A Strategy to Compare Single-Cell RNA Sequencing Data Sets Provides Phenotypic Insight into Cellular Heterogeneity Underlying Biological Similarities and Differences Between Samples

Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This b...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics and biology insights Vol. 18; p. 11779322241280866
Main Authors Wilkinson, Dan C, Tallman, Elizabeth, Ashraf, Mishal, Romer, Tatiana Gelaf, Lee, Jeehoon, Burnett, Benjamin, Bushel, Pierre R
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2024
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text
ISSN1177-9322
1177-9322
DOI10.1177/11779322241280866

Cover

Abstract Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This becomes especially complex when there is cellular heterogeneity within the samples. Here, we present scCompare, a computational pipeline for comparison of scRNA-seq data sets. Phenotypic identities from a known data set are transferred onto another data set using correlation-based mapping to average transcriptomic signatures from each cluster of cells’ annotated phenotype. Statistically derived lower cutoffs for phenotype inclusivity allow for cells to be unmapped if they are distinct from the known phenotypes, facilitating potential novel cell type detection. In a comparison of our tool using scRNA-seq data sets from human peripheral blood mononuclear cells (PBMCs), we show that scCompare outperforms single-cell variational inference (scVI) in higher precision and sensitivity for most of the cell types. scCompare was used on a cardiomyocyte data set where it confirmed the discovery of a distinct cluster of cells that differed between the 2 protocols for differentiation. Further use of scCompare on cell atlas data sets revealed insights into the cellular heterogeneity underpinning biological diversity between samples. In addition, we used a cell atlas to better understand the effect of key parameters used in the scCompare pipeline. We envision that scCompare will be of value to the research community when comparing large scRNA-seq data sets.
AbstractList Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This becomes especially complex when there is cellular heterogeneity within the samples. Here, we present scCompare, a computational pipeline for comparison of scRNA-seq data sets. Phenotypic identities from a known data set are transferred onto another data set using correlation-based mapping to average transcriptomic signatures from each cluster of cells' annotated phenotype. Statistically derived lower cutoffs for phenotype inclusivity allow for cells to be unmapped if they are distinct from the known phenotypes, facilitating potential novel cell type detection. In a comparison of our tool using scRNA-seq data sets from human peripheral blood mononuclear cells (PBMCs), we show that scCompare outperforms single-cell variational inference (scVI) in higher precision and sensitivity for most of the cell types. scCompare was used on a cardiomyocyte data set where it confirmed the discovery of a distinct cluster of cells that differed between the 2 protocols for differentiation. Further use of scCompare on cell atlas data sets revealed insights into the cellular heterogeneity underpinning biological diversity between samples. In addition, we used a cell atlas to better understand the effect of key parameters used in the scCompare pipeline. We envision that scCompare will be of value to the research community when comparing large scRNA-seq data sets.
Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This becomes especially complex when there is cellular heterogeneity within the samples. Here, we present scCompare, a computational pipeline for comparison of scRNA-seq data sets. Phenotypic identities from a known data set are transferred onto another data set using correlation-based mapping to average transcriptomic signatures from each cluster of cells' annotated phenotype. Statistically derived lower cutoffs for phenotype inclusivity allow for cells to be unmapped if they are distinct from the known phenotypes, facilitating potential novel cell type detection. In a comparison of our tool using scRNA-seq data sets from human peripheral blood mononuclear cells (PBMCs), we show that scCompare outperforms single-cell variational inference (scVI) in higher precision and sensitivity for most of the cell types. scCompare was used on a cardiomyocyte data set where it confirmed the discovery of a distinct cluster of cells that differed between the 2 protocols for differentiation. Further use of scCompare on cell atlas data sets revealed insights into the cellular heterogeneity underpinning biological diversity between samples. In addition, we used a cell atlas to better understand the effect of key parameters used in the scCompare pipeline. We envision that scCompare will be of value to the research community when comparing large scRNA-seq data sets.Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This becomes especially complex when there is cellular heterogeneity within the samples. Here, we present scCompare, a computational pipeline for comparison of scRNA-seq data sets. Phenotypic identities from a known data set are transferred onto another data set using correlation-based mapping to average transcriptomic signatures from each cluster of cells' annotated phenotype. Statistically derived lower cutoffs for phenotype inclusivity allow for cells to be unmapped if they are distinct from the known phenotypes, facilitating potential novel cell type detection. In a comparison of our tool using scRNA-seq data sets from human peripheral blood mononuclear cells (PBMCs), we show that scCompare outperforms single-cell variational inference (scVI) in higher precision and sensitivity for most of the cell types. scCompare was used on a cardiomyocyte data set where it confirmed the discovery of a distinct cluster of cells that differed between the 2 protocols for differentiation. Further use of scCompare on cell atlas data sets revealed insights into the cellular heterogeneity underpinning biological diversity between samples. In addition, we used a cell atlas to better understand the effect of key parameters used in the scCompare pipeline. We envision that scCompare will be of value to the research community when comparing large scRNA-seq data sets.
Author Tallman, Elizabeth
Lee, Jeehoon
Bushel, Pierre R
Ashraf, Mishal
Burnett, Benjamin
Romer, Tatiana Gelaf
Wilkinson, Dan C
AuthorAffiliation 2 Cardiac Cell Biology, BlueRock Therapeutics, Toronto, ON, Canada
1 Bioinformatics, BlueRock Therapeutics, New York, NY, USA
AuthorAffiliation_xml – name: 1 Bioinformatics, BlueRock Therapeutics, New York, NY, USA
– name: 2 Cardiac Cell Biology, BlueRock Therapeutics, Toronto, ON, Canada
Author_xml – sequence: 1
  givenname: Dan C
  surname: Wilkinson
  fullname: Wilkinson, Dan C
  email: dwilkinson@bluerocktx.com
– sequence: 2
  givenname: Elizabeth
  surname: Tallman
  fullname: Tallman, Elizabeth
– sequence: 3
  givenname: Mishal
  surname: Ashraf
  fullname: Ashraf, Mishal
– sequence: 4
  givenname: Tatiana Gelaf
  surname: Romer
  fullname: Romer, Tatiana Gelaf
– sequence: 5
  givenname: Jeehoon
  surname: Lee
  fullname: Lee, Jeehoon
– sequence: 6
  givenname: Benjamin
  surname: Burnett
  fullname: Burnett, Benjamin
– sequence: 7
  givenname: Pierre R
  orcidid: 0000-0001-5188-8693
  surname: Bushel
  fullname: Bushel, Pierre R
  email: pbushel@yahoo.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39376245$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAURSNURNuBD2CDLLFhMyV2nDhZoXYKdKQKEEPXkWO_ZDxy7NR2WuXD-D8cppQWhMQmtl_uPe85N8fJgbEGkuQlTk8wZuzt_KgyQgjFpEzLoniSHM215Vw8eLA_TI6936VpgUtWPEsOsypjBaH5UfL9FG2C4wG6CQWLVrYfuAO0UabTsFyB1ujrp6iB6xGMiFV0zgOP5-DRF2dvlIS42YKxYRqUQGvjVbcNSJmZFu2j5g5dQABnOzCgwoSujASnpxl2pqy2nRJcx5a9iloVVCRyI9G5altwsWs8n0G4BTBow_tBg3-ePG259vDibl0kVx_ef1tdLC8_f1yvTi-XgpZ5WFakElhCgVnDSErjlWXFKRESRCsKUbKcNFmLRZtCkYmySZkgguVV1TSUlURmi2S950rLd_XgVM_dVFuu6p8F67qau6CEhrpiKcM5wQWXKZVFWzVUSkoAV8BJw5vIInvWaAY-3XKt74E4reeo6r_yjKZ3e9MwNj1IASaGpR9N8viNUdu6szcRRXOGI22RvLkjOBsz9KHulRcxGG7Ajr7OohLnuKQsSl__Id3Z0Zn4gaOKVqygOc6j6tXDke5n-fVPRQHeC4Sz3jto_-ueJ3uP5x38bvtvww9zTuz6
Cites_doi 10.1038/s41598-020-78293-3
10.1109/ICDCSW.2011.20
10.1038/ncomms14049
10.1093/nar/gkab1049
10.1038/s41598-019-41695-z
10.1186/s13059-019-1850-9
10.1038/s41592-018-0229-2
10.1038/nmeth.1315
10.14348/molcells.2019.2446
10.1126/science.1260419
10.1126/science.abl4896
10.1038/s41598-021-94732-1
10.1186/s13059-017-1382-0
10.14348/molcells.2023.0009
10.1126/science.aam8999
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
The Author(s) 2024. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: The Author(s) 2024. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
DBID AFRWT
AAYXX
CITATION
NPM
3V.
7QO
7XB
8AL
8FD
8FE
8FG
8FH
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AYAGU
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
LK8
M0N
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1177/11779322241280866
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Australia & New Zealand Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Biological Science Collection
Computing Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Australia & New Zealand Database
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1177-9322
ExternalDocumentID oai_doaj_org_article_970715216ad04d6f9b4dd42e19ea2bab
10.1177/11779322241280866
PMC11457179
39376245
10_1177_11779322241280866
10.1177_11779322241280866
Genre Journal Article
GroupedDBID ---
0R~
188
2UF
2WC
53G
54M
5VS
8FE
8FG
8FH
AASGM
ABDBF
ABQXT
ABUWG
ABVFX
ACARO
ACGFS
ACROE
ACUHS
ADBBV
ADOGD
ADRAZ
AEUYN
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AINHJ
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AUTPY
AYAGU
AYAKG
AZQEC
BAWUL
BBNVY
BCNDV
BDDNI
BENPR
BGLVJ
BHPHI
BPHCQ
BSEHC
C1A
CCPQU
CEFSP
CNMHZ
DC.
DIK
DWQXO
E3Z
EBD
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IGS
IHR
IPNFZ
ITC
J8X
K.F
K6V
K7-
KQ8
LK8
M48
M7P
MK~
ML0
M~E
O5R
O5S
O9-
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RIG
ROL
RPM
SAUOL
SCDPB
SCNPE
SFC
TR2
TUS
UZ5
AAYXX
ACHEB
CITATION
PQGLB
PUEGO
NPM
3V.
7QO
7XB
8AL
8FD
8FK
FR3
JQ2
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c485t-929c1de617b7204762d9a42cdecfc6c8752b3f1cf0e63c8b07c2c7599bb4782d3
IEDL.DBID UNPAY
ISSN 1177-9322
IngestDate Wed Aug 27 01:26:21 EDT 2025
Sun Sep 07 10:44:34 EDT 2025
Tue Sep 30 17:07:04 EDT 2025
Fri Sep 05 04:47:26 EDT 2025
Fri Jul 25 12:18:37 EDT 2025
Mon Jul 21 06:02:30 EDT 2025
Wed Oct 01 04:58:58 EDT 2025
Tue Jun 17 22:31:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords transcriptomics
compare data sets
scRNA-seq
biological variation
heterogeneity
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
The Author(s) 2024.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-929c1de617b7204762d9a42cdecfc6c8752b3f1cf0e63c8b07c2c7599bb4782d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5188-8693
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1177/11779322241280866
PMID 39376245
PQID 3149764515
PQPubID 1036453
ParticipantIDs doaj_primary_oai_doaj_org_article_970715216ad04d6f9b4dd42e19ea2bab
unpaywall_primary_10_1177_11779322241280866
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457179
proquest_miscellaneous_3114151847
proquest_journals_3149764515
pubmed_primary_39376245
crossref_primary_10_1177_11779322241280866
sage_journals_10_1177_11779322241280866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: United States
– name: London
– name: Sage UK: London, England
PublicationTitle Bioinformatics and biology insights
PublicationTitleAlternate Bioinform Biol Insights
PublicationYear 2024
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Wolf, Angerer, Theis 2018; 19
Uhlén, Fagerberg, Hallström 2015; 347
Zheng, Terry, Belgrader 2017; 8
Ryu, Han, Jung, Hwang 2023; 46
Tran, Ang, Chevrier 2020; 21
Rosenberg, Roco, Muscat 2018; 360
Tang, Barbacioru, Wang 2009; 6
Cunningham, Allen, Allen 2022; 50
Kapoor, Corrado, Pearce, Pearce, Grosschedl 2020; 10
Lopez, Regier, Cole, Jordan, Yosef 2018; 15
Choi, Kim 2019; 42
Traag, Waltman, van Eck 2019; 9
Grancharova, Gerbin, Rosenberg 2021; 11
Jones, Karkanias 2022; 376
bibr14-11779322241280866
bibr8-11779322241280866
bibr5-11779322241280866
bibr2-11779322241280866
bibr13-11779322241280866
bibr15-11779322241280866
Iglewicz B (bibr17-11779322241280866) 1993
bibr10-11779322241280866
bibr18-11779322241280866
bibr3-11779322241280866
bibr6-11779322241280866
bibr12-11779322241280866
bibr16-11779322241280866
bibr9-11779322241280866
bibr7-11779322241280866
bibr11-11779322241280866
bibr1-11779322241280866
bibr4-11779322241280866
References_xml – volume: 10
  start-page: 21626
  year: 2020
  article-title: MZB1 enables efficient interferon α secretion in stimulated plasmacytoid dendritic cells
  publication-title: Sci Rep
– volume: 19
  start-page: 15
  year: 2018
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol
– volume: 376
  year: 2022
  article-title: The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans
  publication-title: Science
– volume: 8
  start-page: 14049
  year: 2017
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat Commun
– volume: 347
  start-page: 1260419
  year: 2015
  article-title: Proteomics. Tissue-based map of the human proteome
  publication-title: Science
– volume: 9
  start-page: 5233
  year: 2019
  article-title: From Louvain to Leiden: guaranteeing well-connected communities
  publication-title: Sci Rep
– volume: 50
  year: 2022
  article-title: Ensembl 2022
  publication-title: Nucleic Acids Res
– volume: 15
  start-page: 1053
  year: 2018
  end-page: 1058
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat Methods
– volume: 360
  start-page: 176
  year: 2018
  end-page: 182
  article-title: Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding
  publication-title: Science
– volume: 46
  start-page: 106
  year: 2023
  end-page: 119
  article-title: Integration of single-cell RNA-seq datasets: a review of computational methods
  publication-title: Mol Cells
– volume: 42
  start-page: 189
  year: 2019
  end-page: 199
  article-title: Dissecting cellular heterogeneity using single-cell RNA sequencing
  publication-title: Mol Cells
– volume: 21
  start-page: 12
  year: 2020
  article-title: A benchmark of batch-effect correction methods for single-cell RNA sequencing data
  publication-title: Genome Biol
– volume: 6
  start-page: 377
  year: 2009
  end-page: 382
  article-title: MRNA-Seq whole-transcriptome analysis of a single cell
  publication-title: Nat Methods
– volume: 11
  start-page: 15845
  year: 2021
  article-title: A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes
  publication-title: Sci Rep
– ident: bibr18-11779322241280866
  doi: 10.1038/s41598-020-78293-3
– ident: bibr16-11779322241280866
  doi: 10.1109/ICDCSW.2011.20
– ident: bibr12-11779322241280866
  doi: 10.1038/ncomms14049
– ident: bibr15-11779322241280866
  doi: 10.1093/nar/gkab1049
– ident: bibr2-11779322241280866
  doi: 10.1038/s41598-019-41695-z
– ident: bibr7-11779322241280866
  doi: 10.1186/s13059-019-1850-9
– ident: bibr11-11779322241280866
– ident: bibr3-11779322241280866
– ident: bibr8-11779322241280866
  doi: 10.1038/s41592-018-0229-2
– ident: bibr1-11779322241280866
  doi: 10.1038/nmeth.1315
– ident: bibr5-11779322241280866
  doi: 10.14348/molcells.2019.2446
– volume-title: How to Detect and Handle Outliers
  year: 1993
  ident: bibr17-11779322241280866
– ident: bibr9-11779322241280866
  doi: 10.1126/science.1260419
– ident: bibr10-11779322241280866
  doi: 10.1126/science.abl4896
– ident: bibr13-11779322241280866
  doi: 10.1038/s41598-021-94732-1
– ident: bibr4-11779322241280866
  doi: 10.1186/s13059-017-1382-0
– ident: bibr6-11779322241280866
  doi: 10.14348/molcells.2023.0009
– ident: bibr14-11779322241280866
  doi: 10.1126/science.aam8999
SSID ssj0061876
Score 2.2790778
Snippet Single-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 11779322241280866
SubjectTerms Biodiversity
Biological effects
Cardiomyocytes
Cell differentiation
Clusters
Datasets
Dimensional analysis
Gene sequencing
Heterogeneity
Leukocytes (mononuclear)
Method and Protocol
Parameter sensitivity
Peripheral blood mononuclear cells
Phenotypes
Similarity
Transcriptomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPoifls9JYIgKMVNmqbt492exyp4iOfBvZXJR7mFXrq4XWT_MP8_Z5ruesuJ9-JL2bZpd0hmMr9pJr9h7I0RApoc0NJ0gwGKzkUKStu0AelloRVYS987vpzo2Zn6fJ6fXyn1RTlhkR44dtyHqkAniD5Gg5sop5vKKOeU9KLyIA0Ymn3RjW2CqTgHa4FGPq5hEr0SHSpaU1A4HSOI1zteaCDr_xvCvJ4oOW7Fv7MKC1j_hLa94oyO77N7I4rkB1H6B-yWDw_Z7VhXcv2I_TrgI-vsmvcdn8Y8c36Kbqr16dS3Lf92gm1iGjVe5UfQA573S_41bs3DHxc-dP16Mbf8U1hSDM_ngd6Gj1PuKp9RJk2HCugRyfOhgFJLm6Z4lINGH__yco5tB9pWDsHxo7EgC05P_DDmiPFTIIri5WN2dvzx-3SWjvUZUqvKvE8RWVnhPGIgQ6VucFp1FShpnbeN1RYjIWmyRthm4nVmSzMprLRFXlXGKAQmLnvC9kIX_DPGpXBNCRXGihgelkUGGEVOGpflpS4taEjYu8141YtIw1GLkan82uAm7JBGdNuQGLSHC6hX9ahX9U16lbD9jT7Uo1kv6wzjSVRgxIAJe729jQZJqywQfLeiNgJBEQbORcKeRvXZSkLsg1oqfLrcUawdUXfvhPnFQPqNb80x9K4S9pZ08I9M_-iG91s1vbnTnv-PTnvB7koEffET1T7b63-s_EsEbb15Ndjnb2W5PNE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1tb9MwELZgCMEXxOsIDGQkJCRQRO04TvIJbR2lIDEhxqR9i_wWVik4ZU2F-sP4f9zFbkc1NL5ETWInbnx3fs4-P0fIS82YanIFmiYbcFBkzlIlpEkbxR0vpFDG4HzH5yM5PRGfTvPTOOG2iGGVa5s4GGrbGZwjf5sBlIe6MPy-m_9MMWsUrq7GFBrXyQ3GQZJwp_jkw9oSSwaqHlcykWQJDxWuLAgwygDl5dZYNFD2_wtnXg6XjBvyby39XK1-qbb9a0ia3CV3Ipak-6Hz75Frzt8nN0N2ydUD8nufRu7ZFe07Og7R5vQYBqvWpWPXtvTrEZQJwdRwlR6qXsF5v6BfwgY9-HHmfNev5jNDP_oFevJ05vFpUB0jWOkU42k6EEMHeJ4OaZRa3DpFQztQBuCVP2ZQdiBvpcpbehjTsoCRogchUoweKyQqXjwkJ5P338bTNGZpSI0o8z4FfGWYdYCENCa8AeNqKyW4sc40Rhrwh7jOGmaakZOZKfWoMNwUeVVpLQCe2OwR2fGdd48J5cw2parAYwQnsSwyBb7kqLFZXsrSKKkS8nrdX_U8kHHULPKVX-rchBxgj24KIo_2cKE7_15HtayrAiAWIBip7EhY2VRaWCu4Y5VTXCudkL21PNRRuRf1hSgm5MXmNqglrrUo77ollmEAjcB9LhKyG8Rn0xLkIJRcQO1yS7C2mrp9x8_OBupveGoODniVkFcogxdtuuIzvNmI6f8_2pOr_-9TcpsDqAtTUHtkpz9fumcAynr9fNC8P93VM_A
  priority: 102
  providerName: ProQuest
– databaseName: Sage Journals GOLD Open Access 2024
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA7rLKIv4nWtrhJBEJS60zZN2yeZnXUYBRfZC-5bya3uQKcddlqkP8z_5zlNOjrsor4MnTRNQnJO8p1LziHktQwCUcQCOI0XIKDwOPAF48ovRGjChDOhFOo7vhzz-Tn7fBFf7JB6uAvjZnD9Ht2qYET9Zo3cjdroA2dkPMCfDG0EDLZXAOX8Q9ssc6vuHrJqYAnap9slmrYVOkR2_nC97RbZxdDl8YjsTmYn386GzZsHaZ-PDjvwsQdnCL2x062jrI_4fxNMve5t6e7z32mrleh-iLL840Sb3Sf3HBSlE0s7D8iOqR6S2zY5ZfeI_JxQF7q2o01Np9ZZnZ7CWVcaf2rKkp4cQx3riw2l9Eg0Av43a_rVTgA8XJqqbrrVQtFP1RoVAXRRYWvwOTrA0jm649RAxQbEAdpnYSrx5hW140ASgi6XC6jbx36lotL0yGV1gT2OHlpHM3oqMM7x-jE5n308m859l-TBVyyNGx_gmQq0ASAlMV8O7M06EyxU2qhCcQXiVCijIlDF2PBIpXKcqFAlcZZJyQDd6OgJGVV1ZZ4SGga6SEUGAifImGkSCRBFx4WO4pSnSnDhkbfDeuUrG8sjD1y482uL65FDXNFNRQzD3RfUV99zx9V5lgBCAwDEhR4zzYtMMq1ZaILMiFAK6ZH9gR7ygbLzCIRS4AIAkh55tXkNXI2mGlGZusU6ASArkL4Tj-xZ8tmMBEMY8pDB1-kWYW0NdftNtbjsI4dDqzHI75lH3iAN_h7TX6bh3YZM_z1pz_673efkbgjw0Cqz9smouWrNC4B3jXzpWPIXJQdJZw
  priority: 102
  providerName: SAGE Publications
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ti9QwEA7niegX8d3qKREEQam3adO0_SByt-exCneI58J9K2mSegs1XXe7aH-Y_8-ZJltdblG_lL5M05A8SZ7pTGYIeV4yJqtEwkgTFSgoImGh5EKFlYxMlAoulcL_HSenYjLlH86T8x2yTm_lG3C5VbXDfFLTRf36x7fuLQz4N97kuI-HHC0GHCZboOjiCrmK5wjyEz4YFQTL-lxzKB6ivDdybi1iY5nqo_lvo6CXPSn9Xv3rKzuX3XdZ13-sVse3yE1PM-mBw8VtsmPsHXLNJZ7s7pKfB9SHpe1o29Cxc0SnZ7CO1SYcm7qmn05BxvlZw116JFsJ1-2SfnR79-Dkwtim7eYzRd_bJSr5dGaxNHgdnVvpBF1tGkCoAapP-wxLNe6qoq4eCA_45NcZyPZxXam0mh75jC0wf9FD50RGzyTGMF7eI9Pjd5_Hk9AncAgVz5I2BOqlmDZAkkrMhQPzrs4lj5Q2qlJCgaoUlXHFVDUyIlZZOUpVpNIkz8uSA3PR8X2yaxtrHhIaMV1lMgdlEvTHLI0lqJmjSsdJJjIlhQzIy3V_FXMXp6NgPpT5pc4NyCH26CCIIbb7G83iS-FHbJGnwL6A3AipR1yLKi-51jwyLDcyKmUZkL01Hoo1bIsYFE5AOJDEgDwbHsOIRTOMtKZZoQwD1gSadRqQBw4-Q00wPKGIOLydbQBro6qbT-zsoo8KDqUmoJvnAXmBGPxdp780w6sBpv9utEf_Xe5jciMC6ud-VO2R3XaxMk-AurXl035A_gIp-Tol
  priority: 102
  providerName: Scholars Portal
Title A Strategy to Compare Single-Cell RNA Sequencing Data Sets Provides Phenotypic Insight into Cellular Heterogeneity Underlying Biological Similarities and Differences Between Samples
URI https://journals.sagepub.com/doi/full/10.1177/11779322241280866
https://www.ncbi.nlm.nih.gov/pubmed/39376245
https://www.proquest.com/docview/3149764515
https://www.proquest.com/docview/3114151847
https://pubmed.ncbi.nlm.nih.gov/PMC11457179
https://doi.org/10.1177/11779322241280866
https://doaj.org/article/970715216ad04d6f9b4dd42e19ea2bab
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: ABDBF
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Australia & New Zealand Database
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: AYAGU
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/anz
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: BENPR
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVSPB
  databaseName: Sage Journals GOLD Open Access 2024
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: AFRWT
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.sagepub.com/
  providerName: SAGE Publications
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: M48
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZYKwQv3AeBURkJCQmUqUkcJ3lsu3UFaVXVraI8RY7taBUhrUgqVP4X_49zYq-sbOLy4uZynDrxsf0d-_g7hLzOPE_koYCWxnMwUHjouYJx6ebC137EmZAS5ztOx3w0Yx_m4dySReNemKvr90iMhEmCqwEMOlKA33yPtDmuJbVIezae9D6Z4CmRi0J21fLGfDvjTkPPfxOmvO4aaTff31mXK7H5JoriyvAzvG8ct6qGtRC9Tj4fruvsUH7_jdPxn97sAblnQSjtGa15SG7p8hG5bcJSbh6THz1qSWs3tF7SgXFTp2cwyhXaHeiioNMxyBgvbLhKj0Qt4Lyu6MTs7IODC10u681qIen7ssIpALoo8WmQHV1f6QgdcZagvxoMAdrEXypwzxU15UDlgb_8sgDZhvWVilLRIxvPBXo32jcuZvRMIMNx9YTMhsfng5Frwzu4ksVh7QIwk57SAKEyjJQDvbJKBPOl0jKXXIIh5WdB7sm8q3kg46wbSV9GYZJkGQNco4J90iqXpX5GqO-pPBYJmJpgXcZRIMAI7eYqCGMeS8GFQ95eVn66MiweqWeJzq_Vg0P6qB5bQSTgbi5A7aW2PadJBNgMoA8XqssUz5OMKcV87SVa-JnIHHJwqVyp7RWqNABzFPQfIKRDXm1vQ3vGRRpR6uUaZTzAVGB3Rw55anRxWxIkL-Q-g9zxjpbuFHX3Trm4aDjD4akhWO6JQ96gQv8q0x8-w7utzv_9oz3_L-kX5K4P4NBMZR2QVv11rV8CuKuzDtmLhycd0u4Npx_P4bd_PJ5MO81UCaQncw_SUxZ3bPP_CVkMSnc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGJzReuF8CA4zERQJlNE7iJA88dC2jZVuF2CqNp-DYDqsISVlTTeVH8cbv4C9xTuJ0lKHxtAdeqjSxXdfxdy728XcIeZw4jkh9AUjjKTgo3Hds4XFpp4JpFnBPSInrHbtD3h95bw_8gxXyvTkLg2GVjUysBLUqJK6Rv3TBlIe6oH5NBOW2nh-DfzZ9NejBy3zC2Nbr_W7fNikEbOmFfmmD8peO0qCmE8zGAshXkfCYVFqmkksw1lnipo5M25q7MkzagWQy8KMoSTzQncqFdp9OvtqYpQp3c03KjgtkNeRR0G6R1c6HzptRI_u5A8LF7J0irRN-RLiX4YEaAOeBL2m_KknA3yzb0wGahgJgbZZPxPxYZNlvSnDrCvnZDF8d-_J5Y1YmG_LbH8yS_8_4XiWXjT1OOzWArpEVnV8nF-sMnfMb5EeHGv7eOS0L2q0j9ukeKPxM212dZfT9EMrUAelwl_ZEKeB7OaXv6kOOcHGo86KcT8aSDvIprobQcY6tQXWMAqZ9jEkqAMoafCJapaLK8PgZrfuBOIKf_DKGshUBLhW5oj2T2gYEPd2so-3onkCy5-lNMjqXYbxFWnmR6zuEMkeloYjA6wZHOwxcAf54O1WuH_JQCi4s8ryZgfGkJjSJHcP5fmq6WmQT5-iiIHKRVzeKo0-xEW0x4CBAK5AL1fYUT6PEU8pj2om0YIlILLLezLjYCMhpfDLdLPJo8RhEG-5XiVwXMyzjgHnpgP1kkds1IBY9QR5HzjyoHS5BZamry0_y8WFFnw6t-gHoIYs8Q1Sd9OmMYXixAN6_B-3u2f_3IVnr7-_uxDuD4fY9comBkVwv6a2TVnk00_fByC2TB0ayUPLxvPH3C1cetao
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgE5cXxH2BAUZCQgKFNY7jJI9dS9VxqaZdxN4i37JVCk61pkL9Yfw_zkncQrUJeKnaxHaP7O_Y37GPzyHkjYoiWSYSNE2UYKCIJAolFzosJbMsFVxqjfsdXydifMo_nSVnfsMN78L4Hpx_QLcqkKidrFG7Z6bc82eMe_iR4xEBh9kVOLm4SbbBrEkB1dv90dG3k9VcLKKsTS-HFUKs4c81r21kY2VqA_hfxzqvOk_66_l3Fm4mlz9kVf2xQI3uk3ueWdJ-B4UH5IZ1D8mtLtfk8hH52ac-Eu2SNjUddL7n9BiWrsqGA1tV9GgCZTrXanhKh7KR8LuZ08Puuh58ubCubpazqaYHbo52PZ06bA2qoz8rHaN3TQ2gtMDuaZtUqcKLVLSTAxEBf_l9CmXbUK5UOkOHPkkLTFl0v_Mbo8cSwxbPH5PT0ceTwTj0ORtCzbOkCYFt6chY4EUK09_AVGtyyZk2VpdaaLCOmIrLSJc9K2KdqV6qmU6TPFeKA1kx8ROy5WpndwhlkSkzmYP9CCZjlsYSLMteaeIkE5mWQgbk3Wq8ilkXmqOIfPTyK4MbkH0c0XVBjKrdPqgvzwuvpEWeAuECPiOk6XEjylxxYzizUW4lU1IFZHeFh2IF1CIGGxNADbwwIK_Xr0FJ8eRFOlsvsEwERAmM6TQgTzv4rCXBiISCcaidbQBrQ9TNN2560QYCh1YTMMfzgLxFDP6W6S_d8H4N03932rP_bvcVuX04HBVfDiafn5O7DIhft021S7aay4V9AcStUS-9dv4Cjt437Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagE4IX7pfAQEZCQgJlahzHSR67jqkgUU2MSuMp8i1aRXAqmgqV_8X_45zYKyubuLxETXKcuPGx_R2f4-8Q8kIliawzCT1N1GCgiCyJJRc6riWzLBdcao3rHe-nYjLj706yk0AWjXthzvvvkRgJDyV6AzgMpAC_xVWyI9CXNCA7s-nR6JNPnpLHKBS8lpeW25p3enr-yzDlxdDIsPn--sot5PqbbJpz08_hLR-4texZCzHq5PPeqlN7-vtvnI7_9M9uk5sBhNKR15o75Ip1d8k1n5ZyfY_8GNFAWrumXUvHPkydHsMs19h4bJuGfpiCjI_Chqv0QHYSzrslPfI7--DHqXVtt17MNX3rlrgEQOcOnwbFMfSVTjAQpwX9tWAI0D7_UoN7rqivByoPvPLLHGR71lcqnaEHIZ8LjG5034eY0WOJDMfL-2R2-ObjeBKH9A6x5kXWxQDMdGIsQCiFmXJgVDal5Ewbq2stNBhSTKV1ouuhFaku1DDXTOdZWSrFAdeY9AEZuNbZR4SyxNSFLMHUBOuyyFMJRuiwNmlWiEJLISPy6qzxq4Vn8aiSQHR-oR0iso_qsRFEAu7-ArReFfpzVeaAzQD6CGmG3Ii6VNwYzmxSWsmUVBHZPVOuKowKyyoFcxT0HyBkRJ5vbkN_RieNdLZdoUwCmArs7jwiD70ubmqC5IWCcShdbGnpVlW377j5ac8ZDk_NwHIvI_ISFfpXnf7wGV5vdP7vH-3xf0k_ITcYgEO_lLVLBt3XlX0K4K5Tz0K3_glKqUOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Strategy+to+Compare+Single-Cell+RNA+Sequencing+Data+Sets+Provides+Phenotypic+Insight+into+Cellular+Heterogeneity+Underlying+Biological+Similarities+and+Differences+Between+Samples&rft.jtitle=Bioinformatics+and+biology+insights&rft.au=Wilkinson%2C+Dan+C&rft.au=Tallman%2C+Elizabeth&rft.au=Ashraf%2C+Mishal&rft.au=Romer%2C+Tatiana+Gelaf&rft.date=2024-01-01&rft.pub=SAGE+Publications&rft.issn=1177-9322&rft.eissn=1177-9322&rft.volume=18&rft_id=info:doi/10.1177%2F11779322241280866&rft.externalDocID=10.1177_11779322241280866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1177-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1177-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1177-9322&client=summon