020.108238 – ident: CR35 – ident: CR54 – volume: 43 start-page: 1232 issue: 7 year: 2015 end-page: 8 ident: CR50 article-title: Polyetheretherketone custom-made implants for craniofacial defects: report of 14 cases and review of the literature publication-title: J Craniomaxillofac Surg doi: 10.1016/j.jcms.2015.04.028 – ident: CR42 – volume: 12 start-page: 399 issue: 6 year: 2010 end-page: 404 ident: CR56 article-title: Repair of orbital floor fractures using bioresorbable poly-L/DL-lactide plates publication-title: Arch Facial Plast Surg doi: 10.1001/archfacial.2010.91 – volume: 31 start-page: 154 issue: 3 year: 1993 end-page: 7 ident: CR55 article-title: Late extrusion of alloplastic orbital floor implants publication-title: Br J Oral Maxillofac Surg doi: 10.1016/0266-4356(93)90114-C – volume: 1 start-page: e163 issue: 4 year: 2019 end-page: e ident: CR39 article-title: Challenges in the design and regulatory approval of 3D-printed surgical implants: a two-case series publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(19)30067-6 – ident: CR46 – ident: CR19 – volume: 119 start-page: 166 year: 2015 end-page: 73 ident: CR71 article-title: Optimal design of a functionally graded biodegradable composite bone plate by using the Taguchi method and finite element analysis publication-title: Compos Struct doi: 10.1016/j.compstruct.2014.08.029 – ident: CR67 – volume: 6 start-page: 100059 year: 2022 ident: CR64 article-title: Medical 3D printing with a focus on point-of-care in Cranio- and maxillofacial surgery. A systematic review of literature publication-title: Annals 3D Print Med doi: 10.1016/j.stlm.2022.100059 – ident: CR15 – year: 2021 ident: CR60 article-title: Point-of-care 3D Printing: a feasibility study of using 3D Printing for Orthopaedic Trauma publication-title: Injury doi: 10.1016/j.injury.2021.02.041 – ident: CR9 – ident: CR32 – volume: 14 start-page: 11 issue: 1 year: 2012 end-page: 3 ident: CR13 article-title: Retrospective review of resorbable plate fixation in pediatric craniofacial surgery: long-term outcome publication-title: Arch Facial Plast Surg doi: 10.1001/archfacial.2011.1280 – volume: 232 start-page: 658 issue: 9 year: 2022 end-page: 63 ident: CR26 article-title: Ceramics overview publication-title: Br Dent J doi: 10.1038/s41415-022-4242-6 – ident: CR36 – ident: CR5 – volume: 5 start-page: 61 issue: 1 year: 2020 end-page: 81 ident: CR31 article-title: Design of biodegradable, implantable devices towards clinical translation publication-title: Nat Reviews Mater doi: 10.1038/s41578-019-0150-z – volume: 8 start-page: 57 year: 2016 end-page: 66 ident: CR2 article-title: 3D-printed patient-specific applications in orthopedics publication-title: Orthop Res Rev doi: 10.2147/orr.S99614 – ident: CR43 – volume: 49 start-page: 837 issue: 9 year: 2021 end-page: 44 ident: CR51 article-title: Implant malposition and revision surgery in primary orbital fracture reconstructions publication-title: J Cranio-Maxillofacial Surg doi: 10.1016/j.jcms.2021.04.008 – ident: CR66 – ident: CR47 – volume: 147 start-page: 106120 year: 2023 ident: CR70 article-title: Coupling biomechanical models of implants with biodegradation models: a case study for biodegradable mandibular bone fixation plates publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2023.106120 – ident: CR72 – volume: 78 start-page: 1320 issue: 8 year: 2020 end-page: 7 ident: CR63 article-title: Immediate Teeth in Fibulas: planning and Digital Workflow with Point-of-care 3D Printing publication-title: J Oral Maxillofac Surg doi: 10.1016/j.joms.2020.04.006 – ident: CR37 – ident: CR30 – volume: 32 start-page: 1902516 issue: 13 year: 2020 ident: CR49 article-title: Recent advances in enabling technologies in 3D printing for precision medicine publication-title: Adv Mater doi: 10.1002/adma.201902516 – volume: 22 start-page: 49 issue: 1 year: 2021 ident: CR48 article-title: 3D Printing as a Promising Tool in Personalized Medicine publication-title: AAPS PharmSciTech doi: 10.1208/s12249-020-01905-8 – volume: 21 start-page: 644 issue: 3 year: 2010 end-page: 7 ident: CR4 article-title: Absorbable plate strength loss during molding publication-title: J Craniofac Surg doi: 10.1097/SCS.0b013e3181d7ad06 – ident: CR40 – volume: 340 start-page: 9 year: 2018 end-page: 14 ident: CR33 article-title: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems publication-title: Chem Eng J doi: 10.1016/j.cej.2018.01.010 – volume: 8 start-page: 887 issue: 11 year: 2009 end-page: 91 ident: CR20 article-title: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants publication-title: Nat Mater doi: 10.1038/nmat2542 – volume: 10 start-page: 3346 issue: 7 year: 2014 end-page: 53 ident: CR21 article-title: Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52weeks publication-title: Acta Biomater doi: 10.1016/j.actbio.2014.04.007 – volume: 48 start-page: 175 issue: 2 year: 2023 end-page: 81 ident: CR7 article-title: Effect of operative time on complications associated with free flap reconstruction of the head and neck publication-title: Clin Otolaryngol doi: 10.1111/coa.14000 – volume: 59 start-page: 320 issue: 3 year: 2021 end-page: 8 ident: CR53 article-title: Printed titanium implants in UK craniomaxillofacial surgery. Part II: perceived performance (outcomes, logistics, and costs) publication-title: Br J Oral Maxillofac Surg doi: 10.1016/j.bjoms.2020.08.088 – ident: CR44 – volume: 2 start-page: 184 issue: 3 year: 2005 end-page: 99 ident: CR27 article-title: Bioceramic bone graft substitutes: influence of Porosity and Chemistry publication-title: Int J Appl Ceram Technol doi: 10.1111/j.1744-7402.2005.02020.x – ident: CR65 – volume: 64 start-page: 47 issue: 1 year: 2006 end-page: 55 ident: CR58 article-title: Bioresorbable Poly-l/dl-Lactide (P[L/DL]LA 70/30) plates are Reliable for repairing large Inferior Orbital Wall Bony defects: a pilot study publication-title: J Oral Maxillofac Surg doi: 10.1016/j.joms.2005.09.013 – volume: 31 start-page: 593 issue: 4 year: 2019 end-page: 600 ident: CR1 article-title: The Use of patient-specific implants in oral and maxillofacial surgery publication-title: Oral Maxillofacial Surg Clin doi: 10.1016/j.coms.2019.07.010 – volume: 36 start-page: 553 issue: 5 year: 2017 end-page: 9 ident: CR34 article-title: Mechanical and biological effects of infiltration with biopolymers on 3D printed tricalciumphosphate scaffolds publication-title: Dent Mater J doi: 10.4012/dmj.2016-306 – volume: 25 start-page: 70 issue: 1 year: 2020 ident: CR6 article-title: Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft publication-title: Eur J Med Res doi: 10.1186/s40001-020-00471-w – volume: 65 start-page: 581 issue: 4 year: 2013 end-page: 603 ident: CR25 article-title: How smart do biomaterials need to be? A translational science and clinical point of view publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2012.07.009 – volume: 58 start-page: e80 issue: 9 year: 2020 end-page: e ident: CR52 article-title: What are the limitations of the non-patient-specific implant in titanium reconstruction of the orbit? publication-title: Br J Oral Maxillofac Surg doi: 10.1016/j.bjoms.2020.06.038 – volume: 3 start-page: 3083 issue: 12 year: 2017 end-page: 97 ident: CR38 article-title: Printing@Clinic: from Medical models to organ implants publication-title: ACS Biomaterials Sci Eng doi: 10.1021/acsbiomaterials.7b00542 – volume: 45 start-page: 216 issue: 2 year: 2017 end-page: 22 ident: CR10 article-title: Patient-specific biodegradable implant in pediatric craniofacial surgery publication-title: J Cranio-Maxillofacial Surg doi: 10.1016/j.jcms.2016.11.015 – volume: 6 start-page: 4186 issue: 11 year: 2021 end-page: 208 ident: CR18 article-title: Research status of biodegradable metals designed for oral and maxillofacial applications: a review publication-title: Bioactive Mater doi: 10.1016/j.bioactmat.2021.01.011 – volume: 40 start-page: 402 year: 2016 end-page: 6 ident: CR24 article-title: Optimization of patient-specific design of medical implants for manufacturing publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.01.078 – volume: 50 start-page: 609 issue: 8 year: 2022 end-page: 14 ident: CR12 article-title: Custom made cutting guides and osteosynthesis plates versus CAD/CAM occlusal splints in positioning and fixation of the maxilla in orthognathic surgery: a prospective randomized study publication-title: J Cranio-Maxillofacial Surg doi: 10.1016/j.jcms.2022.05.010 – volume: 42 start-page: 362 year: 2014 end-page: 7 ident: CR14 article-title: Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering publication-title: Mater Sci Engineering: C doi: 10.1016/j.msec.2014.05.044 – volume: 30 start-page: e308 issue: 4 year: 2019 end-page: e ident: CR11 article-title: Patient specific three-Dimensional Implant for Reconstruction of Complex Mandibular defect publication-title: J Craniofac Surg doi: 10.1097/SCS.0000000000005228 – ident: CR59 – volume: 121 start-page: 104641 year: 2021 ident: CR68 article-title: Time-dependent in silico modelling of orthognathic surgery to support the design of biodegradable bone plates publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2021.104641 – ident: CR28 – ident: CR62 – volume: 22 start-page: 360 issue: 1 year: 2021 ident: CR41 article-title: Conceptual evolution of 3D printing in orthopedic surgery and traumatology: from do it yourself to point of care manufacturing publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-021-04224-6 – volume: 80 start-page: 676 issue: 4 year: 2022 end-page: 81 ident: CR61 article-title: Pitfalls of surgeon-engineer communication and the Effect of In-House engineer training during Digital Planning of patient-specific implants for Orbital Reconstruction publication-title: J Oral Maxillofac Surg doi: 10.1016/j.joms.2021.12.003 – ident: 207_CR28 doi: 10.3390/ma10040334 – volume: 43 start-page: 1232 issue: 7 year: 2015 ident: 207_CR50 publication-title: J Craniomaxillofac Surg doi: 10.1016/j.jcms.2015.04.028 – volume: 6 start-page: 100059 year: 2022 ident: 207_CR64 publication-title: Annals 3D Print Med doi: 10.1016/j.stlm.2022.100059 – ident: 207_CR32 doi: 10.1023/b:abme.0000017544.36001.8e – volume: 30 start-page: e308 issue: 4 year: 2019 ident: 207_CR11 publication-title: J Craniofac Surg doi: 10.1097/SCS.0000000000005228 – ident: 207_CR35 doi: 10.1007/978-3-540-92841-6_366 – volume: 232 start-page: 658 issue: 9 year: 2022 ident: 207_CR26 publication-title: Br Dent J doi: 10.1038/s41415-022-4242-6 – volume: 31 start-page: 154 issue: 3 year: 1993 ident: 207_CR55 publication-title: Br J Oral Maxillofac Surg doi: 10.1016/0266-4356(93)90114-C – ident: 207_CR67 – volume: 45 start-page: 216 issue: 2 year: 2017 ident: 207_CR10 publication-title: J Cranio-Maxillofacial Surg doi: 10.1016/j.jcms.2016.11.015 – ident: 207_CR54 doi: 10.1016/S0161-6420(92)31760-9 – volume: 22 start-page: 360 issue: 1 year: 2021 ident: 207_CR41 publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-021-04224-6 – ident: 207_CR15 doi: 10.3390/jfb8040044 – ident: 207_CR47 – ident: 207_CR72 – volume: 21 start-page: 644 issue: 3 year: 2010 ident: 207_CR4 publication-title: J Craniofac Surg doi: 10.1097/SCS.0b013e3181d7ad06 – volume: 18 start-page: 629 issue: 7 year: 2021 ident: 207_CR69 publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2021.1935875 – volume: 8 start-page: 57 year: 2016 ident: 207_CR2 publication-title: Orthop Res Rev doi: 10.2147/orr.S99614 – volume: 8 start-page: 887 issue: 11 year: 2009 ident: 207_CR20 publication-title: Nat Mater doi: 10.1038/nmat2542 – ident: 207_CR42 doi: 10.1016/S2589-7500(19)30067-6 – volume: 1 start-page: e163 issue: 4 year: 2019 ident: 207_CR39 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(19)30067-6 – volume: 5 start-page: 61 issue: 1 year: 2020 ident: 207_CR31 publication-title: Nat Reviews Mater doi: 10.1038/s41578-019-0150-z – ident: 207_CR45 doi: 10.3390/ma15165615 – ident: 207_CR37 doi: 10.1016/j.acra.2019.08.011 – volume: 119 start-page: 166 year: 2015 ident: 207_CR71 publication-title: Compos Struct doi: 10.1016/j.compstruct.2014.08.029 – volume: 49 start-page: 837 issue: 9 year: 2021 ident: 207_CR51 publication-title: J Cranio-Maxillofacial Surg doi: 10.1016/j.jcms.2021.04.008 – volume: 101 start-page: 1080 issue: 8 year: 2017 ident: 207_CR57 publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2016-309330 – volume: 14 start-page: 11 issue: 1 year: 2012 ident: 207_CR13 publication-title: Arch Facial Plast Surg doi: 10.1001/archfacial.2011.1280 – ident: 207_CR65 – volume: 147 start-page: 106120 year: 2023 ident: 207_CR70 publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2023.106120 – volume: 199 start-page: 108238 year: 2020 ident: 207_CR16 publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2020.108238 – volume: 59 start-page: 320 issue: 3 year: 2021 ident: 207_CR53 publication-title: Br J Oral Maxillofac Surg doi: 10.1016/j.bjoms.2020.08.088 – volume: 40 start-page: 402 year: 2016 ident: 207_CR24 publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.01.078 – volume: 2 start-page: 184 issue: 3 year: 2005 ident: 207_CR27 publication-title: Int J Appl Ceram Technol doi: 10.1111/j.1744-7402.2005.02020.x – volume: 121 start-page: 104641 year: 2021 ident: 207_CR68 publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2021.104641 – ident: 207_CR40 doi: 10.1016/j.surg.2015.12.017 – volume: 340 start-page: 9 year: 2018 ident: 207_CR33 publication-title: Chem Eng J doi: 10.1016/j.cej.2018.01.010 – volume: 64 start-page: 47 issue: 1 year: 2006 ident: 207_CR58 publication-title: J Oral Maxillofac Surg doi: 10.1016/j.joms.2005.09.013 – volume: 34 start-page: 614 issue: 4 year: 2014 ident: 207_CR8 publication-title: Aesthetic Surg J doi: 10.1177/1090820x14528503 – volume: 31 start-page: 593 issue: 4 year: 2019 ident: 207_CR1 publication-title: Oral Maxillofacial Surg Clin doi: 10.1016/j.coms.2019.07.010 – volume: 22 start-page: 49 issue: 1 year: 2021 ident: 207_CR48 publication-title: AAPS PharmSciTech doi: 10.1208/s12249-020-01905-8 – volume: 78 start-page: 1320 issue: 8 year: 2020 ident: 207_CR63 publication-title: J Oral Maxillofac Surg doi: 10.1016/j.joms.2020.04.006 – ident: 207_CR66 doi: 10.1186/s41205-016-0005-9 – volume: 25 start-page: 70 issue: 1 year: 2020 ident: 207_CR6 publication-title: Eur J Med Res doi: 10.1186/s40001-020-00471-w – volume: 6 start-page: 4186 issue: 11 year: 2021 ident: 207_CR18 publication-title: Bioactive Mater doi: 10.1016/j.bioactmat.2021.01.011 – ident: 207_CR59 doi: 10.26153/tsw/17308 – volume: 3 start-page: 3083 issue: 12 year: 2017 ident: 207_CR38 publication-title: ACS Biomaterials Sci Eng doi: 10.1021/acsbiomaterials.7b00542 – volume: 49 start-page: 914 issue: 7 year: 2020 ident: 207_CR29 publication-title: Int J Oral Maxillofac Surg doi: 10.1016/j.ijom.2019.11.009 – year: 2021 ident: 207_CR60 publication-title: Injury doi: 10.1016/j.injury.2021.02.041 – ident: 207_CR5 doi: 10.1097/BOT.0b013e3181cec4a1 – ident: 207_CR19 doi: 10.1016/j.biomaterials.2009.09.065 – volume: 58 start-page: e80 issue: 9 year: 2020 ident: 207_CR52 publication-title: Br J Oral Maxillofac Surg doi: 10.1016/j.bjoms.2020.06.038 – ident: 207_CR22 doi: 10.3390/met7100402 – volume: 32 start-page: 1902516 issue: 13 year: 2020 ident: 207_CR49 publication-title: Adv Mater doi: 10.1002/adma.201902516 – volume: 6 start-page: 4027 issue: 11 year: 2021 ident: 207_CR23 publication-title: Bioactive Mater doi: 10.1016/j.bioactmat.2021.03.035 – volume: 42 start-page: 362 year: 2014 ident: 207_CR14 publication-title: Mater Sci Engineering: C doi: 10.1016/j.msec.2014.05.044 – volume: 36 start-page: 553 issue: 5 year: 2017 ident: 207_CR34 publication-title: Dent Mater J doi: 10.4012/dmj.2016-306 – ident: 207_CR36 doi: 10.3390/nano11020303 – volume: 12 start-page: 399 issue: 6 year: 2010 ident: 207_CR56 publication-title: Arch Facial Plast Surg doi: 10.1001/archfacial.2010.91 – ident: 207_CR62 doi: 10.1016/j.joms.2018.05.009 – volume: 14 start-page: 159 issue: 3 year: 2023 ident: 207_CR17 publication-title: J Funct Biomaterials doi: 10.3390/jfb14030159 – ident: 207_CR43 doi: 10.3390/polym12112677 – ident: 207_CR46 – ident: 207_CR9 doi: 10.1097/gox.0000000000001975 – ident: 207_CR44 doi: 10.1002/adem.202200279 – volume: 10 start-page: 3346 issue: 7 year: 2014 ident: 207_CR21 publication-title: Acta Biomater doi: 10.1016/j.actbio.2014.04.007 – volume: 80 start-page: 676 issue: 4 year: 2022 ident: 207_CR61 publication-title: J Oral Maxillofac Surg doi: 10.1016/j.joms.2021.12.003 – ident: 207_CR30 doi: 10.3390/polym14142782 – volume: 48 start-page: 175 issue: 2 year: 2023 ident: 207_CR7 publication-title: Clin Otolaryngol doi: 10.1111/coa.14000 – volume: 50 start-page: 609 issue: 8 year: 2022 ident: 207_CR12 publication-title: J Cranio-Maxillofacial Surg doi: 10.1016/j.jcms.2022.05.010 – volume: 65 start-page: 581 issue: 4 year: 2013 ident: 207_CR25 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2012.07.009 – volume: 51 start-page: 217 issue: 4 year: 2023 ident: 207_CR3 publication-title: J Cranio-Maxillofacial Surg doi: 10.1016/j.jcms.2023.01.015 |
SSID | ssj0001637127 |
Score | 2.3624141 |
Snippet | Background
Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the... Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges... BackgroundBioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the... Abstract Background Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13 |
SubjectTerms | 3-D printers 3D Printing Alveolar bone Biocompatibility Biomaterials Biomedical Engineering and Bioengineering Biomedical materials Bone Bone grafts Bone growth Bone implants Calcium phosphates Computed tomography Computer-aided design Cortical bone Defect Feasibility studies Fractures Imaging Maxillofacial Medicine Medicine & Public Health Osteosynthesis Patients Plates Polymers Printing Radiology Regeneration Regeneration (physiology) Software Substitute bone Surgery Surgical implants Surgical mesh Three dimensional printing Three-dimensional Tricalcium phosphate Workflow |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvEkpyEjcWKt-xQ9uvKoKCcSBSr1Z8UuqtN2sdrMHfgb_mLGTDYt4XZBySTJxbM94PGPPfEbohdWgDrPVpFUhEmk8DCnDLSnIL1anKBQrCc4fP6nzC_nhsr08OOqrxISN8MBjx50aJYLPLFubYKoE4z124NF5cJVD5DzU1D1q6YEzVVdXlIBK6H2WjFGnW8l4iVPjkhQTSRP600xUAft_Z2X-skNaJ56zO-j2ZDHi12NN76IbaXUP3TrAEbyPvn0e0VFJyZsssT_46nq9LBEu-LqLCfcZi3e4lA_2JfZXPfjY_caXrCm87pdfy9o17gYMxiDcAxXpMykxYa_g-6HK6AIP8yL8AneriGs-Syl6u9tU9YkPNsMfoIuz91_enpPprAUSpGkHEq2hXaQq5S7qQKUPLPiSQ-hT1DL6LGiiVgStsvHcq6y41HCl0HJjPBMP0dGqX6XHCGdQoox5aToTpQT_kZsMasGCJ57bEHWD2L7fXZiAyMt5GEtXHRKj3MgrB7xylVeONujl_M16hOH4K_Wbws6ZskBo1wcgWG4SLPcvwWrQyV4Y3DSut05QyTTlVooGPZ9fw4gs2yzdKvW7SlMUJ5jSDXo0CtFcEwF_tUbIBi32UvWj8D836Ph_NOgJusmr-EvC7Ak6Gja79BQsqsE_q4PnO_oTGZE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3JbtQw1IJygQNiJ1CQkbgxVmPH44ULYhsqJBAHKvUWxVtVaZoMM5kDn8Ef854nyRQBlXJJ8uI4eYvfbkJeWg3iMFnN5soHJo0DljLCMuz8YnUMleJY4Pzlqzo-kZ9P56eDw20zpFWOMjEL6tB59JEfgdnNdSmsrN6sfjDcNQqjq8MWGtfJDS5grcVK8cWnvY9FVTAVPdbKGHW0kVxgtpqQDBUlzco_1qPctv9fuuZfcdK8_CzukNuD3kjf7hB9l1yL7T1y61I3wfvk17ddj1SG1ZOYAUTPL1ZLzHOhF02ItEu0-kBxfNAyqTvvwNLu1g5rp-iqW_5EDzZtegoqIZwDFOsSw8yw1_B8nyl1RvvJFT-jTRtormrBoTfbdRai9FJI_AE5WXz8_v6YDTsuMC_NvGfBmrIJpYqpCdqX0nnuHVYSuhi0DC5VZSxt5bVKxgmnkhJSwxH9XBjjePWQHLRdGx8TmkCUcu6kaUyQEqxIYRIIBwv2eJr7oAvCx_9e-6EdOe6KsayzWWJUvcNVDbiqM67qsiCvpmdWu2YcV0K_Q3ROkNhIO1_o1mf1wJe1UZV3iSdrI2hiYBuGRirrrNE-COFtQQ5HYqgH7t7Ue1osyIvpNvAlBluaNnbbDIPiExTqgjzaEdE0kwreak0lCzIbqWo_-P8_6MnVc3lKbopM2JJxe0gO-vU2PgONqXfPM1v8Bm0wEQY priority: 102 providerName: ProQuest |
Title | Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application |
URI | https://link.springer.com/article/10.1186/s41205-024-00207-0 https://www.ncbi.nlm.nih.gov/pubmed/38639834 https://www.proquest.com/docview/3041702943 https://www.proquest.com/docview/3043073161 https://doaj.org/article/863cbf1f99e846148da469b987cd22c9 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3batswVGwtjO1hbN3NWxc02NsiZsmyLntLs2Yl0FK2FfJmrBsUUjskzsM-Y3-8I8VJM9YNBsbG8pFkcy46R-dihN5rCeIwaElKYR3hygBLKaZJrPyipXeFoDHB-fxCnF3x6ayc9WVyYi7Mvv-eKvFxxSmL4WWMk6jZSALm-WEJgjdS81iMb_dTRAHTym1ezJ1df1t7Uon-u_TKP3yiaamZPEGPex0RjzZIfYru-eYIPdqrHHiEHpz3PvFn6OflpjQqiUmTMfAHX98s5jG8Bd_UzuM24OIzjlOBconNdQsGdrs0MWUKL9r5j7hxjesOgyYI9wBF2kBiQNgn6N8lAh3ibrcDP8R143BKZolDr9bLJDvxnif8ObqanH4fn5H-RwvEclV2xGmV1y4XPtRO2pwbS62JCYTGO8mdCUXuc11YKYIyzIggGJdweFsypQwtXqCDpm38K4QDSFBKDVe1cpyD8chUAJmgwQwPpXUyQ3SLgsr2VcjjzzDmVbJGlKg2aKsAbVVCW5Vn6MOuz2JTg-Of0CcRszvIWD87NQBZVT07VkoU1gQatPaggIFJ6GoutNFKWseY1Rk63tJF1TP1qipyTmXONC8y9G73GNgx-ljqxrfrBBOlJujRGXq5oafdmxQwq1YFz9BwS2C3g__9g17_H_gb9JAlmueE6mN00C3X_i0oTp0ZoPtyJuGsJl8G6HA0mn6bwvXk9OLyK7SOGR8knhqkjYlfN98Ttw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBibWa2F4_kBACyrKlD3Fopd5C_KoqbTfb3axQfwZ_hN_I2NnsFgG9Vcolie3YmfHnGXseCL3SEuAwaEn6wjrClYEppagmMfKLlt4xUUQH5719MTzkX4_6R2voV-cLE80qO0xMQO1qG_fIN0HtLmRONWfvJ2ckZo2Kp6tdCo2WLXb8-Q9Q2WbvtreAvq8pHXw--DQki6wCxHLVb4jTKq9cLnyonLQ5N7awJnrLGe8kdyaw3IOab6UIylAjgqBcwuVtnyplCgbtXkPXOWMsmhCqwZfVno5gMHTZ-eYosTnjBY3WcZSTKJhJkv-x_qU0Af-Sbf86l03L3eAOur2QU_GHlrHuojU_voduXYheeB_9_NbGZCXRWzNaHOGT08ko2tXg08p5XAfMtnBsH6RabE5q0OzrqYm-WnhSj87jjjmuGgwiKNxDKVIHEi3R3kL9Js2MHm6WW_89XI0dTl40senZfJpAG184gn-ADq-EFg_R-rge-8cIB4DuojBcVcpxDlorVQHASIP-H_rWyQwV3X8v7SL8eczCMSqTGqRE2dKqBFqViVZlnqE3yzqTNvjHpaU_RnIuS8bA3elBPT0uFzhQKsGsCUXQ2oPkB7qoq7jQRitpHaVWZ2ijY4ZygSazcsX7GXq5fA04EA93qrGv56lMhGsQ4DP0qGWiZU8YfFUrxjPU67hq1fj_B_Tk8r68QDeGB3u75e72_s5TdJMmJuek0BtovZnO_TOQ1hrzPE0RjL5f9Zz8DRHMTsQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkSo4ICivQAEjcWOtJrbXD26wZVUerXqgUm9W_EKVtslqN3voz-g_Zuxkt4soSEi5JBnnoXl4xjPzGaF3WoI5jFqSsXCecGVBpRTVJCG_aBk8E1VqcD4-EUdn_Ov5-Hyriz9Xu69Tkn1PQ0JparqDuY-9iitxsOQVTUVnlJPk70gCQfvdhNWVivomYnKzyiIYfIxcd8vcOvS3GSkD99_mbf6RKc0T0PQhejB4jvhjz-pH6E5o9tD9LTzBPbR7PGTKH6Pr0x4wlaRWylQOhC8u57NU9IIvax9wGzE7xOlV4HJie9FC2N0ubGqkwvN2dpWWs3HdYfAP4RyoSBtJKhP7AOO7LLYj3G3W5Ue4bjzOLS7p0cvVIltUvJUff4LOpp9_TI7IsP0CcVyNO-K1KmtfihBrL13JraucTW2FNnjJvY2sDKVmToqoLLUiCsolHMGNqVK2Yk_RTtM24TnCEexqVVmuauU5h5CSqgiWQkNwHsfOywJVaxYYN2CTpy0yZibHKEqYnm0G2GYy20xZoPebMfMemeOf1J8SZzeUCVU7X2gXP82gpEYJ5mysotYB3DIIFH3NhbZaSecpdbpA-2u5MIOqLw0reSVLqjkr0NvNbVDSlHmpm9CuMk2ypeBdF-hZL0-bL2HwVq0YL9BoLWA3D__7D734P_I3aPf0cGq-fzn59hLdo1n8Oan0PtrpFqvwCjyrzr7OyvMLv20YRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient-specific+implants+made+of+3D+printed+bioresorbable+polymers+at+the+point-of-care%3A+material%2C+technology%2C+and+scope+of+surgical+application&rft.jtitle=3D+printing+in+medicine&rft.au=Maintz%2C+Michaela&rft.au=Tourbier%2C+C%C3%A9line&rft.au=de+Wild%2C+Michael&rft.au=Cattin%2C+Philippe+C.&rft.date=2024-04-19&rft.issn=2365-6271&rft.eissn=2365-6271&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs41205-024-00207-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s41205_024_00207_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6271&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6271&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6271&client=summon |