Reactive Astrocytes in Neurodegenerative Diseases
Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can parti...
Saved in:
Published in | Aging and disease Vol. 10; no. 3; pp. 664 - 675 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
JKL International
01.06.2019
JKL International LLC |
Subjects | |
Online Access | Get full text |
ISSN | 2152-5250 2152-5250 |
DOI | 10.14336/AD.2018.0720 |
Cover
Abstract | Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases. |
---|---|
AbstractList | Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases. Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases. Key words: reactive astrocytes, neuroinflammation, neurodegenerative diseases Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases.Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases. |
Audience | Academic |
Author | Qin, Song Li, Jiatong Li, Kunyu Zheng, Jialin |
AuthorAffiliation | 2 Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, China 1 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China |
AuthorAffiliation_xml | – name: 1 Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China – name: 2 Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, China |
Author_xml | – sequence: 1 givenname: Kunyu surname: Li fullname: Li, Kunyu – sequence: 2 givenname: Jiatong surname: Li fullname: Li, Jiatong – sequence: 3 givenname: Jialin surname: Zheng fullname: Zheng, Jialin – sequence: 4 givenname: Song surname: Qin fullname: Qin, Song |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31165009$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1rGzEQhkVJaFI3x16DIRB6WUdfK1uXwBI3SSGkUNqz0GpHtsJaSiVtIP--cpwYuzTSYYTmmVczmvmEDnzwgNAXgieEMyYumvmEYjKb4CnFH9AxJTWtalrjg53zETpJ6QGXxSRlkn1ER4wQUWMsjxH5Cdpk9wTjJuUYzHOGNHZ-fA9DDB0swEPUL_65S6ATpM_o0Oo-wcmrHaHf199-Xd1Wdz9uvl81d5XhszpXWlisrZGYSylbI-iU8tZwilttqJCa6E4QKMawbkZqK1tuBJ92ojCtsJaN0OVG93FoV9AZ8DnqXj1Gt9LxWQXt1L7Hu6VahCclajajZFoEvr4KxPBngJTVyiUDfa89hCEpynj5EiFrUtCzDbrQPSjnbSiKZo2rRmBc8qUcF2ryH6rsDlbOlM5YV-73As53Apag-7xMoR-yCz7tg6e7tW6LfOtTAaoNYGJIKYLdIgSrl1FQzVytR0GtR6Hw7B_euKzX75aUXf9O1F_cLLOz |
CitedBy_id | crossref_primary_10_1016_j_expneurol_2020_113315 crossref_primary_10_1111_jnc_70030 crossref_primary_10_3390_cells10061359 crossref_primary_10_2174_0929867328666211101100632 crossref_primary_10_1016_j_lfs_2021_120108 crossref_primary_10_1126_sciadv_aba5547 crossref_primary_10_5115_acb_20_136 crossref_primary_10_1002_jcp_30829 crossref_primary_10_1080_1028415X_2020_1735143 crossref_primary_10_1016_j_jphs_2020_07_011 crossref_primary_10_1016_j_jep_2021_114258 crossref_primary_10_3390_biomedicines10102598 crossref_primary_10_1111_cpr_13223 crossref_primary_10_1002_jcsm_13742 crossref_primary_10_3389_fncel_2021_683769 crossref_primary_10_3390_cells10020249 crossref_primary_10_3390_biomedicines8110479 crossref_primary_10_1016_j_nbd_2020_105006 crossref_primary_10_3390_ijms241713398 crossref_primary_10_1038_s41598_024_69618_7 crossref_primary_10_3233_JAD_201575 crossref_primary_10_3389_fncel_2020_00209 crossref_primary_10_1016_j_neuint_2021_105043 crossref_primary_10_1186_s40478_023_01553_6 crossref_primary_10_3389_fnmol_2022_1019799 crossref_primary_10_3390_ijms22179608 crossref_primary_10_1007_s12035_020_02214_8 crossref_primary_10_1016_j_mcn_2023_103839 crossref_primary_10_1111_bpa_12870 crossref_primary_10_2174_0115680096265849231031101449 crossref_primary_10_3389_fnagi_2022_1016053 crossref_primary_10_1007_s12017_022_08704_3 crossref_primary_10_1186_s12974_022_02687_5 crossref_primary_10_3390_nu12030671 crossref_primary_10_1007_s12640_021_00403_4 crossref_primary_10_3390_brainsci14121239 crossref_primary_10_3389_fimmu_2023_1145649 crossref_primary_10_3390_antiox11020261 crossref_primary_10_1186_s42269_023_01083_0 crossref_primary_10_1016_j_nbd_2024_106663 crossref_primary_10_3390_cells12040618 crossref_primary_10_1177_10738584211037351 crossref_primary_10_3390_neuroglia6010004 crossref_primary_10_3390_v16121811 crossref_primary_10_3389_fnmol_2019_00258 crossref_primary_10_1080_1028415X_2020_1721645 crossref_primary_10_3390_ijms24032573 crossref_primary_10_1016_j_neuroscience_2020_09_023 crossref_primary_10_1016_j_mehy_2023_111212 crossref_primary_10_2174_1871527321666220413090541 crossref_primary_10_1080_10408398_2024_2377290 crossref_primary_10_18863_pgy_1189139 crossref_primary_10_1093_hmg_ddae139 crossref_primary_10_3390_ijms242115864 crossref_primary_10_1186_s13041_024_01147_w crossref_primary_10_1111_bph_16094 crossref_primary_10_1177_09727531211070532 crossref_primary_10_1080_09553002_2021_1857455 crossref_primary_10_4103_1673_5374_276320 crossref_primary_10_3390_ijms23020810 crossref_primary_10_1016_j_biopha_2024_116947 crossref_primary_10_1007_s11011_022_00902_z crossref_primary_10_1089_ars_2019_8014 crossref_primary_10_3390_ijms221810077 crossref_primary_10_2147_DMSO_S382927 crossref_primary_10_3390_ijms21020529 crossref_primary_10_3390_antiox11081511 crossref_primary_10_1038_s41598_021_84887_2 crossref_primary_10_1016_j_jchemneu_2022_102137 crossref_primary_10_1016_j_nbd_2025_106885 crossref_primary_10_1088_1758_5090_ace21b crossref_primary_10_3390_electronics11132089 crossref_primary_10_1111_cns_13998 crossref_primary_10_3389_fneur_2021_619626 crossref_primary_10_1038_s12276_023_01098_7 crossref_primary_10_3389_fpsyt_2022_842755 crossref_primary_10_1159_000521744 crossref_primary_10_14336_AD_2021_0325 crossref_primary_10_3390_ijms22147710 crossref_primary_10_1016_j_jconrel_2020_11_019 crossref_primary_10_3390_jmp4040019 crossref_primary_10_3390_pharmaceutics15020685 crossref_primary_10_1016_j_neurobiolaging_2023_06_015 crossref_primary_10_1007_s10787_024_01461_8 crossref_primary_10_1111_jnc_15457 crossref_primary_10_3390_ijms24108498 crossref_primary_10_1007_s10735_021_09998_6 crossref_primary_10_1177_0271678X221077343 crossref_primary_10_1186_s13041_020_00571_y crossref_primary_10_3390_life13040940 crossref_primary_10_1016_j_neulet_2020_135028 crossref_primary_10_1016_j_tice_2023_102192 crossref_primary_10_3390_ijms21186676 crossref_primary_10_3389_fncel_2019_00507 crossref_primary_10_1007_s11095_022_03433_5 crossref_primary_10_3390_ijms22157887 crossref_primary_10_1186_s40035_022_00332_y crossref_primary_10_14336_AD_2021_0214 crossref_primary_10_1016_j_biopsych_2021_05_025 crossref_primary_10_3390_ijms23010242 crossref_primary_10_1016_j_preteyeres_2020_100886 crossref_primary_10_1038_s41598_020_79656_6 crossref_primary_10_1080_15548627_2023_2180202 crossref_primary_10_3389_fncel_2023_1125412 crossref_primary_10_1007_s10719_022_10064_w crossref_primary_10_3233_JAD_221279 crossref_primary_10_1212_NXI_0000000000001164 crossref_primary_10_3390_ijms22042196 crossref_primary_10_1002_cti2_1394 crossref_primary_10_1002_dad2_12576 crossref_primary_10_14336_AD_2020_0827 crossref_primary_10_3390_life12111857 crossref_primary_10_1016_j_csbj_2022_08_037 crossref_primary_10_1016_j_bbrc_2024_150418 crossref_primary_10_1038_s41380_024_02692_5 crossref_primary_10_3233_JAD_230199 crossref_primary_10_1016_j_bbi_2021_06_014 crossref_primary_10_1186_s12944_024_02106_z crossref_primary_10_1016_j_intimp_2024_112536 crossref_primary_10_3390_cells11121902 crossref_primary_10_1002_glia_23845 crossref_primary_10_2147_JIR_S483412 crossref_primary_10_1172_jci_insight_158144 crossref_primary_10_1002_jnr_24759 crossref_primary_10_1016_j_biopha_2020_110131 crossref_primary_10_3390_cells9061426 crossref_primary_10_1210_clinem_dgab362 crossref_primary_10_1007_s11064_023_03922_y crossref_primary_10_4103_1673_5374_360164 crossref_primary_10_1155_2022_6483582 crossref_primary_10_3390_ijms231810572 crossref_primary_10_1155_2020_9494352 crossref_primary_10_1242_dmm_048929 crossref_primary_10_1073_pnas_2122236119 crossref_primary_10_1093_brain_awab156 crossref_primary_10_3390_biom14010069 crossref_primary_10_3389_fphar_2021_640441 crossref_primary_10_3390_ijms21249441 crossref_primary_10_1016_j_neuint_2021_105212 crossref_primary_10_1172_jci_insight_152012 crossref_primary_10_1038_s41380_023_02168_y crossref_primary_10_1186_s12974_020_01900_7 crossref_primary_10_1002_glia_24244 crossref_primary_10_1016_j_nbd_2022_105750 crossref_primary_10_1016_j_cbi_2021_109740 crossref_primary_10_3390_cells13030286 crossref_primary_10_3390_antiox12101856 crossref_primary_10_1016_j_arr_2023_102019 crossref_primary_10_1111_cns_14000 crossref_primary_10_1371_journal_pone_0313556 crossref_primary_10_3390_biom11081109 crossref_primary_10_1016_j_cobme_2020_06_004 crossref_primary_10_3389_fnins_2022_798994 crossref_primary_10_3389_fcell_2022_838402 crossref_primary_10_1038_s41380_023_02061_8 crossref_primary_10_3390_ijms23020629 crossref_primary_10_1016_j_gene_2023_147898 crossref_primary_10_4103_1673_5374_268897 crossref_primary_10_1016_j_brainresbull_2022_08_015 crossref_primary_10_1002_glia_24110 crossref_primary_10_3390_ijms242417146 crossref_primary_10_1186_s12974_022_02619_3 crossref_primary_10_3389_fnins_2020_00723 crossref_primary_10_3390_cells9040846 crossref_primary_10_3390_ijms22094333 crossref_primary_10_3233_JAD_231033 crossref_primary_10_1016_j_yebeh_2022_108907 crossref_primary_10_1016_j_addr_2021_02_015 crossref_primary_10_1007_s11033_021_06629_x crossref_primary_10_1111_acel_14074 crossref_primary_10_3390_ijms221910728 crossref_primary_10_1007_s12031_020_01712_7 crossref_primary_10_1016_j_msard_2022_103749 crossref_primary_10_3390_ijms24129969 crossref_primary_10_1186_s13024_020_00375_7 crossref_primary_10_1016_j_envres_2021_112316 crossref_primary_10_3389_fncel_2021_710820 crossref_primary_10_3390_ijms23094995 crossref_primary_10_3390_brainsci12121657 crossref_primary_10_1007_s11332_023_01065_9 crossref_primary_10_3389_fnagi_2020_580068 crossref_primary_10_3390_biomedicines10071718 crossref_primary_10_1146_annurev_genet_071719_023616 crossref_primary_10_3389_fnut_2022_852012 crossref_primary_10_3390_biomedicines8100394 crossref_primary_10_3390_ijms21145149 crossref_primary_10_3390_fractalfract7010006 crossref_primary_10_3233_JAD_200541 crossref_primary_10_1186_s12974_020_1708_9 crossref_primary_10_1111_jnc_16014 crossref_primary_10_1515_revneuro_2024_0081 crossref_primary_10_3389_fphar_2024_1374408 crossref_primary_10_1371_journal_pgen_1009822 crossref_primary_10_3390_life11030229 crossref_primary_10_7554_eLife_83451 crossref_primary_10_1111_jnc_16258 crossref_primary_10_3390_cells9010081 crossref_primary_10_1002_jbt_22913 crossref_primary_10_1016_j_phrs_2022_106227 crossref_primary_10_1186_s13024_021_00506_8 crossref_primary_10_1007_s12035_023_03525_2 crossref_primary_10_3390_ijms222413315 crossref_primary_10_1016_j_expneurol_2019_113060 crossref_primary_10_1213_ANE_0000000000006884 crossref_primary_10_1186_s12974_021_02288_8 crossref_primary_10_3390_ijms25084160 crossref_primary_10_1186_s43094_022_00446_0 crossref_primary_10_14789_ejmj_JMJ24_0026_P crossref_primary_10_31083_j_fbl2701020 crossref_primary_10_1016_j_bbr_2024_115075 crossref_primary_10_3390_ijms23031435 crossref_primary_10_1016_j_neuint_2021_105124 crossref_primary_10_3390_biomedicines10081824 crossref_primary_10_3390_ijms241813880 crossref_primary_10_1080_1028415X_2022_2078173 crossref_primary_10_3389_fnins_2022_906651 crossref_primary_10_3390_cells8111345 crossref_primary_10_1016_j_bcp_2024_116174 crossref_primary_10_3390_brainsci11010085 crossref_primary_10_1089_scd_2019_0189 crossref_primary_10_1523_JNEUROSCI_1482_23_2024 crossref_primary_10_3390_cells9112415 crossref_primary_10_1242_dmm_052002 crossref_primary_10_1186_s40035_024_00398_w crossref_primary_10_3390_ijms25105169 crossref_primary_10_3390_ijms21207586 crossref_primary_10_1111_cns_14466 crossref_primary_10_1039_D0CB00140F crossref_primary_10_3390_ijms24087435 crossref_primary_10_4103_1673_5374_306064 crossref_primary_10_1016_j_smim_2022_101631 crossref_primary_10_1186_s12974_021_02081_7 crossref_primary_10_1016_j_arr_2023_101865 crossref_primary_10_1038_s41419_021_04049_0 crossref_primary_10_1038_s41435_020_00113_5 crossref_primary_10_1016_j_pneurobio_2020_101817 crossref_primary_10_1016_j_jchemneu_2023_102286 crossref_primary_10_1038_s41598_022_08840_7 crossref_primary_10_1186_s10020_024_00917_5 crossref_primary_10_3390_cells10081911 crossref_primary_10_1007_s12015_021_10254_3 crossref_primary_10_3389_fnins_2024_1401706 crossref_primary_10_1007_s00210_024_03415_x crossref_primary_10_1016_j_mcn_2021_103615 crossref_primary_10_3390_ijms22157822 crossref_primary_10_1007_s12017_020_08614_2 crossref_primary_10_18632_aging_205174 crossref_primary_10_1515_nipt_2023_0020 crossref_primary_10_3390_life12091439 |
Cites_doi | 10.4049/jimmunol.169.12.6720 10.1371/journal.pone.0008762 10.1073/pnas.1222361110 10.1093/brain/awf180 10.1111/j.1528-1167.2010.02592.x 10.1038/nature11059 10.1016/j.pneurobio.2015.09.008 10.1186/1750-1326-6-49 10.1016/j.neuro.2008.12.009 10.1073/pnas.92.7.3032 10.1186/1750-1326-2-22 10.3389/fneur.2013.00194 10.1016/j.neurobiolaging.2014.06.004 10.1038/nature21029 10.1073/pnas.0705046104 10.1016/j.brainresbull.2009.07.012 10.1016/j.tins.2010.12.001 10.1016/j.immuni.2017.06.006 10.1007/s11064-013-1060-x 10.1038/cdd.2010.143 10.2174/156720511794604543 10.1038/ni1507 10.1016/j.cger.2006.06.003 10.1016/j.nurt.2010.07.003 10.1016/S0140-6736(10)61156-7 10.1016/j.neuint.2003.11.003 10.1084/jem.20041918 10.1016/S1474-4422(09)70062-6 10.1016/j.expneurol.2006.03.028 10.1073/pnas.1104977108 10.1002/glia.20167 10.1016/0896-6273(89)90252-3 10.3233/JAD-2004-6604 10.1074/jbc.R800019200 10.1016/j.bbadis.2011.03.007 10.1007/s00429-017-1383-5 10.1038/nrn3802 10.1042/BST20140155 10.1016/j.cell.2004.12.020 10.1002/jnr.24075 10.1073/pnas.032539299 10.1111/j.1440-1789.2009.01078.x 10.1101/cshperspect.a020628 10.1016/j.neuron.2014.11.018 10.1523/JNEUROSCI.0116-08.2008 10.3233/JAD-2010-101089 10.1016/j.expneurol.2013.12.024 10.1080/00207450590934570 10.1007/978-3-540-79885-9_7 10.1002/glia.20638 10.1016/j.neuroscience.2015.07.007 10.1523/JNEUROSCI.1709-08.2008 10.1073/pnas.0911405106 10.1007/s11481-014-9553-1 10.3389/fnins.2016.00149 10.1038/nbt.3835 10.1523/JNEUROSCI.08-03-00975.1988 10.1038/nrn1722 10.1016/j.nurt.2010.07.001 10.1186/1742-2094-8-150 10.1016/S0006-8993(01)02640-3 10.1038/nm.3639 10.1038/nm838 10.1016/0891-0618(93)90046-7 10.1172/JCI60842 10.1093/brain/awr193 10.1002/glia.22443 10.1074/jbc.M109.081125 10.1093/cercor/bhx303 10.1186/s12974-015-0335-3 10.1016/j.nbd.2010.09.018 10.3389/fncir.2013.00188 10.1073/pnas.1103141108 10.1002/glia.21212 10.1111/j.1582-4934.2008.00496.x 10.1002/jnr.21774 10.1371/journal.pone.0017187 10.1016/j.neurobiolaging.2004.01.007 10.1186/1756-6606-3-12 10.1523/JNEUROSCI.5098-09.2010 10.1007/s10571-011-9725-y 10.1099/vir.0.071175-0 10.1038/nm1425 10.1093/hmg/ddr513 10.1212/WNL.54.6.1316 10.1038/nbt.1957 10.1111/j.1471-4159.2011.07210.x 10.1016/j.neurobiolaging.2008.02.019 10.1016/j.scr.2013.12.008 10.3233/JAD-170364 10.1080/13550280290100969 10.1007/s00011-009-0026-6 10.1523/JNEUROSCI.6417-10.2011 10.1038/cddis.2012.123 10.3233/RNN-1991-245610 10.1111/j.1460-9568.2009.06814.x 10.1016/j.it.2007.01.005 10.1007/978-3-319-08894-5_2 10.1002/mds.23455 10.1038/s41598-017-11103-5 10.4049/jimmunol.0802954 10.1016/j.phrs.2016.08.005 10.1002/glia.22800 10.1371/journal.pone.0021954 10.1056/NEJMcp043908 10.1007/s00401-009-0619-8 10.1523/JNEUROSCI.6221-11.2012 10.1016/j.imbio.2013.04.004 10.1038/nn.2210 10.1074/jbc.M309304200 10.1073/pnas.1218497110 10.1016/j.neurobiolaging.2008.05.015 10.1371/journal.pone.0054200 10.1093/abbs/gmr125 10.1042/BST20140078 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 JKL International Copyright: © 2019 Li et al. 2019 |
Copyright_xml | – notice: COPYRIGHT 2019 JKL International – notice: Copyright: © 2019 Li et al. 2019 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.14336/AD.2018.0720 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2152-5250 |
EndPage | 675 |
ExternalDocumentID | PMC6538217 A600269240 31165009 10_14336_AD_2018_0720 |
Genre | Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 53G 5VS AAYXX ABDBF ACUHS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV C1A CITATION DIK EBD ESX GROUPED_DOAJ HYE IAO IHR IHW ITC KQ8 M~E OK1 RPM TUS NPM 7X8 5PM |
ID | FETCH-LOGICAL-c485t-a6f0afc904999bc62724bc420bac269a1ad61ea1ac3d815f9b4c647d6c42b6ff3 |
ISSN | 2152-5250 |
IngestDate | Thu Aug 21 17:47:11 EDT 2025 Fri Jul 11 00:15:44 EDT 2025 Tue Feb 18 23:02:35 EST 2025 Wed Feb 12 06:56:44 EST 2025 Thu May 22 21:21:24 EDT 2025 Thu Jan 02 23:03:36 EST 2025 Thu Apr 24 23:03:27 EDT 2025 Tue Jul 01 04:25:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | neurodegenerative diseases neuroinflammation reactive astrocytes |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c485t-a6f0afc904999bc62724bc420bac269a1ad61ea1ac3d815f9b4c647d6c42b6ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.14336/AD.2018.0720 |
PMID | 31165009 |
PQID | 2340036951 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6538217 proquest_miscellaneous_2340036951 gale_infotracmisc_A600269240 gale_infotracacademiconefile_A600269240 gale_healthsolutions_A600269240 pubmed_primary_31165009 crossref_primary_10_14336_AD_2018_0720 crossref_citationtrail_10_14336_AD_2018_0720 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Aging and disease |
PublicationTitleAlternate | Aging Dis |
PublicationYear | 2019 |
Publisher | JKL International JKL International LLC |
Publisher_xml | – name: JKL International – name: JKL International LLC |
References | key-10.14336/AD.2018.0720-9 key-10.14336/AD.2018.0720-88 key-10.14336/AD.2018.0720-87 key-10.14336/AD.2018.0720-89 key-10.14336/AD.2018.0720-5 key-10.14336/AD.2018.0720-84 key-10.14336/AD.2018.0720-6 key-10.14336/AD.2018.0720-83 key-10.14336/AD.2018.0720-7 key-10.14336/AD.2018.0720-86 key-10.14336/AD.2018.0720-8 key-10.14336/AD.2018.0720-85 key-10.14336/AD.2018.0720-1 key-10.14336/AD.2018.0720-80 key-10.14336/AD.2018.0720-2 key-10.14336/AD.2018.0720-3 key-10.14336/AD.2018.0720-82 key-10.14336/AD.2018.0720-4 key-10.14336/AD.2018.0720-81 key-10.14336/AD.2018.0720-103 key-10.14336/AD.2018.0720-102 key-10.14336/AD.2018.0720-101 key-10.14336/AD.2018.0720-100 key-10.14336/AD.2018.0720-107 key-10.14336/AD.2018.0720-106 key-10.14336/AD.2018.0720-105 key-10.14336/AD.2018.0720-104 key-10.14336/AD.2018.0720-109 key-10.14336/AD.2018.0720-108 key-10.14336/AD.2018.0720-11 key-10.14336/AD.2018.0720-99 key-10.14336/AD.2018.0720-10 key-10.14336/AD.2018.0720-98 key-10.14336/AD.2018.0720-13 key-10.14336/AD.2018.0720-12 key-10.14336/AD.2018.0720-95 key-10.14336/AD.2018.0720-94 key-10.14336/AD.2018.0720-97 key-10.14336/AD.2018.0720-96 key-10.14336/AD.2018.0720-91 key-10.14336/AD.2018.0720-90 key-10.14336/AD.2018.0720-93 key-10.14336/AD.2018.0720-92 key-10.14336/AD.2018.0720-110 key-10.14336/AD.2018.0720-114 key-10.14336/AD.2018.0720-113 key-10.14336/AD.2018.0720-112 key-10.14336/AD.2018.0720-111 key-10.14336/AD.2018.0720-19 key-10.14336/AD.2018.0720-18 key-10.14336/AD.2018.0720-116 key-10.14336/AD.2018.0720-115 key-10.14336/AD.2018.0720-15 key-10.14336/AD.2018.0720-14 key-10.14336/AD.2018.0720-17 key-10.14336/AD.2018.0720-16 key-10.14336/AD.2018.0720-22 key-10.14336/AD.2018.0720-21 key-10.14336/AD.2018.0720-24 key-10.14336/AD.2018.0720-23 key-10.14336/AD.2018.0720-20 key-10.14336/AD.2018.0720-29 key-10.14336/AD.2018.0720-26 key-10.14336/AD.2018.0720-25 key-10.14336/AD.2018.0720-28 key-10.14336/AD.2018.0720-27 key-10.14336/AD.2018.0720-33 key-10.14336/AD.2018.0720-32 key-10.14336/AD.2018.0720-35 key-10.14336/AD.2018.0720-34 key-10.14336/AD.2018.0720-31 key-10.14336/AD.2018.0720-30 key-10.14336/AD.2018.0720-37 key-10.14336/AD.2018.0720-36 key-10.14336/AD.2018.0720-39 key-10.14336/AD.2018.0720-38 key-10.14336/AD.2018.0720-44 key-10.14336/AD.2018.0720-43 key-10.14336/AD.2018.0720-46 key-10.14336/AD.2018.0720-45 key-10.14336/AD.2018.0720-40 key-10.14336/AD.2018.0720-42 key-10.14336/AD.2018.0720-41 key-10.14336/AD.2018.0720-48 key-10.14336/AD.2018.0720-47 key-10.14336/AD.2018.0720-49 key-10.14336/AD.2018.0720-55 key-10.14336/AD.2018.0720-54 key-10.14336/AD.2018.0720-57 key-10.14336/AD.2018.0720-56 key-10.14336/AD.2018.0720-51 key-10.14336/AD.2018.0720-50 key-10.14336/AD.2018.0720-53 key-10.14336/AD.2018.0720-52 key-10.14336/AD.2018.0720-59 key-10.14336/AD.2018.0720-58 key-10.14336/AD.2018.0720-66 key-10.14336/AD.2018.0720-65 key-10.14336/AD.2018.0720-68 key-10.14336/AD.2018.0720-67 key-10.14336/AD.2018.0720-62 key-10.14336/AD.2018.0720-61 key-10.14336/AD.2018.0720-64 key-10.14336/AD.2018.0720-63 key-10.14336/AD.2018.0720-60 key-10.14336/AD.2018.0720-69 key-10.14336/AD.2018.0720-77 key-10.14336/AD.2018.0720-76 key-10.14336/AD.2018.0720-79 key-10.14336/AD.2018.0720-78 key-10.14336/AD.2018.0720-73 key-10.14336/AD.2018.0720-72 key-10.14336/AD.2018.0720-75 key-10.14336/AD.2018.0720-74 key-10.14336/AD.2018.0720-71 key-10.14336/AD.2018.0720-70 |
References_xml | – ident: key-10.14336/AD.2018.0720-99 doi: 10.4049/jimmunol.169.12.6720 – ident: key-10.14336/AD.2018.0720-72 doi: 10.1371/journal.pone.0008762 – ident: key-10.14336/AD.2018.0720-93 doi: 10.1073/pnas.1222361110 – ident: key-10.14336/AD.2018.0720-114 doi: 10.1093/brain/awf180 – ident: key-10.14336/AD.2018.0720-21 doi: 10.1111/j.1528-1167.2010.02592.x – ident: key-10.14336/AD.2018.0720-111 doi: 10.1038/nature11059 – ident: key-10.14336/AD.2018.0720-25 doi: 10.1016/j.pneurobio.2015.09.008 – ident: key-10.14336/AD.2018.0720-83 doi: 10.1186/1750-1326-6-49 – ident: key-10.14336/AD.2018.0720-26 doi: 10.1016/j.neuro.2008.12.009 – ident: key-10.14336/AD.2018.0720-64 doi: 10.1073/pnas.92.7.3032 – ident: key-10.14336/AD.2018.0720-51 doi: 10.1186/1750-1326-2-22 – ident: key-10.14336/AD.2018.0720-44 doi: 10.3389/fneur.2013.00194 – ident: key-10.14336/AD.2018.0720-62 doi: 10.1016/j.neurobiolaging.2014.06.004 – ident: key-10.14336/AD.2018.0720-10 doi: 10.1038/nature21029 – ident: key-10.14336/AD.2018.0720-86 doi: 10.1073/pnas.0705046104 – ident: key-10.14336/AD.2018.0720-40 doi: 10.1016/j.brainresbull.2009.07.012 – ident: key-10.14336/AD.2018.0720-5 doi: 10.1016/j.tins.2010.12.001 – ident: key-10.14336/AD.2018.0720-9 doi: 10.1016/j.immuni.2017.06.006 – ident: key-10.14336/AD.2018.0720-43 doi: 10.1007/s11064-013-1060-x – ident: key-10.14336/AD.2018.0720-109 doi: 10.1038/cdd.2010.143 – ident: key-10.14336/AD.2018.0720-57 doi: 10.2174/156720511794604543 – ident: key-10.14336/AD.2018.0720-96 doi: 10.1038/ni1507 – ident: key-10.14336/AD.2018.0720-70 doi: 10.1016/j.cger.2006.06.003 – ident: key-10.14336/AD.2018.0720-39 doi: 10.1016/j.nurt.2010.07.003 – ident: key-10.14336/AD.2018.0720-84 doi: 10.1016/S0140-6736(10)61156-7 – ident: key-10.14336/AD.2018.0720-14 – ident: key-10.14336/AD.2018.0720-20 doi: 10.1016/j.neuint.2003.11.003 – ident: key-10.14336/AD.2018.0720-105 doi: 10.1084/jem.20041918 – ident: key-10.14336/AD.2018.0720-76 doi: 10.1016/S1474-4422(09)70062-6 – ident: key-10.14336/AD.2018.0720-90 doi: 10.1016/j.expneurol.2006.03.028 – ident: key-10.14336/AD.2018.0720-112 doi: 10.1073/pnas.1104977108 – ident: key-10.14336/AD.2018.0720-24 doi: 10.1002/glia.20167 – ident: key-10.14336/AD.2018.0720-67 doi: 10.1016/0896-6273(89)90252-3 – ident: key-10.14336/AD.2018.0720-58 doi: 10.3233/JAD-2004-6604 – ident: key-10.14336/AD.2018.0720-47 doi: 10.1074/jbc.R800019200 – ident: key-10.14336/AD.2018.0720-73 doi: 10.1016/j.bbadis.2011.03.007 – ident: key-10.14336/AD.2018.0720-2 doi: 10.1007/s00429-017-1383-5 – ident: key-10.14336/AD.2018.0720-41 doi: 10.1038/nrn3802 – ident: key-10.14336/AD.2018.0720-7 doi: 10.1042/BST20140155 – ident: key-10.14336/AD.2018.0720-33 doi: 10.1016/j.cell.2004.12.020 – ident: key-10.14336/AD.2018.0720-52 doi: 10.1002/jnr.24075 – ident: key-10.14336/AD.2018.0720-113 doi: 10.1073/pnas.032539299 – ident: key-10.14336/AD.2018.0720-95 doi: 10.1111/j.1440-1789.2009.01078.x – ident: key-10.14336/AD.2018.0720-38 doi: 10.1101/cshperspect.a020628 – ident: key-10.14336/AD.2018.0720-106 doi: 10.1016/j.neuron.2014.11.018 – ident: key-10.14336/AD.2018.0720-115 doi: 10.1523/JNEUROSCI.0116-08.2008 – ident: key-10.14336/AD.2018.0720-53 doi: 10.3233/JAD-2010-101089 – ident: key-10.14336/AD.2018.0720-19 doi: 10.1016/j.expneurol.2013.12.024 – ident: key-10.14336/AD.2018.0720-12 doi: 10.1080/00207450590934570 – ident: key-10.14336/AD.2018.0720-34 doi: 10.1007/978-3-540-79885-9_7 – ident: key-10.14336/AD.2018.0720-68 doi: 10.1002/glia.20638 – ident: key-10.14336/AD.2018.0720-1 doi: 10.1016/j.neuroscience.2015.07.007 – ident: key-10.14336/AD.2018.0720-29 doi: 10.1523/JNEUROSCI.1709-08.2008 – ident: key-10.14336/AD.2018.0720-91 doi: 10.1073/pnas.0911405106 – ident: key-10.14336/AD.2018.0720-102 doi: 10.1007/s11481-014-9553-1 – ident: key-10.14336/AD.2018.0720-3 doi: 10.3389/fnins.2016.00149 – ident: key-10.14336/AD.2018.0720-8 doi: 10.1038/nbt.3835 – ident: key-10.14336/AD.2018.0720-75 doi: 10.1523/JNEUROSCI.08-03-00975.1988 – ident: key-10.14336/AD.2018.0720-15 doi: 10.1038/nrn1722 – ident: key-10.14336/AD.2018.0720-71 doi: 10.1016/j.nurt.2010.07.001 – ident: key-10.14336/AD.2018.0720-65 doi: 10.1186/1742-2094-8-150 – ident: key-10.14336/AD.2018.0720-23 doi: 10.1016/S0006-8993(01)02640-3 – ident: key-10.14336/AD.2018.0720-54 doi: 10.1038/nm.3639 – ident: key-10.14336/AD.2018.0720-49 doi: 10.1038/nm838 – ident: key-10.14336/AD.2018.0720-16 doi: 10.1016/0891-0618(93)90046-7 – ident: key-10.14336/AD.2018.0720-100 doi: 10.1172/JCI60842 – ident: key-10.14336/AD.2018.0720-85 doi: 10.1093/brain/awr193 – ident: key-10.14336/AD.2018.0720-97 doi: 10.1002/glia.22443 – ident: key-10.14336/AD.2018.0720-79 doi: 10.1074/jbc.M109.081125 – ident: key-10.14336/AD.2018.0720-104 doi: 10.1093/cercor/bhx303 – ident: key-10.14336/AD.2018.0720-101 doi: 10.1186/s12974-015-0335-3 – ident: key-10.14336/AD.2018.0720-28 doi: 10.1016/j.nbd.2010.09.018 – ident: key-10.14336/AD.2018.0720-116 doi: 10.3389/fncir.2013.00188 – ident: key-10.14336/AD.2018.0720-88 doi: 10.1073/pnas.1103141108 – ident: key-10.14336/AD.2018.0720-50 doi: 10.1002/glia.21212 – ident: key-10.14336/AD.2018.0720-61 doi: 10.1111/j.1582-4934.2008.00496.x – ident: key-10.14336/AD.2018.0720-18 doi: 10.1002/jnr.21774 – ident: key-10.14336/AD.2018.0720-30 doi: 10.1371/journal.pone.0017187 – ident: key-10.14336/AD.2018.0720-56 doi: 10.1016/j.neurobiolaging.2004.01.007 – ident: key-10.14336/AD.2018.0720-81 doi: 10.1186/1756-6606-3-12 – ident: key-10.14336/AD.2018.0720-63 doi: 10.1523/JNEUROSCI.5098-09.2010 – ident: key-10.14336/AD.2018.0720-36 doi: 10.1007/s10571-011-9725-y – ident: key-10.14336/AD.2018.0720-22 doi: 10.1099/vir.0.071175-0 – ident: key-10.14336/AD.2018.0720-27 doi: 10.1038/nm1425 – ident: key-10.14336/AD.2018.0720-87 doi: 10.1093/hmg/ddr513 – ident: key-10.14336/AD.2018.0720-66 doi: 10.1212/WNL.54.6.1316 – ident: key-10.14336/AD.2018.0720-92 doi: 10.1038/nbt.1957 – ident: key-10.14336/AD.2018.0720-107 doi: 10.1111/j.1471-4159.2011.07210.x – ident: key-10.14336/AD.2018.0720-94 doi: 10.1016/j.neurobiolaging.2008.02.019 – ident: key-10.14336/AD.2018.0720-35 doi: 10.1016/j.scr.2013.12.008 – ident: key-10.14336/AD.2018.0720-45 doi: 10.3233/JAD-170364 – ident: key-10.14336/AD.2018.0720-46 doi: 10.1080/13550280290100969 – ident: key-10.14336/AD.2018.0720-78 doi: 10.1007/s00011-009-0026-6 – ident: key-10.14336/AD.2018.0720-108 doi: 10.1523/JNEUROSCI.6417-10.2011 – ident: key-10.14336/AD.2018.0720-80 doi: 10.1038/cddis.2012.123 – ident: key-10.14336/AD.2018.0720-17 doi: 10.3233/RNN-1991-245610 – ident: key-10.14336/AD.2018.0720-32 doi: 10.1111/j.1460-9568.2009.06814.x – ident: key-10.14336/AD.2018.0720-59 doi: 10.1016/j.it.2007.01.005 – ident: key-10.14336/AD.2018.0720-6 doi: 10.1007/978-3-319-08894-5_2 – ident: key-10.14336/AD.2018.0720-77 doi: 10.1002/mds.23455 – ident: key-10.14336/AD.2018.0720-13 doi: 10.1038/s41598-017-11103-5 – ident: key-10.14336/AD.2018.0720-31 doi: 10.4049/jimmunol.0802954 – ident: key-10.14336/AD.2018.0720-4 doi: 10.1016/j.phrs.2016.08.005 – ident: key-10.14336/AD.2018.0720-55 doi: 10.1002/glia.22800 – ident: key-10.14336/AD.2018.0720-48 doi: 10.1371/journal.pone.0021954 – ident: key-10.14336/AD.2018.0720-69 doi: 10.1056/NEJMcp043908 – ident: key-10.14336/AD.2018.0720-11 doi: 10.1007/s00401-009-0619-8 – ident: key-10.14336/AD.2018.0720-98 doi: 10.1523/JNEUROSCI.6221-11.2012 – ident: key-10.14336/AD.2018.0720-103 doi: 10.1016/j.imbio.2013.04.004 – ident: key-10.14336/AD.2018.0720-89 doi: 10.1038/nn.2210 – ident: key-10.14336/AD.2018.0720-82 doi: 10.1074/jbc.M309304200 – ident: key-10.14336/AD.2018.0720-110 doi: 10.1073/pnas.1218497110 – ident: key-10.14336/AD.2018.0720-60 doi: 10.1016/j.neurobiolaging.2008.05.015 – ident: key-10.14336/AD.2018.0720-74 doi: 10.1371/journal.pone.0054200 – ident: key-10.14336/AD.2018.0720-37 doi: 10.1093/abbs/gmr125 – ident: key-10.14336/AD.2018.0720-42 doi: 10.1042/BST20140078 |
SSID | ssj0000392393 |
Score | 2.6003385 |
SecondaryResourceType | review_article |
Snippet | Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis,... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 664 |
SubjectTerms | Brain Central nervous system Development and progression Homeostasis Hypertrophy Ischemia Medical research Nervous system diseases Neurodegenerative diseases Review |
Title | Reactive Astrocytes in Neurodegenerative Diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31165009 https://www.proquest.com/docview/2340036951 https://pubmed.ncbi.nlm.nih.gov/PMC6538217 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0IIhob0gYHwEBgQJjQfIcGPHSR6jDTSVDfGxSXuLLo4zKrF0YulD-fXcOU6adCDBXtLKvsbp3eU-7Ptg7JUAtPkBdKBiDoEUACgHOQ8gVGUISWQSm5V29EkdnMjpaXS6andks0uaYlf_-mNeyXWoimNIV8qS_Q_K9jfFAfyO9MUrUhiv_0TjrwasuEIkN6iIlo2NrnpjC26U5sxWlG5Dg9pjmMuhKZqddfmJa4c0h-0B_6JeLsZDUyTj3Gk6u9dsXDgv_tNZz2Rf2qoE3zpIt6VAWUxquKUw_Xi4th_ZNTA2VjBRK9yAjkNHUpQPuEUMRKJqq5Q77araPilXBLcUtrVMtk_Rdskuj22KXDMg4sW5paKgekGcpyv91UcVfj7aUyi_0cm6yW6FMdpSAxfbamY0BkUqXKlVWvLdcMFNdru7-8hKWdfVA2NlHEg7sEyO77I7zqXws5Y_7rEbpr7PtjJE6_x86e_4NsjXnp5ssUnHMv6KZfxZ7V9hGb9jmQfs5MP7472DwHXNCLRMoiYAVXGodGp92UKrMA5loWXIC9ChSmECpZoY_NCiTCZRlRZSKxmXCmEKVVXiIduo57V5zPwIhJayNAVXiQQuQCswvNRCQBFqDh5722Ep166kPHU2-ZGTa0n4zbP9nPCbE349ttODX7S1VP4G-IJQnrepwP2bmmd0iKxSNEI99tpCEG_gihpcMgk-N9UzG0FujyBReurR9MuOrDlNUchhbeaLyzwUkoo1oQfisUctmfun7tjEY_GIAXoAKto-nqln323xdsehT679y6dsc_XObrON5ufCPEPDuCmeW27_DXWxuE4 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+Astrocytes+in+Neurodegenerative+Diseases&rft.jtitle=Aging+and+disease&rft.au=Li%2C+Kunyu&rft.au=Li%2C+Jiatong&rft.au=Zheng%2C+Jialin&rft.au=Qin%2C+Song&rft.date=2019-06-01&rft.pub=JKL+International+LLC&rft.eissn=2152-5250&rft.volume=10&rft.issue=3&rft.spage=664&rft.epage=675&rft_id=info:doi/10.14336%2FAD.2018.0720&rft_id=info%3Apmid%2F31165009&rft.externalDocID=PMC6538217 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2152-5250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2152-5250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2152-5250&client=summon |