Reactive Astrocytes in Neurodegenerative Diseases

Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can parti...

Full description

Saved in:
Bibliographic Details
Published inAging and disease Vol. 10; no. 3; pp. 664 - 675
Main Authors Li, Kunyu, Li, Jiatong, Zheng, Jialin, Qin, Song
Format Journal Article
LanguageEnglish
Published United States JKL International 01.06.2019
JKL International LLC
Subjects
Online AccessGet full text
ISSN2152-5250
2152-5250
DOI10.14336/AD.2018.0720

Cover

Abstract Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases.
AbstractList Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases.
Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases. Key words: reactive astrocytes, neuroinflammation, neurodegenerative diseases
Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases.Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases.
Audience Academic
Author Qin, Song
Li, Jiatong
Li, Kunyu
Zheng, Jialin
AuthorAffiliation 2 Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, China
1 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
AuthorAffiliation_xml – name: 1 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
– name: 2 Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, China
Author_xml – sequence: 1
  givenname: Kunyu
  surname: Li
  fullname: Li, Kunyu
– sequence: 2
  givenname: Jiatong
  surname: Li
  fullname: Li, Jiatong
– sequence: 3
  givenname: Jialin
  surname: Zheng
  fullname: Zheng, Jialin
– sequence: 4
  givenname: Song
  surname: Qin
  fullname: Qin, Song
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31165009$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1rGzEQhkVJaFI3x16DIRB6WUdfK1uXwBI3SSGkUNqz0GpHtsJaSiVtIP--cpwYuzTSYYTmmVczmvmEDnzwgNAXgieEMyYumvmEYjKb4CnFH9AxJTWtalrjg53zETpJ6QGXxSRlkn1ER4wQUWMsjxH5Cdpk9wTjJuUYzHOGNHZ-fA9DDB0swEPUL_65S6ATpM_o0Oo-wcmrHaHf199-Xd1Wdz9uvl81d5XhszpXWlisrZGYSylbI-iU8tZwilttqJCa6E4QKMawbkZqK1tuBJ92ojCtsJaN0OVG93FoV9AZ8DnqXj1Gt9LxWQXt1L7Hu6VahCclajajZFoEvr4KxPBngJTVyiUDfa89hCEpynj5EiFrUtCzDbrQPSjnbSiKZo2rRmBc8qUcF2ryH6rsDlbOlM5YV-73As53Apag-7xMoR-yCz7tg6e7tW6LfOtTAaoNYGJIKYLdIgSrl1FQzVytR0GtR6Hw7B_euKzX75aUXf9O1F_cLLOz
CitedBy_id crossref_primary_10_1016_j_expneurol_2020_113315
crossref_primary_10_1111_jnc_70030
crossref_primary_10_3390_cells10061359
crossref_primary_10_2174_0929867328666211101100632
crossref_primary_10_1016_j_lfs_2021_120108
crossref_primary_10_1126_sciadv_aba5547
crossref_primary_10_5115_acb_20_136
crossref_primary_10_1002_jcp_30829
crossref_primary_10_1080_1028415X_2020_1735143
crossref_primary_10_1016_j_jphs_2020_07_011
crossref_primary_10_1016_j_jep_2021_114258
crossref_primary_10_3390_biomedicines10102598
crossref_primary_10_1111_cpr_13223
crossref_primary_10_1002_jcsm_13742
crossref_primary_10_3389_fncel_2021_683769
crossref_primary_10_3390_cells10020249
crossref_primary_10_3390_biomedicines8110479
crossref_primary_10_1016_j_nbd_2020_105006
crossref_primary_10_3390_ijms241713398
crossref_primary_10_1038_s41598_024_69618_7
crossref_primary_10_3233_JAD_201575
crossref_primary_10_3389_fncel_2020_00209
crossref_primary_10_1016_j_neuint_2021_105043
crossref_primary_10_1186_s40478_023_01553_6
crossref_primary_10_3389_fnmol_2022_1019799
crossref_primary_10_3390_ijms22179608
crossref_primary_10_1007_s12035_020_02214_8
crossref_primary_10_1016_j_mcn_2023_103839
crossref_primary_10_1111_bpa_12870
crossref_primary_10_2174_0115680096265849231031101449
crossref_primary_10_3389_fnagi_2022_1016053
crossref_primary_10_1007_s12017_022_08704_3
crossref_primary_10_1186_s12974_022_02687_5
crossref_primary_10_3390_nu12030671
crossref_primary_10_1007_s12640_021_00403_4
crossref_primary_10_3390_brainsci14121239
crossref_primary_10_3389_fimmu_2023_1145649
crossref_primary_10_3390_antiox11020261
crossref_primary_10_1186_s42269_023_01083_0
crossref_primary_10_1016_j_nbd_2024_106663
crossref_primary_10_3390_cells12040618
crossref_primary_10_1177_10738584211037351
crossref_primary_10_3390_neuroglia6010004
crossref_primary_10_3390_v16121811
crossref_primary_10_3389_fnmol_2019_00258
crossref_primary_10_1080_1028415X_2020_1721645
crossref_primary_10_3390_ijms24032573
crossref_primary_10_1016_j_neuroscience_2020_09_023
crossref_primary_10_1016_j_mehy_2023_111212
crossref_primary_10_2174_1871527321666220413090541
crossref_primary_10_1080_10408398_2024_2377290
crossref_primary_10_18863_pgy_1189139
crossref_primary_10_1093_hmg_ddae139
crossref_primary_10_3390_ijms242115864
crossref_primary_10_1186_s13041_024_01147_w
crossref_primary_10_1111_bph_16094
crossref_primary_10_1177_09727531211070532
crossref_primary_10_1080_09553002_2021_1857455
crossref_primary_10_4103_1673_5374_276320
crossref_primary_10_3390_ijms23020810
crossref_primary_10_1016_j_biopha_2024_116947
crossref_primary_10_1007_s11011_022_00902_z
crossref_primary_10_1089_ars_2019_8014
crossref_primary_10_3390_ijms221810077
crossref_primary_10_2147_DMSO_S382927
crossref_primary_10_3390_ijms21020529
crossref_primary_10_3390_antiox11081511
crossref_primary_10_1038_s41598_021_84887_2
crossref_primary_10_1016_j_jchemneu_2022_102137
crossref_primary_10_1016_j_nbd_2025_106885
crossref_primary_10_1088_1758_5090_ace21b
crossref_primary_10_3390_electronics11132089
crossref_primary_10_1111_cns_13998
crossref_primary_10_3389_fneur_2021_619626
crossref_primary_10_1038_s12276_023_01098_7
crossref_primary_10_3389_fpsyt_2022_842755
crossref_primary_10_1159_000521744
crossref_primary_10_14336_AD_2021_0325
crossref_primary_10_3390_ijms22147710
crossref_primary_10_1016_j_jconrel_2020_11_019
crossref_primary_10_3390_jmp4040019
crossref_primary_10_3390_pharmaceutics15020685
crossref_primary_10_1016_j_neurobiolaging_2023_06_015
crossref_primary_10_1007_s10787_024_01461_8
crossref_primary_10_1111_jnc_15457
crossref_primary_10_3390_ijms24108498
crossref_primary_10_1007_s10735_021_09998_6
crossref_primary_10_1177_0271678X221077343
crossref_primary_10_1186_s13041_020_00571_y
crossref_primary_10_3390_life13040940
crossref_primary_10_1016_j_neulet_2020_135028
crossref_primary_10_1016_j_tice_2023_102192
crossref_primary_10_3390_ijms21186676
crossref_primary_10_3389_fncel_2019_00507
crossref_primary_10_1007_s11095_022_03433_5
crossref_primary_10_3390_ijms22157887
crossref_primary_10_1186_s40035_022_00332_y
crossref_primary_10_14336_AD_2021_0214
crossref_primary_10_1016_j_biopsych_2021_05_025
crossref_primary_10_3390_ijms23010242
crossref_primary_10_1016_j_preteyeres_2020_100886
crossref_primary_10_1038_s41598_020_79656_6
crossref_primary_10_1080_15548627_2023_2180202
crossref_primary_10_3389_fncel_2023_1125412
crossref_primary_10_1007_s10719_022_10064_w
crossref_primary_10_3233_JAD_221279
crossref_primary_10_1212_NXI_0000000000001164
crossref_primary_10_3390_ijms22042196
crossref_primary_10_1002_cti2_1394
crossref_primary_10_1002_dad2_12576
crossref_primary_10_14336_AD_2020_0827
crossref_primary_10_3390_life12111857
crossref_primary_10_1016_j_csbj_2022_08_037
crossref_primary_10_1016_j_bbrc_2024_150418
crossref_primary_10_1038_s41380_024_02692_5
crossref_primary_10_3233_JAD_230199
crossref_primary_10_1016_j_bbi_2021_06_014
crossref_primary_10_1186_s12944_024_02106_z
crossref_primary_10_1016_j_intimp_2024_112536
crossref_primary_10_3390_cells11121902
crossref_primary_10_1002_glia_23845
crossref_primary_10_2147_JIR_S483412
crossref_primary_10_1172_jci_insight_158144
crossref_primary_10_1002_jnr_24759
crossref_primary_10_1016_j_biopha_2020_110131
crossref_primary_10_3390_cells9061426
crossref_primary_10_1210_clinem_dgab362
crossref_primary_10_1007_s11064_023_03922_y
crossref_primary_10_4103_1673_5374_360164
crossref_primary_10_1155_2022_6483582
crossref_primary_10_3390_ijms231810572
crossref_primary_10_1155_2020_9494352
crossref_primary_10_1242_dmm_048929
crossref_primary_10_1073_pnas_2122236119
crossref_primary_10_1093_brain_awab156
crossref_primary_10_3390_biom14010069
crossref_primary_10_3389_fphar_2021_640441
crossref_primary_10_3390_ijms21249441
crossref_primary_10_1016_j_neuint_2021_105212
crossref_primary_10_1172_jci_insight_152012
crossref_primary_10_1038_s41380_023_02168_y
crossref_primary_10_1186_s12974_020_01900_7
crossref_primary_10_1002_glia_24244
crossref_primary_10_1016_j_nbd_2022_105750
crossref_primary_10_1016_j_cbi_2021_109740
crossref_primary_10_3390_cells13030286
crossref_primary_10_3390_antiox12101856
crossref_primary_10_1016_j_arr_2023_102019
crossref_primary_10_1111_cns_14000
crossref_primary_10_1371_journal_pone_0313556
crossref_primary_10_3390_biom11081109
crossref_primary_10_1016_j_cobme_2020_06_004
crossref_primary_10_3389_fnins_2022_798994
crossref_primary_10_3389_fcell_2022_838402
crossref_primary_10_1038_s41380_023_02061_8
crossref_primary_10_3390_ijms23020629
crossref_primary_10_1016_j_gene_2023_147898
crossref_primary_10_4103_1673_5374_268897
crossref_primary_10_1016_j_brainresbull_2022_08_015
crossref_primary_10_1002_glia_24110
crossref_primary_10_3390_ijms242417146
crossref_primary_10_1186_s12974_022_02619_3
crossref_primary_10_3389_fnins_2020_00723
crossref_primary_10_3390_cells9040846
crossref_primary_10_3390_ijms22094333
crossref_primary_10_3233_JAD_231033
crossref_primary_10_1016_j_yebeh_2022_108907
crossref_primary_10_1016_j_addr_2021_02_015
crossref_primary_10_1007_s11033_021_06629_x
crossref_primary_10_1111_acel_14074
crossref_primary_10_3390_ijms221910728
crossref_primary_10_1007_s12031_020_01712_7
crossref_primary_10_1016_j_msard_2022_103749
crossref_primary_10_3390_ijms24129969
crossref_primary_10_1186_s13024_020_00375_7
crossref_primary_10_1016_j_envres_2021_112316
crossref_primary_10_3389_fncel_2021_710820
crossref_primary_10_3390_ijms23094995
crossref_primary_10_3390_brainsci12121657
crossref_primary_10_1007_s11332_023_01065_9
crossref_primary_10_3389_fnagi_2020_580068
crossref_primary_10_3390_biomedicines10071718
crossref_primary_10_1146_annurev_genet_071719_023616
crossref_primary_10_3389_fnut_2022_852012
crossref_primary_10_3390_biomedicines8100394
crossref_primary_10_3390_ijms21145149
crossref_primary_10_3390_fractalfract7010006
crossref_primary_10_3233_JAD_200541
crossref_primary_10_1186_s12974_020_1708_9
crossref_primary_10_1111_jnc_16014
crossref_primary_10_1515_revneuro_2024_0081
crossref_primary_10_3389_fphar_2024_1374408
crossref_primary_10_1371_journal_pgen_1009822
crossref_primary_10_3390_life11030229
crossref_primary_10_7554_eLife_83451
crossref_primary_10_1111_jnc_16258
crossref_primary_10_3390_cells9010081
crossref_primary_10_1002_jbt_22913
crossref_primary_10_1016_j_phrs_2022_106227
crossref_primary_10_1186_s13024_021_00506_8
crossref_primary_10_1007_s12035_023_03525_2
crossref_primary_10_3390_ijms222413315
crossref_primary_10_1016_j_expneurol_2019_113060
crossref_primary_10_1213_ANE_0000000000006884
crossref_primary_10_1186_s12974_021_02288_8
crossref_primary_10_3390_ijms25084160
crossref_primary_10_1186_s43094_022_00446_0
crossref_primary_10_14789_ejmj_JMJ24_0026_P
crossref_primary_10_31083_j_fbl2701020
crossref_primary_10_1016_j_bbr_2024_115075
crossref_primary_10_3390_ijms23031435
crossref_primary_10_1016_j_neuint_2021_105124
crossref_primary_10_3390_biomedicines10081824
crossref_primary_10_3390_ijms241813880
crossref_primary_10_1080_1028415X_2022_2078173
crossref_primary_10_3389_fnins_2022_906651
crossref_primary_10_3390_cells8111345
crossref_primary_10_1016_j_bcp_2024_116174
crossref_primary_10_3390_brainsci11010085
crossref_primary_10_1089_scd_2019_0189
crossref_primary_10_1523_JNEUROSCI_1482_23_2024
crossref_primary_10_3390_cells9112415
crossref_primary_10_1242_dmm_052002
crossref_primary_10_1186_s40035_024_00398_w
crossref_primary_10_3390_ijms25105169
crossref_primary_10_3390_ijms21207586
crossref_primary_10_1111_cns_14466
crossref_primary_10_1039_D0CB00140F
crossref_primary_10_3390_ijms24087435
crossref_primary_10_4103_1673_5374_306064
crossref_primary_10_1016_j_smim_2022_101631
crossref_primary_10_1186_s12974_021_02081_7
crossref_primary_10_1016_j_arr_2023_101865
crossref_primary_10_1038_s41419_021_04049_0
crossref_primary_10_1038_s41435_020_00113_5
crossref_primary_10_1016_j_pneurobio_2020_101817
crossref_primary_10_1016_j_jchemneu_2023_102286
crossref_primary_10_1038_s41598_022_08840_7
crossref_primary_10_1186_s10020_024_00917_5
crossref_primary_10_3390_cells10081911
crossref_primary_10_1007_s12015_021_10254_3
crossref_primary_10_3389_fnins_2024_1401706
crossref_primary_10_1007_s00210_024_03415_x
crossref_primary_10_1016_j_mcn_2021_103615
crossref_primary_10_3390_ijms22157822
crossref_primary_10_1007_s12017_020_08614_2
crossref_primary_10_18632_aging_205174
crossref_primary_10_1515_nipt_2023_0020
crossref_primary_10_3390_life12091439
Cites_doi 10.4049/jimmunol.169.12.6720
10.1371/journal.pone.0008762
10.1073/pnas.1222361110
10.1093/brain/awf180
10.1111/j.1528-1167.2010.02592.x
10.1038/nature11059
10.1016/j.pneurobio.2015.09.008
10.1186/1750-1326-6-49
10.1016/j.neuro.2008.12.009
10.1073/pnas.92.7.3032
10.1186/1750-1326-2-22
10.3389/fneur.2013.00194
10.1016/j.neurobiolaging.2014.06.004
10.1038/nature21029
10.1073/pnas.0705046104
10.1016/j.brainresbull.2009.07.012
10.1016/j.tins.2010.12.001
10.1016/j.immuni.2017.06.006
10.1007/s11064-013-1060-x
10.1038/cdd.2010.143
10.2174/156720511794604543
10.1038/ni1507
10.1016/j.cger.2006.06.003
10.1016/j.nurt.2010.07.003
10.1016/S0140-6736(10)61156-7
10.1016/j.neuint.2003.11.003
10.1084/jem.20041918
10.1016/S1474-4422(09)70062-6
10.1016/j.expneurol.2006.03.028
10.1073/pnas.1104977108
10.1002/glia.20167
10.1016/0896-6273(89)90252-3
10.3233/JAD-2004-6604
10.1074/jbc.R800019200
10.1016/j.bbadis.2011.03.007
10.1007/s00429-017-1383-5
10.1038/nrn3802
10.1042/BST20140155
10.1016/j.cell.2004.12.020
10.1002/jnr.24075
10.1073/pnas.032539299
10.1111/j.1440-1789.2009.01078.x
10.1101/cshperspect.a020628
10.1016/j.neuron.2014.11.018
10.1523/JNEUROSCI.0116-08.2008
10.3233/JAD-2010-101089
10.1016/j.expneurol.2013.12.024
10.1080/00207450590934570
10.1007/978-3-540-79885-9_7
10.1002/glia.20638
10.1016/j.neuroscience.2015.07.007
10.1523/JNEUROSCI.1709-08.2008
10.1073/pnas.0911405106
10.1007/s11481-014-9553-1
10.3389/fnins.2016.00149
10.1038/nbt.3835
10.1523/JNEUROSCI.08-03-00975.1988
10.1038/nrn1722
10.1016/j.nurt.2010.07.001
10.1186/1742-2094-8-150
10.1016/S0006-8993(01)02640-3
10.1038/nm.3639
10.1038/nm838
10.1016/0891-0618(93)90046-7
10.1172/JCI60842
10.1093/brain/awr193
10.1002/glia.22443
10.1074/jbc.M109.081125
10.1093/cercor/bhx303
10.1186/s12974-015-0335-3
10.1016/j.nbd.2010.09.018
10.3389/fncir.2013.00188
10.1073/pnas.1103141108
10.1002/glia.21212
10.1111/j.1582-4934.2008.00496.x
10.1002/jnr.21774
10.1371/journal.pone.0017187
10.1016/j.neurobiolaging.2004.01.007
10.1186/1756-6606-3-12
10.1523/JNEUROSCI.5098-09.2010
10.1007/s10571-011-9725-y
10.1099/vir.0.071175-0
10.1038/nm1425
10.1093/hmg/ddr513
10.1212/WNL.54.6.1316
10.1038/nbt.1957
10.1111/j.1471-4159.2011.07210.x
10.1016/j.neurobiolaging.2008.02.019
10.1016/j.scr.2013.12.008
10.3233/JAD-170364
10.1080/13550280290100969
10.1007/s00011-009-0026-6
10.1523/JNEUROSCI.6417-10.2011
10.1038/cddis.2012.123
10.3233/RNN-1991-245610
10.1111/j.1460-9568.2009.06814.x
10.1016/j.it.2007.01.005
10.1007/978-3-319-08894-5_2
10.1002/mds.23455
10.1038/s41598-017-11103-5
10.4049/jimmunol.0802954
10.1016/j.phrs.2016.08.005
10.1002/glia.22800
10.1371/journal.pone.0021954
10.1056/NEJMcp043908
10.1007/s00401-009-0619-8
10.1523/JNEUROSCI.6221-11.2012
10.1016/j.imbio.2013.04.004
10.1038/nn.2210
10.1074/jbc.M309304200
10.1073/pnas.1218497110
10.1016/j.neurobiolaging.2008.05.015
10.1371/journal.pone.0054200
10.1093/abbs/gmr125
10.1042/BST20140078
ContentType Journal Article
Copyright COPYRIGHT 2019 JKL International
Copyright: © 2019 Li et al. 2019
Copyright_xml – notice: COPYRIGHT 2019 JKL International
– notice: Copyright: © 2019 Li et al. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.14336/AD.2018.0720
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2152-5250
EndPage 675
ExternalDocumentID PMC6538217
A600269240
31165009
10_14336_AD_2018_0720
Genre Journal Article
Review
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 53G
5VS
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
C1A
CITATION
DIK
EBD
ESX
GROUPED_DOAJ
HYE
IAO
IHR
IHW
ITC
KQ8
M~E
OK1
RPM
TUS
NPM
7X8
5PM
ID FETCH-LOGICAL-c485t-a6f0afc904999bc62724bc420bac269a1ad61ea1ac3d815f9b4c647d6c42b6ff3
ISSN 2152-5250
IngestDate Thu Aug 21 17:47:11 EDT 2025
Fri Jul 11 00:15:44 EDT 2025
Tue Feb 18 23:02:35 EST 2025
Wed Feb 12 06:56:44 EST 2025
Thu May 22 21:21:24 EDT 2025
Thu Jan 02 23:03:36 EST 2025
Thu Apr 24 23:03:27 EDT 2025
Tue Jul 01 04:25:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords neurodegenerative diseases
neuroinflammation
reactive astrocytes
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c485t-a6f0afc904999bc62724bc420bac269a1ad61ea1ac3d815f9b4c647d6c42b6ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://dx.doi.org/10.14336/AD.2018.0720
PMID 31165009
PQID 2340036951
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6538217
proquest_miscellaneous_2340036951
gale_infotracmisc_A600269240
gale_infotracacademiconefile_A600269240
gale_healthsolutions_A600269240
pubmed_primary_31165009
crossref_primary_10_14336_AD_2018_0720
crossref_citationtrail_10_14336_AD_2018_0720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Aging and disease
PublicationTitleAlternate Aging Dis
PublicationYear 2019
Publisher JKL International
JKL International LLC
Publisher_xml – name: JKL International
– name: JKL International LLC
References key-10.14336/AD.2018.0720-9
key-10.14336/AD.2018.0720-88
key-10.14336/AD.2018.0720-87
key-10.14336/AD.2018.0720-89
key-10.14336/AD.2018.0720-5
key-10.14336/AD.2018.0720-84
key-10.14336/AD.2018.0720-6
key-10.14336/AD.2018.0720-83
key-10.14336/AD.2018.0720-7
key-10.14336/AD.2018.0720-86
key-10.14336/AD.2018.0720-8
key-10.14336/AD.2018.0720-85
key-10.14336/AD.2018.0720-1
key-10.14336/AD.2018.0720-80
key-10.14336/AD.2018.0720-2
key-10.14336/AD.2018.0720-3
key-10.14336/AD.2018.0720-82
key-10.14336/AD.2018.0720-4
key-10.14336/AD.2018.0720-81
key-10.14336/AD.2018.0720-103
key-10.14336/AD.2018.0720-102
key-10.14336/AD.2018.0720-101
key-10.14336/AD.2018.0720-100
key-10.14336/AD.2018.0720-107
key-10.14336/AD.2018.0720-106
key-10.14336/AD.2018.0720-105
key-10.14336/AD.2018.0720-104
key-10.14336/AD.2018.0720-109
key-10.14336/AD.2018.0720-108
key-10.14336/AD.2018.0720-11
key-10.14336/AD.2018.0720-99
key-10.14336/AD.2018.0720-10
key-10.14336/AD.2018.0720-98
key-10.14336/AD.2018.0720-13
key-10.14336/AD.2018.0720-12
key-10.14336/AD.2018.0720-95
key-10.14336/AD.2018.0720-94
key-10.14336/AD.2018.0720-97
key-10.14336/AD.2018.0720-96
key-10.14336/AD.2018.0720-91
key-10.14336/AD.2018.0720-90
key-10.14336/AD.2018.0720-93
key-10.14336/AD.2018.0720-92
key-10.14336/AD.2018.0720-110
key-10.14336/AD.2018.0720-114
key-10.14336/AD.2018.0720-113
key-10.14336/AD.2018.0720-112
key-10.14336/AD.2018.0720-111
key-10.14336/AD.2018.0720-19
key-10.14336/AD.2018.0720-18
key-10.14336/AD.2018.0720-116
key-10.14336/AD.2018.0720-115
key-10.14336/AD.2018.0720-15
key-10.14336/AD.2018.0720-14
key-10.14336/AD.2018.0720-17
key-10.14336/AD.2018.0720-16
key-10.14336/AD.2018.0720-22
key-10.14336/AD.2018.0720-21
key-10.14336/AD.2018.0720-24
key-10.14336/AD.2018.0720-23
key-10.14336/AD.2018.0720-20
key-10.14336/AD.2018.0720-29
key-10.14336/AD.2018.0720-26
key-10.14336/AD.2018.0720-25
key-10.14336/AD.2018.0720-28
key-10.14336/AD.2018.0720-27
key-10.14336/AD.2018.0720-33
key-10.14336/AD.2018.0720-32
key-10.14336/AD.2018.0720-35
key-10.14336/AD.2018.0720-34
key-10.14336/AD.2018.0720-31
key-10.14336/AD.2018.0720-30
key-10.14336/AD.2018.0720-37
key-10.14336/AD.2018.0720-36
key-10.14336/AD.2018.0720-39
key-10.14336/AD.2018.0720-38
key-10.14336/AD.2018.0720-44
key-10.14336/AD.2018.0720-43
key-10.14336/AD.2018.0720-46
key-10.14336/AD.2018.0720-45
key-10.14336/AD.2018.0720-40
key-10.14336/AD.2018.0720-42
key-10.14336/AD.2018.0720-41
key-10.14336/AD.2018.0720-48
key-10.14336/AD.2018.0720-47
key-10.14336/AD.2018.0720-49
key-10.14336/AD.2018.0720-55
key-10.14336/AD.2018.0720-54
key-10.14336/AD.2018.0720-57
key-10.14336/AD.2018.0720-56
key-10.14336/AD.2018.0720-51
key-10.14336/AD.2018.0720-50
key-10.14336/AD.2018.0720-53
key-10.14336/AD.2018.0720-52
key-10.14336/AD.2018.0720-59
key-10.14336/AD.2018.0720-58
key-10.14336/AD.2018.0720-66
key-10.14336/AD.2018.0720-65
key-10.14336/AD.2018.0720-68
key-10.14336/AD.2018.0720-67
key-10.14336/AD.2018.0720-62
key-10.14336/AD.2018.0720-61
key-10.14336/AD.2018.0720-64
key-10.14336/AD.2018.0720-63
key-10.14336/AD.2018.0720-60
key-10.14336/AD.2018.0720-69
key-10.14336/AD.2018.0720-77
key-10.14336/AD.2018.0720-76
key-10.14336/AD.2018.0720-79
key-10.14336/AD.2018.0720-78
key-10.14336/AD.2018.0720-73
key-10.14336/AD.2018.0720-72
key-10.14336/AD.2018.0720-75
key-10.14336/AD.2018.0720-74
key-10.14336/AD.2018.0720-71
key-10.14336/AD.2018.0720-70
References_xml – ident: key-10.14336/AD.2018.0720-99
  doi: 10.4049/jimmunol.169.12.6720
– ident: key-10.14336/AD.2018.0720-72
  doi: 10.1371/journal.pone.0008762
– ident: key-10.14336/AD.2018.0720-93
  doi: 10.1073/pnas.1222361110
– ident: key-10.14336/AD.2018.0720-114
  doi: 10.1093/brain/awf180
– ident: key-10.14336/AD.2018.0720-21
  doi: 10.1111/j.1528-1167.2010.02592.x
– ident: key-10.14336/AD.2018.0720-111
  doi: 10.1038/nature11059
– ident: key-10.14336/AD.2018.0720-25
  doi: 10.1016/j.pneurobio.2015.09.008
– ident: key-10.14336/AD.2018.0720-83
  doi: 10.1186/1750-1326-6-49
– ident: key-10.14336/AD.2018.0720-26
  doi: 10.1016/j.neuro.2008.12.009
– ident: key-10.14336/AD.2018.0720-64
  doi: 10.1073/pnas.92.7.3032
– ident: key-10.14336/AD.2018.0720-51
  doi: 10.1186/1750-1326-2-22
– ident: key-10.14336/AD.2018.0720-44
  doi: 10.3389/fneur.2013.00194
– ident: key-10.14336/AD.2018.0720-62
  doi: 10.1016/j.neurobiolaging.2014.06.004
– ident: key-10.14336/AD.2018.0720-10
  doi: 10.1038/nature21029
– ident: key-10.14336/AD.2018.0720-86
  doi: 10.1073/pnas.0705046104
– ident: key-10.14336/AD.2018.0720-40
  doi: 10.1016/j.brainresbull.2009.07.012
– ident: key-10.14336/AD.2018.0720-5
  doi: 10.1016/j.tins.2010.12.001
– ident: key-10.14336/AD.2018.0720-9
  doi: 10.1016/j.immuni.2017.06.006
– ident: key-10.14336/AD.2018.0720-43
  doi: 10.1007/s11064-013-1060-x
– ident: key-10.14336/AD.2018.0720-109
  doi: 10.1038/cdd.2010.143
– ident: key-10.14336/AD.2018.0720-57
  doi: 10.2174/156720511794604543
– ident: key-10.14336/AD.2018.0720-96
  doi: 10.1038/ni1507
– ident: key-10.14336/AD.2018.0720-70
  doi: 10.1016/j.cger.2006.06.003
– ident: key-10.14336/AD.2018.0720-39
  doi: 10.1016/j.nurt.2010.07.003
– ident: key-10.14336/AD.2018.0720-84
  doi: 10.1016/S0140-6736(10)61156-7
– ident: key-10.14336/AD.2018.0720-14
– ident: key-10.14336/AD.2018.0720-20
  doi: 10.1016/j.neuint.2003.11.003
– ident: key-10.14336/AD.2018.0720-105
  doi: 10.1084/jem.20041918
– ident: key-10.14336/AD.2018.0720-76
  doi: 10.1016/S1474-4422(09)70062-6
– ident: key-10.14336/AD.2018.0720-90
  doi: 10.1016/j.expneurol.2006.03.028
– ident: key-10.14336/AD.2018.0720-112
  doi: 10.1073/pnas.1104977108
– ident: key-10.14336/AD.2018.0720-24
  doi: 10.1002/glia.20167
– ident: key-10.14336/AD.2018.0720-67
  doi: 10.1016/0896-6273(89)90252-3
– ident: key-10.14336/AD.2018.0720-58
  doi: 10.3233/JAD-2004-6604
– ident: key-10.14336/AD.2018.0720-47
  doi: 10.1074/jbc.R800019200
– ident: key-10.14336/AD.2018.0720-73
  doi: 10.1016/j.bbadis.2011.03.007
– ident: key-10.14336/AD.2018.0720-2
  doi: 10.1007/s00429-017-1383-5
– ident: key-10.14336/AD.2018.0720-41
  doi: 10.1038/nrn3802
– ident: key-10.14336/AD.2018.0720-7
  doi: 10.1042/BST20140155
– ident: key-10.14336/AD.2018.0720-33
  doi: 10.1016/j.cell.2004.12.020
– ident: key-10.14336/AD.2018.0720-52
  doi: 10.1002/jnr.24075
– ident: key-10.14336/AD.2018.0720-113
  doi: 10.1073/pnas.032539299
– ident: key-10.14336/AD.2018.0720-95
  doi: 10.1111/j.1440-1789.2009.01078.x
– ident: key-10.14336/AD.2018.0720-38
  doi: 10.1101/cshperspect.a020628
– ident: key-10.14336/AD.2018.0720-106
  doi: 10.1016/j.neuron.2014.11.018
– ident: key-10.14336/AD.2018.0720-115
  doi: 10.1523/JNEUROSCI.0116-08.2008
– ident: key-10.14336/AD.2018.0720-53
  doi: 10.3233/JAD-2010-101089
– ident: key-10.14336/AD.2018.0720-19
  doi: 10.1016/j.expneurol.2013.12.024
– ident: key-10.14336/AD.2018.0720-12
  doi: 10.1080/00207450590934570
– ident: key-10.14336/AD.2018.0720-34
  doi: 10.1007/978-3-540-79885-9_7
– ident: key-10.14336/AD.2018.0720-68
  doi: 10.1002/glia.20638
– ident: key-10.14336/AD.2018.0720-1
  doi: 10.1016/j.neuroscience.2015.07.007
– ident: key-10.14336/AD.2018.0720-29
  doi: 10.1523/JNEUROSCI.1709-08.2008
– ident: key-10.14336/AD.2018.0720-91
  doi: 10.1073/pnas.0911405106
– ident: key-10.14336/AD.2018.0720-102
  doi: 10.1007/s11481-014-9553-1
– ident: key-10.14336/AD.2018.0720-3
  doi: 10.3389/fnins.2016.00149
– ident: key-10.14336/AD.2018.0720-8
  doi: 10.1038/nbt.3835
– ident: key-10.14336/AD.2018.0720-75
  doi: 10.1523/JNEUROSCI.08-03-00975.1988
– ident: key-10.14336/AD.2018.0720-15
  doi: 10.1038/nrn1722
– ident: key-10.14336/AD.2018.0720-71
  doi: 10.1016/j.nurt.2010.07.001
– ident: key-10.14336/AD.2018.0720-65
  doi: 10.1186/1742-2094-8-150
– ident: key-10.14336/AD.2018.0720-23
  doi: 10.1016/S0006-8993(01)02640-3
– ident: key-10.14336/AD.2018.0720-54
  doi: 10.1038/nm.3639
– ident: key-10.14336/AD.2018.0720-49
  doi: 10.1038/nm838
– ident: key-10.14336/AD.2018.0720-16
  doi: 10.1016/0891-0618(93)90046-7
– ident: key-10.14336/AD.2018.0720-100
  doi: 10.1172/JCI60842
– ident: key-10.14336/AD.2018.0720-85
  doi: 10.1093/brain/awr193
– ident: key-10.14336/AD.2018.0720-97
  doi: 10.1002/glia.22443
– ident: key-10.14336/AD.2018.0720-79
  doi: 10.1074/jbc.M109.081125
– ident: key-10.14336/AD.2018.0720-104
  doi: 10.1093/cercor/bhx303
– ident: key-10.14336/AD.2018.0720-101
  doi: 10.1186/s12974-015-0335-3
– ident: key-10.14336/AD.2018.0720-28
  doi: 10.1016/j.nbd.2010.09.018
– ident: key-10.14336/AD.2018.0720-116
  doi: 10.3389/fncir.2013.00188
– ident: key-10.14336/AD.2018.0720-88
  doi: 10.1073/pnas.1103141108
– ident: key-10.14336/AD.2018.0720-50
  doi: 10.1002/glia.21212
– ident: key-10.14336/AD.2018.0720-61
  doi: 10.1111/j.1582-4934.2008.00496.x
– ident: key-10.14336/AD.2018.0720-18
  doi: 10.1002/jnr.21774
– ident: key-10.14336/AD.2018.0720-30
  doi: 10.1371/journal.pone.0017187
– ident: key-10.14336/AD.2018.0720-56
  doi: 10.1016/j.neurobiolaging.2004.01.007
– ident: key-10.14336/AD.2018.0720-81
  doi: 10.1186/1756-6606-3-12
– ident: key-10.14336/AD.2018.0720-63
  doi: 10.1523/JNEUROSCI.5098-09.2010
– ident: key-10.14336/AD.2018.0720-36
  doi: 10.1007/s10571-011-9725-y
– ident: key-10.14336/AD.2018.0720-22
  doi: 10.1099/vir.0.071175-0
– ident: key-10.14336/AD.2018.0720-27
  doi: 10.1038/nm1425
– ident: key-10.14336/AD.2018.0720-87
  doi: 10.1093/hmg/ddr513
– ident: key-10.14336/AD.2018.0720-66
  doi: 10.1212/WNL.54.6.1316
– ident: key-10.14336/AD.2018.0720-92
  doi: 10.1038/nbt.1957
– ident: key-10.14336/AD.2018.0720-107
  doi: 10.1111/j.1471-4159.2011.07210.x
– ident: key-10.14336/AD.2018.0720-94
  doi: 10.1016/j.neurobiolaging.2008.02.019
– ident: key-10.14336/AD.2018.0720-35
  doi: 10.1016/j.scr.2013.12.008
– ident: key-10.14336/AD.2018.0720-45
  doi: 10.3233/JAD-170364
– ident: key-10.14336/AD.2018.0720-46
  doi: 10.1080/13550280290100969
– ident: key-10.14336/AD.2018.0720-78
  doi: 10.1007/s00011-009-0026-6
– ident: key-10.14336/AD.2018.0720-108
  doi: 10.1523/JNEUROSCI.6417-10.2011
– ident: key-10.14336/AD.2018.0720-80
  doi: 10.1038/cddis.2012.123
– ident: key-10.14336/AD.2018.0720-17
  doi: 10.3233/RNN-1991-245610
– ident: key-10.14336/AD.2018.0720-32
  doi: 10.1111/j.1460-9568.2009.06814.x
– ident: key-10.14336/AD.2018.0720-59
  doi: 10.1016/j.it.2007.01.005
– ident: key-10.14336/AD.2018.0720-6
  doi: 10.1007/978-3-319-08894-5_2
– ident: key-10.14336/AD.2018.0720-77
  doi: 10.1002/mds.23455
– ident: key-10.14336/AD.2018.0720-13
  doi: 10.1038/s41598-017-11103-5
– ident: key-10.14336/AD.2018.0720-31
  doi: 10.4049/jimmunol.0802954
– ident: key-10.14336/AD.2018.0720-4
  doi: 10.1016/j.phrs.2016.08.005
– ident: key-10.14336/AD.2018.0720-55
  doi: 10.1002/glia.22800
– ident: key-10.14336/AD.2018.0720-48
  doi: 10.1371/journal.pone.0021954
– ident: key-10.14336/AD.2018.0720-69
  doi: 10.1056/NEJMcp043908
– ident: key-10.14336/AD.2018.0720-11
  doi: 10.1007/s00401-009-0619-8
– ident: key-10.14336/AD.2018.0720-98
  doi: 10.1523/JNEUROSCI.6221-11.2012
– ident: key-10.14336/AD.2018.0720-103
  doi: 10.1016/j.imbio.2013.04.004
– ident: key-10.14336/AD.2018.0720-89
  doi: 10.1038/nn.2210
– ident: key-10.14336/AD.2018.0720-82
  doi: 10.1074/jbc.M309304200
– ident: key-10.14336/AD.2018.0720-110
  doi: 10.1073/pnas.1218497110
– ident: key-10.14336/AD.2018.0720-60
  doi: 10.1016/j.neurobiolaging.2008.05.015
– ident: key-10.14336/AD.2018.0720-74
  doi: 10.1371/journal.pone.0054200
– ident: key-10.14336/AD.2018.0720-37
  doi: 10.1093/abbs/gmr125
– ident: key-10.14336/AD.2018.0720-42
  doi: 10.1042/BST20140078
SSID ssj0000392393
Score 2.6003385
SecondaryResourceType review_article
Snippet Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis,...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 664
SubjectTerms Brain
Central nervous system
Development and progression
Homeostasis
Hypertrophy
Ischemia
Medical research
Nervous system diseases
Neurodegenerative diseases
Review
Title Reactive Astrocytes in Neurodegenerative Diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/31165009
https://www.proquest.com/docview/2340036951
https://pubmed.ncbi.nlm.nih.gov/PMC6538217
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0IIhob0gYHwEBgQJjQfIcGPHSR6jDTSVDfGxSXuLLo4zKrF0YulD-fXcOU6adCDBXtLKvsbp3eU-7Ptg7JUAtPkBdKBiDoEUACgHOQ8gVGUISWQSm5V29EkdnMjpaXS6andks0uaYlf_-mNeyXWoimNIV8qS_Q_K9jfFAfyO9MUrUhiv_0TjrwasuEIkN6iIlo2NrnpjC26U5sxWlG5Dg9pjmMuhKZqddfmJa4c0h-0B_6JeLsZDUyTj3Gk6u9dsXDgv_tNZz2Rf2qoE3zpIt6VAWUxquKUw_Xi4th_ZNTA2VjBRK9yAjkNHUpQPuEUMRKJqq5Q77araPilXBLcUtrVMtk_Rdskuj22KXDMg4sW5paKgekGcpyv91UcVfj7aUyi_0cm6yW6FMdpSAxfbamY0BkUqXKlVWvLdcMFNdru7-8hKWdfVA2NlHEg7sEyO77I7zqXws5Y_7rEbpr7PtjJE6_x86e_4NsjXnp5ssUnHMv6KZfxZ7V9hGb9jmQfs5MP7472DwHXNCLRMoiYAVXGodGp92UKrMA5loWXIC9ChSmECpZoY_NCiTCZRlRZSKxmXCmEKVVXiIduo57V5zPwIhJayNAVXiQQuQCswvNRCQBFqDh5722Ep166kPHU2-ZGTa0n4zbP9nPCbE349ttODX7S1VP4G-IJQnrepwP2bmmd0iKxSNEI99tpCEG_gihpcMgk-N9UzG0FujyBReurR9MuOrDlNUchhbeaLyzwUkoo1oQfisUctmfun7tjEY_GIAXoAKto-nqln323xdsehT679y6dsc_XObrON5ufCPEPDuCmeW27_DXWxuE4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+Astrocytes+in+Neurodegenerative+Diseases&rft.jtitle=Aging+and+disease&rft.au=Li%2C+Kunyu&rft.au=Li%2C+Jiatong&rft.au=Zheng%2C+Jialin&rft.au=Qin%2C+Song&rft.date=2019-06-01&rft.pub=JKL+International+LLC&rft.eissn=2152-5250&rft.volume=10&rft.issue=3&rft.spage=664&rft.epage=675&rft_id=info:doi/10.14336%2FAD.2018.0720&rft_id=info%3Apmid%2F31165009&rft.externalDocID=PMC6538217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2152-5250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2152-5250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2152-5250&client=summon