Application of improved and efficient image repair algorithm in rock damage experimental research

In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 14849 - 27
Main Authors Xu, Mingzhe, Qi, Xianyin, Geng, Diandong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.06.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-65790-y

Cover

Abstract In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm’s operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis.
AbstractList In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm’s operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis.
In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm's operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis.In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm's operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis.
Abstract In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws during data processing. Digital image technology is vulnerable to interference from fractures and scaling, leading to potential loss of image data; while acoustic emission technology is not hindered by these issues, noise from rock destruction can interfere with the electrical signals, causing errors. The monitoring errors of these techniques can undermine the effectiveness of rock damage analysis. To address this issue, this paper focuses on the restoration of image data acquired through digital image technology, leveraging deep learning techniques, and using soft and hard rocks made of similar materials as research subjects, an improved Incremental Transformer image algorithm is employed to repair distorted or missing strain nephograms during uniaxial compression experiments. The concrete implementation entails using a comprehensive training set of strain nephograms derived from digital image technology, fabricating masks for absent image segments, and predicting strain nephograms with full strain detail. Additionally, we adopt deep separable convolutional networks to optimize the algorithm’s operational efficiency. Based on this, the analysis of rock damage is conducted using the repaired strain nephograms, achieving a closer correlation with the actual physical processes of rock damage compared to conventional digital image technology and acoustic emission techniques. The improved incremental Transformer algorithm presented in this paper will contribute to enhancing the efficiency of digital image technology in the realm of rock damage, saving time and money, and offering an innovative approach to traditional rock damage analysis.
ArticleNumber 14849
Author Qi, Xianyin
Geng, Diandong
Xu, Mingzhe
Author_xml – sequence: 1
  givenname: Mingzhe
  surname: Xu
  fullname: Xu, Mingzhe
  organization: School of Urban Construction, Yangtze University
– sequence: 2
  givenname: Xianyin
  surname: Qi
  fullname: Qi, Xianyin
  email: qixianyin001@163.com
  organization: School of Urban Construction, Yangtze University, State Key Laboratory of Geomechanics and Geotechnical Engineering, Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
– sequence: 3
  givenname: Diandong
  surname: Geng
  fullname: Geng, Diandong
  organization: School of Urban Construction, Yangtze University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38937588$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxSNUREvpF-CAInHhEvC_JPaxqqCtVIkLnK2JPdl6SexgJ8B-e7ybpaAeKnyxNf690Zs3L4sTHzwWxWtK3lPC5YckaK1kRZiomrpVpNo9K84YEXXFOGMn_7xPi4uUtiSfmilB1YvilEvF21rKswIup2lwBmYXfBn60o1TDD_QluBtiX3vjEM_5zJssIw4gYslDJsQ3Xw_ls6XMZhvpYXDP_6aMLoxC2DIcEKI5v5V8byHIeHF8T4vvn76-OXqprr7fH17dXlXGSHrueqQdpxKaqCxTfYJKHuiusYIQjvGQBnbE8upVYq1yCkAMkpJL0RHzH6e8-J27WsDbPWUfUDc6QBOHwohbjTE2ZkBdUtFQ9seeY296GohFTHYEtsZJimhNvfia6_FT7D7CcPw0JASvc9fr_nrnL8-5K93WfVuVeUIvy-YZj26ZHAYwGNYkuak5YxTRVlG3z5Ct2GJPuezp5hisuVNpt4cqaUb0T54-LO-DMgVMDGkFLHXxs2HXc4R3PC0WfZI-l8THnNJGfYbjH9tP6H6DZVOz4Q
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3548323
Cites_doi 10.1016/j.petrol.2022.111175
10.1007/s00371-020-01932-3
10.1007/s11340-017-0283-1
10.1007/s11340-015-0039-8
10.1016/j.patcog.2020.107448
10.1016/j.ijmst.2021.09.004
10.1007/s43452-022-00505-6
10.1016/j.ijrmms.2022.105306
10.1186/s12864-019-6413-7
10.1016/j.energy.2023.128181
10.1016/j.sigpro.2022.108902
10.1016/j.ijmst.2024.01.001
10.1016/j.geoen.2023.212451
10.1016/j.jmrt.2023.08.102
10.1155/2020/8835305
10.1111/ffe.12043
10.3390/app90713465
10.1016/j.ijimpeng.2017.11.011
10.1023/A:1018671022008
10.1080/0305215X.2020.1801668
10.1016/j.ultras.2020.106312
10.1016/j.ijrmms.2020.104411
10.1504/IJICBM.2016.074482
10.1016/j.engfailanal.2022.106607
10.1038/s41598-022-08170-8
10.1007/s00603-021-02503-1
10.1016/j.compind.2019.08.002
10.1016/S0006-3495(99)77379-0
10.1016/j.autcon.2019.04.005
10.2118/186062-MS
10.29220/CSAM.2021.28.2.161
10.1007/s00603-021-02682-x
10.1016/j.measurement.2021.110544
10.1016/j.istruc.2020.08.055
10.1109/TIP.2004.833105
10.1007/s00603-018-1685-9
10.1016/0029-5493(84)90169-9
10.1007/s11340-018-0409-0
10.1016/j.ijmst.2017.12.008
10.1016/j.optlaseng.2016.05.019
10.1007/s11340-019-00501-7
10.1109/CVPR52688.2022.01107
10.1016/j.neunet.2017.07.002
10.1016/j.cageo.2021.104716
10.1016/j.cageo.2019.02.003
10.1016/j.compgeo.2023.105609
10.1109/ACCESS.2019.2946264
10.1016/j.ijrmms.2021.104858
10.1016/j.tafmec.2022.103580
10.1002/adem.201900092
10.16285/j.rsm.2020.5816
10.12989/gae.2018.15.5.1081
10.1016/j.media.2018.07.004
10.1617/s11527-013-0076-7
10.1016/j.engstruct.2010.12.013
10.1016/j.rse.2020.112033
10.1007/s00603-023-03696-3
10.1038/s41598-022-11351-0
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-65790-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database (ProQuest)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 27
ExternalDocumentID oai_doaj_org_article_714617fe35ef4b54890ce70dbc28101d
10.1038/s41598-024-65790-y
38937588
10_1038_s41598_024_65790_y
Genre Journal Article
GrantInformation_xml – fundername: The Natural Science Foundation of Hubei Province
  grantid: [grant number 2020CFB367]
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c485t-be1b3181ca6d6294ae8f09b6c401b22a9cdf0d31d9927e31aae2110f44b0c3893
IEDL.DBID M48
ISSN 2045-2322
IngestDate Fri Oct 03 12:44:21 EDT 2025
Sun Oct 26 03:42:45 EDT 2025
Fri Sep 05 07:02:30 EDT 2025
Tue Oct 07 09:02:42 EDT 2025
Mon Jul 21 06:02:39 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Wed Oct 01 01:45:05 EDT 2025
Fri Feb 21 02:37:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rock damage
Transformer algorithm
Digital image
Image restoration
Neural network
Language English
License 2024. The Author(s).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-be1b3181ca6d6294ae8f09b6c401b22a9cdf0d31d9927e31aae2110f44b0c3893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-65790-y
PMID 38937588
PQID 3072928736
PQPubID 2041939
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_714617fe35ef4b54890ce70dbc28101d
unpaywall_primary_10_1038_s41598_024_65790_y
proquest_miscellaneous_3073231912
proquest_journals_3072928736
pubmed_primary_38937588
crossref_citationtrail_10_1038_s41598_024_65790_y
crossref_primary_10_1038_s41598_024_65790_y
springer_journals_10_1038_s41598_024_65790_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-27
PublicationDateYYYYMMDD 2024-06-27
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References CM Zheng (65790_CR21) 2023; 163
M Rossi (65790_CR27) 2018; 58
B Yang (65790_CR30) 2023; 281
HZ Xing (65790_CR1) 2018; 113
YF Jiang (65790_CR19) 2022; 122
W Wang (65790_CR3) 2022; 55
65790_CR45
R Martin (65790_CR33) 2019; 21
J Lemaitre (65790_CR58) 1984; 80
H Sun (65790_CR25) 2021; 54
H Niu (65790_CR6) 2020; 2020
LM Kachanov (65790_CR14) 1999; 97
HM Li (65790_CR28) 2018; 28
YL Dong (65790_CR34) 2017; 57
FY Bai (65790_CR49) 2021; 31
K Sadegh (65790_CR44) 2019; 126
D Chicco (65790_CR51) 2020; 21
D Zhang (65790_CR20) 2023; 220
M Bizhani (65790_CR42) 2022; 12
ZQ Liu (65790_CR40) 2019; 104
Z Yu (65790_CR43) 2021; 53
M Arora (65790_CR50) 2016; 12
S Dai (65790_CR11) 2019; 9
Q Li (65790_CR16) 2022; 188
Z Zheng (65790_CR32) 2023
A Criminisi (65790_CR36) 2004; 13
IA Maruyam (65790_CR55) 2014; 47
M Badaloni (65790_CR8) 2015; 55
65790_CR17
L Yan (65790_CR41) 2023; 206
Q Guo (65790_CR37) 2022; 12
C Arthur (65790_CR47) 2021; 111
N Wang (65790_CR38) 2020; 106
BA Robson (65790_CR18) 2020; 250
S Li (65790_CR12) 2023; 26
JR Juan (65790_CR35) 2019; 112
Q Gu (65790_CR13) 2018; 15
K Wu (65790_CR24) 2024; 232
K Du (65790_CR10) 2020; 133
YF Zhou (65790_CR53) 2019; 7
FQ Gong (65790_CR57) 2021; 146
M Sidorenko (65790_CR15) 2021; 151
Y Tang (65790_CR2) 2019; 52
RH Cao (65790_CR26) 2022; 22
S Mishra (65790_CR22) 2021; 29
CS Hong (65790_CR52) 2021; 28
MK Markey (65790_CR54) 1999; 76
YR Van Eycke (65790_CR46) 2018; 49
HP Song (65790_CR4) 2013; 36
Y Su (65790_CR7) 2016; 86
HF Lu (65790_CR23) 2022; 140
Y Dmitry (65790_CR48) 2017; 94
M He (65790_CR29) 2023; 161
YT Chen (65790_CR39) 2021; 37
V Rubino (65790_CR9) 2019; 59
Z Zheng (65790_CR31) 2024
J Xu (65790_CR5) 2021; 42
F Lagier (65790_CR56) 2010; 33
References_xml – volume: 220
  start-page: 111175
  year: 2023
  ident: 65790_CR20
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.111175
– volume: 37
  start-page: 1691
  issue: 7
  year: 2021
  ident: 65790_CR39
  publication-title: VC Print
  doi: 10.1007/s00371-020-01932-3
– volume: 57
  start-page: 1161
  issue: 8
  year: 2017
  ident: 65790_CR34
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-017-0283-1
– volume: 55
  start-page: 1411
  year: 2015
  ident: 65790_CR8
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-015-0039-8
– volume: 106
  start-page: 107448
  year: 2020
  ident: 65790_CR38
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107448
– volume: 31
  start-page: 1053
  issue: 06
  year: 2021
  ident: 65790_CR49
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2021.09.004
– volume: 22
  start-page: 188
  issue: 4
  year: 2022
  ident: 65790_CR26
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1007/s43452-022-00505-6
– volume: 163
  start-page: 105306
  year: 2023
  ident: 65790_CR21
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2022.105306
– volume: 21
  start-page: 1
  year: 2020
  ident: 65790_CR51
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6413-7
– volume: 281
  start-page: 128181
  year: 2023
  ident: 65790_CR30
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128181
– volume: 206
  start-page: 108902
  year: 2023
  ident: 65790_CR41
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2022.108902
– year: 2024
  ident: 65790_CR31
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2024.01.001
– volume: 232
  start-page: 212451
  year: 2024
  ident: 65790_CR24
  publication-title: Geoenergy Sci. Eng.
  doi: 10.1016/j.geoen.2023.212451
– volume: 26
  start-page: 3426
  year: 2023
  ident: 65790_CR12
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.08.102
– volume: 2020
  start-page: 1
  year: 2020
  ident: 65790_CR6
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2020/8835305
– volume: 36
  start-page: 760
  issue: 8
  year: 2013
  ident: 65790_CR4
  publication-title: Fatigue Fract. Eng. M
  doi: 10.1111/ffe.12043
– volume: 9
  start-page: 1346
  issue: 7
  year: 2019
  ident: 65790_CR11
  publication-title: Appl. Sci.
  doi: 10.3390/app90713465
– volume: 113
  start-page: 61
  year: 2018
  ident: 65790_CR1
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2017.11.011
– volume: 97
  start-page: 11
  issue: 1–4
  year: 1999
  ident: 65790_CR14
  publication-title: Int. J. Fract.
  doi: 10.1023/A:1018671022008
– volume: 53
  start-page: 1467
  issue: 9
  year: 2021
  ident: 65790_CR43
  publication-title: Eng. Optimiz.
  doi: 10.1080/0305215X.2020.1801668
– volume: 111
  start-page: 106312
  issue: 6
  year: 2021
  ident: 65790_CR47
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2020.106312
– volume: 133
  start-page: 104411
  year: 2020
  ident: 65790_CR10
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2020.104411
– volume: 12
  start-page: 224
  issue: 2
  year: 2016
  ident: 65790_CR50
  publication-title: Int. J. Indian Cult. Bus. Manag.
  doi: 10.1504/IJICBM.2016.074482
– volume: 140
  start-page: 106607
  year: 2022
  ident: 65790_CR23
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2022.106607
– volume: 12
  start-page: 4264
  issue: 1
  year: 2022
  ident: 65790_CR42
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-08170-8
– volume: 54
  start-page: 4225
  issue: 8
  year: 2021
  ident: 65790_CR25
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-021-02503-1
– volume: 112
  start-page: 103121
  year: 2019
  ident: 65790_CR35
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.08.002
– volume: 76
  start-page: 2230
  issue: 4
  year: 1999
  ident: 65790_CR54
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77379-0
– volume: 104
  start-page: 129
  year: 2019
  ident: 65790_CR40
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.04.005
– ident: 65790_CR17
  doi: 10.2118/186062-MS
– volume: 28
  start-page: 161
  issue: 2
  year: 2021
  ident: 65790_CR52
  publication-title: Commun. Stat. Appl. Methods
  doi: 10.29220/CSAM.2021.28.2.161
– volume: 55
  start-page: 837
  issue: 2
  year: 2022
  ident: 65790_CR3
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-021-02682-x
– volume: 188
  start-page: 110544
  year: 2022
  ident: 65790_CR16
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110544
– volume: 29
  start-page: 2162
  year: 2021
  ident: 65790_CR22
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.08.055
– volume: 13
  start-page: 1200
  issue: 9
  year: 2004
  ident: 65790_CR36
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2004.833105
– volume: 52
  start-page: 1387
  issue: 5
  year: 2019
  ident: 65790_CR2
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-018-1685-9
– volume: 80
  start-page: 233
  issue: 2
  year: 1984
  ident: 65790_CR58
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(84)90169-9
– volume: 58
  start-page: 1181
  issue: 7
  year: 2018
  ident: 65790_CR27
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-018-0409-0
– volume: 28
  start-page: 303
  issue: 02
  year: 2018
  ident: 65790_CR28
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2017.12.008
– volume: 86
  start-page: 132
  year: 2016
  ident: 65790_CR7
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2016.05.019
– volume: 59
  start-page: 551
  year: 2019
  ident: 65790_CR9
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-019-00501-7
– ident: 65790_CR45
  doi: 10.1109/CVPR52688.2022.01107
– volume: 94
  start-page: 103
  year: 2017
  ident: 65790_CR48
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.07.002
– volume: 151
  start-page: 104716
  year: 2021
  ident: 65790_CR15
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104716
– volume: 126
  start-page: 142
  year: 2019
  ident: 65790_CR44
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.02.003
– volume: 161
  start-page: 105609
  year: 2023
  ident: 65790_CR29
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2023.105609
– volume: 7
  start-page: 146331
  year: 2019
  ident: 65790_CR53
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946264
– volume: 146
  start-page: 104858
  year: 2021
  ident: 65790_CR57
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2021.104858
– volume: 122
  start-page: 103580
  year: 2022
  ident: 65790_CR19
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2022.103580
– volume: 21
  start-page: 1900092
  issue: 7
  year: 2019
  ident: 65790_CR33
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201900092
– volume: 42
  start-page: 2
  issue: 1
  year: 2021
  ident: 65790_CR5
  publication-title: Rock Soil Mech.
  doi: 10.16285/j.rsm.2020.5816
– volume: 15
  start-page: 1081
  issue: 5
  year: 2018
  ident: 65790_CR13
  publication-title: Geomech. Eng.
  doi: 10.12989/gae.2018.15.5.1081
– volume: 49
  start-page: 35
  year: 2018
  ident: 65790_CR46
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.07.004
– volume: 47
  start-page: 517
  issue: 3
  year: 2014
  ident: 65790_CR55
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-013-0076-7
– volume: 33
  start-page: 920
  issue: 3
  year: 2010
  ident: 65790_CR56
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.12.013
– volume: 250
  start-page: 112033
  year: 2020
  ident: 65790_CR18
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112033
– year: 2023
  ident: 65790_CR32
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-023-03696-3
– volume: 12
  start-page: 7143
  issue: 1
  year: 2022
  ident: 65790_CR37
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-11351-0
SSID ssj0000529419
Score 2.4311361
Snippet In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both exhibit flaws...
Abstract In the petroleum and coal industries, digital image technology and acoustic emission technology are employed to study rock properties, but both...
SourceID doaj
unpaywall
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14849
SubjectTerms 639/166
639/166/986
Acoustic emission
Acoustics
Algorithms
Coal industry
Data processing
Deep learning
Digital image
Experimental research
Humanities and Social Sciences
Image processing
Image restoration
multidisciplinary
Neural network
Petroleum industry
Rock damage
Rock properties
Rocks
Science
Science (multidisciplinary)
Transformer algorithm
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VSKjtoaL0QYBWRuqtRDi2k9hHWhWhHjiBxM3yK2XFNrtadlXtv2fsZEOQKuihlxxsJ7I9M55vYvsbgC_SFdzZssqFVQEDFEVzK02JD9-UVkqsSqd8L6rzK_HzurwepfqKZ8I6euBu4k7qmHi6bgIvQyMs4mtFXaipt45FbiofV18q1SiY6li9mRKF6m_JUC5P7tBTxdtkTMTTHtil9SNPlAj7_4YyRzukr-Hlqp2b9R8znY6c0NkOvOnRIzntev0WXoR2F7a7fJLrd2BOH7ajyawhk_THIHhiWk9CIotAH4PFuIiQBTqiyYKY6a_ZYrK8-U0mLUFvdku8SfVj7n_ScwLdvIersx-X38_zPodC7oQsl7kNhUWzLZypfIVzYoJsqLKVw7jKMmaU8w31vPBKsTrwwpgQQ8JGCEtdBDMfYKudtWEPSM2lp84IJWouGoSGXFnLLAZUJriK1RkUm_nUricYj3kupjptdHOpOxlolIFOMtDrDL4O78w7eo0nW3-LYhpaRmrsVIAKo3uF0c8pTAaHGyHr3l7vNI8E6hg88iqDo6EaLS1un5g2zFapDUc0rAqWwcdOOYaeJNhXSpnB8UZbHj7-1ICOB436h_Hv_4_xH8ArFq2AVjmrD2FruViFTwislvZzsqF7To4bIw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTojxgPgmMJCReGPREttJ7AeENrRp4qFCiEl7s_yVraIkXdcK9b_n7CZpkVDFSx9ip7Jzd747n_37AXwQNmfWFGXKjfSYoMgsNUIX-OPqwgiBTfGU77i8uORfr4qrPRj3d2HCscp-TYwLtWtt2CM_ZgHiGsN7Vn6e3aaBNSpUV3sKDd1RK7hPEWLsHuzTgIw1gv3Ts_G378OuS6hr8Vx2t2cyJo7v0IOFW2aUh1MgONTVXx4qAvn_K_rcqpw-hAfLZqZXv_V0uuWczh_Doy6qJCdrNXgCe755CvfXPJOrZ6BPNmVq0tZkEncSvCO6ccRHEAn0PfgYFxcyRwc1mRM9vcbpL25-kUlD0Mv9JE7H9m1OANJhBd08h8vzsx9fLtKOWyG1XBSL1PjcoDnnVpeuxG-ivagzaUqL-ZahVEvr6syx3ElJK89yrX1IFWvOTWZDkPMCRk3b-FdAKiZcZjWXvGK8xpCRSWOowURLe1vSKoG8_57KdsDjgf9iqmIBnAm1loFCGagoA7VK4OPwzmwNu7Gz92kQ09AzQGbHB-38WnUWqKrAYF7VnhW-5gYTNZlZX2XOWBpAzlwCh72QVWfHd2qjdQm8H5rRAkNZRTe-XcY-DKNkmdMEXq6VYxhJDAcLIRI46rVl8-e7JnQ0aNR_zP_17qG_gQMa9DsrU1odwmgxX_q3GEotzLvOPv4And0Zeg
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRVXbQwX0lRaQkbh1oya2k9jHLQKhPXBpkbhZfqWs2GbRsqtq_33HTjYsaoXgkoNfij0znhmP_Q3AsbA5s6YoU26kRwdFZqkRusCPqwsjBFbFW74X5fklH18VV1swXL-FeRC_j9Ddd6hiwjMwysM1DRxr9QK2BTKmGMD2aDT-Me7PVELUiueyexuD3b_92_mB_okw_f-zLTfiom_g1bK51as_ejrdUD1nO_C2sxnJqCXyLmz5Zg9etlkkV-9Aj-6D0GRWk0k8J_CO6MYRHyEiULNgMW4dZI7qZzInevprNp8srn-TSUNQh90Qp2P9JuI_6ZCArt_D5dnpz5PztMuckFouikVqfG5QWHOrS1fimmgv6kya0qI3ZSjV0ro6cyx3UtLKs1xrHxzBmnOT2WDCfIBBM2v8JyAVEy6zmkteMV6jQcikMdSgG6W9LWmVQL5eT2U7WPGQ3WKqYnibCdXSQCENVKSBWiXwte9z24JqPNr6eyBT3zIAYscC5BPVyZeqQn7yqvas8DU36IbJzPoqc8bSAGHmEthfE1l1UnqnWIBNR5eRlQkc9dUoXyFoohs_W8Y2DG1gmdMEPrbM0f9JNPYKIRIYrrnlfvDHJjTsOeoJ8__8vNG_wGsa-D0rU1rtw2AxX_oDNJwW5rCTl7-SKg4_
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48KYECjISN5qS2E5iHxdEVXGoOLBSOVl-ha66ZKvdrKrl1zN2sukWVVW55OCXYnsm803G_gbgg7A5s6YoU26kRwdFZqkRusCHqwsjBFbFU77H5dGEfzspTnqanHAX5kr8nolPSzQw4RIY5eGQBo60vgs7ZYG4ewQ7k-Pv458hexzikhShAe1vxVzf8YrliQT916HKrYjoQ7i_as71-kLPZltG5_Bxl71oGbkKw1mTs4NVaw7sn3-YHG83nyfwqMeeZNwJy1O445tncK_LRrl-Dnp8Gcwm85pM4_8G74huHPGRagItFBbjJ4gs0IxNF0TPfs0X0_b0N5k2BG3hGXE61m9nDiA9o9DpC5gcfv3x5SjtMzCklouiTY3PDSp9bnXpSiq59qLOpCktemWGUi2tqzPHciclrTzLtfbBoaw5N5kNUOgljJp5418BqZhwmdVc8orxGoElk8ZQg-6Y9rakVQL5ZneU7enJQ5aMmYphciZUt3QKl07FpVPrBD4Ofc47co4bW38Omz60DMTasQD3R_V6qqqQ57yqPSt8zQ26czKzvsqcsTRQobkE9jYio3ptXyoW6NfR9WRlAu-HatTTEHzRjZ-vYhuGWFrmNIHdTtSGN4mgsRAigf2N7F0OftOE9gf5vMX8X_9f8zfwgAYxzcqUVnswahcr_xYBWGve9Zr3F71bJIE
  priority: 102
  providerName: Unpaywall
Title Application of improved and efficient image repair algorithm in rock damage experimental research
URI https://link.springer.com/article/10.1038/s41598-024-65790-y
https://www.ncbi.nlm.nih.gov/pubmed/38937588
https://www.proquest.com/docview/3072928736
https://www.proquest.com/docview/3073231912
https://doi.org/10.1038/s41598-024-65790-y
https://doaj.org/article/714617fe35ef4b54890ce70dbc28101d
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tQwh4QHwTGJWReGOBxHYS-wGhrto09aGagErjKfJXtoqSjqwV9L_n7KRdkaqJB14SyefEse8ud-eP3wG8FSZlRmd5zLV0GKDIJNZCZXixVaaFQFLY5TvKT8d8eJ6d78Aq3VE3gNdbQzufT2rcTN___rn8hAr_sT0yLj5coxHyB8Uo9xs5sLXlLuxT367fyte5-y3WN5U8ld3Zme2P_mWfAoz_Nt9zY930Ptxd1Fdq-UtNpxum6eQhPOh8StJvheAR7Lj6Mdxps0wun4Dq3yxSk1lFJmEewVmiaktcgJBAy4PF-GshDZqnSUPU9GLWTOaXP8ikJmjjvhOrAn0zIwDpkIIun8L45Pjr4DTuMivEhotsHmuXalTm1Kjc5jgmyokqkTo3GG1pSpU0tkosS62UtHAsVcr5QLHiXCfGuzjPYK-e1e4FkIIJmxjFJS8Yr9BhZFJrqjHMUs7ktIggXY1naTrYcZ_9YlqG5W8mypYHJfKgDDwolxG8Wz9z1YJu3Fr7yLNpXdMDZoeCWXNRdvpXFj5_eVE5lrmKawzTZGJckVhtqIc4sxEcrJhcroSwZB5WHUNKlkfwZk1G_fOLKqp2s0Wow9BHlimN4HkrHOsvCc5gJkQEhytpuXn5bR06XEvUP_T_5f_o_yu4R70WJHlMiwPYmzcL9xrdrbnuwW5xXvRgv98ffhni_eh4dPYZSwf5oBemMHpBy5AyHp31v_0BfHIq0Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1Q4IN4NFDASnGjUxHYS-1ChFlptaVkh1Eq9Gb_Srrpkl32o2j_Hb2PsTbKLhFZcesnBdix7ZuyZ8djzIfSOm5QaneUx08KBgyKSWHOVwceWmeYcqsIt327eOWdfLrKLNfS7eQvjr1U2e2LYqO3A-DPyXepTXIN5T_OPw1-xR43y0dUGQkPV0Ap2L6QYqx92nLjZDbhw473jz8Dv94QcHZ596sQ1ykBsGM8msXapBsFOjcptTgRTjpeJ0LkBz0MTooSxZWJpaoUghaOpUs47TSVjOjFe3UO_d9AGo0yA87dxcNj99r095fFxNJaK-rVOQvnuGDSmf9VGmL91AqSZ_aURA3DAv6zdpUjtfbQ5rYZqdqP6_SVlePQQPaitWLw_F7tHaM1Vj9HdOa7l7AlS-4uwOB6UuBdOLpzFqrLYhaQVoOugGDYzPAKF2Bth1b8Eck-ufuJehUGrXmOrQv0yBgGucxNdPUXnt0LlZ2i9GlRuC-GCcpsYxQQrKCvBRKVCa6LBsVPO5KSIUNrQU5o60bnH2-jLEHCnXM55IIEHMvBAziL0of1nOE_zsbL1gWdT29Kn6A4Fg9GlrFe8LDxielE6mrmSaXAMRWJckVhtiE-qZiO03TBZ1vvGWC6kPEJv22pY8T6Moyo3mIY2FKxykZIIPZ8LRzuSYH5mnEdop5GWReerJrTTStR_zP_F6qG_QZuds6-n8vS4e_IS3SNe1pM8JsU2Wp-Mpu4VmHET_bpeKxj9uO3l-Qd1gVZk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFvA6IZwkUMBKcaLSJ7cT2AaFCWbUUVRyotLfUr7QrttllH6r21_g6xs5jFwmtuPSSg-1Y9jw8M57xDEJvhUmp0VkeMy0dGCgyibVQGXxsmWkhoCtE-Z7kh6fs6yAbbKHf7VsYH1bZnonhoLZj4-_Ie9SnuAb1nua9sgmL-H7Q_zj5FfsKUt7T2pbTqEnk2C2vwHybfTg6AFy_I6T_5cfnw7ipMBAbJrJ5rF2qgahTo3KbE8mUE2UidW7A6tCEKGlsmViaWikJdzRVynmDqWRMJ8aLepj3BrrJKZU-nJAPeHe_4z1oLJXNO52Eit4MZKV_z0aYjzcBoCz_koWhZMC_9Nw1H-09dGdRTdTySo1Ga2Kw_wDdb_RXvF8T3EO05apH6FZd0XL5GKn9lUMcj0s8DHcWzmJVWexCugqQctAMxxiegigcTrEanQNw5xeXeFhhkKc_sVWhf736AG6yEl08QafXAuOnaLsaV-4ZwpwKmxjFJOOUlaCcUqk10WDSKWdywiOUtvAsTJPi3FfaGBXB1U5FUeOgABwUAQfFMkLvu38mdYKPjaM_eTR1I31y7tAwnp4XDa8X3NdK56WjmSuZBpNQJsbxxGpDfDo1G6HdFslFc2LMihV9R-hN1w287h04qnLjRRhDQR-XKYnQTk0c3UqC4pkJEaG9llpWk2_a0F5HUf-x_-ebl_4a3QamLL4dnRy_QHeJJ_UkjwnfRdvz6cK9BP1trl8FRsHo7Lo58w8Fi1P-
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48KYECjISN5qS2E5iHxdEVXGoOLBSOVl-ha66ZKvdrKrl1zN2sukWVVW55OCXYnsm803G_gbgg7A5s6YoU26kRwdFZqkRusCHqwsjBFbFU77H5dGEfzspTnqanHAX5kr8nolPSzQw4RIY5eGQBo60vgs7ZYG4ewQ7k-Pv458hexzikhShAe1vxVzf8YrliQT916HKrYjoQ7i_as71-kLPZltG5_Bxl71oGbkKw1mTs4NVaw7sn3-YHG83nyfwqMeeZNwJy1O445tncK_LRrl-Dnp8Gcwm85pM4_8G74huHPGRagItFBbjJ4gs0IxNF0TPfs0X0_b0N5k2BG3hGXE61m9nDiA9o9DpC5gcfv3x5SjtMzCklouiTY3PDSp9bnXpSiq59qLOpCktemWGUi2tqzPHciclrTzLtfbBoaw5N5kNUOgljJp5418BqZhwmdVc8orxGoElk8ZQg-6Y9rakVQL5ZneU7enJQ5aMmYphciZUt3QKl07FpVPrBD4Ofc47co4bW38Omz60DMTasQD3R_V6qqqQ57yqPSt8zQ26czKzvsqcsTRQobkE9jYio3ptXyoW6NfR9WRlAu-HatTTEHzRjZ-vYhuGWFrmNIHdTtSGN4mgsRAigf2N7F0OftOE9gf5vMX8X_9f8zfwgAYxzcqUVnswahcr_xYBWGve9Zr3F71bJIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+improved+and+efficient+image+repair+algorithm+in+rock+damage+experimental+research&rft.jtitle=Scientific+reports&rft.au=Mingzhe+Xu&rft.au=Xianyin+Qi&rft.au=Diandong+Geng&rft.date=2024-06-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1038%2Fs41598-024-65790-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_714617fe35ef4b54890ce70dbc28101d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon