Focal cortical dysplasia lesion segmentation using multiscale transformer

Objectives Accurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still challenging for radiologists and clinicians. In this study, we introduce a novel transformer-based model, designed for the end-to-end segme...

Full description

Saved in:
Bibliographic Details
Published inInsights into imaging Vol. 15; no. 1; pp. 222 - 11
Main Authors Zhang, Xiaodong, Zhang, Yongquan, Wang, Changmiao, Li, Lin, Zhu, Fengjun, Sun, Yang, Mo, Tong, Hu, Qingmao, Xu, Jinping, Cao, Dezhi
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 12.09.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1869-4101
1869-4101
DOI10.1186/s13244-024-01803-8

Cover

Abstract Objectives Accurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still challenging for radiologists and clinicians. In this study, we introduce a novel transformer-based model, designed for the end-to-end segmentation of FCD lesions from multi-channel MR images. Methods The core innovation of our proposed model is the integration of a convolutional neural network-based encoder-decoder structure with a multiscale transformer to augment the feature representation of lesions in the global field of view. Transformer pathways, composed of memory- and computation-efficient dual-self-attention modules, leverage feature maps from varying depths of the encoder to discern long-range interdependencies among feature positions and channels, thereby emphasizing areas and channels relevant to lesions. The proposed model was trained and evaluated on a public-open dataset including MR images of 85 patients using both subject-level and voxel-level metrics. Results Experimental results indicate that our model offers superior performance both quantitatively and qualitatively. It successfully identified lesions in 82.4% of patients, with a low false-positive lesion cluster rate of 0.176 ± 0.381 per patient. Furthermore, the model achieved an average Dice coefficient of 0.410 ± 0.288, outperforming five established methods. Conclusion Integration of the transformer could enhance the feature presentation and segmentation performance of FCD lesions. The proposed model has the potential to serve as a valuable assistive tool for physicians, enabling rapid and accurate identification of FCD lesions. The source code and pre-trained model weights are available at https://github.com/zhangxd0530/MS-DSA-NET . Critical relevance statement This multiscale transformer-based model performs segmentation of focal cortical dysplasia lesions, aiming to help radiologists and clinicians make accurate and efficient preoperative evaluations of focal cortical dysplasia patients from MR images. Key Points The first transformer-based model was built to explore focal cortical dysplasia lesion segmentation. Integration of global and local features enhances the segmentation performance of lesions. A valuable benchmark for model development and comparative analyses was provided. Graphical Abstract
AbstractList Accurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still challenging for radiologists and clinicians. In this study, we introduce a novel transformer-based model, designed for the end-to-end segmentation of FCD lesions from multi-channel MR images.OBJECTIVESAccurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still challenging for radiologists and clinicians. In this study, we introduce a novel transformer-based model, designed for the end-to-end segmentation of FCD lesions from multi-channel MR images.The core innovation of our proposed model is the integration of a convolutional neural network-based encoder-decoder structure with a multiscale transformer to augment the feature representation of lesions in the global field of view. Transformer pathways, composed of memory- and computation-efficient dual-self-attention modules, leverage feature maps from varying depths of the encoder to discern long-range interdependencies among feature positions and channels, thereby emphasizing areas and channels relevant to lesions. The proposed model was trained and evaluated on a public-open dataset including MR images of 85 patients using both subject-level and voxel-level metrics.METHODSThe core innovation of our proposed model is the integration of a convolutional neural network-based encoder-decoder structure with a multiscale transformer to augment the feature representation of lesions in the global field of view. Transformer pathways, composed of memory- and computation-efficient dual-self-attention modules, leverage feature maps from varying depths of the encoder to discern long-range interdependencies among feature positions and channels, thereby emphasizing areas and channels relevant to lesions. The proposed model was trained and evaluated on a public-open dataset including MR images of 85 patients using both subject-level and voxel-level metrics.Experimental results indicate that our model offers superior performance both quantitatively and qualitatively. It successfully identified lesions in 82.4% of patients, with a low false-positive lesion cluster rate of 0.176 ± 0.381 per patient. Furthermore, the model achieved an average Dice coefficient of 0.410 ± 0.288, outperforming five established methods.RESULTSExperimental results indicate that our model offers superior performance both quantitatively and qualitatively. It successfully identified lesions in 82.4% of patients, with a low false-positive lesion cluster rate of 0.176 ± 0.381 per patient. Furthermore, the model achieved an average Dice coefficient of 0.410 ± 0.288, outperforming five established methods.Integration of the transformer could enhance the feature presentation and segmentation performance of FCD lesions. The proposed model has the potential to serve as a valuable assistive tool for physicians, enabling rapid and accurate identification of FCD lesions. The source code and pre-trained model weights are available at https://github.com/zhangxd0530/MS-DSA-NET .CONCLUSIONIntegration of the transformer could enhance the feature presentation and segmentation performance of FCD lesions. The proposed model has the potential to serve as a valuable assistive tool for physicians, enabling rapid and accurate identification of FCD lesions. The source code and pre-trained model weights are available at https://github.com/zhangxd0530/MS-DSA-NET .This multiscale transformer-based model performs segmentation of focal cortical dysplasia lesions, aiming to help radiologists and clinicians make accurate and efficient preoperative evaluations of focal cortical dysplasia patients from MR images.CRITICAL RELEVANCE STATEMENTThis multiscale transformer-based model performs segmentation of focal cortical dysplasia lesions, aiming to help radiologists and clinicians make accurate and efficient preoperative evaluations of focal cortical dysplasia patients from MR images.The first transformer-based model was built to explore focal cortical dysplasia lesion segmentation. Integration of global and local features enhances the segmentation performance of lesions. A valuable benchmark for model development and comparative analyses was provided.KEY POINTSThe first transformer-based model was built to explore focal cortical dysplasia lesion segmentation. Integration of global and local features enhances the segmentation performance of lesions. A valuable benchmark for model development and comparative analyses was provided.
Abstract Objectives Accurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still challenging for radiologists and clinicians. In this study, we introduce a novel transformer-based model, designed for the end-to-end segmentation of FCD lesions from multi-channel MR images. Methods The core innovation of our proposed model is the integration of a convolutional neural network-based encoder-decoder structure with a multiscale transformer to augment the feature representation of lesions in the global field of view. Transformer pathways, composed of memory- and computation-efficient dual-self-attention modules, leverage feature maps from varying depths of the encoder to discern long-range interdependencies among feature positions and channels, thereby emphasizing areas and channels relevant to lesions. The proposed model was trained and evaluated on a public-open dataset including MR images of 85 patients using both subject-level and voxel-level metrics. Results Experimental results indicate that our model offers superior performance both quantitatively and qualitatively. It successfully identified lesions in 82.4% of patients, with a low false-positive lesion cluster rate of 0.176 ± 0.381 per patient. Furthermore, the model achieved an average Dice coefficient of 0.410 ± 0.288, outperforming five established methods. Conclusion Integration of the transformer could enhance the feature presentation and segmentation performance of FCD lesions. The proposed model has the potential to serve as a valuable assistive tool for physicians, enabling rapid and accurate identification of FCD lesions. The source code and pre-trained model weights are available at https://github.com/zhangxd0530/MS-DSA-NET . Critical relevance statement This multiscale transformer-based model performs segmentation of focal cortical dysplasia lesions, aiming to help radiologists and clinicians make accurate and efficient preoperative evaluations of focal cortical dysplasia patients from MR images. Key Points The first transformer-based model was built to explore focal cortical dysplasia lesion segmentation. Integration of global and local features enhances the segmentation performance of lesions. A valuable benchmark for model development and comparative analyses was provided. Graphical Abstract
Objectives Accurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still challenging for radiologists and clinicians. In this study, we introduce a novel transformer-based model, designed for the end-to-end segmentation of FCD lesions from multi-channel MR images. Methods The core innovation of our proposed model is the integration of a convolutional neural network-based encoder-decoder structure with a multiscale transformer to augment the feature representation of lesions in the global field of view. Transformer pathways, composed of memory- and computation-efficient dual-self-attention modules, leverage feature maps from varying depths of the encoder to discern long-range interdependencies among feature positions and channels, thereby emphasizing areas and channels relevant to lesions. The proposed model was trained and evaluated on a public-open dataset including MR images of 85 patients using both subject-level and voxel-level metrics. Results Experimental results indicate that our model offers superior performance both quantitatively and qualitatively. It successfully identified lesions in 82.4% of patients, with a low false-positive lesion cluster rate of 0.176 ± 0.381 per patient. Furthermore, the model achieved an average Dice coefficient of 0.410 ± 0.288, outperforming five established methods. Conclusion Integration of the transformer could enhance the feature presentation and segmentation performance of FCD lesions. The proposed model has the potential to serve as a valuable assistive tool for physicians, enabling rapid and accurate identification of FCD lesions. The source code and pre-trained model weights are available at https://github.com/zhangxd0530/MS-DSA-NET . Critical relevance statement This multiscale transformer-based model performs segmentation of focal cortical dysplasia lesions, aiming to help radiologists and clinicians make accurate and efficient preoperative evaluations of focal cortical dysplasia patients from MR images. Key Points The first transformer-based model was built to explore focal cortical dysplasia lesion segmentation. Integration of global and local features enhances the segmentation performance of lesions. A valuable benchmark for model development and comparative analyses was provided. Graphical Abstract
Accurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still challenging for radiologists and clinicians. In this study, we introduce a novel transformer-based model, designed for the end-to-end segmentation of FCD lesions from multi-channel MR images. The core innovation of our proposed model is the integration of a convolutional neural network-based encoder-decoder structure with a multiscale transformer to augment the feature representation of lesions in the global field of view. Transformer pathways, composed of memory- and computation-efficient dual-self-attention modules, leverage feature maps from varying depths of the encoder to discern long-range interdependencies among feature positions and channels, thereby emphasizing areas and channels relevant to lesions. The proposed model was trained and evaluated on a public-open dataset including MR images of 85 patients using both subject-level and voxel-level metrics. Experimental results indicate that our model offers superior performance both quantitatively and qualitatively. It successfully identified lesions in 82.4% of patients, with a low false-positive lesion cluster rate of 0.176 ± 0.381 per patient. Furthermore, the model achieved an average Dice coefficient of 0.410 ± 0.288, outperforming five established methods. Integration of the transformer could enhance the feature presentation and segmentation performance of FCD lesions. The proposed model has the potential to serve as a valuable assistive tool for physicians, enabling rapid and accurate identification of FCD lesions. The source code and pre-trained model weights are available at https://github.com/zhangxd0530/MS-DSA-NET . This multiscale transformer-based model performs segmentation of focal cortical dysplasia lesions, aiming to help radiologists and clinicians make accurate and efficient preoperative evaluations of focal cortical dysplasia patients from MR images. The first transformer-based model was built to explore focal cortical dysplasia lesion segmentation. Integration of global and local features enhances the segmentation performance of lesions. A valuable benchmark for model development and comparative analyses was provided.
ObjectivesAccurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still challenging for radiologists and clinicians. In this study, we introduce a novel transformer-based model, designed for the end-to-end segmentation of FCD lesions from multi-channel MR images.MethodsThe core innovation of our proposed model is the integration of a convolutional neural network-based encoder-decoder structure with a multiscale transformer to augment the feature representation of lesions in the global field of view. Transformer pathways, composed of memory- and computation-efficient dual-self-attention modules, leverage feature maps from varying depths of the encoder to discern long-range interdependencies among feature positions and channels, thereby emphasizing areas and channels relevant to lesions. The proposed model was trained and evaluated on a public-open dataset including MR images of 85 patients using both subject-level and voxel-level metrics.ResultsExperimental results indicate that our model offers superior performance both quantitatively and qualitatively. It successfully identified lesions in 82.4% of patients, with a low false-positive lesion cluster rate of 0.176 ± 0.381 per patient. Furthermore, the model achieved an average Dice coefficient of 0.410 ± 0.288, outperforming five established methods.ConclusionIntegration of the transformer could enhance the feature presentation and segmentation performance of FCD lesions. The proposed model has the potential to serve as a valuable assistive tool for physicians, enabling rapid and accurate identification of FCD lesions. The source code and pre-trained model weights are available at https://github.com/zhangxd0530/MS-DSA-NET.Critical relevance statementThis multiscale transformer-based model performs segmentation of focal cortical dysplasia lesions, aiming to help radiologists and clinicians make accurate and efficient preoperative evaluations of focal cortical dysplasia patients from MR images.Key PointsThe first transformer-based model was built to explore focal cortical dysplasia lesion segmentation.Integration of global and local features enhances the segmentation performance of lesions.A valuable benchmark for model development and comparative analyses was provided.
ArticleNumber 222
Author Cao, Dezhi
Li, Lin
Zhu, Fengjun
Zhang, Xiaodong
Xu, Jinping
Mo, Tong
Hu, Qingmao
Sun, Yang
Wang, Changmiao
Zhang, Yongquan
Author_xml – sequence: 1
  givenname: Xiaodong
  surname: Zhang
  fullname: Zhang, Xiaodong
  organization: Shenzhen Children’s Hospital, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 2
  givenname: Yongquan
  surname: Zhang
  fullname: Zhang, Yongquan
  organization: Zhejiang University of Finance and Economics
– sequence: 3
  givenname: Changmiao
  surname: Wang
  fullname: Wang, Changmiao
  organization: Shenzhen Research Institute of Big Data
– sequence: 4
  givenname: Lin
  surname: Li
  fullname: Li, Lin
  organization: Shenzhen Children’s Hospital
– sequence: 5
  givenname: Fengjun
  surname: Zhu
  fullname: Zhu, Fengjun
  organization: Shenzhen Children’s Hospital
– sequence: 6
  givenname: Yang
  surname: Sun
  fullname: Sun, Yang
  organization: Shenzhen Children’s Hospital
– sequence: 7
  givenname: Tong
  surname: Mo
  fullname: Mo, Tong
  organization: Shenzhen Children’s Hospital
– sequence: 8
  givenname: Qingmao
  surname: Hu
  fullname: Hu, Qingmao
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 9
  givenname: Jinping
  surname: Xu
  fullname: Xu, Jinping
  email: jp.xu@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 10
  givenname: Dezhi
  orcidid: 0000-0002-7424-8063
  surname: Cao
  fullname: Cao, Dezhi
  email: Caodezhi888@aliyun.com
  organization: Shenzhen Children’s Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39266782$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v3CAQtapUzUfzB3qoLPXSi1tgMAvHKkraSJF6ac9obMOKFYYt2Kr23xevt2mUQ1QkxADvzbx5c1mdhRhMVb2j5BOlUnzOFBjnDWFlU0mgka-qi_KhGk4JPXsSn1fXOe9IWQAUJLypzkExITaSXVT3d7FHX_cxTW4JhkPee8wOa2-yi6HOZjuaMOG0XObswrYeZz-5XNCmnhKGbGMaTXpbvbbos7k-nVfVz7vbHzffmofvX-9vvjw0PZft1CjeA3Zs4MPG0h4BB4Oy5Sg6u-ksEIGSCSBEAkHKmOqHVmFngNHWKhQErormY94h4k7vkxsxHXREp48PMW01Ls14o3vBuRXUklYIrujQCSGw1GiNlBxQllyw5prDHg-_0fvHhJToxWe9-qyLz_ros15YH1fWPsVfs8mTHosdxnsMJs5ZAyWcgBJCFeiHZ9BdnFMo_iwoEHKj1NLS-xNq7kYzPGr4O6YCYCugTzHnZOz_yZTPSL1b51im5vzL1JMvudQJW5P-yX6B9Qf-OMV8
CitedBy_id crossref_primary_10_1016_j_brainresbull_2025_111268
Cites_doi 10.1056/NEJMoa1703784
10.1111/epi.17522
10.1371/journal.pone.0016430
10.1111/epi.17130
10.1111/epi.14064
10.1002/ana.24407
10.1016/j.compmedimag.2019.101662
10.1016/j.media.2019.01.012
10.1016/j.media.2023.102802
10.1093/brain/awf175
10.1111/epi.16574
10.1212/WNL.0000000000012698
10.1016/j.media.2022.102444
10.2174/1573405054038726
10.1093/brain/awac224
10.1016/j.bspc.2021.102951
10.1111/epi.16853
10.1016/S0140-6736(18)32596-0
10.1016/j.neunet.2019.08.025
10.1371/journal.pone.0161498
10.1111/epi.13851
10.1111/j.1552-6569.2006.00025.x
10.1038/s41597-023-02386-7
10.1109/JBHI.2020.3024188
10.1016/j.bspc.2019.04.024
10.1007/978-3-030-00931-1_56
10.1007/978-3-319-24574-4_28
10.1109/WACV51458.2022.00181
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
HCIFZ
K9.
KB0
M0S
NAPCQ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
ADTOC
UNPAY
DOA
DOI 10.1186/s13244-024-01803-8
DatabaseName WRHA-SpringerOpen Free
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Nursing & Allied Health Premium
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1869-4101
EndPage 11
ExternalDocumentID oai_doaj_org_article_c644f61f0566491db666af305e8843a8
10.1186/s13244-024-01803-8
39266782
10_1186_s13244_024_01803_8
Genre Journal Article
GrantInformation_xml – fundername: High-level Hospital Construction Project of Guangdong Provincial People's Hospital
  grantid: LCYJ2022001
  funderid: http://dx.doi.org/10.13039/501100018609
– fundername: Guangdong High-level Hospital Construction Fund
  grantid: ynkt2022-zz12
  funderid: https://doi.org/10.13039/
– fundername: National Natural Science Foundation of China
  grantid: 62001462
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Guangdong High-level Hospital Construction Fund
  grantid: ynkt2022-zz12
– fundername: High-level Hospital Construction Project of Guangdong Provincial People's Hospital
  grantid: LCYJ2022001
– fundername: National Natural Science Foundation of China
  grantid: 62001462
GroupedDBID -A0
0R~
2JY
3V.
40G
53G
5VS
67Z
7RV
7X7
8AO
8FE
8FG
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABUWG
ACACY
ACGFS
ACIHN
ACUHS
ACULB
ADBBV
ADINQ
AEAQA
AFGXO
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BCNDV
BENPR
BGLVJ
BKEYQ
BPHCQ
BVXVI
C24
C6C
CCPQU
DIK
EBLON
EBS
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
M48
M~E
NAPCQ
O9I
OK1
P62
PIMPY
PQQKQ
PROAC
QOS
R9I
RNS
RPM
RSV
S27
SMD
SOJ
T13
TUS
U2A
UKHRP
WK8
AASML
AAYXX
CITATION
PUEGO
NPM
7XB
8FK
AZQEC
DWQXO
K9.
PHGZM
PHGZT
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
2VQ
4.4
AAYZH
ABFSG
ACSTC
ADRAZ
ADTOC
AEZWR
AFHIU
AHSBF
AHWEU
AIXLP
EJD
EN4
H13
HF~
HZ~
IPNFZ
O9-
RIG
S1Z
UNPAY
ID FETCH-LOGICAL-c485t-94c3ab2d4d7f1ca3adea854a6bf7bf306a826300830a1229cd59abe3215f9a603
IEDL.DBID M48
ISSN 1869-4101
IngestDate Wed Aug 27 01:28:58 EDT 2025
Sun Sep 07 11:05:04 EDT 2025
Fri Sep 05 07:27:56 EDT 2025
Mon Sep 29 20:43:55 EDT 2025
Mon Jul 21 06:03:34 EDT 2025
Wed Oct 01 04:29:50 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Fri Feb 21 02:38:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Drug-resistant epilepsy
Focal cortical dysplasia
Transformer
Dual-self-attention
Lesion segmentation
Language English
License 2024. The Author(s).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-94c3ab2d4d7f1ca3adea854a6bf7bf306a826300830a1229cd59abe3215f9a603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7424-8063
OpenAccessLink https://doaj.org/article/c644f61f0566491db666af305e8843a8
PMID 39266782
PQID 3103687990
PQPubID 2034747
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c644f61f0566491db666af305e8843a8
unpaywall_primary_10_1186_s13244_024_01803_8
proquest_miscellaneous_3104039669
proquest_journals_3103687990
pubmed_primary_39266782
crossref_primary_10_1186_s13244_024_01803_8
crossref_citationtrail_10_1186_s13244_024_01803_8
springer_journals_10_1186_s13244_024_01803_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-12
PublicationDateYYYYMMDD 2024-09-12
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-12
  day: 12
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Germany
– name: Heidelberg
PublicationTitle Insights into imaging
PublicationTitleAbbrev Insights Imaging
PublicationTitleAlternate Insights Imaging
PublicationYear 2024
Publisher Springer Vienna
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
– name: SpringerOpen
References Wagstyl, Adler, Pimpel (CR13) 2020; 61
Gill, Lee, Caldairou (CR19) 2021; 97
Blumcke, Spreafico, Haaker (CR2) 2017; 377
CR18
Martin, Winston, Bartlett, de Tisi, Duncan, Focke (CR9) 2017; 58
Jin, Krishnan, Adler (CR12) 2018; 59
David, Kröll-Seger, Schuch (CR11) 2021; 62
Schuch, Walger, Schmitz (CR29) 2023; 10
Niyas, Vaisali, Show (CR24) 2021; 70
Thesen, Quinn, Carlson (CR7) 2011; 6
Spitzer, Ripart, Whitaker (CR14) 2022; 145
Thijs, Surges, O’Brien, Sander (CR1) 2019; 393
Wang, Ahmed, Mandal (CR17) 2020; 79
CR30
Walger, Adler, Wagstyl (CR16) 2023; 64
Chen, Wang, Zhang (CR15) 2022; 79
Schlemper, Oktay, Schaap (CR21) 2019; 53
Widdess-Walsh, Diehl, Najm (CR4) 2006; 16
Shaker, Maaz, Rasheed (CR31) 2022; 2212
Ibtehaz, Rahman (CR22) 2020; 121
Wang, Jones, Jaisani (CR8) 2015; 77
Tassi, Colombo, Garbelli (CR5) 2002; 125
Thomas, Pawan, Kumar (CR25) 2021; 25
Shamshad, Khan, Zamir (CR28) 2023; 88
Wagstyl, Whitaker, Raznahan (CR3) 2022; 63
Dev, Jogi, Niyas (CR23) 2019; 52
CR27
Mechelli, Price, Friston, Ashburner (CR6) 2005; 1
CR20
El Azami, Hammers, Jung, Costes, Bouet, Lartizien (CR10) 2016; 11
Vaswani, Shazeer, Parmar (CR26) 2017; 30
S Niyas (1803_CR24) 2021; 70
A Shaker (1803_CR31) 2022; 2212
1803_CR20
N Ibtehaz (1803_CR22) 2020; 121
H Spitzer (1803_CR14) 2022; 145
RS Gill (1803_CR19) 2021; 97
J Schlemper (1803_CR21) 2019; 53
A Vaswani (1803_CR26) 2017; 30
KMB Dev (1803_CR23) 2019; 52
1803_CR27
E Thomas (1803_CR25) 2021; 25
P Martin (1803_CR9) 2017; 58
RD Thijs (1803_CR1) 2019; 393
X Chen (1803_CR15) 2022; 79
ZI Wang (1803_CR8) 2015; 77
F Schuch (1803_CR29) 2023; 10
K Wagstyl (1803_CR13) 2020; 61
T Thesen (1803_CR7) 2011; 6
L Walger (1803_CR16) 2023; 64
B David (1803_CR11) 2021; 62
1803_CR30
H Wang (1803_CR17) 2020; 79
1803_CR18
P Widdess-Walsh (1803_CR4) 2006; 16
A Mechelli (1803_CR6) 2005; 1
K Wagstyl (1803_CR3) 2022; 63
F Shamshad (1803_CR28) 2023; 88
L Tassi (1803_CR5) 2002; 125
M El Azami (1803_CR10) 2016; 11
B Jin (1803_CR12) 2018; 59
I Blumcke (1803_CR2) 2017; 377
References_xml – volume: 377
  start-page: 1648
  year: 2017
  end-page: 1656
  ident: CR2
  article-title: Histopathological findings in brain tissue obtained during epilepsy surgery
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1703784
– volume: 64
  start-page: 1093
  year: 2023
  end-page: 1112
  ident: CR16
  article-title: Artificial intelligence for the detection of focal cortical dysplasia: challenges in translating algorithms into clinical practice
  publication-title: Epilepsia
  doi: 10.1111/epi.17522
– ident: CR18
– volume: 6
  start-page: e16430
  year: 2011
  ident: CR7
  article-title: Detection of epileptogenic cortical malformations with surface-based MRI morphometry
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016430
– volume: 63
  start-page: 61
  year: 2022
  end-page: 74
  ident: CR3
  article-title: Atlas of lesion locations and postsurgical seizure freedom in focal cortical dysplasia: a MELD study
  publication-title: Epilepsia
  doi: 10.1111/epi.17130
– volume: 59
  start-page: 982
  year: 2018
  end-page: 992
  ident: CR12
  article-title: Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning
  publication-title: Epilepsia
  doi: 10.1111/epi.14064
– volume: 77
  start-page: 1060
  year: 2015
  end-page: 1075
  ident: CR8
  article-title: Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies
  publication-title: Ann Neurol
  doi: 10.1002/ana.24407
– ident: CR30
– volume: 79
  start-page: 101662
  year: 2020
  ident: CR17
  article-title: Automated detection of focal cortical dysplasia using a deep convolutional neural network
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.101662
– volume: 53
  start-page: 197
  year: 2019
  end-page: 207
  ident: CR21
  article-title: Attention gated networks: Learning to leverage salient regions in medical images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.01.012
– volume: 88
  start-page: 102802
  year: 2023
  ident: CR28
  article-title: Transformers in medical imaging: a survey
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102802
– volume: 125
  start-page: 1719
  year: 2002
  end-page: 1732
  ident: CR5
  article-title: Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome
  publication-title: Brain
  doi: 10.1093/brain/awf175
– volume: 61
  start-page: 1406
  year: 2020
  end-page: 1416
  ident: CR13
  article-title: Planning stereoelectroencephalography using automated lesion detection: retrospective feasibility study
  publication-title: Epilepsia
  doi: 10.1111/epi.16574
– volume: 97
  start-page: e1571
  year: 2021
  end-page: e1582
  ident: CR19
  article-title: Multicenter validation of a deep learning detection algorithm for focal cortical dysplasia
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000012698
– volume: 79
  start-page: 102444
  year: 2022
  ident: CR15
  article-title: Recent advances and clinical applications of deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102444
– volume: 30
  start-page: 5998
  year: 2017
  end-page: 6008
  ident: CR26
  article-title: Attention is all you need[J]
  publication-title: Adv Neural Inf Process Syst
– ident: CR27
– volume: 1
  start-page: 105
  year: 2005
  end-page: 113
  ident: CR6
  article-title: Voxel-based morphometry of the human brain: methods and applications
  publication-title: Curr Med Imaging
  doi: 10.2174/1573405054038726
– volume: 145
  start-page: 3859
  year: 2022
  end-page: 3871
  ident: CR14
  article-title: Interpretable surface-based detection of focal cortical dysplasias: a multi-centre epilepsy lesion detection study
  publication-title: Brain
  doi: 10.1093/brain/awac224
– volume: 70
  start-page: 102951
  year: 2021
  ident: CR24
  article-title: Segmentation of focal cortical dysplasia lesions from magnetic resonance images using 3D convolutional neural networks
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102951
– volume: 62
  start-page: 1005
  year: 2021
  end-page: 1021
  ident: CR11
  article-title: External validation of automated focal cortical dysplasia detection using morphometric analysis
  publication-title: Epilepsia
  doi: 10.1111/epi.16853
– volume: 393
  start-page: 689
  year: 2019
  end-page: 701
  ident: CR1
  article-title: Epilepsy in adults
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32596-0
– volume: 121
  start-page: 74
  year: 2020
  end-page: 87
  ident: CR22
  article-title: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.08.025
– volume: 11
  start-page: e0161498
  year: 2016
  ident: CR10
  article-title: Detection of Lesions Underlying Intractable Epilepsy on T1-Weighted MRI as an Outlier Detection Problem
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0161498
– volume: 58
  start-page: 1653
  year: 2017
  end-page: 1664
  ident: CR9
  article-title: Voxel-based magnetic resonance image postprocessing in epilepsy
  publication-title: Epilepsia
  doi: 10.1111/epi.13851
– volume: 2212
  start-page: 04497
  year: 2022
  ident: CR31
  publication-title: UNETR + +: delving into efficient and accurate 3D medical image segmentation. arXiv preprint arXiv
– volume: 16
  start-page: 185
  year: 2006
  end-page: 196
  ident: CR4
  article-title: Neuroimaging of focal cortical dysplasia
  publication-title: J Neuroimaging
  doi: 10.1111/j.1552-6569.2006.00025.x
– volume: 10
  year: 2023
  ident: CR29
  article-title: An open presurgery MRI dataset of people with epilepsy and focal cortical dysplasia type II
  publication-title: Sci Data
  doi: 10.1038/s41597-023-02386-7
– volume: 25
  start-page: 1724
  year: 2021
  end-page: 1734
  ident: CR25
  article-title: Multi-res-attention UNet: a CNN model for the segmentation of focal cortical dysplasia lesions from magnetic resonance images
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.3024188
– ident: CR20
– volume: 52
  start-page: 218
  year: 2019
  end-page: 225
  ident: CR23
  article-title: Automatic detection and localization of focal cortical dysplasia lesions in MRI using fully convolutional neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.04.024
– ident: 1803_CR18
  doi: 10.1007/978-3-030-00931-1_56
– volume: 53
  start-page: 197
  year: 2019
  ident: 1803_CR21
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.01.012
– volume: 63
  start-page: 61
  year: 2022
  ident: 1803_CR3
  publication-title: Epilepsia
  doi: 10.1111/epi.17130
– ident: 1803_CR20
  doi: 10.1007/978-3-319-24574-4_28
– volume: 377
  start-page: 1648
  year: 2017
  ident: 1803_CR2
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1703784
– volume: 10
  year: 2023
  ident: 1803_CR29
  publication-title: Sci Data
  doi: 10.1038/s41597-023-02386-7
– volume: 97
  start-page: e1571
  year: 2021
  ident: 1803_CR19
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000012698
– volume: 52
  start-page: 218
  year: 2019
  ident: 1803_CR23
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.04.024
– volume: 6
  start-page: e16430
  year: 2011
  ident: 1803_CR7
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016430
– volume: 1
  start-page: 105
  year: 2005
  ident: 1803_CR6
  publication-title: Curr Med Imaging
  doi: 10.2174/1573405054038726
– volume: 30
  start-page: 5998
  year: 2017
  ident: 1803_CR26
  publication-title: Adv Neural Inf Process Syst
– volume: 25
  start-page: 1724
  year: 2021
  ident: 1803_CR25
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.3024188
– volume: 79
  start-page: 102444
  year: 2022
  ident: 1803_CR15
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102444
– volume: 79
  start-page: 101662
  year: 2020
  ident: 1803_CR17
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.101662
– ident: 1803_CR27
– volume: 145
  start-page: 3859
  year: 2022
  ident: 1803_CR14
  publication-title: Brain
  doi: 10.1093/brain/awac224
– ident: 1803_CR30
  doi: 10.1109/WACV51458.2022.00181
– volume: 11
  start-page: e0161498
  year: 2016
  ident: 1803_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0161498
– volume: 125
  start-page: 1719
  year: 2002
  ident: 1803_CR5
  publication-title: Brain
  doi: 10.1093/brain/awf175
– volume: 77
  start-page: 1060
  year: 2015
  ident: 1803_CR8
  publication-title: Ann Neurol
  doi: 10.1002/ana.24407
– volume: 70
  start-page: 102951
  year: 2021
  ident: 1803_CR24
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102951
– volume: 62
  start-page: 1005
  year: 2021
  ident: 1803_CR11
  publication-title: Epilepsia
  doi: 10.1111/epi.16853
– volume: 58
  start-page: 1653
  year: 2017
  ident: 1803_CR9
  publication-title: Epilepsia
  doi: 10.1111/epi.13851
– volume: 59
  start-page: 982
  year: 2018
  ident: 1803_CR12
  publication-title: Epilepsia
  doi: 10.1111/epi.14064
– volume: 121
  start-page: 74
  year: 2020
  ident: 1803_CR22
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.08.025
– volume: 2212
  start-page: 04497
  year: 2022
  ident: 1803_CR31
  publication-title: UNETR + +: delving into efficient and accurate 3D medical image segmentation. arXiv preprint arXiv
– volume: 393
  start-page: 689
  year: 2019
  ident: 1803_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32596-0
– volume: 16
  start-page: 185
  year: 2006
  ident: 1803_CR4
  publication-title: J Neuroimaging
  doi: 10.1111/j.1552-6569.2006.00025.x
– volume: 88
  start-page: 102802
  year: 2023
  ident: 1803_CR28
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102802
– volume: 61
  start-page: 1406
  year: 2020
  ident: 1803_CR13
  publication-title: Epilepsia
  doi: 10.1111/epi.16574
– volume: 64
  start-page: 1093
  year: 2023
  ident: 1803_CR16
  publication-title: Epilepsia
  doi: 10.1111/epi.17522
SSID ssj0000331383
Score 2.330236
Snippet Objectives Accurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is...
Accurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still...
ObjectivesAccurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still...
Abstract Objectives Accurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision...
SourceID doaj
unpaywall
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 222
SubjectTerms Artificial intelligence
Artificial neural networks
Channels
Clinical medicine
Datasets
Diagnostic Radiology
Drug resistance
Drug-resistant epilepsy
Dual-self-attention
Encoders-Decoders
Epilepsy
Feature maps
Focal cortical dysplasia
Image segmentation
Imaging
Internal Medicine
Interventional Radiology
Lesion segmentation
Lesions
Machine learning
Medicine
Medicine & Public Health
Neural networks
Neuroradiology
Original Article
Patients
Performance evaluation
Radiology
Registration
Source code
Transformer
Ultrasound
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VHEo5oEJf4SVX4lYsktjxOse2YrUgbU8gcbPGscNlG1ZkVxX_nrHz6FaqaA9cEyeKx-N832d7ZgBOFakKWzjHQ64qLotJzVHVFXeoMdB_LPIQjTz_oWY38uq2uN0o9RXOhHXpgTvDnVcE2LXKagJqJcvMWeLbWJOXeq2lwBjmSzC2IabiP1iIjLTXECWj1XlLsktKTpDEQ84qwfUfSBQT9v-NZW7skO7A9rpZ4uMvXCw2QGj6FnZ79si-dl-9B698sw-v5_3--Du4nAZoYqQo4xI1c4_tMsZJsoUPy2Ks9Xc_-2ijhoUz73csHilsqbVnq4HF-of3cDO9uP4-432xBF5JXax4KSuBNnfSTeqsQoHOoy4kKltPLNlLIQkJERhXilmel5UrSrReEOTXJapUfICt5r7xn4C5zKVFal3qkPC-IkZB-jmsPjmiY8K6BLLBcKbqM4mHghYLExWFVqYztiFjm2hsoxP4Mj6z7PJoPNv6WxiPsWXIgR0vkGeY3jPMvzwjgaNhNE0_MVsTyqopPSEMTuDzeJumVNgnwcbfr2MbmQrSgWUCHzsvGL-E6KQifM8TOBvc4vfLn-vQ2eg6_9H_g5fo_yG8yaO7h3oXR7C1elj7Y2JQK3sSJ8sT0YcQdQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSFAOiHcDBQWJG7WaxI7XOVUFsRSkcqJSb9b4kb0s2WWzq6r_vjNeJy0SWnFNHCu2x57vm_HMMPZRIauwtfecclVxWU9aDqp13IMGgv9QVxSNfP5TnV3IH5f1ZTK49ela5XAmxoPaLxzZyI-pHpbSEzw8T5Z_OFWNIu9qKqFxnz0oK5QkihSffhttLIUQJTKwIVZGq-MeyZeUHBUTp8xVguu_9FFM2_8vrHnHT_qYPdp0S7i-gvn8jiqaPmVPEobMT7eL_ozdC91z9vA8eclfsO9TUlA58spoqM79db-M0ZL5PJBxLO_D7HeKOepyuvk-y-PFwh5bh3w9YNmweskupl9_fTnjqWQCd1LXa95IJ8BWXvpJWzoQ4APoWoKy7cS2SA8A6YQg3FVAWVWN83UDNghU_G0DqhCv2F636MIBy33pi7qwvvCAWt8hrkAWTTYoj6BMWJ-xcpg441I-cSprMTeRV2hltpNtcLJNnGyjM_Zp_Ga5zaaxs_VnWo-xJWXCjg8Wq5lJG8s4BHStKlsEcko2pbfIxwBHWgetpQDs5HBYTZO2Z29uhSljH8bXuLHIWwJdWGxiG1kIZINNxl5vpWD8EwSVCrV8lbGjQSxuO981oKNRdP5j_G92__pbtl9FQaZ6Fodsb73ahHeIkNb2fdwGN-39COg
  priority: 102
  providerName: ProQuest
– databaseName: WRHA-SpringerOpen Free
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkPo4IOgzBSojcStWk_ixzrFdsaKV6AkkbtY4drhsw4rsquLfd-xN0q2EULkmYysez2S-z_aMAU40sQqnvOexVhWXatJw1E3NPRqM8B9VGbORL37q8yv541pd92VyYi7M5v59YfSXjtiSlJwiCY-lpgQ3z2BH0Y83Ht-b6um4npILURDbGvJiHmz6T-xJJfofwpUbe6Kv4MWqXeD9b5zPN8LObA92e7zIvq4neB-2Qvsanl_0O-Jv4PssBiNGHDItSjN_3y1SZiSbh7gQxrpw86vPL2pZPOV-w9Ihwo6kA1sOuDXcvYWr2dnl9Jz31yPwWhq15JWsBbrSSz9pihoF-oBGSdSumbiGqAASdRARY-VYlGVVe1WhC4KCfFOhzsU72G5v2_ABmC98rnLnc48U4WvCEMSY43qTJwAmnM-gGBRn6752eLzCYm4ThzDarpVtSdk2KduaDD6PbRbryhmPSn-L8zFKxqrX6QEZg-2dyNYE3hpdNATatKwK74h7IY1UBWOkQOrkcJhN27tiZ-NFatpMKOpmcDy-JieKOyPYhttVkpG5IOZXZfB-bQXjlxCA1BTRywxOB7P42_ljAzodTec_xv_xab0fwMsyGXa8y-IQtpd3q3BE6GjpPiW3-ANKXQGu
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3BVoJy4JsSKChI3KhLPhyvcyyIVUFqxYGVyskax04PXdJVkxUqv54ZJxsWVFXluplEa3usec_jeQPwVhGrsIVzgrWqhCymtUBVV8KhRob_WGRcjXx0rA7n8stJcTLI5HAtzGb-PtXqfUtsSUpBkUSw1FQu9G3YUpxMmsDW_PjrwXdmVFpxOjNJ11UxV774V-QJAv1XocqNjOg9uLtqlnj5ExeLjaAze9B3L2qDViHfNTnbX3V2v_r1j5LjzcbzEO4P2DM-6J3lEdzyzWO4czRk15_A5xkHtpj4aDjgjt1luwxVlvHC86Fa3PrTH0OtUhPzjfnTOFxIbMnax90aA_uLpzCfffr28VAMrRZEJXXRiVJWOdrMSTet0wpzdB51IVHZemprohVINCRnvJZgmmVl5YoSrc8JMNQlqiR_BpPmvPHPIXapS4rEusQhoYWK8Aixbz67cgTmcusiSNfLYKpBh5zbYSxM4CNamX6ODM2RCXNkdATvxneWvQrHtdYfeHVHS1bQDj_QQphhQ5qKgGCt0poAoJJl6izxOKSRFl5rmSN9ZHftG2bY1q3hpmxKTymCR_BmfEwbkrMs2PjzVbCRSU4ssoxgp_ep8Z8QGFWEDrII9tZO9ufj1w1ob3TEG4z_xf-Zv4TtLPgj98XYhUl3sfKvCGl19vWwxX4DdKwZeA
  priority: 102
  providerName: Unpaywall
Title Focal cortical dysplasia lesion segmentation using multiscale transformer
URI https://link.springer.com/article/10.1186/s13244-024-01803-8
https://www.ncbi.nlm.nih.gov/pubmed/39266782
https://www.proquest.com/docview/3103687990
https://www.proquest.com/docview/3104039669
https://doi.org/10.1186/s13244-024-01803-8
https://doaj.org/article/c644f61f0566491db666af305e8843a8
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: ABDBF
  dateStart: 20160401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: 8FG
  dateStart: 20121101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 20250731
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: M48
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: AAJSJ
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: C6C
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: 40G
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: U2A
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1869-4101
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331383
  issn: 1869-4101
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2VeLjAfFNYFRB4o2ZJbHjOA8IbdXKQGo1ISqVJ8uJnb6EtGtaQf977pwPhlRNe7HSxLXi813u9_PHHSHvBbCKLDaGYqwqyuOkoFoUOTVaaoT_Oo7wNPJkKi5n_Ns8nh-QbrttK8B6L7XDfFKzdfnxz_XuMxj8J2fwUpzWwKg4p-BtKIajYjCqq2uKiaVwAbbNsnFIBuCsIlT8ScsA3MeasbAJ1om5mSgHDe2O1uxt-T_35aL874OmN5ZVH5L722qld791Wd7wXOPH5FELOf2zRkeekANbPSX3Ju2i-jPydYz-zAca6ua1fbOrV-5wpV9anEvza7v41R5RqnzcKL_w3T7EGmpbf9NBX7t-Tmbjix-jS9pmWKA5l_GGpjxnOosMN0kR5pppY7WMuRZZkWQFsAkN7IMhTAt0GEVpbuJUZ5YBTihSLQL2ghxVy8q-Ir4JTRAHmQmMBpCQAwwB0o1TVgYwHMuMR8JOcCpvw49jFoxSORoihWqErUDYyglbSY986P-zaoJv3Fr7HMejr4mBs92N5XqhWjtUOeC_QoQF4D7B09BkQN809DS2UnKmoZHjbjRVp4wKc7EJmYDj9si7_jHYIS6u6Mout64ODxiQx9QjLxst6N8EMKgAUBB55KRTi3-N39ahk1517tD_13d4tzfkQeS0GXNgHJOjzXpr3wKq2mRDcsiDL1Am8wRKOYbrwfnF9Oo7_BpFHEsxGro5i6GzIShnEVwPZtOrs59_AXx_IOA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlE4IF6lgQJGghO1msSO4xwQ4rXapd2eWmlvxomdvWyzy2ZX1f4pfiNj59EioRWXXhPHisdjz_eNPTMA7wSyijwxhrpcVZQnaUm1KAtqtNQO_uskdtHI4zMxvOA_JslkB353sTDuWmW3J_qN2swL5yM_dvWwhExx8_y0-EVd1Sh3utqV0GjU4sRurpCy1R9H33B-38fx4Pv51yFtqwrQgstkRTNeMJ3Hhpu0jArNtLFaJlyLvEzzEhG0RsTNHDQJdRTHWWGSTOeWoW0sMy1Chv3egbuchdzl6k8nae_TCRmLkPF1sTlSHNdI9jinaAipy5TFqPzL_vkyAf_CtjfOZR_A3rpa6M2Vns1umL7BI3jYYlbyuVGyx7Bjqydwb9yeyj-F0cAZRII81jvGidnUCx-dSWbWOeNIbaeXbYxTRdxN-ynxFxlrbG3JqsPOdvkMLm5FmPuwW80rewDERCZMwtyERiPKKBDHIGt3Pi-DIJDlJoCoE5wq2vzlrozGTHkeI4VqhK1Q2MoLW8kAPvTfLJrsHVtbf3Hz0bd0mbf9g_lyqtqFrAoEkKWISgSOgmeRyZH_aRxpYqXkTGMnh91sqnY7qNW18gbwtn-NC9mdzujKzte-DQ8Zss8sgOeNFvR_giBWIKqIAzjq1OK6820DOupV5z_G_2L7r7-BveH5-FSdjs5OXsL92Cu1q6VxCLur5dq-QnS2yl_7JUHg522vwT9Wz0Ye
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhU4IN4sFAgSnKi1Sew4zgEhoKy6lFYcqLQ314mdvSzZZbOrav8av44Z59EioRWXXhPHiscznm_G8wB4I9GqyBNrGdWqYiJJS2ZkWTBrlCH4b5KYspFPTuXRmfg6SSY78LvLhaGwyu5M9Ae1nRfkIx9SPyypUjw8h2UbFvH9cPRh8YtRBym6ae3aaTQscuw2F2i-1e_Hh7jXb-N49OXH5yPWdhhghVDJimWi4CaPrbBpGRWGG-uMSoSReZnmJaJpg-ibE0wJTRTHWWGTzOSOo54sMyNDjvPegJspF5zCydJJ2vt3Qs4jtP66PB0lhzUafkIwVIqMqmZxpv7Shb5lwL9w7pU72jtwa10tzObCzGZX1ODoHtxt8WvwsWG4-7Djqgewd9Le0D-E8YiUY4A2rXeSB3ZTL3ymZjBz5JgLajf92eY7VQFF3U8DH9RY42gXrDoc7ZaP4OxaiPkYdqt55Z5CYCMbJmFuQ2sQcRSIadCCJ_-XRUDIczuAqCOcLtpa5tRSY6a9TaOkboitkdjaE1urAbzrv1k0lTy2jv5E-9GPpCrc_sF8OdWtUOsCwWQpoxJBpBRZZHO0BQ2uNHFKCW5wkv1uN3V7NNT6kpEH8Lp_jUJNNzWmcvO1HyNCjpZoNoAnDRf0f4KAViLCiAdw0LHF5eTbFnTQs85_rP_Z9l9_BXsoffrb-PT4OdyOPU9TW4192F0t1-4FArVV_tJLRADn1y2CfwDikUpZ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3BVoJy4JsSKChI3KhLPhyvcyyIVUFqxYGVyskax04PXdJVkxUqv54ZJxsWVFXluplEa3usec_jeQPwVhGrsIVzgrWqhCymtUBVV8KhRob_WGRcjXx0rA7n8stJcTLI5HAtzGb-PtXqfUtsSUpBkUSw1FQu9G3YUpxMmsDW_PjrwXdmVFpxOjNJ11UxV774V-QJAv1XocqNjOg9uLtqlnj5ExeLjaAze9B3L2qDViHfNTnbX3V2v_r1j5LjzcbzEO4P2DM-6J3lEdzyzWO4czRk15_A5xkHtpj4aDjgjt1luwxVlvHC86Fa3PrTH0OtUhPzjfnTOFxIbMnax90aA_uLpzCfffr28VAMrRZEJXXRiVJWOdrMSTet0wpzdB51IVHZemprohVINCRnvJZgmmVl5YoSrc8JMNQlqiR_BpPmvPHPIXapS4rEusQhoYWK8Aixbz67cgTmcusiSNfLYKpBh5zbYSxM4CNamX6ODM2RCXNkdATvxneWvQrHtdYfeHVHS1bQDj_QQphhQ5qKgGCt0poAoJJl6izxOKSRFl5rmSN9ZHftG2bY1q3hpmxKTymCR_BmfEwbkrMs2PjzVbCRSU4ssoxgp_ep8Z8QGFWEDrII9tZO9ufj1w1ob3TEG4z_xf-Zv4TtLPgj98XYhUl3sfKvCGl19vWwxX4DdKwZeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focal+cortical+dysplasia+lesion+segmentation+using+multiscale+transformer&rft.jtitle=Insights+into+imaging&rft.au=Zhang%2C+Xiaodong&rft.au=Zhang%2C+Yongquan&rft.au=Wang%2C+Changmiao&rft.au=Li%2C+Lin&rft.date=2024-09-12&rft.issn=1869-4101&rft.eissn=1869-4101&rft.volume=15&rft.issue=1&rft.spage=222&rft_id=info:doi/10.1186%2Fs13244-024-01803-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-4101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-4101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-4101&client=summon