A Strategy to Compare Single-Cell RNA Sequencing Data Sets Provides Phenotypic Insight into Cellular Heterogeneity Underlying Biological Similarities and Differences Between Samples
Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This b...
Saved in:
Published in | Bioinformatics and biology insights Vol. 18; p. 11779322241280866 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2024
Sage Publications Ltd SAGE Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 1177-9322 1177-9322 |
DOI | 10.1177/11779322241280866 |
Cover
Abstract | Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This becomes especially complex when there is cellular heterogeneity within the samples. Here, we present scCompare, a computational pipeline for comparison of scRNA-seq data sets. Phenotypic identities from a known data set are transferred onto another data set using correlation-based mapping to average transcriptomic signatures from each cluster of cells’ annotated phenotype. Statistically derived lower cutoffs for phenotype inclusivity allow for cells to be unmapped if they are distinct from the known phenotypes, facilitating potential novel cell type detection. In a comparison of our tool using scRNA-seq data sets from human peripheral blood mononuclear cells (PBMCs), we show that scCompare outperforms single-cell variational inference (scVI) in higher precision and sensitivity for most of the cell types. scCompare was used on a cardiomyocyte data set where it confirmed the discovery of a distinct cluster of cells that differed between the 2 protocols for differentiation. Further use of scCompare on cell atlas data sets revealed insights into the cellular heterogeneity underpinning biological diversity between samples. In addition, we used a cell atlas to better understand the effect of key parameters used in the scCompare pipeline. We envision that scCompare will be of value to the research community when comparing large scRNA-seq data sets. |
---|---|
AbstractList | Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This becomes especially complex when there is cellular heterogeneity within the samples. Here, we present scCompare, a computational pipeline for comparison of scRNA-seq data sets. Phenotypic identities from a known data set are transferred onto another data set using correlation-based mapping to average transcriptomic signatures from each cluster of cells' annotated phenotype. Statistically derived lower cutoffs for phenotype inclusivity allow for cells to be unmapped if they are distinct from the known phenotypes, facilitating potential novel cell type detection. In a comparison of our tool using scRNA-seq data sets from human peripheral blood mononuclear cells (PBMCs), we show that scCompare outperforms single-cell variational inference (scVI) in higher precision and sensitivity for most of the cell types. scCompare was used on a cardiomyocyte data set where it confirmed the discovery of a distinct cluster of cells that differed between the 2 protocols for differentiation. Further use of scCompare on cell atlas data sets revealed insights into the cellular heterogeneity underpinning biological diversity between samples. In addition, we used a cell atlas to better understand the effect of key parameters used in the scCompare pipeline. We envision that scCompare will be of value to the research community when comparing large scRNA-seq data sets. Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This becomes especially complex when there is cellular heterogeneity within the samples. Here, we present scCompare, a computational pipeline for comparison of scRNA-seq data sets. Phenotypic identities from a known data set are transferred onto another data set using correlation-based mapping to average transcriptomic signatures from each cluster of cells' annotated phenotype. Statistically derived lower cutoffs for phenotype inclusivity allow for cells to be unmapped if they are distinct from the known phenotypes, facilitating potential novel cell type detection. In a comparison of our tool using scRNA-seq data sets from human peripheral blood mononuclear cells (PBMCs), we show that scCompare outperforms single-cell variational inference (scVI) in higher precision and sensitivity for most of the cell types. scCompare was used on a cardiomyocyte data set where it confirmed the discovery of a distinct cluster of cells that differed between the 2 protocols for differentiation. Further use of scCompare on cell atlas data sets revealed insights into the cellular heterogeneity underpinning biological diversity between samples. In addition, we used a cell atlas to better understand the effect of key parameters used in the scCompare pipeline. We envision that scCompare will be of value to the research community when comparing large scRNA-seq data sets.Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This becomes especially complex when there is cellular heterogeneity within the samples. Here, we present scCompare, a computational pipeline for comparison of scRNA-seq data sets. Phenotypic identities from a known data set are transferred onto another data set using correlation-based mapping to average transcriptomic signatures from each cluster of cells' annotated phenotype. Statistically derived lower cutoffs for phenotype inclusivity allow for cells to be unmapped if they are distinct from the known phenotypes, facilitating potential novel cell type detection. In a comparison of our tool using scRNA-seq data sets from human peripheral blood mononuclear cells (PBMCs), we show that scCompare outperforms single-cell variational inference (scVI) in higher precision and sensitivity for most of the cell types. scCompare was used on a cardiomyocyte data set where it confirmed the discovery of a distinct cluster of cells that differed between the 2 protocols for differentiation. Further use of scCompare on cell atlas data sets revealed insights into the cellular heterogeneity underpinning biological diversity between samples. In addition, we used a cell atlas to better understand the effect of key parameters used in the scCompare pipeline. We envision that scCompare will be of value to the research community when comparing large scRNA-seq data sets. |
Author | Tallman, Elizabeth Lee, Jeehoon Bushel, Pierre R Ashraf, Mishal Burnett, Benjamin Romer, Tatiana Gelaf Wilkinson, Dan C |
AuthorAffiliation | 2 Cardiac Cell Biology, BlueRock Therapeutics, Toronto, ON, Canada 1 Bioinformatics, BlueRock Therapeutics, New York, NY, USA |
AuthorAffiliation_xml | – name: 1 Bioinformatics, BlueRock Therapeutics, New York, NY, USA – name: 2 Cardiac Cell Biology, BlueRock Therapeutics, Toronto, ON, Canada |
Author_xml | – sequence: 1 givenname: Dan C surname: Wilkinson fullname: Wilkinson, Dan C email: dwilkinson@bluerocktx.com – sequence: 2 givenname: Elizabeth surname: Tallman fullname: Tallman, Elizabeth – sequence: 3 givenname: Mishal surname: Ashraf fullname: Ashraf, Mishal – sequence: 4 givenname: Tatiana Gelaf surname: Romer fullname: Romer, Tatiana Gelaf – sequence: 5 givenname: Jeehoon surname: Lee fullname: Lee, Jeehoon – sequence: 6 givenname: Benjamin surname: Burnett fullname: Burnett, Benjamin – sequence: 7 givenname: Pierre R orcidid: 0000-0001-5188-8693 surname: Bushel fullname: Bushel, Pierre R email: pbushel@yahoo.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39376245$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFu1DAURSNURNuBD2CDLLFhMyV2nDhZoXYKdKQKEEPXkWO_ZDxy7NR2WuXD-D8cppQWhMQmtl_uPe85N8fJgbEGkuQlTk8wZuzt_KgyQgjFpEzLoniSHM215Vw8eLA_TI6936VpgUtWPEsOsypjBaH5UfL9FG2C4wG6CQWLVrYfuAO0UabTsFyB1ujrp6iB6xGMiFV0zgOP5-DRF2dvlIS42YKxYRqUQGvjVbcNSJmZFu2j5g5dQABnOzCgwoSujASnpxl2pqy2nRJcx5a9iloVVCRyI9G5altwsWs8n0G4BTBow_tBg3-ePG259vDibl0kVx_ef1tdLC8_f1yvTi-XgpZ5WFakElhCgVnDSErjlWXFKRESRCsKUbKcNFmLRZtCkYmySZkgguVV1TSUlURmi2S950rLd_XgVM_dVFuu6p8F67qau6CEhrpiKcM5wQWXKZVFWzVUSkoAV8BJw5vIInvWaAY-3XKt74E4reeo6r_yjKZ3e9MwNj1IASaGpR9N8viNUdu6szcRRXOGI22RvLkjOBsz9KHulRcxGG7Ajr7OohLnuKQsSl__Id3Z0Zn4gaOKVqygOc6j6tXDke5n-fVPRQHeC4Sz3jto_-ueJ3uP5x38bvtvww9zTuz6 |
Cites_doi | 10.1038/s41598-020-78293-3 10.1109/ICDCSW.2011.20 10.1038/ncomms14049 10.1093/nar/gkab1049 10.1038/s41598-019-41695-z 10.1186/s13059-019-1850-9 10.1038/s41592-018-0229-2 10.1038/nmeth.1315 10.14348/molcells.2019.2446 10.1126/science.1260419 10.1126/science.abl4896 10.1038/s41598-021-94732-1 10.1186/s13059-017-1382-0 10.14348/molcells.2023.0009 10.1126/science.aam8999 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. The Author(s) 2024. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. – notice: The Author(s) 2024. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses |
DBID | AFRWT AAYXX CITATION NPM 3V. 7QO 7XB 8AL 8FD 8FE 8FG 8FH 8FK ABUWG AEUYN AFKRA ARAPS AYAGU AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- LK8 M0N M7P P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.1177/11779322241280866 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Australia & New Zealand Database ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Biological Science Collection Computing Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Australia & New Zealand Database ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Biological Science Collection ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1177-9322 |
ExternalDocumentID | oai_doaj_org_article_970715216ad04d6f9b4dd42e19ea2bab 10.1177/11779322241280866 PMC11457179 39376245 10_1177_11779322241280866 10.1177_11779322241280866 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 188 2UF 2WC 53G 54M 5VS 8FE 8FG 8FH AASGM ABDBF ABQXT ABUWG ABVFX ACARO ACGFS ACROE ACUHS ADBBV ADOGD ADRAZ AEUYN AEWDL AFCOW AFKRA AFKRG AFRWT AINHJ AJUZI ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AUTPY AYAGU AYAKG AZQEC BAWUL BBNVY BCNDV BDDNI BENPR BGLVJ BHPHI BPHCQ BSEHC C1A CCPQU CEFSP CNMHZ DC. DIK DWQXO E3Z EBD EBS EJD ESX GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IGS IHR IPNFZ ITC J8X K.F K6V K7- KQ8 LK8 M48 M7P MK~ ML0 M~E O5R O5S O9- OK1 P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RIG ROL RPM SAUOL SCDPB SCNPE SFC TR2 TUS UZ5 AAYXX ACHEB CITATION PQGLB PUEGO NPM 3V. 7QO 7XB 8AL 8FD 8FK FR3 JQ2 M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c485t-929c1de617b7204762d9a42cdecfc6c8752b3f1cf0e63c8b07c2c7599bb4782d3 |
IEDL.DBID | UNPAY |
ISSN | 1177-9322 |
IngestDate | Wed Aug 27 01:26:21 EDT 2025 Sun Sep 07 10:44:34 EDT 2025 Tue Sep 30 17:07:04 EDT 2025 Fri Sep 05 04:47:26 EDT 2025 Fri Jul 25 12:18:37 EDT 2025 Mon Jul 21 06:02:30 EDT 2025 Wed Oct 01 04:58:58 EDT 2025 Tue Jun 17 22:31:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | transcriptomics compare data sets scRNA-seq biological variation heterogeneity |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). The Author(s) 2024. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-929c1de617b7204762d9a42cdecfc6c8752b3f1cf0e63c8b07c2c7599bb4782d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5188-8693 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1177/11779322241280866 |
PMID | 39376245 |
PQID | 3149764515 |
PQPubID | 1036453 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_970715216ad04d6f9b4dd42e19ea2bab unpaywall_primary_10_1177_11779322241280866 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457179 proquest_miscellaneous_3114151847 proquest_journals_3149764515 pubmed_primary_39376245 crossref_primary_10_1177_11779322241280866 sage_journals_10_1177_11779322241280866 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: United States – name: London – name: Sage UK: London, England |
PublicationTitle | Bioinformatics and biology insights |
PublicationTitleAlternate | Bioinform Biol Insights |
PublicationYear | 2024 |
Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
References | Wolf, Angerer, Theis 2018; 19 Uhlén, Fagerberg, Hallström 2015; 347 Zheng, Terry, Belgrader 2017; 8 Ryu, Han, Jung, Hwang 2023; 46 Tran, Ang, Chevrier 2020; 21 Rosenberg, Roco, Muscat 2018; 360 Tang, Barbacioru, Wang 2009; 6 Cunningham, Allen, Allen 2022; 50 Kapoor, Corrado, Pearce, Pearce, Grosschedl 2020; 10 Lopez, Regier, Cole, Jordan, Yosef 2018; 15 Choi, Kim 2019; 42 Traag, Waltman, van Eck 2019; 9 Grancharova, Gerbin, Rosenberg 2021; 11 Jones, Karkanias 2022; 376 bibr14-11779322241280866 bibr8-11779322241280866 bibr5-11779322241280866 bibr2-11779322241280866 bibr13-11779322241280866 bibr15-11779322241280866 Iglewicz B (bibr17-11779322241280866) 1993 bibr10-11779322241280866 bibr18-11779322241280866 bibr3-11779322241280866 bibr6-11779322241280866 bibr12-11779322241280866 bibr16-11779322241280866 bibr9-11779322241280866 bibr7-11779322241280866 bibr11-11779322241280866 bibr1-11779322241280866 bibr4-11779322241280866 |
References_xml | – volume: 10 start-page: 21626 year: 2020 article-title: MZB1 enables efficient interferon α secretion in stimulated plasmacytoid dendritic cells publication-title: Sci Rep – volume: 19 start-page: 15 year: 2018 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol – volume: 376 year: 2022 article-title: The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans publication-title: Science – volume: 8 start-page: 14049 year: 2017 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat Commun – volume: 347 start-page: 1260419 year: 2015 article-title: Proteomics. Tissue-based map of the human proteome publication-title: Science – volume: 9 start-page: 5233 year: 2019 article-title: From Louvain to Leiden: guaranteeing well-connected communities publication-title: Sci Rep – volume: 50 year: 2022 article-title: Ensembl 2022 publication-title: Nucleic Acids Res – volume: 15 start-page: 1053 year: 2018 end-page: 1058 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat Methods – volume: 360 start-page: 176 year: 2018 end-page: 182 article-title: Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding publication-title: Science – volume: 46 start-page: 106 year: 2023 end-page: 119 article-title: Integration of single-cell RNA-seq datasets: a review of computational methods publication-title: Mol Cells – volume: 42 start-page: 189 year: 2019 end-page: 199 article-title: Dissecting cellular heterogeneity using single-cell RNA sequencing publication-title: Mol Cells – volume: 21 start-page: 12 year: 2020 article-title: A benchmark of batch-effect correction methods for single-cell RNA sequencing data publication-title: Genome Biol – volume: 6 start-page: 377 year: 2009 end-page: 382 article-title: MRNA-Seq whole-transcriptome analysis of a single cell publication-title: Nat Methods – volume: 11 start-page: 15845 year: 2021 article-title: A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes publication-title: Sci Rep – ident: bibr18-11779322241280866 doi: 10.1038/s41598-020-78293-3 – ident: bibr16-11779322241280866 doi: 10.1109/ICDCSW.2011.20 – ident: bibr12-11779322241280866 doi: 10.1038/ncomms14049 – ident: bibr15-11779322241280866 doi: 10.1093/nar/gkab1049 – ident: bibr2-11779322241280866 doi: 10.1038/s41598-019-41695-z – ident: bibr7-11779322241280866 doi: 10.1186/s13059-019-1850-9 – ident: bibr11-11779322241280866 – ident: bibr3-11779322241280866 – ident: bibr8-11779322241280866 doi: 10.1038/s41592-018-0229-2 – ident: bibr1-11779322241280866 doi: 10.1038/nmeth.1315 – ident: bibr5-11779322241280866 doi: 10.14348/molcells.2019.2446 – volume-title: How to Detect and Handle Outliers year: 1993 ident: bibr17-11779322241280866 – ident: bibr9-11779322241280866 doi: 10.1126/science.1260419 – ident: bibr10-11779322241280866 doi: 10.1126/science.abl4896 – ident: bibr13-11779322241280866 doi: 10.1038/s41598-021-94732-1 – ident: bibr4-11779322241280866 doi: 10.1186/s13059-017-1382-0 – ident: bibr6-11779322241280866 doi: 10.14348/molcells.2023.0009 – ident: bibr14-11779322241280866 doi: 10.1126/science.aam8999 |
SSID | ssj0061876 |
Score | 2.2790778 |
Snippet | Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important... |
SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref sage |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 11779322241280866 |
SubjectTerms | Biodiversity Biological effects Cardiomyocytes Cell differentiation Clusters Datasets Dimensional analysis Gene sequencing Heterogeneity Leukocytes (mononuclear) Method and Protocol Parameter sensitivity Peripheral blood mononuclear cells Phenotypes Similarity Transcriptomics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPoifls9JYIgKMVNmqbt492exyp4iOfBvZXJR7mFXrq4XWT_MP8_Z5ruesuJ9-JL2bZpd0hmMr9pJr9h7I0RApoc0NJ0gwGKzkUKStu0AelloRVYS987vpzo2Zn6fJ6fXyn1RTlhkR44dtyHqkAniD5Gg5sop5vKKOeU9KLyIA0Ymn3RjW2CqTgHa4FGPq5hEr0SHSpaU1A4HSOI1zteaCDr_xvCvJ4oOW7Fv7MKC1j_hLa94oyO77N7I4rkB1H6B-yWDw_Z7VhXcv2I_TrgI-vsmvcdn8Y8c36Kbqr16dS3Lf92gm1iGjVe5UfQA573S_41bs3DHxc-dP16Mbf8U1hSDM_ngd6Gj1PuKp9RJk2HCugRyfOhgFJLm6Z4lINGH__yco5tB9pWDsHxo7EgC05P_DDmiPFTIIri5WN2dvzx-3SWjvUZUqvKvE8RWVnhPGIgQ6VucFp1FShpnbeN1RYjIWmyRthm4nVmSzMprLRFXlXGKAQmLnvC9kIX_DPGpXBNCRXGihgelkUGGEVOGpflpS4taEjYu8141YtIw1GLkan82uAm7JBGdNuQGLSHC6hX9ahX9U16lbD9jT7Uo1kv6wzjSVRgxIAJe729jQZJqywQfLeiNgJBEQbORcKeRvXZSkLsg1oqfLrcUawdUXfvhPnFQPqNb80x9K4S9pZ08I9M_-iG91s1vbnTnv-PTnvB7koEffET1T7b63-s_EsEbb15Ndjnb2W5PNE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1tb9MwELZgCMEXxOsIDGQkJCRQRO04TvIJbR2lIDEhxqR9i_wWVik4ZU2F-sP4f9zFbkc1NL5ETWInbnx3fs4-P0fIS82YanIFmiYbcFBkzlIlpEkbxR0vpFDG4HzH5yM5PRGfTvPTOOG2iGGVa5s4GGrbGZwjf5sBlIe6MPy-m_9MMWsUrq7GFBrXyQ3GQZJwp_jkw9oSSwaqHlcykWQJDxWuLAgwygDl5dZYNFD2_wtnXg6XjBvyby39XK1-qbb9a0ia3CV3Ipak-6Hz75Frzt8nN0N2ydUD8nufRu7ZFe07Og7R5vQYBqvWpWPXtvTrEZQJwdRwlR6qXsF5v6BfwgY9-HHmfNev5jNDP_oFevJ05vFpUB0jWOkU42k6EEMHeJ4OaZRa3DpFQztQBuCVP2ZQdiBvpcpbehjTsoCRogchUoweKyQqXjwkJ5P338bTNGZpSI0o8z4FfGWYdYCENCa8AeNqKyW4sc40Rhrwh7jOGmaakZOZKfWoMNwUeVVpLQCe2OwR2fGdd48J5cw2parAYwQnsSwyBb7kqLFZXsrSKKkS8nrdX_U8kHHULPKVX-rchBxgj24KIo_2cKE7_15HtayrAiAWIBip7EhY2VRaWCu4Y5VTXCudkL21PNRRuRf1hSgm5MXmNqglrrUo77ollmEAjcB9LhKyG8Rn0xLkIJRcQO1yS7C2mrp9x8_OBupveGoODniVkFcogxdtuuIzvNmI6f8_2pOr_-9TcpsDqAtTUHtkpz9fumcAynr9fNC8P93VM_A priority: 102 providerName: ProQuest – databaseName: Sage Journals GOLD Open Access 2024 dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA7rLKIv4nWtrhJBEJS60zZN2yeZnXUYBRfZC-5bya3uQKcddlqkP8z_5zlNOjrsor4MnTRNQnJO8p1LziHktQwCUcQCOI0XIKDwOPAF48ovRGjChDOhFOo7vhzz-Tn7fBFf7JB6uAvjZnD9Ht2qYET9Zo3cjdroA2dkPMCfDG0EDLZXAOX8Q9ssc6vuHrJqYAnap9slmrYVOkR2_nC97RbZxdDl8YjsTmYn386GzZsHaZ-PDjvwsQdnCL2x062jrI_4fxNMve5t6e7z32mrleh-iLL840Sb3Sf3HBSlE0s7D8iOqR6S2zY5ZfeI_JxQF7q2o01Np9ZZnZ7CWVcaf2rKkp4cQx3riw2l9Eg0Av43a_rVTgA8XJqqbrrVQtFP1RoVAXRRYWvwOTrA0jm649RAxQbEAdpnYSrx5hW140ASgi6XC6jbx36lotL0yGV1gT2OHlpHM3oqMM7x-jE5n308m859l-TBVyyNGx_gmQq0ASAlMV8O7M06EyxU2qhCcQXiVCijIlDF2PBIpXKcqFAlcZZJyQDd6OgJGVV1ZZ4SGga6SEUGAifImGkSCRBFx4WO4pSnSnDhkbfDeuUrG8sjD1y482uL65FDXNFNRQzD3RfUV99zx9V5lgBCAwDEhR4zzYtMMq1ZaILMiFAK6ZH9gR7ygbLzCIRS4AIAkh55tXkNXI2mGlGZusU6ASArkL4Tj-xZ8tmMBEMY8pDB1-kWYW0NdftNtbjsI4dDqzHI75lH3iAN_h7TX6bh3YZM_z1pz_673efkbgjw0Cqz9smouWrNC4B3jXzpWPIXJQdJZw priority: 102 providerName: SAGE Publications – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ti9QwEA7niegX8d3qKREEQam3adO0_SByt-exCneI58J9K2mSegs1XXe7aH-Y_8-ZJltdblG_lL5M05A8SZ7pTGYIeV4yJqtEwkgTFSgoImGh5EKFlYxMlAoulcL_HSenYjLlH86T8x2yTm_lG3C5VbXDfFLTRf36x7fuLQz4N97kuI-HHC0GHCZboOjiCrmK5wjyEz4YFQTL-lxzKB6ivDdybi1iY5nqo_lvo6CXPSn9Xv3rKzuX3XdZ13-sVse3yE1PM-mBw8VtsmPsHXLNJZ7s7pKfB9SHpe1o29Cxc0SnZ7CO1SYcm7qmn05BxvlZw116JFsJ1-2SfnR79-Dkwtim7eYzRd_bJSr5dGaxNHgdnVvpBF1tGkCoAapP-wxLNe6qoq4eCA_45NcZyPZxXam0mh75jC0wf9FD50RGzyTGMF7eI9Pjd5_Hk9AncAgVz5I2BOqlmDZAkkrMhQPzrs4lj5Q2qlJCgaoUlXHFVDUyIlZZOUpVpNIkz8uSA3PR8X2yaxtrHhIaMV1lMgdlEvTHLI0lqJmjSsdJJjIlhQzIy3V_FXMXp6NgPpT5pc4NyCH26CCIIbb7G83iS-FHbJGnwL6A3AipR1yLKi-51jwyLDcyKmUZkL01Hoo1bIsYFE5AOJDEgDwbHsOIRTOMtKZZoQwD1gSadRqQBw4-Q00wPKGIOLydbQBro6qbT-zsoo8KDqUmoJvnAXmBGPxdp780w6sBpv9utEf_Xe5jciMC6ud-VO2R3XaxMk-AurXl035A_gIp-Tol priority: 102 providerName: Scholars Portal |
Title | A Strategy to Compare Single-Cell RNA Sequencing Data Sets Provides Phenotypic Insight into Cellular Heterogeneity Underlying Biological Similarities and Differences Between Samples |
URI | https://journals.sagepub.com/doi/full/10.1177/11779322241280866 https://www.ncbi.nlm.nih.gov/pubmed/39376245 https://www.proquest.com/docview/3149764515 https://www.proquest.com/docview/3114151847 https://pubmed.ncbi.nlm.nih.gov/PMC11457179 https://doi.org/10.1177/11779322241280866 https://doaj.org/article/970715216ad04d6f9b4dd42e19ea2bab |
UnpaywallVersion | publishedVersion |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1177-9322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: ABDBF dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Australia & New Zealand Database customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: AYAGU dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/anz providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1177-9322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: BENPR dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVSPB databaseName: Sage Journals GOLD Open Access 2024 customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: AFRWT dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.sagepub.com/ providerName: SAGE Publications – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1177-9322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: M48 dateStart: 20080301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZYKwQv3AeBURkJCQmUqUkcJ3lsu3UFaVXVraI8RY7taBUhrUgqVP4X_49zYq-sbOLy4uZynDrxsf0d-_g7hLzOPE_koYCWxnMwUHjouYJx6ebC137EmZAS5ztOx3w0Yx_m4dySReNemKvr90iMhEmCqwEMOlKA33yPtDmuJbVIezae9D6Z4CmRi0J21fLGfDvjTkPPfxOmvO4aaTff31mXK7H5JoriyvAzvG8ct6qGtRC9Tj4fruvsUH7_jdPxn97sAblnQSjtGa15SG7p8hG5bcJSbh6THz1qSWs3tF7SgXFTp2cwyhXaHeiioNMxyBgvbLhKj0Qt4Lyu6MTs7IODC10u681qIen7ssIpALoo8WmQHV1f6QgdcZagvxoMAdrEXypwzxU15UDlgb_8sgDZhvWVilLRIxvPBXo32jcuZvRMIMNx9YTMhsfng5Frwzu4ksVh7QIwk57SAKEyjJQDvbJKBPOl0jKXXIIh5WdB7sm8q3kg46wbSV9GYZJkGQNco4J90iqXpX5GqO-pPBYJmJpgXcZRIMAI7eYqCGMeS8GFQ95eVn66MiweqWeJzq_Vg0P6qB5bQSTgbi5A7aW2PadJBNgMoA8XqssUz5OMKcV87SVa-JnIHHJwqVyp7RWqNABzFPQfIKRDXm1vQ3vGRRpR6uUaZTzAVGB3Rw55anRxWxIkL-Q-g9zxjpbuFHX3Trm4aDjD4akhWO6JQ96gQv8q0x8-w7utzv_9oz3_L-kX5K4P4NBMZR2QVv11rV8CuKuzDtmLhycd0u4Npx_P4bd_PJ5MO81UCaQncw_SUxZ3bPP_CVkMSnc |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGJzReuF8CA4zERQJlNE7iJA88dC2jZVuF2CqNp-DYDqsISVlTTeVH8cbv4C9xTuJ0lKHxtAdeqjSxXdfxdy728XcIeZw4jkh9AUjjKTgo3Hds4XFpp4JpFnBPSInrHbtD3h95bw_8gxXyvTkLg2GVjUysBLUqJK6Rv3TBlIe6oH5NBOW2nh-DfzZ9NejBy3zC2Nbr_W7fNikEbOmFfmmD8peO0qCmE8zGAshXkfCYVFqmkksw1lnipo5M25q7MkzagWQy8KMoSTzQncqFdp9OvtqYpQp3c03KjgtkNeRR0G6R1c6HzptRI_u5A8LF7J0irRN-RLiX4YEaAOeBL2m_KknA3yzb0wGahgJgbZZPxPxYZNlvSnDrCvnZDF8d-_J5Y1YmG_LbH8yS_8_4XiWXjT1OOzWArpEVnV8nF-sMnfMb5EeHGv7eOS0L2q0j9ukeKPxM212dZfT9EMrUAelwl_ZEKeB7OaXv6kOOcHGo86KcT8aSDvIprobQcY6tQXWMAqZ9jEkqAMoafCJapaLK8PgZrfuBOIKf_DKGshUBLhW5oj2T2gYEPd2so-3onkCy5-lNMjqXYbxFWnmR6zuEMkeloYjA6wZHOwxcAf54O1WuH_JQCi4s8ryZgfGkJjSJHcP5fmq6WmQT5-iiIHKRVzeKo0-xEW0x4CBAK5AL1fYUT6PEU8pj2om0YIlILLLezLjYCMhpfDLdLPJo8RhEG-5XiVwXMyzjgHnpgP1kkds1IBY9QR5HzjyoHS5BZamry0_y8WFFnw6t-gHoIYs8Q1Sd9OmMYXixAN6_B-3u2f_3IVnr7-_uxDuD4fY9comBkVwv6a2TVnk00_fByC2TB0ayUPLxvPH3C1cetao |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgE5cXxH2BAUZCQgKFNY7jJI9dS9VxqaZdxN4i37JVCk61pkL9Yfw_zkncQrUJeKnaxHaP7O_Y37GPzyHkjYoiWSYSNE2UYKCIJAolFzosJbMsFVxqjfsdXydifMo_nSVnfsMN78L4Hpx_QLcqkKidrFG7Z6bc82eMe_iR4xEBh9kVOLm4SbbBrEkB1dv90dG3k9VcLKKsTS-HFUKs4c81r21kY2VqA_hfxzqvOk_66_l3Fm4mlz9kVf2xQI3uk3ueWdJ-B4UH5IZ1D8mtLtfk8hH52ac-Eu2SNjUddL7n9BiWrsqGA1tV9GgCZTrXanhKh7KR8LuZ08Puuh58ubCubpazqaYHbo52PZ06bA2qoz8rHaN3TQ2gtMDuaZtUqcKLVLSTAxEBf_l9CmXbUK5UOkOHPkkLTFl0v_Mbo8cSwxbPH5PT0ceTwTj0ORtCzbOkCYFt6chY4EUK09_AVGtyyZk2VpdaaLCOmIrLSJc9K2KdqV6qmU6TPFeKA1kx8ROy5WpndwhlkSkzmYP9CCZjlsYSLMteaeIkE5mWQgbk3Wq8ilkXmqOIfPTyK4MbkH0c0XVBjKrdPqgvzwuvpEWeAuECPiOk6XEjylxxYzizUW4lU1IFZHeFh2IF1CIGGxNADbwwIK_Xr0FJ8eRFOlsvsEwERAmM6TQgTzv4rCXBiISCcaidbQBrQ9TNN2560QYCh1YTMMfzgLxFDP6W6S_d8H4N03932rP_bvcVuX04HBVfDiafn5O7DIhft021S7aay4V9AcStUS-9dv4Cjt437Q |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagE4IX7pfAQEZCQgJlahzHSR67jqkgUU2MSuMp8i1aRXAqmgqV_8X_45zYKyubuLxETXKcuPGx_R2f4-8Q8kIliawzCT1N1GCgiCyJJRc6riWzLBdcao3rHe-nYjLj706yk0AWjXthzvvvkRgJDyV6AzgMpAC_xVWyI9CXNCA7s-nR6JNPnpLHKBS8lpeW25p3enr-yzDlxdDIsPn--sot5PqbbJpz08_hLR-4texZCzHq5PPeqlN7-vtvnI7_9M9uk5sBhNKR15o75Ip1d8k1n5ZyfY_8GNFAWrumXUvHPkydHsMs19h4bJuGfpiCjI_Chqv0QHYSzrslPfI7--DHqXVtt17MNX3rlrgEQOcOnwbFMfSVTjAQpwX9tWAI0D7_UoN7rqivByoPvPLLHGR71lcqnaEHIZ8LjG5034eY0WOJDMfL-2R2-ObjeBKH9A6x5kXWxQDMdGIsQCiFmXJgVDal5Ewbq2stNBhSTKV1ouuhFaku1DDXTOdZWSrFAdeY9AEZuNbZR4SyxNSFLMHUBOuyyFMJRuiwNmlWiEJLISPy6qzxq4Vn8aiSQHR-oR0iso_qsRFEAu7-ArReFfpzVeaAzQD6CGmG3Ii6VNwYzmxSWsmUVBHZPVOuKowKyyoFcxT0HyBkRJ5vbkN_RieNdLZdoUwCmArs7jwiD70ubmqC5IWCcShdbGnpVlW377j5ac8ZDk_NwHIvI_ISFfpXnf7wGV5vdP7vH-3xf0k_ITcYgEO_lLVLBt3XlX0K4K5Tz0K3_glKqUOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Strategy+to+Compare+Single-Cell+RNA+Sequencing+Data+Sets+Provides+Phenotypic+Insight+into+Cellular+Heterogeneity+Underlying+Biological+Similarities+and+Differences+Between+Samples&rft.jtitle=Bioinformatics+and+biology+insights&rft.au=Wilkinson%2C+Dan+C&rft.au=Tallman%2C+Elizabeth&rft.au=Ashraf%2C+Mishal&rft.au=Romer%2C+Tatiana+Gelaf&rft.date=2024-01-01&rft.pub=SAGE+Publications&rft.issn=1177-9322&rft.eissn=1177-9322&rft.volume=18&rft_id=info:doi/10.1177%2F11779322241280866&rft.externalDocID=10.1177_11779322241280866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1177-9322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1177-9322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1177-9322&client=summon |