Application of improved and efficient image repair algorithm in rock damage experimental research
In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 14849 - 27 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
27.06.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-65790-y |
Cover
| Abstract | In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm’s operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis. |
|---|---|
| AbstractList | In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm’s operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis. In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm's operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis.In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm's operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis. Abstract In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm’s operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis. |
| ArticleNumber | 14849 |
| Author | Qi, Xianyin Geng, Diandong Xu, Mingzhe |
| Author_xml | – sequence: 1 givenname: Mingzhe surname: Xu fullname: Xu, Mingzhe organization: School of Urban Construction, Yangtze University – sequence: 2 givenname: Xianyin surname: Qi fullname: Qi, Xianyin email: qixianyin001@163.com organization: School of Urban Construction, Yangtze University, State Key Laboratory of Geomechanics and Geotechnical Engineering, Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences – sequence: 3 givenname: Diandong surname: Geng fullname: Geng, Diandong organization: School of Urban Construction, Yangtze University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38937588$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9v1DAQxSNUREvpF-CAInHhEvC_JPaxqqCtVIkLnK2JPdl6SexgJ8B-e7ybpaAeKnyxNf690Zs3L4sTHzwWxWtK3lPC5YckaK1kRZiomrpVpNo9K84YEXXFOGMn_7xPi4uUtiSfmilB1YvilEvF21rKswIup2lwBmYXfBn60o1TDD_QluBtiX3vjEM_5zJssIw4gYslDJsQ3Xw_ls6XMZhvpYXDP_6aMLoxC2DIcEKI5v5V8byHIeHF8T4vvn76-OXqprr7fH17dXlXGSHrueqQdpxKaqCxTfYJKHuiusYIQjvGQBnbE8upVYq1yCkAMkpJL0RHzH6e8-J27WsDbPWUfUDc6QBOHwohbjTE2ZkBdUtFQ9seeY296GohFTHYEtsZJimhNvfia6_FT7D7CcPw0JASvc9fr_nrnL8-5K93WfVuVeUIvy-YZj26ZHAYwGNYkuak5YxTRVlG3z5Ct2GJPuezp5hisuVNpt4cqaUb0T54-LO-DMgVMDGkFLHXxs2HXc4R3PC0WfZI-l8THnNJGfYbjH9tP6H6DZVOz4Q |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3548323 |
| Cites_doi | 10.1016/j.petrol.2022.111175 10.1007/s00371-020-01932-3 10.1007/s11340-017-0283-1 10.1007/s11340-015-0039-8 10.1016/j.patcog.2020.107448 10.1016/j.ijmst.2021.09.004 10.1007/s43452-022-00505-6 10.1016/j.ijrmms.2022.105306 10.1186/s12864-019-6413-7 10.1016/j.energy.2023.128181 10.1016/j.sigpro.2022.108902 10.1016/j.ijmst.2024.01.001 10.1016/j.geoen.2023.212451 10.1016/j.jmrt.2023.08.102 10.1155/2020/8835305 10.1111/ffe.12043 10.3390/app90713465 10.1016/j.ijimpeng.2017.11.011 10.1023/A:1018671022008 10.1080/0305215X.2020.1801668 10.1016/j.ultras.2020.106312 10.1016/j.ijrmms.2020.104411 10.1504/IJICBM.2016.074482 10.1016/j.engfailanal.2022.106607 10.1038/s41598-022-08170-8 10.1007/s00603-021-02503-1 10.1016/j.compind.2019.08.002 10.1016/S0006-3495(99)77379-0 10.1016/j.autcon.2019.04.005 10.2118/186062-MS 10.29220/CSAM.2021.28.2.161 10.1007/s00603-021-02682-x 10.1016/j.measurement.2021.110544 10.1016/j.istruc.2020.08.055 10.1109/TIP.2004.833105 10.1007/s00603-018-1685-9 10.1016/0029-5493(84)90169-9 10.1007/s11340-018-0409-0 10.1016/j.ijmst.2017.12.008 10.1016/j.optlaseng.2016.05.019 10.1007/s11340-019-00501-7 10.1109/CVPR52688.2022.01107 10.1016/j.neunet.2017.07.002 10.1016/j.cageo.2021.104716 10.1016/j.cageo.2019.02.003 10.1016/j.compgeo.2023.105609 10.1109/ACCESS.2019.2946264 10.1016/j.ijrmms.2021.104858 10.1016/j.tafmec.2022.103580 10.1002/adem.201900092 10.16285/j.rsm.2020.5816 10.12989/gae.2018.15.5.1081 10.1016/j.media.2018.07.004 10.1617/s11527-013-0076-7 10.1016/j.engstruct.2010.12.013 10.1016/j.rse.2020.112033 10.1007/s00603-023-03696-3 10.1038/s41598-022-11351-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Nature Publishing Group 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-65790-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database (ProQuest) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 27 |
| ExternalDocumentID | oai_doaj_org_article_714617fe35ef4b54890ce70dbc28101d 10.1038/s41598-024-65790-y 38937588 10_1038_s41598_024_65790_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: The Natural Science Foundation of Hubei Province grantid: [grant number 2020CFB367] |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c485t-be1b3181ca6d6294ae8f09b6c401b22a9cdf0d31d9927e31aae2110f44b0c3893 |
| IEDL.DBID | M48 |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:44:21 EDT 2025 Sun Oct 26 03:42:45 EDT 2025 Fri Sep 05 07:02:30 EDT 2025 Tue Oct 07 09:02:42 EDT 2025 Mon Jul 21 06:02:39 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Wed Oct 01 01:45:05 EDT 2025 Fri Feb 21 02:37:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Rock damage Transformer algorithm Digital image Image restoration Neural network |
| Language | English |
| License | 2024. The Author(s). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-be1b3181ca6d6294ae8f09b6c401b22a9cdf0d31d9927e31aae2110f44b0c3893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-65790-y |
| PMID | 38937588 |
| PQID | 3072928736 |
| PQPubID | 2041939 |
| PageCount | 27 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_714617fe35ef4b54890ce70dbc28101d unpaywall_primary_10_1038_s41598_024_65790_y proquest_miscellaneous_3073231912 proquest_journals_3072928736 pubmed_primary_38937588 crossref_citationtrail_10_1038_s41598_024_65790_y crossref_primary_10_1038_s41598_024_65790_y springer_journals_10_1038_s41598_024_65790_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-27 |
| PublicationDateYYYYMMDD | 2024-06-27 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | CM Zheng (65790_CR21) 2023; 163 M Rossi (65790_CR27) 2018; 58 B Yang (65790_CR30) 2023; 281 HZ Xing (65790_CR1) 2018; 113 YF Jiang (65790_CR19) 2022; 122 W Wang (65790_CR3) 2022; 55 65790_CR45 R Martin (65790_CR33) 2019; 21 J Lemaitre (65790_CR58) 1984; 80 H Sun (65790_CR25) 2021; 54 H Niu (65790_CR6) 2020; 2020 LM Kachanov (65790_CR14) 1999; 97 HM Li (65790_CR28) 2018; 28 YL Dong (65790_CR34) 2017; 57 FY Bai (65790_CR49) 2021; 31 K Sadegh (65790_CR44) 2019; 126 D Chicco (65790_CR51) 2020; 21 D Zhang (65790_CR20) 2023; 220 M Bizhani (65790_CR42) 2022; 12 ZQ Liu (65790_CR40) 2019; 104 Z Yu (65790_CR43) 2021; 53 M Arora (65790_CR50) 2016; 12 S Dai (65790_CR11) 2019; 9 Q Li (65790_CR16) 2022; 188 Z Zheng (65790_CR32) 2023 A Criminisi (65790_CR36) 2004; 13 IA Maruyam (65790_CR55) 2014; 47 M Badaloni (65790_CR8) 2015; 55 65790_CR17 L Yan (65790_CR41) 2023; 206 Q Guo (65790_CR37) 2022; 12 C Arthur (65790_CR47) 2021; 111 N Wang (65790_CR38) 2020; 106 BA Robson (65790_CR18) 2020; 250 S Li (65790_CR12) 2023; 26 JR Juan (65790_CR35) 2019; 112 Q Gu (65790_CR13) 2018; 15 K Wu (65790_CR24) 2024; 232 K Du (65790_CR10) 2020; 133 YF Zhou (65790_CR53) 2019; 7 FQ Gong (65790_CR57) 2021; 146 M Sidorenko (65790_CR15) 2021; 151 Y Tang (65790_CR2) 2019; 52 RH Cao (65790_CR26) 2022; 22 S Mishra (65790_CR22) 2021; 29 CS Hong (65790_CR52) 2021; 28 MK Markey (65790_CR54) 1999; 76 YR Van Eycke (65790_CR46) 2018; 49 HP Song (65790_CR4) 2013; 36 Y Su (65790_CR7) 2016; 86 HF Lu (65790_CR23) 2022; 140 Y Dmitry (65790_CR48) 2017; 94 M He (65790_CR29) 2023; 161 YT Chen (65790_CR39) 2021; 37 V Rubino (65790_CR9) 2019; 59 Z Zheng (65790_CR31) 2024 J Xu (65790_CR5) 2021; 42 F Lagier (65790_CR56) 2010; 33 |
| References_xml | – volume: 220 start-page: 111175 year: 2023 ident: 65790_CR20 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2022.111175 – volume: 37 start-page: 1691 issue: 7 year: 2021 ident: 65790_CR39 publication-title: VC Print doi: 10.1007/s00371-020-01932-3 – volume: 57 start-page: 1161 issue: 8 year: 2017 ident: 65790_CR34 publication-title: Exp. Mech. doi: 10.1007/s11340-017-0283-1 – volume: 55 start-page: 1411 year: 2015 ident: 65790_CR8 publication-title: Exp. Mech. doi: 10.1007/s11340-015-0039-8 – volume: 106 start-page: 107448 year: 2020 ident: 65790_CR38 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107448 – volume: 31 start-page: 1053 issue: 06 year: 2021 ident: 65790_CR49 publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2021.09.004 – volume: 22 start-page: 188 issue: 4 year: 2022 ident: 65790_CR26 publication-title: Arch. Civ. Mech. Eng. doi: 10.1007/s43452-022-00505-6 – volume: 163 start-page: 105306 year: 2023 ident: 65790_CR21 publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2022.105306 – volume: 21 start-page: 1 year: 2020 ident: 65790_CR51 publication-title: BMC Genomics doi: 10.1186/s12864-019-6413-7 – volume: 281 start-page: 128181 year: 2023 ident: 65790_CR30 publication-title: Energy doi: 10.1016/j.energy.2023.128181 – volume: 206 start-page: 108902 year: 2023 ident: 65790_CR41 publication-title: Signal Process. doi: 10.1016/j.sigpro.2022.108902 – year: 2024 ident: 65790_CR31 publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2024.01.001 – volume: 232 start-page: 212451 year: 2024 ident: 65790_CR24 publication-title: Geoenergy Sci. Eng. doi: 10.1016/j.geoen.2023.212451 – volume: 26 start-page: 3426 year: 2023 ident: 65790_CR12 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.08.102 – volume: 2020 start-page: 1 year: 2020 ident: 65790_CR6 publication-title: Adv. Civ. Eng. doi: 10.1155/2020/8835305 – volume: 36 start-page: 760 issue: 8 year: 2013 ident: 65790_CR4 publication-title: Fatigue Fract. Eng. M doi: 10.1111/ffe.12043 – volume: 9 start-page: 1346 issue: 7 year: 2019 ident: 65790_CR11 publication-title: Appl. Sci. doi: 10.3390/app90713465 – volume: 113 start-page: 61 year: 2018 ident: 65790_CR1 publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2017.11.011 – volume: 97 start-page: 11 issue: 1–4 year: 1999 ident: 65790_CR14 publication-title: Int. J. Fract. doi: 10.1023/A:1018671022008 – volume: 53 start-page: 1467 issue: 9 year: 2021 ident: 65790_CR43 publication-title: Eng. Optimiz. doi: 10.1080/0305215X.2020.1801668 – volume: 111 start-page: 106312 issue: 6 year: 2021 ident: 65790_CR47 publication-title: Ultrasonics doi: 10.1016/j.ultras.2020.106312 – volume: 133 start-page: 104411 year: 2020 ident: 65790_CR10 publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2020.104411 – volume: 12 start-page: 224 issue: 2 year: 2016 ident: 65790_CR50 publication-title: Int. J. Indian Cult. Bus. Manag. doi: 10.1504/IJICBM.2016.074482 – volume: 140 start-page: 106607 year: 2022 ident: 65790_CR23 publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2022.106607 – volume: 12 start-page: 4264 issue: 1 year: 2022 ident: 65790_CR42 publication-title: Sci. Rep. doi: 10.1038/s41598-022-08170-8 – volume: 54 start-page: 4225 issue: 8 year: 2021 ident: 65790_CR25 publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-021-02503-1 – volume: 112 start-page: 103121 year: 2019 ident: 65790_CR35 publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.08.002 – volume: 76 start-page: 2230 issue: 4 year: 1999 ident: 65790_CR54 publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77379-0 – volume: 104 start-page: 129 year: 2019 ident: 65790_CR40 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.04.005 – ident: 65790_CR17 doi: 10.2118/186062-MS – volume: 28 start-page: 161 issue: 2 year: 2021 ident: 65790_CR52 publication-title: Commun. Stat. Appl. Methods doi: 10.29220/CSAM.2021.28.2.161 – volume: 55 start-page: 837 issue: 2 year: 2022 ident: 65790_CR3 publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-021-02682-x – volume: 188 start-page: 110544 year: 2022 ident: 65790_CR16 publication-title: Measurement doi: 10.1016/j.measurement.2021.110544 – volume: 29 start-page: 2162 year: 2021 ident: 65790_CR22 publication-title: Structures doi: 10.1016/j.istruc.2020.08.055 – volume: 13 start-page: 1200 issue: 9 year: 2004 ident: 65790_CR36 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2004.833105 – volume: 52 start-page: 1387 issue: 5 year: 2019 ident: 65790_CR2 publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-018-1685-9 – volume: 80 start-page: 233 issue: 2 year: 1984 ident: 65790_CR58 publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(84)90169-9 – volume: 58 start-page: 1181 issue: 7 year: 2018 ident: 65790_CR27 publication-title: Exp. Mech. doi: 10.1007/s11340-018-0409-0 – volume: 28 start-page: 303 issue: 02 year: 2018 ident: 65790_CR28 publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2017.12.008 – volume: 86 start-page: 132 year: 2016 ident: 65790_CR7 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.05.019 – volume: 59 start-page: 551 year: 2019 ident: 65790_CR9 publication-title: Exp. Mech. doi: 10.1007/s11340-019-00501-7 – ident: 65790_CR45 doi: 10.1109/CVPR52688.2022.01107 – volume: 94 start-page: 103 year: 2017 ident: 65790_CR48 publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.07.002 – volume: 151 start-page: 104716 year: 2021 ident: 65790_CR15 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2021.104716 – volume: 126 start-page: 142 year: 2019 ident: 65790_CR44 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.02.003 – volume: 161 start-page: 105609 year: 2023 ident: 65790_CR29 publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2023.105609 – volume: 7 start-page: 146331 year: 2019 ident: 65790_CR53 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946264 – volume: 146 start-page: 104858 year: 2021 ident: 65790_CR57 publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2021.104858 – volume: 122 start-page: 103580 year: 2022 ident: 65790_CR19 publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2022.103580 – volume: 21 start-page: 1900092 issue: 7 year: 2019 ident: 65790_CR33 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201900092 – volume: 42 start-page: 2 issue: 1 year: 2021 ident: 65790_CR5 publication-title: Rock Soil Mech. doi: 10.16285/j.rsm.2020.5816 – volume: 15 start-page: 1081 issue: 5 year: 2018 ident: 65790_CR13 publication-title: Geomech. Eng. doi: 10.12989/gae.2018.15.5.1081 – volume: 49 start-page: 35 year: 2018 ident: 65790_CR46 publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.07.004 – volume: 47 start-page: 517 issue: 3 year: 2014 ident: 65790_CR55 publication-title: Mater. Struct. doi: 10.1617/s11527-013-0076-7 – volume: 33 start-page: 920 issue: 3 year: 2010 ident: 65790_CR56 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.12.013 – volume: 250 start-page: 112033 year: 2020 ident: 65790_CR18 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112033 – year: 2023 ident: 65790_CR32 publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-023-03696-3 – volume: 12 start-page: 7143 issue: 1 year: 2022 ident: 65790_CR37 publication-title: Sci. Rep. doi: 10.1038/s41598-022-11351-0 |
| SSID | ssj0000529419 |
| Score | 2.4311361 |
| Snippet | In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws... Abstract In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both... |
| SourceID | doaj unpaywall proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 14849 |
| SubjectTerms | 639/166 639/166/986 Acoustic emission Acoustics Algorithms Coal industry Data processing Deep learning Digital image Experimental research Humanities and Social Sciences Image processing Image restoration multidisciplinary Neural network Petroleum industry Rock damage Rock properties Rocks Science Science (multidisciplinary) Transformer algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VSKjtoaL0QYBWRuqtRDi2k9hHWhWhHjiBxM3yK2XFNrtadlXtv2fsZEOQKuihlxxsJ7I9M55vYvsbgC_SFdzZssqFVQEDFEVzK02JD9-UVkqsSqd8L6rzK_HzurwepfqKZ8I6euBu4k7qmHi6bgIvQyMs4mtFXaipt45FbiofV18q1SiY6li9mRKF6m_JUC5P7tBTxdtkTMTTHtil9SNPlAj7_4YyRzukr-Hlqp2b9R8znY6c0NkOvOnRIzntev0WXoR2F7a7fJLrd2BOH7ajyawhk_THIHhiWk9CIotAH4PFuIiQBTqiyYKY6a_ZYrK8-U0mLUFvdku8SfVj7n_ScwLdvIersx-X38_zPodC7oQsl7kNhUWzLZypfIVzYoJsqLKVw7jKMmaU8w31vPBKsTrwwpgQQ8JGCEtdBDMfYKudtWEPSM2lp84IJWouGoSGXFnLLAZUJriK1RkUm_nUricYj3kupjptdHOpOxlolIFOMtDrDL4O78w7eo0nW3-LYhpaRmrsVIAKo3uF0c8pTAaHGyHr3l7vNI8E6hg88iqDo6EaLS1un5g2zFapDUc0rAqWwcdOOYaeJNhXSpnB8UZbHj7-1ICOB436h_Hv_4_xH8ArFq2AVjmrD2FruViFTwislvZzsqF7To4bIw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTojxgPgmMJCReGPREttJ7AeENrRp4qFCiEl7s_yVraIkXdcK9b_n7CZpkVDFSx9ip7Jzd747n_37AXwQNmfWFGXKjfSYoMgsNUIX-OPqwgiBTfGU77i8uORfr4qrPRj3d2HCscp-TYwLtWtt2CM_ZgHiGsN7Vn6e3aaBNSpUV3sKDd1RK7hPEWLsHuzTgIw1gv3Ts_G378OuS6hr8Vx2t2cyJo7v0IOFW2aUh1MgONTVXx4qAvn_K_rcqpw-hAfLZqZXv_V0uuWczh_Doy6qJCdrNXgCe755CvfXPJOrZ6BPNmVq0tZkEncSvCO6ccRHEAn0PfgYFxcyRwc1mRM9vcbpL25-kUlD0Mv9JE7H9m1OANJhBd08h8vzsx9fLtKOWyG1XBSL1PjcoDnnVpeuxG-ivagzaUqL-ZahVEvr6syx3ElJK89yrX1IFWvOTWZDkPMCRk3b-FdAKiZcZjWXvGK8xpCRSWOowURLe1vSKoG8_57KdsDjgf9iqmIBnAm1loFCGagoA7VK4OPwzmwNu7Gz92kQ09AzQGbHB-38WnUWqKrAYF7VnhW-5gYTNZlZX2XOWBpAzlwCh72QVWfHd2qjdQm8H5rRAkNZRTe-XcY-DKNkmdMEXq6VYxhJDAcLIRI46rVl8-e7JnQ0aNR_zP_17qG_gQMa9DsrU1odwmgxX_q3GEotzLvOPv4And0Zeg priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRVXbQwX0lRaQkbh1oya2k9jHLQKhPXBpkbhZfqWs2GbRsqtq_33HTjYsaoXgkoNfij0znhmP_Q3AsbA5s6YoU26kRwdFZqkRusCPqwsjBFbFW74X5fklH18VV1swXL-FeRC_j9Ddd6hiwjMwysM1DRxr9QK2BTKmGMD2aDT-Me7PVELUiueyexuD3b_92_mB_okw_f-zLTfiom_g1bK51as_ejrdUD1nO_C2sxnJqCXyLmz5Zg9etlkkV-9Aj-6D0GRWk0k8J_CO6MYRHyEiULNgMW4dZI7qZzInevprNp8srn-TSUNQh90Qp2P9JuI_6ZCArt_D5dnpz5PztMuckFouikVqfG5QWHOrS1fimmgv6kya0qI3ZSjV0ro6cyx3UtLKs1xrHxzBmnOT2WDCfIBBM2v8JyAVEy6zmkteMV6jQcikMdSgG6W9LWmVQL5eT2U7WPGQ3WKqYnibCdXSQCENVKSBWiXwte9z24JqPNr6eyBT3zIAYscC5BPVyZeqQn7yqvas8DU36IbJzPoqc8bSAGHmEthfE1l1UnqnWIBNR5eRlQkc9dUoXyFoohs_W8Y2DG1gmdMEPrbM0f9JNPYKIRIYrrnlfvDHJjTsOeoJ8__8vNG_wGsa-D0rU1rtw2AxX_oDNJwW5rCTl7-SKg4_ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48KYECjISN5qS2E5iHxdEVXGoOLBSOVl-ha66ZKvdrKrl1zN2sukWVVW55OCXYnsm803G_gbgg7A5s6YoU26kRwdFZqkRusCHqwsjBFbFU77H5dGEfzspTnqanHAX5kr8nolPSzQw4RIY5eGQBo60vgs7ZYG4ewQ7k-Pv458hexzikhShAe1vxVzf8YrliQT916HKrYjoQ7i_as71-kLPZltG5_Bxl71oGbkKw1mTs4NVaw7sn3-YHG83nyfwqMeeZNwJy1O445tncK_LRrl-Dnp8Gcwm85pM4_8G74huHPGRagItFBbjJ4gs0IxNF0TPfs0X0_b0N5k2BG3hGXE61m9nDiA9o9DpC5gcfv3x5SjtMzCklouiTY3PDSp9bnXpSiq59qLOpCktemWGUi2tqzPHciclrTzLtfbBoaw5N5kNUOgljJp5418BqZhwmdVc8orxGoElk8ZQg-6Y9rakVQL5ZneU7enJQ5aMmYphciZUt3QKl07FpVPrBD4Ofc47co4bW38Omz60DMTasQD3R_V6qqqQ57yqPSt8zQ26czKzvsqcsTRQobkE9jYio3ptXyoW6NfR9WRlAu-HatTTEHzRjZ-vYhuGWFrmNIHdTtSGN4mgsRAigf2N7F0OftOE9gf5vMX8X_9f8zfwgAYxzcqUVnswahcr_xYBWGve9Zr3F71bJIE priority: 102 providerName: Unpaywall |
| Title | Application of improved and efficient image repair algorithm in rock damage experimental research |
| URI | https://link.springer.com/article/10.1038/s41598-024-65790-y https://www.ncbi.nlm.nih.gov/pubmed/38937588 https://www.proquest.com/docview/3072928736 https://www.proquest.com/docview/3073231912 https://doi.org/10.1038/s41598-024-65790-y https://doaj.org/article/714617fe35ef4b54890ce70dbc28101d |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tQwh4QHwTGJWReGOBxHYS-wGhrto09aGagErjKfJXtoqSjqwV9L_n7KRdkaqJB14SyefEse8ud-eP3wG8FSZlRmd5zLV0GKDIJNZCZXixVaaFQFLY5TvKT8d8eJ6d78Aq3VE3gNdbQzufT2rcTN___rn8hAr_sT0yLj5coxHyB8Uo9xs5sLXlLuxT367fyte5-y3WN5U8ld3Zme2P_mWfAoz_Nt9zY930Ptxd1Fdq-UtNpxum6eQhPOh8StJvheAR7Lj6Mdxps0wun4Dq3yxSk1lFJmEewVmiaktcgJBAy4PF-GshDZqnSUPU9GLWTOaXP8ikJmjjvhOrAn0zIwDpkIIun8L45Pjr4DTuMivEhotsHmuXalTm1Kjc5jgmyokqkTo3GG1pSpU0tkosS62UtHAsVcr5QLHiXCfGuzjPYK-e1e4FkIIJmxjFJS8Yr9BhZFJrqjHMUs7ktIggXY1naTrYcZ_9YlqG5W8mypYHJfKgDDwolxG8Wz9z1YJu3Fr7yLNpXdMDZoeCWXNRdvpXFj5_eVE5lrmKawzTZGJckVhtqIc4sxEcrJhcroSwZB5WHUNKlkfwZk1G_fOLKqp2s0Wow9BHlimN4HkrHOsvCc5gJkQEhytpuXn5bR06XEvUP_T_5f_o_yu4R70WJHlMiwPYmzcL9xrdrbnuwW5xXvRgv98ffhni_eh4dPYZSwf5oBemMHpBy5AyHp31v_0BfHIq0Q |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1Q4IN4NFDASnGjUxHYS-1ChFlptaVkh1Eq9Gb_Srrpkl32o2j_Hb2PsTbKLhFZcesnBdix7ZuyZ8djzIfSOm5QaneUx08KBgyKSWHOVwceWmeYcqsIt327eOWdfLrKLNfS7eQvjr1U2e2LYqO3A-DPyXepTXIN5T_OPw1-xR43y0dUGQkPV0Ap2L6QYqx92nLjZDbhw473jz8Dv94QcHZ596sQ1ykBsGM8msXapBsFOjcptTgRTjpeJ0LkBz0MTooSxZWJpaoUghaOpUs47TSVjOjFe3UO_d9AGo0yA87dxcNj99r095fFxNJaK-rVOQvnuGDSmf9VGmL91AqSZ_aURA3DAv6zdpUjtfbQ5rYZqdqP6_SVlePQQPaitWLw_F7tHaM1Vj9HdOa7l7AlS-4uwOB6UuBdOLpzFqrLYhaQVoOugGDYzPAKF2Bth1b8Eck-ufuJehUGrXmOrQv0yBgGucxNdPUXnt0LlZ2i9GlRuC-GCcpsYxQQrKCvBRKVCa6LBsVPO5KSIUNrQU5o60bnH2-jLEHCnXM55IIEHMvBAziL0of1nOE_zsbL1gWdT29Kn6A4Fg9GlrFe8LDxielE6mrmSaXAMRWJckVhtiE-qZiO03TBZ1vvGWC6kPEJv22pY8T6Moyo3mIY2FKxykZIIPZ8LRzuSYH5mnEdop5GWReerJrTTStR_zP_F6qG_QZuds6-n8vS4e_IS3SNe1pM8JsU2Wp-Mpu4VmHET_bpeKxj9uO3l-Qd1gVZk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFvA6IZwkUMBKcaLSJ7cT2AaFCWbUUVRyotLfUr7QrttllH6r21_g6xs5jFwmtuPSSg-1Y9jw8M57xDEJvhUmp0VkeMy0dGCgyibVQGXxsmWkhoCtE-Z7kh6fs6yAbbKHf7VsYH1bZnonhoLZj4-_Ie9SnuAb1nua9sgmL-H7Q_zj5FfsKUt7T2pbTqEnk2C2vwHybfTg6AFy_I6T_5cfnw7ipMBAbJrJ5rF2qgahTo3KbE8mUE2UidW7A6tCEKGlsmViaWikJdzRVynmDqWRMJ8aLepj3BrrJKZU-nJAPeHe_4z1oLJXNO52Eit4MZKV_z0aYjzcBoCz_koWhZMC_9Nw1H-09dGdRTdTySo1Ga2Kw_wDdb_RXvF8T3EO05apH6FZd0XL5GKn9lUMcj0s8DHcWzmJVWexCugqQctAMxxiegigcTrEanQNw5xeXeFhhkKc_sVWhf736AG6yEl08QafXAuOnaLsaV-4ZwpwKmxjFJOOUlaCcUqk10WDSKWdywiOUtvAsTJPi3FfaGBXB1U5FUeOgABwUAQfFMkLvu38mdYKPjaM_eTR1I31y7tAwnp4XDa8X3NdK56WjmSuZBpNQJsbxxGpDfDo1G6HdFslFc2LMihV9R-hN1w287h04qnLjRRhDQR-XKYnQTk0c3UqC4pkJEaG9llpWk2_a0F5HUf-x_-ebl_4a3QamLL4dnRy_QHeJJ_UkjwnfRdvz6cK9BP1trl8FRsHo7Lo58w8Fi1P- |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48KYECjISN5qS2E5iHxdEVXGoOLBSOVl-ha66ZKvdrKrl1zN2sukWVVW55OCXYnsm803G_gbgg7A5s6YoU26kRwdFZqkRusCHqwsjBFbFU77H5dGEfzspTnqanHAX5kr8nolPSzQw4RIY5eGQBo60vgs7ZYG4ewQ7k-Pv458hexzikhShAe1vxVzf8YrliQT916HKrYjoQ7i_as71-kLPZltG5_Bxl71oGbkKw1mTs4NVaw7sn3-YHG83nyfwqMeeZNwJy1O445tncK_LRrl-Dnp8Gcwm85pM4_8G74huHPGRagItFBbjJ4gs0IxNF0TPfs0X0_b0N5k2BG3hGXE61m9nDiA9o9DpC5gcfv3x5SjtMzCklouiTY3PDSp9bnXpSiq59qLOpCktemWGUi2tqzPHciclrTzLtfbBoaw5N5kNUOgljJp5418BqZhwmdVc8orxGoElk8ZQg-6Y9rakVQL5ZneU7enJQ5aMmYphciZUt3QKl07FpVPrBD4Ofc47co4bW38Omz60DMTasQD3R_V6qqqQ57yqPSt8zQ26czKzvsqcsTRQobkE9jYio3ptXyoW6NfR9WRlAu-HatTTEHzRjZ-vYhuGWFrmNIHdTtSGN4mgsRAigf2N7F0OftOE9gf5vMX8X_9f8zfwgAYxzcqUVnswahcr_xYBWGve9Zr3F71bJIE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+improved+and+efficient+image+repair+algorithm+in+rock+damage+experimental+research&rft.jtitle=Scientific+reports&rft.au=Mingzhe+Xu&rft.au=Xianyin+Qi&rft.au=Diandong+Geng&rft.date=2024-06-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1038%2Fs41598-024-65790-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_714617fe35ef4b54890ce70dbc28101d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |