Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression
Abstract Motivation Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcripto...
Saved in:
Published in | Bioinformatics Vol. 34; no. 13; pp. 2177 - 2184 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-4803 1367-4811 1460-2059 1367-4811 |
DOI | 10.1093/bioinformatics/bty078 |
Cover
Abstract | Abstract
Motivation
Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation.
Results
Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects.
Availability and implementation
EMASE software is available at https://github.com/churchill-lab/emase.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation.
Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects.
EMASE software is available at https://github.com/churchill-lab/emase.
Supplementary data are available at Bioinformatics online. Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation.MotivationAllele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation.Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects.ResultsMethods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects.EMASE software is available at https://github.com/churchill-lab/emase.Availability and implementationEMASE software is available at https://github.com/churchill-lab/emase.Supplementary data are available at Bioinformatics online.Supplementary informationSupplementary data are available at Bioinformatics online. Abstract Motivation Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation. Results Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects. Availability and implementation EMASE software is available at https://github.com/churchill-lab/emase. Supplementary information Supplementary data are available at Bioinformatics online. |
Author | Munger, Steven C Sheppard, Keith S Korstanje, Ron Pardo-Manual de Villena, Fernando Raghupathy, Narayanan Churchill, Gary A Beane, Glen L Choi, Kwangbom Vincent, Matthew J |
AuthorAffiliation | 1 The Jackson Laboratory, Bar Harbor, USA 2 Department of Genetics, The University of North Carolina, Chapel Hill, USA |
AuthorAffiliation_xml | – name: 2 Department of Genetics, The University of North Carolina, Chapel Hill, USA – name: 1 The Jackson Laboratory, Bar Harbor, USA |
Author_xml | – sequence: 1 givenname: Narayanan surname: Raghupathy fullname: Raghupathy, Narayanan organization: The Jackson Laboratory, Bar Harbor, USA – sequence: 2 givenname: Kwangbom surname: Choi fullname: Choi, Kwangbom organization: The Jackson Laboratory, Bar Harbor, USA – sequence: 3 givenname: Matthew J surname: Vincent fullname: Vincent, Matthew J organization: The Jackson Laboratory, Bar Harbor, USA – sequence: 4 givenname: Glen L surname: Beane fullname: Beane, Glen L organization: The Jackson Laboratory, Bar Harbor, USA – sequence: 5 givenname: Keith S surname: Sheppard fullname: Sheppard, Keith S organization: The Jackson Laboratory, Bar Harbor, USA – sequence: 6 givenname: Steven C surname: Munger fullname: Munger, Steven C organization: The Jackson Laboratory, Bar Harbor, USA – sequence: 7 givenname: Ron surname: Korstanje fullname: Korstanje, Ron organization: The Jackson Laboratory, Bar Harbor, USA – sequence: 8 givenname: Fernando surname: Pardo-Manual de Villena fullname: Pardo-Manual de Villena, Fernando organization: Department of Genetics, The University of North Carolina, Chapel Hill, USA – sequence: 9 givenname: Gary A surname: Churchill fullname: Churchill, Gary A email: gary.churchill@jax.org organization: The Jackson Laboratory, Bar Harbor, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29444201$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9LHTEQxUNR6p_6ESz72JetSTab3SAIIrUWpILYF1_CJDvxpmQ3a7Irvd_evVwttS_t0wzM-Z0Dcw7IzhAHJOSY0c-MqurE-OgHF1MPk7f5xExr2rTvyD4Tkpac1mpn2SvZlKKl1R45yPknpTUTQrwne1wtk1O2T-6vPCZIduUthAIGCOvscxFdcfv9vMz4WCSELhe-H1N8wlxMKyzA2jmBXW9kEAIGLPOI1jtvC_w1JszZx-ED2XUQMh69zEPy4_LL3cVVeX3z9dvF-XVpRVtPpepUzTqjXOOqlqNtDJVONHVjGO0qQG4a5rjlzjhjjFLKoGKdBSllJaGj1SE52_qOs-mxszhMCYIek-8hrXUEr99eBr_SD_FJS8q5FBuDTy8GKT7OmCfd-2wxBBgwzllzSrloRaPUIv34Z9bvkNeHLoLTrcCmmHNCp62floriJtoHzaje1Kff1qe39S10_Rf9GvAvjm65OI__iTwDXj-7MA |
CitedBy_id | crossref_primary_10_1016_j_ajhg_2024_06_014 crossref_primary_10_3389_fgene_2019_01178 crossref_primary_10_1016_j_stem_2020_07_005 crossref_primary_10_1038_s41592_022_01731_9 crossref_primary_10_1038_s41598_023_50820_y crossref_primary_10_1093_nargab_lqac052 crossref_primary_10_3390_genes12010048 crossref_primary_10_1016_j_molcel_2020_09_005 crossref_primary_10_1016_j_gene_2024_149102 crossref_primary_10_1093_g3journal_jkab176 crossref_primary_10_3389_fgene_2019_00035 crossref_primary_10_1146_annurev_genom_120219_080406 crossref_primary_10_1093_bioinformatics_btaa448 crossref_primary_10_1101_gad_333542_119 crossref_primary_10_1016_j_xgen_2023_100283 crossref_primary_10_1016_j_csbj_2020_06_014 crossref_primary_10_1186_s13059_023_02892_2 crossref_primary_10_1681_ASN_2020060777 crossref_primary_10_15252_embj_2021109445 crossref_primary_10_1534_genetics_118_300864 crossref_primary_10_1038_s41467_019_13099_0 crossref_primary_10_3390_ijms23126754 crossref_primary_10_3389_fgene_2023_997383 crossref_primary_10_1101_gr_277467_122 crossref_primary_10_4049_jimmunol_2100558 crossref_primary_10_1016_j_neuron_2018_11_040 crossref_primary_10_1038_s41598_021_89904_y crossref_primary_10_1371_journal_pgen_1008916 crossref_primary_10_1371_journal_pgen_1010076 crossref_primary_10_1038_s41467_021_26798_4 crossref_primary_10_3389_fgene_2019_00863 crossref_primary_10_1016_j_celrep_2020_108145 crossref_primary_10_1007_s11914_022_00726_x crossref_primary_10_3389_fcell_2020_562662 crossref_primary_10_1186_s13059_023_03003_x crossref_primary_10_1261_rna_070227_118 crossref_primary_10_7554_eLife_62585 crossref_primary_10_1101_lm_051839_120 crossref_primary_10_1016_j_gene_2020_144671 crossref_primary_10_1093_bioadv_vbad062 crossref_primary_10_4049_jimmunol_2300841 crossref_primary_10_12688_f1000research_20916_1 crossref_primary_10_1038_s42003_024_06242_1 crossref_primary_10_12688_f1000research_20916_2 crossref_primary_10_1098_rsbl_2022_0116 crossref_primary_10_1186_s13059_024_03317_4 crossref_primary_10_1126_sciadv_abj9111 crossref_primary_10_1016_j_celrep_2021_108739 crossref_primary_10_1016_j_jmb_2021_166829 crossref_primary_10_1016_j_stem_2020_07_019 |
Cites_doi | 10.1186/s13059-014-0550-8 10.1186/gb-2009-10-3-r25 10.1186/s13059-015-0702-5 10.1093/bioinformatics/btp579 10.1093/bioinformatics/btp692 10.1093/bioinformatics/btp616 10.1038/nbt.3519 10.1186/s13059-015-0762-6 10.1016/j.cell.2008.03.029 10.1186/gb-2014-15-2-r29 10.1186/gb-2011-12-2-r13 10.1126/science.1158441 10.1186/1748-7188-6-9 10.1038/nature02698 10.1093/nar/gks666 10.1534/genetics.114.165886 10.1101/gr.111211.110 10.1186/1471-2164-14-536 10.1038/nbt.2862 10.1038/msb.2011.54 10.1038/nature08872 10.1038/nature18270 10.1038/nmeth.3317 10.1093/bioinformatics/btv272 10.1038/nmeth.3582 10.1371/journal.pgen.1004916 10.1016/j.celrep.2012.06.013 10.1186/1471-2105-12-323 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2018 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/bioinformatics/bty078 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | ISMB 2018 Proceedings July 6 to July 10, 2018, Chicago, IL, United States |
EISSN | 1460-2059 1367-4811 |
EndPage | 2184 |
ExternalDocumentID | PMC6022640 29444201 10_1093_bioinformatics_bty078 10.1093/bioinformatics/bty078 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences sequence: 0 funderid: 10.13039/100000057 – fundername: NIGMS sequence: 0 grantid: P50-GM076468 funderid: 10.13039/100000057 – fundername: NCI NIH HHS grantid: P30 CA034196 – fundername: NIGMS NIH HHS grantid: P50 GM076468 – fundername: ; ; ; grantid: P50-GM076468 – fundername: ; ; ; |
GroupedDBID | -~X .2P 5GY AAMVS ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS BCRHZ F5P HW0 Q5Y RD5 ROX ROZ TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c485t-9d951db9f7f382ec7b06f4757b10d3ae2b71f2c2fbfbbb999be91dca66636ad03 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 13:48:38 EDT 2025 Fri Jul 11 11:50:27 EDT 2025 Mon Jul 21 05:58:14 EDT 2025 Tue Jul 01 03:27:24 EDT 2025 Thu Apr 24 22:51:18 EDT 2025 Fri Dec 06 10:16:18 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) https://academic.oup.com/journals/pages/about_us/legal/notices |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-9d951db9f7f382ec7b06f4757b10d3ae2b71f2c2fbfbbb999be91dca66636ad03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors wish it to be known that, in their opinion, Narayanan Raghupathy and Kwangbom Choi authors should be regarded as Joint First Authors. |
OpenAccessLink | https://academic.oup.com/bioinformatics/article-pdf/34/13/2177/25097987/bty078.pdf |
PMID | 29444201 |
PQID | 2002484799 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6022640 proquest_miscellaneous_2002484799 pubmed_primary_29444201 crossref_citationtrail_10_1093_bioinformatics_bty078 crossref_primary_10_1093_bioinformatics_bty078 oup_primary_10_1093_bioinformatics_bty078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – sequence: 0 name: Oxford University Press – name: Oxford University Press |
References | Frazee (2023051604095090800_bty078-B9) 2015; 31 Pickrell (2023051604095090800_bty078-B24) 2010; 464 Li (2023051604095090800_bty078-B16) 2011; 12 Wittkopp (2023051604095090800_bty078-B30) 2004; 430 Langmead (2023051604095090800_bty078-B14) 2009; 10 Agresti (2023051604095090800_bty078-B1) 2002 Love (2023051604095090800_bty078-B19) 2014; 15 Baker (2023051604095090800_bty078-B2) 2015; 11 Robinson (2023051604095090800_bty078-B25) 2010; 26 Coolon (2023051604095090800_bty078-B7) 2012; 2 Chick (2023051604095090800_bty078-B5) 2016; 534 Griebel (2023051604095090800_bty078-B10) 2012; 40 Li (2023051604095090800_bty078-B17) 2010; 26 Rozowsky (2023051604095090800_bty078-B26) 2011; 7 Patro (2023051604095090800_bty078-B23) 2014; 32 Bray (2023051604095090800_bty078-B3) 2016; 34 van de Geijn (2023051604095090800_bty078-B29) 2015; 12 Lalonde (2023051604095090800_bty078-B13) 2011; 21 Degner (2023051604095090800_bty078-B8) 2009; 25 Law (2023051604095090800_bty078-B15) 2014; 15 Castel (2023051604095090800_bty078-B4) 2015; 16 Lister (2023051604095090800_bty078-B18) 2008; 133 Kim (2023051604095090800_bty078-B12) 2015; 12 Nicolae (2023051604095090800_bty078-B22) 2011; 6 Munger (2023051604095090800_bty078-B20) 2014; 198 Nagalakshmi (2023051604095090800_bty078-B21) 2008; 320 Stevenson (2023051604095090800_bty078-B27) 2013; 14 Turro (2023051604095090800_bty078-B28) 2011; 12 Conesa (2023051604095090800_bty078-B6) 2016; 17 Kanitz (2023051604095090800_bty078-B11) 2015; 16 |
References_xml | – volume: 17 start-page: 1. year: 2016 ident: 2023051604095090800_bty078-B6 article-title: A survey of best practices for RNA-seq data analysis publication-title: Genome Biol – volume: 15 start-page: 550. year: 2014 ident: 2023051604095090800_bty078-B19 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with deseq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 10 start-page: R25. year: 2009 ident: 2023051604095090800_bty078-B14 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 16 start-page: 150. year: 2015 ident: 2023051604095090800_bty078-B11 article-title: Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data publication-title: Genome Biol doi: 10.1186/s13059-015-0702-5 – volume: 25 start-page: 3207 year: 2009 ident: 2023051604095090800_bty078-B8 article-title: Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp579 – volume: 26 start-page: 493 year: 2010 ident: 2023051604095090800_bty078-B17 article-title: RNA-seq gene expression estimation with read mapping uncertainty publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp692 – volume: 26 start-page: 139 year: 2010 ident: 2023051604095090800_bty078-B25 article-title: edger: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 34 start-page: 525 year: 2016 ident: 2023051604095090800_bty078-B3 article-title: Near-optimal probabilistic RNA-seq quantification publication-title: Nat. Biotechnol doi: 10.1038/nbt.3519 – volume: 16 start-page: 195. year: 2015 ident: 2023051604095090800_bty078-B4 article-title: Tools and best practices for data processing in allelic expression analysis publication-title: Genome Biol doi: 10.1186/s13059-015-0762-6 – volume: 133 start-page: 523 year: 2008 ident: 2023051604095090800_bty078-B18 article-title: Highly integrated single-base resolution maps of the epigenome in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2008.03.029 – volume: 15 start-page: R29. year: 2014 ident: 2023051604095090800_bty078-B15 article-title: Voom: precision weights unlock linear model analysis tools for RNA-seq read counts publication-title: Genome Biol doi: 10.1186/gb-2014-15-2-r29 – volume: 12 start-page: R13. year: 2011 ident: 2023051604095090800_bty078-B28 article-title: Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads publication-title: Genome Biol doi: 10.1186/gb-2011-12-2-r13 – volume: 320 start-page: 1344 year: 2008 ident: 2023051604095090800_bty078-B21 article-title: The transcriptional landscape of the yeast genome defined by RNA sequencing publication-title: Science doi: 10.1126/science.1158441 – volume: 6 start-page: 9 year: 2011 ident: 2023051604095090800_bty078-B22 article-title: Estimation of alternative splicing isoform frequencies from RNA-seq data publication-title: Algorithms Mol. Biol doi: 10.1186/1748-7188-6-9 – volume: 430 start-page: 85 year: 2004 ident: 2023051604095090800_bty078-B30 article-title: Evolutionary changes in cis and trans gene regulation publication-title: Nature doi: 10.1038/nature02698 – volume: 40 start-page: 10073 year: 2012 ident: 2023051604095090800_bty078-B10 article-title: Modelling and simulating generic RNA-seq experiments with the flux simulator publication-title: Nucleic Acids Res doi: 10.1093/nar/gks666 – volume: 198 start-page: 59 year: 2014 ident: 2023051604095090800_bty078-B20 article-title: RNA-seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations publication-title: Genetics doi: 10.1534/genetics.114.165886 – volume: 21 start-page: 545 year: 2011 ident: 2023051604095090800_bty078-B13 article-title: RNA sequencing reveals the role of splicing polymorphisms in regulating human gene expression publication-title: Genome Res doi: 10.1101/gr.111211.110 – volume: 14 start-page: 536. year: 2013 ident: 2023051604095090800_bty078-B27 article-title: Sources of bias in measures of allele-specific expression derived from RNA-sequence data aligned to a single reference genome publication-title: BMC Genomics doi: 10.1186/1471-2164-14-536 – volume: 32 start-page: 462 year: 2014 ident: 2023051604095090800_bty078-B23 article-title: Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms publication-title: Nat. Biotechnol doi: 10.1038/nbt.2862 – volume: 7 start-page: 522 year: 2011 ident: 2023051604095090800_bty078-B26 article-title: AlleleSeq: analysis of allele-specific expression and binding in a network framework publication-title: Mol. Syst. Biol doi: 10.1038/msb.2011.54 – volume: 464 start-page: 768 year: 2010 ident: 2023051604095090800_bty078-B24 article-title: Understanding mechanisms underlying human gene expression variation with RNA sequencing publication-title: Nature doi: 10.1038/nature08872 – volume: 534 start-page: 500 year: 2016 ident: 2023051604095090800_bty078-B5 article-title: Defining the consequences of genetic variation on a proteome-wide scale publication-title: Nature doi: 10.1038/nature18270 – volume: 12 start-page: 357 year: 2015 ident: 2023051604095090800_bty078-B12 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods doi: 10.1038/nmeth.3317 – volume: 31 start-page: 2778 year: 2015 ident: 2023051604095090800_bty078-B9 article-title: Polyester: simulating RNA-seq datasets with differential transcript expression publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv272 – volume: 12 start-page: 1061 year: 2015 ident: 2023051604095090800_bty078-B29 article-title: WASP: allele-specific software for robust molecular quantitative trait locus discovery publication-title: Nat. Methods doi: 10.1038/nmeth.3582 – year: 2002 ident: 2023051604095090800_bty078-B1 – volume: 11 start-page: e1004916. year: 2015 ident: 2023051604095090800_bty078-B2 article-title: PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004916 – volume: 2 start-page: 69 year: 2012 ident: 2023051604095090800_bty078-B7 article-title: Genomic imprinting absent in Drosophila melanogaster adult females publication-title: Cell Rep doi: 10.1016/j.celrep.2012.06.013 – volume: 12 start-page: 323. year: 2011 ident: 2023051604095090800_bty078-B16 article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 |
SSID | ssj0051444 ssj0005056 |
Score | 2.4997306 |
Snippet | Abstract
Motivation
Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can... Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2177 |
SubjectTerms | Original Papers |
Title | Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29444201 https://www.proquest.com/docview/2002484799 https://pubmed.ncbi.nlm.nih.gov/PMC6022640 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jIPgi3p03IvjiQzW9pnkUcUxFBVEYvpRcTnAwOnUbuH_vydLNVRD1sW2Slpyk52vPOd9HyLHIJQMRQ8B1JoMkM7jnBE8DBdImYSgjnbri5Nu7rPOUXHfTboOwWS3M9xC-iM9Ub1CRiDri4jM1mqBbw5cuOmK3sB_vu185Hcwxw_gDRAKJl7R1zN45i2f1Oz8NWfNMtWq3BdD5PXdywRm1V8lKhSLpuTf7GmlAuU6WvK7kZIM8d3qurngqc9KnsuIdoQNLH-7OgyG8UYSKZkh70z8KMKSIAqnUevwu9cQ1cwIrfQhcGaZLJaLwUeXLlpvkqX35eNEJKhGFQCd5OgqEQQxllLDcxnkEmiuW2YSnXIXMxBIixUMb6cgqq5RCuKhAhEZL_KyJM2lYvEWa5aCEHUIzd9pwbSWCKKZBSZmDzHQOOLwKTYskswksdMUw7oQu-oWPdMdFfd4LP-8tcjrv9uopNn7rcILW-Wvbo5kNC9w4LhoiSxiMh05_M0rQNwvRItvepvMhI4FrB6FRi_CatecNHCl3_UrZe5mSc2fMlSaz3X884x5ZxnvlPgl4nzRH72M4QKgzUocI8q9uDqeL_BNp6wcp |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+analysis+of+RNA-seq+reads+improves+the+accuracy+of+allele-specific+expression&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Raghupathy%2C+Narayanan&rft.au=Choi%2C+Kwangbom&rft.au=Vincent%2C+Matthew+J&rft.au=Beane%2C+Glen+L&rft.date=2018-07-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=34&rft.issue=13&rft.spage=2177&rft.epage=2184&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbty078&rft_id=info%3Apmid%2F29444201&rft.externalDocID=PMC6022640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |