Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression

Abstract Motivation Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcripto...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 34; no. 13; pp. 2177 - 2184
Main Authors Raghupathy, Narayanan, Choi, Kwangbom, Vincent, Matthew J, Beane, Glen L, Sheppard, Keith S, Munger, Steven C, Korstanje, Ron, Pardo-Manual de Villena, Fernando, Churchill, Gary A
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2018
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/bty078

Cover

Abstract Abstract Motivation Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation. Results Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects. Availability and implementation EMASE software is available at https://github.com/churchill-lab/emase. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation. Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects. EMASE software is available at https://github.com/churchill-lab/emase. Supplementary data are available at Bioinformatics online.
Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation.MotivationAllele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation.Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects.ResultsMethods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects.EMASE software is available at https://github.com/churchill-lab/emase.Availability and implementationEMASE software is available at https://github.com/churchill-lab/emase.Supplementary data are available at Bioinformatics online.Supplementary informationSupplementary data are available at Bioinformatics online.
Abstract Motivation Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation. Results Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects. Availability and implementation EMASE software is available at https://github.com/churchill-lab/emase. Supplementary information Supplementary data are available at Bioinformatics online.
Author Munger, Steven C
Sheppard, Keith S
Korstanje, Ron
Pardo-Manual de Villena, Fernando
Raghupathy, Narayanan
Churchill, Gary A
Beane, Glen L
Choi, Kwangbom
Vincent, Matthew J
AuthorAffiliation 1 The Jackson Laboratory, Bar Harbor, USA
2 Department of Genetics, The University of North Carolina, Chapel Hill, USA
AuthorAffiliation_xml – name: 2 Department of Genetics, The University of North Carolina, Chapel Hill, USA
– name: 1 The Jackson Laboratory, Bar Harbor, USA
Author_xml – sequence: 1
  givenname: Narayanan
  surname: Raghupathy
  fullname: Raghupathy, Narayanan
  organization: The Jackson Laboratory, Bar Harbor, USA
– sequence: 2
  givenname: Kwangbom
  surname: Choi
  fullname: Choi, Kwangbom
  organization: The Jackson Laboratory, Bar Harbor, USA
– sequence: 3
  givenname: Matthew J
  surname: Vincent
  fullname: Vincent, Matthew J
  organization: The Jackson Laboratory, Bar Harbor, USA
– sequence: 4
  givenname: Glen L
  surname: Beane
  fullname: Beane, Glen L
  organization: The Jackson Laboratory, Bar Harbor, USA
– sequence: 5
  givenname: Keith S
  surname: Sheppard
  fullname: Sheppard, Keith S
  organization: The Jackson Laboratory, Bar Harbor, USA
– sequence: 6
  givenname: Steven C
  surname: Munger
  fullname: Munger, Steven C
  organization: The Jackson Laboratory, Bar Harbor, USA
– sequence: 7
  givenname: Ron
  surname: Korstanje
  fullname: Korstanje, Ron
  organization: The Jackson Laboratory, Bar Harbor, USA
– sequence: 8
  givenname: Fernando
  surname: Pardo-Manual de Villena
  fullname: Pardo-Manual de Villena, Fernando
  organization: Department of Genetics, The University of North Carolina, Chapel Hill, USA
– sequence: 9
  givenname: Gary A
  surname: Churchill
  fullname: Churchill, Gary A
  email: gary.churchill@jax.org
  organization: The Jackson Laboratory, Bar Harbor, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29444201$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9LHTEQxUNR6p_6ESz72JetSTab3SAIIrUWpILYF1_CJDvxpmQ3a7Irvd_evVwttS_t0wzM-Z0Dcw7IzhAHJOSY0c-MqurE-OgHF1MPk7f5xExr2rTvyD4Tkpac1mpn2SvZlKKl1R45yPknpTUTQrwne1wtk1O2T-6vPCZIduUthAIGCOvscxFdcfv9vMz4WCSELhe-H1N8wlxMKyzA2jmBXW9kEAIGLPOI1jtvC_w1JszZx-ED2XUQMh69zEPy4_LL3cVVeX3z9dvF-XVpRVtPpepUzTqjXOOqlqNtDJVONHVjGO0qQG4a5rjlzjhjjFLKoGKdBSllJaGj1SE52_qOs-mxszhMCYIek-8hrXUEr99eBr_SD_FJS8q5FBuDTy8GKT7OmCfd-2wxBBgwzllzSrloRaPUIv34Z9bvkNeHLoLTrcCmmHNCp62floriJtoHzaje1Kff1qe39S10_Rf9GvAvjm65OI__iTwDXj-7MA
CitedBy_id crossref_primary_10_1016_j_ajhg_2024_06_014
crossref_primary_10_3389_fgene_2019_01178
crossref_primary_10_1016_j_stem_2020_07_005
crossref_primary_10_1038_s41592_022_01731_9
crossref_primary_10_1038_s41598_023_50820_y
crossref_primary_10_1093_nargab_lqac052
crossref_primary_10_3390_genes12010048
crossref_primary_10_1016_j_molcel_2020_09_005
crossref_primary_10_1016_j_gene_2024_149102
crossref_primary_10_1093_g3journal_jkab176
crossref_primary_10_3389_fgene_2019_00035
crossref_primary_10_1146_annurev_genom_120219_080406
crossref_primary_10_1093_bioinformatics_btaa448
crossref_primary_10_1101_gad_333542_119
crossref_primary_10_1016_j_xgen_2023_100283
crossref_primary_10_1016_j_csbj_2020_06_014
crossref_primary_10_1186_s13059_023_02892_2
crossref_primary_10_1681_ASN_2020060777
crossref_primary_10_15252_embj_2021109445
crossref_primary_10_1534_genetics_118_300864
crossref_primary_10_1038_s41467_019_13099_0
crossref_primary_10_3390_ijms23126754
crossref_primary_10_3389_fgene_2023_997383
crossref_primary_10_1101_gr_277467_122
crossref_primary_10_4049_jimmunol_2100558
crossref_primary_10_1016_j_neuron_2018_11_040
crossref_primary_10_1038_s41598_021_89904_y
crossref_primary_10_1371_journal_pgen_1008916
crossref_primary_10_1371_journal_pgen_1010076
crossref_primary_10_1038_s41467_021_26798_4
crossref_primary_10_3389_fgene_2019_00863
crossref_primary_10_1016_j_celrep_2020_108145
crossref_primary_10_1007_s11914_022_00726_x
crossref_primary_10_3389_fcell_2020_562662
crossref_primary_10_1186_s13059_023_03003_x
crossref_primary_10_1261_rna_070227_118
crossref_primary_10_7554_eLife_62585
crossref_primary_10_1101_lm_051839_120
crossref_primary_10_1016_j_gene_2020_144671
crossref_primary_10_1093_bioadv_vbad062
crossref_primary_10_4049_jimmunol_2300841
crossref_primary_10_12688_f1000research_20916_1
crossref_primary_10_1038_s42003_024_06242_1
crossref_primary_10_12688_f1000research_20916_2
crossref_primary_10_1098_rsbl_2022_0116
crossref_primary_10_1186_s13059_024_03317_4
crossref_primary_10_1126_sciadv_abj9111
crossref_primary_10_1016_j_celrep_2021_108739
crossref_primary_10_1016_j_jmb_2021_166829
crossref_primary_10_1016_j_stem_2020_07_019
Cites_doi 10.1186/s13059-014-0550-8
10.1186/gb-2009-10-3-r25
10.1186/s13059-015-0702-5
10.1093/bioinformatics/btp579
10.1093/bioinformatics/btp692
10.1093/bioinformatics/btp616
10.1038/nbt.3519
10.1186/s13059-015-0762-6
10.1016/j.cell.2008.03.029
10.1186/gb-2014-15-2-r29
10.1186/gb-2011-12-2-r13
10.1126/science.1158441
10.1186/1748-7188-6-9
10.1038/nature02698
10.1093/nar/gks666
10.1534/genetics.114.165886
10.1101/gr.111211.110
10.1186/1471-2164-14-536
10.1038/nbt.2862
10.1038/msb.2011.54
10.1038/nature08872
10.1038/nature18270
10.1038/nmeth.3317
10.1093/bioinformatics/btv272
10.1038/nmeth.3582
10.1371/journal.pgen.1004916
10.1016/j.celrep.2012.06.013
10.1186/1471-2105-12-323
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/bioinformatics/bty078
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate ISMB 2018 Proceedings July 6 to July 10, 2018, Chicago, IL, United States
EISSN 1460-2059
1367-4811
EndPage 2184
ExternalDocumentID PMC6022640
29444201
10_1093_bioinformatics_bty078
10.1093/bioinformatics/bty078
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of General Medical Sciences
  sequence: 0
  funderid: 10.13039/100000057
– fundername: NIGMS
  sequence: 0
  grantid: P50-GM076468
  funderid: 10.13039/100000057
– fundername: NCI NIH HHS
  grantid: P30 CA034196
– fundername: NIGMS NIH HHS
  grantid: P50 GM076468
– fundername: ; ; ;
  grantid: P50-GM076468
– fundername: ; ; ;
GroupedDBID -~X
.2P
5GY
AAMVS
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
F5P
HW0
Q5Y
RD5
ROX
ROZ
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
NPM
7X8
5PM
ID FETCH-LOGICAL-c485t-9d951db9f7f382ec7b06f4757b10d3ae2b71f2c2fbfbbb999be91dca66636ad03
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 13:48:38 EDT 2025
Fri Jul 11 11:50:27 EDT 2025
Mon Jul 21 05:58:14 EDT 2025
Tue Jul 01 03:27:24 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
Fri Dec 06 10:16:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)
https://academic.oup.com/journals/pages/about_us/legal/notices
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-9d951db9f7f382ec7b06f4757b10d3ae2b71f2c2fbfbbb999be91dca66636ad03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors wish it to be known that, in their opinion, Narayanan Raghupathy and Kwangbom Choi authors should be regarded as Joint First Authors.
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/34/13/2177/25097987/bty078.pdf
PMID 29444201
PQID 2002484799
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6022640
proquest_miscellaneous_2002484799
pubmed_primary_29444201
crossref_citationtrail_10_1093_bioinformatics_bty078
crossref_primary_10_1093_bioinformatics_bty078
oup_primary_10_1093_bioinformatics_bty078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – sequence: 0
  name: Oxford University Press
– name: Oxford University Press
References Frazee (2023051604095090800_bty078-B9) 2015; 31
Pickrell (2023051604095090800_bty078-B24) 2010; 464
Li (2023051604095090800_bty078-B16) 2011; 12
Wittkopp (2023051604095090800_bty078-B30) 2004; 430
Langmead (2023051604095090800_bty078-B14) 2009; 10
Agresti (2023051604095090800_bty078-B1) 2002
Love (2023051604095090800_bty078-B19) 2014; 15
Baker (2023051604095090800_bty078-B2) 2015; 11
Robinson (2023051604095090800_bty078-B25) 2010; 26
Coolon (2023051604095090800_bty078-B7) 2012; 2
Chick (2023051604095090800_bty078-B5) 2016; 534
Griebel (2023051604095090800_bty078-B10) 2012; 40
Li (2023051604095090800_bty078-B17) 2010; 26
Rozowsky (2023051604095090800_bty078-B26) 2011; 7
Patro (2023051604095090800_bty078-B23) 2014; 32
Bray (2023051604095090800_bty078-B3) 2016; 34
van de Geijn (2023051604095090800_bty078-B29) 2015; 12
Lalonde (2023051604095090800_bty078-B13) 2011; 21
Degner (2023051604095090800_bty078-B8) 2009; 25
Law (2023051604095090800_bty078-B15) 2014; 15
Castel (2023051604095090800_bty078-B4) 2015; 16
Lister (2023051604095090800_bty078-B18) 2008; 133
Kim (2023051604095090800_bty078-B12) 2015; 12
Nicolae (2023051604095090800_bty078-B22) 2011; 6
Munger (2023051604095090800_bty078-B20) 2014; 198
Nagalakshmi (2023051604095090800_bty078-B21) 2008; 320
Stevenson (2023051604095090800_bty078-B27) 2013; 14
Turro (2023051604095090800_bty078-B28) 2011; 12
Conesa (2023051604095090800_bty078-B6) 2016; 17
Kanitz (2023051604095090800_bty078-B11) 2015; 16
References_xml – volume: 17
  start-page: 1.
  year: 2016
  ident: 2023051604095090800_bty078-B6
  article-title: A survey of best practices for RNA-seq data analysis
  publication-title: Genome Biol
– volume: 15
  start-page: 550.
  year: 2014
  ident: 2023051604095090800_bty078-B19
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with deseq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 10
  start-page: R25.
  year: 2009
  ident: 2023051604095090800_bty078-B14
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 16
  start-page: 150.
  year: 2015
  ident: 2023051604095090800_bty078-B11
  article-title: Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0702-5
– volume: 25
  start-page: 3207
  year: 2009
  ident: 2023051604095090800_bty078-B8
  article-title: Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp579
– volume: 26
  start-page: 493
  year: 2010
  ident: 2023051604095090800_bty078-B17
  article-title: RNA-seq gene expression estimation with read mapping uncertainty
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp692
– volume: 26
  start-page: 139
  year: 2010
  ident: 2023051604095090800_bty078-B25
  article-title: edger: a bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 34
  start-page: 525
  year: 2016
  ident: 2023051604095090800_bty078-B3
  article-title: Near-optimal probabilistic RNA-seq quantification
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.3519
– volume: 16
  start-page: 195.
  year: 2015
  ident: 2023051604095090800_bty078-B4
  article-title: Tools and best practices for data processing in allelic expression analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0762-6
– volume: 133
  start-page: 523
  year: 2008
  ident: 2023051604095090800_bty078-B18
  article-title: Highly integrated single-base resolution maps of the epigenome in Arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.029
– volume: 15
  start-page: R29.
  year: 2014
  ident: 2023051604095090800_bty078-B15
  article-title: Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-2-r29
– volume: 12
  start-page: R13.
  year: 2011
  ident: 2023051604095090800_bty078-B28
  article-title: Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-2-r13
– volume: 320
  start-page: 1344
  year: 2008
  ident: 2023051604095090800_bty078-B21
  article-title: The transcriptional landscape of the yeast genome defined by RNA sequencing
  publication-title: Science
  doi: 10.1126/science.1158441
– volume: 6
  start-page: 9
  year: 2011
  ident: 2023051604095090800_bty078-B22
  article-title: Estimation of alternative splicing isoform frequencies from RNA-seq data
  publication-title: Algorithms Mol. Biol
  doi: 10.1186/1748-7188-6-9
– volume: 430
  start-page: 85
  year: 2004
  ident: 2023051604095090800_bty078-B30
  article-title: Evolutionary changes in cis and trans gene regulation
  publication-title: Nature
  doi: 10.1038/nature02698
– volume: 40
  start-page: 10073
  year: 2012
  ident: 2023051604095090800_bty078-B10
  article-title: Modelling and simulating generic RNA-seq experiments with the flux simulator
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks666
– volume: 198
  start-page: 59
  year: 2014
  ident: 2023051604095090800_bty078-B20
  article-title: RNA-seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations
  publication-title: Genetics
  doi: 10.1534/genetics.114.165886
– volume: 21
  start-page: 545
  year: 2011
  ident: 2023051604095090800_bty078-B13
  article-title: RNA sequencing reveals the role of splicing polymorphisms in regulating human gene expression
  publication-title: Genome Res
  doi: 10.1101/gr.111211.110
– volume: 14
  start-page: 536.
  year: 2013
  ident: 2023051604095090800_bty078-B27
  article-title: Sources of bias in measures of allele-specific expression derived from RNA-sequence data aligned to a single reference genome
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-536
– volume: 32
  start-page: 462
  year: 2014
  ident: 2023051604095090800_bty078-B23
  article-title: Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.2862
– volume: 7
  start-page: 522
  year: 2011
  ident: 2023051604095090800_bty078-B26
  article-title: AlleleSeq: analysis of allele-specific expression and binding in a network framework
  publication-title: Mol. Syst. Biol
  doi: 10.1038/msb.2011.54
– volume: 464
  start-page: 768
  year: 2010
  ident: 2023051604095090800_bty078-B24
  article-title: Understanding mechanisms underlying human gene expression variation with RNA sequencing
  publication-title: Nature
  doi: 10.1038/nature08872
– volume: 534
  start-page: 500
  year: 2016
  ident: 2023051604095090800_bty078-B5
  article-title: Defining the consequences of genetic variation on a proteome-wide scale
  publication-title: Nature
  doi: 10.1038/nature18270
– volume: 12
  start-page: 357
  year: 2015
  ident: 2023051604095090800_bty078-B12
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3317
– volume: 31
  start-page: 2778
  year: 2015
  ident: 2023051604095090800_bty078-B9
  article-title: Polyester: simulating RNA-seq datasets with differential transcript expression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv272
– volume: 12
  start-page: 1061
  year: 2015
  ident: 2023051604095090800_bty078-B29
  article-title: WASP: allele-specific software for robust molecular quantitative trait locus discovery
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3582
– year: 2002
  ident: 2023051604095090800_bty078-B1
– volume: 11
  start-page: e1004916.
  year: 2015
  ident: 2023051604095090800_bty078-B2
  article-title: PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004916
– volume: 2
  start-page: 69
  year: 2012
  ident: 2023051604095090800_bty078-B7
  article-title: Genomic imprinting absent in Drosophila melanogaster adult females
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.06.013
– volume: 12
  start-page: 323.
  year: 2011
  ident: 2023051604095090800_bty078-B16
  article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
SSID ssj0051444
ssj0005056
Score 2.4997306
Snippet Abstract Motivation Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can...
Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2177
SubjectTerms Original Papers
Title Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression
URI https://www.ncbi.nlm.nih.gov/pubmed/29444201
https://www.proquest.com/docview/2002484799
https://pubmed.ncbi.nlm.nih.gov/PMC6022640
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jIPgi3p03IvjiQzW9pnkUcUxFBVEYvpRcTnAwOnUbuH_vydLNVRD1sW2Slpyk52vPOd9HyLHIJQMRQ8B1JoMkM7jnBE8DBdImYSgjnbri5Nu7rPOUXHfTboOwWS3M9xC-iM9Ub1CRiDri4jM1mqBbw5cuOmK3sB_vu185Hcwxw_gDRAKJl7R1zN45i2f1Oz8NWfNMtWq3BdD5PXdywRm1V8lKhSLpuTf7GmlAuU6WvK7kZIM8d3qurngqc9KnsuIdoQNLH-7OgyG8UYSKZkh70z8KMKSIAqnUevwu9cQ1cwIrfQhcGaZLJaLwUeXLlpvkqX35eNEJKhGFQCd5OgqEQQxllLDcxnkEmiuW2YSnXIXMxBIixUMb6cgqq5RCuKhAhEZL_KyJM2lYvEWa5aCEHUIzd9pwbSWCKKZBSZmDzHQOOLwKTYskswksdMUw7oQu-oWPdMdFfd4LP-8tcjrv9uopNn7rcILW-Wvbo5kNC9w4LhoiSxiMh05_M0rQNwvRItvepvMhI4FrB6FRi_CatecNHCl3_UrZe5mSc2fMlSaz3X884x5ZxnvlPgl4nzRH72M4QKgzUocI8q9uDqeL_BNp6wcp
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+analysis+of+RNA-seq+reads+improves+the+accuracy+of+allele-specific+expression&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Raghupathy%2C+Narayanan&rft.au=Choi%2C+Kwangbom&rft.au=Vincent%2C+Matthew+J&rft.au=Beane%2C+Glen+L&rft.date=2018-07-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=34&rft.issue=13&rft.spage=2177&rft.epage=2184&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbty078&rft_id=info%3Apmid%2F29444201&rft.externalDocID=PMC6022640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon