Tongue image fusion and analysis of thermal and visible images in diabetes mellitus using machine learning techniques
The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of discrete wavelet transform (DWT) to classify diabetes and normal subjects; (2) to obtain the statistical features in the required region of interest from t...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 14571 - 17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.06.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-024-64150-0 |
Cover
Abstract | The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of discrete wavelet transform (DWT) to classify diabetes and normal subjects; (2) to obtain the statistical features in the required region of interest from the tongue image before and after fusion; (3) to distinguish the healthy and diabetes using fused tongue images based on deep and machine learning algorithms. The study participants comprised of 80 normal subjects and age- and sex-matched 80 diabetes patients. The biochemical tests such as fasting glucose, postprandial, Hba1c are taken for all the participants. The visible and thermal tongue images are acquired using digital single lens reference camera and thermal infrared cameras, respectively. The digital and thermal tongue images are fused based on the wavelet transform method. Then Gray level co-occurrence matrix features are extracted individually from the visible, thermal, and fused tongue images. The machine learning classifiers and deep learning networks such as VGG16 and ResNet50 was used to classify the normal and diabetes mellitus. Image quality metrics are implemented to compare the classifiers’ performance before and after fusion. Support vector machine outperformed the machine learning classifiers, well after fusion with an accuracy of 88.12% compared to before the fusion process (Thermal-84.37%; Visible-63.1%). VGG16 produced the classification accuracy of 94.37% after fusion and attained 90.62% and 85% before fusion of individual thermal and visible tongue images, respectively. Therefore, this study results indicates that fused tongue images might be used as a non-contact elemental tool for pre-screening type II diabetes mellitus. |
---|---|
AbstractList | Abstract The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of discrete wavelet transform (DWT) to classify diabetes and normal subjects; (2) to obtain the statistical features in the required region of interest from the tongue image before and after fusion; (3) to distinguish the healthy and diabetes using fused tongue images based on deep and machine learning algorithms. The study participants comprised of 80 normal subjects and age- and sex-matched 80 diabetes patients. The biochemical tests such as fasting glucose, postprandial, Hba1c are taken for all the participants. The visible and thermal tongue images are acquired using digital single lens reference camera and thermal infrared cameras, respectively. The digital and thermal tongue images are fused based on the wavelet transform method. Then Gray level co-occurrence matrix features are extracted individually from the visible, thermal, and fused tongue images. The machine learning classifiers and deep learning networks such as VGG16 and ResNet50 was used to classify the normal and diabetes mellitus. Image quality metrics are implemented to compare the classifiers’ performance before and after fusion. Support vector machine outperformed the machine learning classifiers, well after fusion with an accuracy of 88.12% compared to before the fusion process (Thermal-84.37%; Visible-63.1%). VGG16 produced the classification accuracy of 94.37% after fusion and attained 90.62% and 85% before fusion of individual thermal and visible tongue images, respectively. Therefore, this study results indicates that fused tongue images might be used as a non-contact elemental tool for pre-screening type II diabetes mellitus. The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of discrete wavelet transform (DWT) to classify diabetes and normal subjects; (2) to obtain the statistical features in the required region of interest from the tongue image before and after fusion; (3) to distinguish the healthy and diabetes using fused tongue images based on deep and machine learning algorithms. The study participants comprised of 80 normal subjects and age- and sex-matched 80 diabetes patients. The biochemical tests such as fasting glucose, postprandial, Hba1c are taken for all the participants. The visible and thermal tongue images are acquired using digital single lens reference camera and thermal infrared cameras, respectively. The digital and thermal tongue images are fused based on the wavelet transform method. Then Gray level co-occurrence matrix features are extracted individually from the visible, thermal, and fused tongue images. The machine learning classifiers and deep learning networks such as VGG16 and ResNet50 was used to classify the normal and diabetes mellitus. Image quality metrics are implemented to compare the classifiers' performance before and after fusion. Support vector machine outperformed the machine learning classifiers, well after fusion with an accuracy of 88.12% compared to before the fusion process (Thermal-84.37%; Visible-63.1%). VGG16 produced the classification accuracy of 94.37% after fusion and attained 90.62% and 85% before fusion of individual thermal and visible tongue images, respectively. Therefore, this study results indicates that fused tongue images might be used as a non-contact elemental tool for pre-screening type II diabetes mellitus.The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of discrete wavelet transform (DWT) to classify diabetes and normal subjects; (2) to obtain the statistical features in the required region of interest from the tongue image before and after fusion; (3) to distinguish the healthy and diabetes using fused tongue images based on deep and machine learning algorithms. The study participants comprised of 80 normal subjects and age- and sex-matched 80 diabetes patients. The biochemical tests such as fasting glucose, postprandial, Hba1c are taken for all the participants. The visible and thermal tongue images are acquired using digital single lens reference camera and thermal infrared cameras, respectively. The digital and thermal tongue images are fused based on the wavelet transform method. Then Gray level co-occurrence matrix features are extracted individually from the visible, thermal, and fused tongue images. The machine learning classifiers and deep learning networks such as VGG16 and ResNet50 was used to classify the normal and diabetes mellitus. Image quality metrics are implemented to compare the classifiers' performance before and after fusion. Support vector machine outperformed the machine learning classifiers, well after fusion with an accuracy of 88.12% compared to before the fusion process (Thermal-84.37%; Visible-63.1%). VGG16 produced the classification accuracy of 94.37% after fusion and attained 90.62% and 85% before fusion of individual thermal and visible tongue images, respectively. Therefore, this study results indicates that fused tongue images might be used as a non-contact elemental tool for pre-screening type II diabetes mellitus. The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of discrete wavelet transform (DWT) to classify diabetes and normal subjects; (2) to obtain the statistical features in the required region of interest from the tongue image before and after fusion; (3) to distinguish the healthy and diabetes using fused tongue images based on deep and machine learning algorithms. The study participants comprised of 80 normal subjects and age- and sex-matched 80 diabetes patients. The biochemical tests such as fasting glucose, postprandial, Hba1c are taken for all the participants. The visible and thermal tongue images are acquired using digital single lens reference camera and thermal infrared cameras, respectively. The digital and thermal tongue images are fused based on the wavelet transform method. Then Gray level co-occurrence matrix features are extracted individually from the visible, thermal, and fused tongue images. The machine learning classifiers and deep learning networks such as VGG16 and ResNet50 was used to classify the normal and diabetes mellitus. Image quality metrics are implemented to compare the classifiers’ performance before and after fusion. Support vector machine outperformed the machine learning classifiers, well after fusion with an accuracy of 88.12% compared to before the fusion process (Thermal-84.37%; Visible-63.1%). VGG16 produced the classification accuracy of 94.37% after fusion and attained 90.62% and 85% before fusion of individual thermal and visible tongue images, respectively. Therefore, this study results indicates that fused tongue images might be used as a non-contact elemental tool for pre-screening type II diabetes mellitus. |
ArticleNumber | 14571 |
Author | Ravi, Vinayakumar Alahmadi, Tahani Jaser Umapathy, Snekhalatha Thirunavukkarasu, Usharani |
Author_xml | – sequence: 1 givenname: Usharani surname: Thirunavukkarasu fullname: Thirunavukkarasu, Usharani organization: Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences – sequence: 2 givenname: Snekhalatha surname: Umapathy fullname: Umapathy, Snekhalatha email: snehalau@srmist.edu.in organization: Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, College of Engineering, Architecture and Fine Arts, Batangas University – sequence: 3 givenname: Vinayakumar surname: Ravi fullname: Ravi, Vinayakumar email: vinayakumarr77@gmail.com, vravi@pmu.edu.sa organization: Center for Artificial Intelligence, Prince Mohammad Bin Fahd University – sequence: 4 givenname: Tahani Jaser surname: Alahmadi fullname: Alahmadi, Tahani Jaser email: tjalahmadi@pnu.edu.sa organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38914599$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1TAQjVARLaU_wAJFYsMm4FcSe4kqHpUqsSlry7Enub5K7GI7SP175t5cCuqiI1kejc85ntfr6izEAFX1lpKPlHD5KQvaKtkQJpoOXdKQF9UFI6JtGGfs7D__vLrKeU_QWqYEVa-qcy4VFa1SF9V6F8O0Qu0XM0E9rtnHUJvg8Jj5Iftcx7EuO0iLmY_x3z77YT4Rcu1D7bwZoKC_wDz7suYaVcJUL8bufIB6BpPCIVDA7oL_tUJ-U70czZzh6nRfVj-_frm7_t7c_vh2c_35trFCtqWRfS85GWxPrXCCQNcJxoF0aK6jWBCTQnWOcXwnDtQg-1FSNxAwqsfu8MvqZtN10ez1fcKk04OOxutjIKZJm1S8nUG3vEMBMxhnrOBgBjUoPo6USclHxlvU-rBp3ad4qKHoxWeLJZsAcc2ak55hSpIyhL5_At3HNWFDjyjacdFKgah3J9Q6LOAe0_s7HASwDWBTzDnB-AihRB-WQG9LoHEJ9HEJNEGSfEKyvpiCYy3J-Pl5Kt-oGf8JE6R_aT_D-gMWoMTC |
CitedBy_id | crossref_primary_10_1038_s41598_025_90679_9 crossref_primary_10_3389_fcimb_2024_1477638 crossref_primary_10_13005_bpj_3081 crossref_primary_10_2147_DMSO_S491897 |
Cites_doi | 10.1002/ima.22797 10.4236/jcc.2019.73002 10.1155/2015/897580 10.4239/wjd.v6.i6.850 10.3390/ijerph17217894 10.1038/nbt1206-1565 10.2337/diacare.23.10.1563 10.1016/j.compbiomed.2023.106652 10.1016/j.bbe.2022.06.005 10.1155/2017/7961494 10.1002/ar.22711 10.1007/s00500-021-06668-3 10.1016/j.compbiomed.2021.104838 10.1038/s41598-023-42111-3 10.1016/j.diabres.2021.109119 10.1016/j.procs.2015.10.057 10.1016/j.ajic.2021.08.002 10.1038/s41598-021-03879-4 10.2337/diaclin.26.2.77 10.1155/2010/579341 10.1016/j.jep.2014.06.010 10.2522/ptj.20080008 10.1038/s41574-022-00793-1 10.1109/ACCESS.2022.3180036 10.1109/TSMC.1973.4309314 10.1177/09544119211024778 10.1002/ima.22865 10.1016/j.infrared.2014.02.008 10.1007/s10916-018-1140-1 10.2337/dc20-S002 10.1007/s11042-018-6269-x 10.1038/s41598-022-05112-2 10.1201/9781003245780 10.1038/s41574-023-00825-4 10.1016/j.heliyon.2023.e13289 10.1016/j.diabres.2018.02.023 10.1155/2018/6841460 10.1016/j.bspc.2020.102233 10.1155/2013/264742 10.1038/s42256-022-00559-4 10.1201/9781003245780-2 10.1177/20552076231191044 10.1155/2017/7452427 10.1016/j.jksuci.2020.06.013 10.1038/s41598-023-29978-y 10.1109/CCE56709.2022.9975973 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 DOA |
DOI | 10.1038/s41598-024-64150-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database (via ProQuest SciTech Premium Collection) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_536e9babadac43eab9b93ff12883f235 38914599 10_1038_s41598_024_64150_0 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-877830bc71c4d40e66423e06666d6100028496d231c40de9b87f81db0ea975983 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:20:33 EDT 2025 Fri Sep 05 08:40:32 EDT 2025 Wed Aug 13 08:10:00 EDT 2025 Thu Apr 03 07:08:14 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Tue Jul 01 01:01:59 EDT 2025 Fri Feb 21 02:39:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Type II diabetes mellitus Thermal tongue image Discrete wavelet transform Machine learning classifier Convolutional neural networks Image fusion Visible tongue image |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-877830bc71c4d40e66423e06666d6100028496d231c40de9b87f81db0ea975983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/536e9babadac43eab9b93ff12883f235 |
PMID | 38914599 |
PQID | 3071634584 |
PQPubID | 2041939 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_536e9babadac43eab9b93ff12883f235 proquest_miscellaneous_3072000812 proquest_journals_3071634584 pubmed_primary_38914599 crossref_primary_10_1038_s41598_024_64150_0 crossref_citationtrail_10_1038_s41598_024_64150_0 springer_journals_10_1038_s41598_024_64150_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-24 |
PublicationDateYYYYMMDD | 2024-06-24 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Rashmi, Snekhalatha, Krishnan, Dhanraj (CR15) 2022; 27 Marins, Moreira, Cano (CR35) 2014; 65 Haralick, Dinstein, Shanmugam (CR38) 1973; SMC-3 Sanders, Mu (CR54) 2013; 296 Snekhalatha, Palani Thanaraj, Ammer, Snekhalatha, Palani Thanaraj, Ammer (CR46) 2022 Zhang, Jiang, Li, Zhang (CR37) 2023; 155 Ahmed, Muniandy, Ismail (CR10) 2010; 21 Zhang, Xu, Au (CR27) 2017; 2017 Patel, Kashyap (CR40) 2023; 33 Cao, Dey, Ashour (CR49) 2020; 79 Liu, Li, Yang (CR47) 2023 Chaki, Thillai Ganesh, Cidham, Ananda Theertan (CR24) 2022; 34 Sun, Saeedi, Karuranga (CR3) 2022; 183 Engelgau, Narayan, Herman (CR7) 2000; 23 Du, Rafferty, McAuliffe (CR44) 2022; 12 Snekhalatha, Palani Thanaraj, Sangamithirai (CR45) 2021; 63 Suraj, Shamrin, Ashish, Sanjay (CR8) 2023; 13 Cade (CR11) 2008; 88 Patel, Kashyap (CR41) 2023; 33 Liberda, Zuk, Martin, Tsuji (CR43) 2020; 17 Deepa, Banerjee (CR53) 2021; 10 Cheng, Gomes, Kalra (CR5) 2023; 19 Anaya-Isaza, Zequera-Diaz (CR21) 2022; 10 Yang, Park, Huang, Rao (CR32) 2010; 2010 Noble (CR42) 2006; 24 Saritha, Vijay, Deepa (CR18) 2022; 12 Spindel, Pokrywa, Elder, Smith (CR36) 2021; 49 Zhang, Zhang (CR26) 2015; 2015 Fowler (CR9) 2008; 26 Sara, Akter, Uddin (CR48) 2019; 7 (CR6) 2020; 43 CR13 Logeswaran, Gowrishankar, Surendar, Tamilarasu, Suresh (CR51) 2019; 8 Mincu, Roy (CR23) 2022; 4 Snekhalatha, Palani Thanaraj, Ammer, Snekhalatha, Palani Thanaraj, Ammer (CR34) 2022 Ahalya, Almutairi, Snekhalatha, Dhanraj, Aslam (CR14) 2023; 13 Khandakar, Choudhary, Ibne Reaz (CR20) 2021; 137 Meng, Cao, Duan (CR28) 2017 Kumar, Sivapriya (CR25) 2015; 3 Kharroubi, Darwish (CR1) 2015; 6 Selvarani, Suresh (CR29) 2019; 43 Baek, Lee, Park (CR30) 2018; 2018 Eid, Yousef, Mohamed (CR50) 2018; 9 Kavya, Snekhalatha, Krishnan (CR16) 2021; 235 Galena (CR12) 1992; 34 Kim, Han, Ko (CR17) 2014; 155 Cho, Shaw, Karuranga (CR4) 2018; 138 Liu, Huang, Zhao (CR22) 2023; 9 Bhavana, Krishnappa (CR31) 2015; 70 Ospina, Cardona, Bacca-Cortes (CR33) 2017; 19 Greenhill (CR2) 2023; 19 Patel, Kashyap (CR39) 2022; 42 Wu, Luo, Xu (CR52) 2020; 2020 Zhang, Wang, You, Zhang (CR19) 2013; 2013 SN Deepa (64150_CR53) 2021; 10 J Chaki (64150_CR24) 2022; 34 64150_CR13 EN Liberda (64150_CR43) 2020; 17 MJ Fowler (64150_CR9) 2008; 26 Q Liu (64150_CR47) 2023 RK Patel (64150_CR40) 2023; 33 U Sara (64150_CR48) 2019; 7 KA Ahmed (64150_CR10) 2010; 21 L Wu (64150_CR52) 2020; 2020 B Saritha (64150_CR18) 2022; 12 U Snekhalatha (64150_CR46) 2022 R Rashmi (64150_CR15) 2022; 27 AYY Cheng (64150_CR5) 2023; 19 A Selvarani (64150_CR29) 2019; 43 WS Noble (64150_CR42) 2006; 24 RM Haralick (64150_CR38) 1973; SMC-3 U Snekhalatha (64150_CR45) 2021; 63 B Zhang (64150_CR26) 2015; 2015 U Snekhalatha (64150_CR34) 2022 SW Baek (64150_CR30) 2018; 2018 V Bhavana (64150_CR31) 2015; 70 NH Cho (64150_CR4) 2018; 138 RK Patel (64150_CR41) 2023; 33 A Khandakar (64150_CR20) 2021; 137 T Logeswaran (64150_CR51) 2019; 8 G Kavya (64150_CR16) 2021; 235 Y Du (64150_CR44) 2022; 12 N Zhang (64150_CR37) 2023; 155 A Anaya-Isaza (64150_CR21) 2022; 10 JF Spindel (64150_CR36) 2021; 49 American Diabetes Association (64150_CR6) 2020; 43 RE Ospina (64150_CR33) 2017; 19 I Sanders (64150_CR54) 2013; 296 X Liu (64150_CR22) 2023; 9 HJ Galena (64150_CR12) 1992; 34 Y Yang (64150_CR32) 2010; 2010 M Suraj (64150_CR8) 2023; 13 C Greenhill (64150_CR2) 2023; 19 H Sun (64150_CR3) 2022; 183 RK Ahalya (64150_CR14) 2023; 13 WT Cade (64150_CR11) 2008; 88 D Meng (64150_CR28) 2017 L Cao (64150_CR49) 2020; 79 J Zhang (64150_CR27) 2017; 2017 MM Engelgau (64150_CR7) 2000; 23 AT Kharroubi (64150_CR1) 2015; 6 JCB Marins (64150_CR35) 2014; 65 D Mincu (64150_CR23) 2022; 4 BR Kumar (64150_CR25) 2015; 3 RK Patel (64150_CR39) 2022; 42 MM Eid (64150_CR50) 2018; 9 B Zhang (64150_CR19) 2013; 2013 J Kim (64150_CR17) 2014; 155 |
References_xml | – volume: 33 start-page: 246 year: 2023 end-page: 261 ident: CR40 article-title: Automated screening of glaucoma stages from retinal fundus images using BPS and LBP-based GLCM features publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22797 – volume: 7 start-page: 8 year: 2019 end-page: 18 ident: CR48 article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study publication-title: J. Comput. Commun. doi: 10.4236/jcc.2019.73002 – volume: 2015 start-page: 1 year: 2015 end-page: 8 ident: CR26 article-title: Significant geometry features in tongue image analysis publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2015/897580 – volume: 6 start-page: 850 year: 2015 end-page: 867 ident: CR1 article-title: Diabetes mellitus: The epidemic of the century publication-title: World J. Diabetes doi: 10.4239/wjd.v6.i6.850 – volume: 17 start-page: 7894 year: 2020 ident: CR43 article-title: Fisher's linear discriminant function analysis and its potential utility as a tool for the assessment of health-and-wellness programs in indigenous communities publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17217894 – volume: 24 start-page: 1565 year: 2006 end-page: 1567 ident: CR42 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 23 start-page: 1563 year: 2000 end-page: 1580 ident: CR7 article-title: Screening for type 2 diabetes publication-title: Diabetes Care doi: 10.2337/diacare.23.10.1563 – volume: 155 year: 2023 ident: CR37 article-title: Multiple color representation and fusion for diabetes mellitus diagnosis based on back tongue images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106652 – volume: 42 start-page: 829 year: 2022 end-page: 841 ident: CR39 article-title: Automated diagnosis of COVID stages from lung CT images using statistical features in 2-dimensional flexible analytic wavelet transform publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2022.06.005 – volume: 2017 start-page: 1 year: 2017 end-page: 9 ident: CR27 article-title: Diagnostic method of diabetes based on support vector machine and tongue images publication-title: Biomed. Res. Int. doi: 10.1155/2017/7961494 – volume: 296 start-page: 1102 year: 2013 end-page: 1114 ident: CR54 article-title: A three-dimensional atlas of human tongue muscles publication-title: Anat. Rec. (Hoboken). doi: 10.1002/ar.22711 – volume: 27 start-page: 13093 year: 2022 end-page: 13114 ident: CR15 article-title: Fat based studies for computer assisted screening of child obesity using thermal imaging based on deep learning techniques: A comparison with quantum machine learning approach publication-title: Soft Comput. J. doi: 10.1007/s00500-021-06668-3 – volume: 137 year: 2021 ident: CR20 article-title: Machine learning model for early detection of diabetic foot using thermogram images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104838 – volume: 10 start-page: 235341201 year: 2021 ident: CR53 article-title: Intelligent decision support model using tongue image features for healthcare monitoring of diabetes diagnosis and classification publication-title: Netw. Model. Anal. Health inform. – volume: 13 start-page: 15638 year: 2023 ident: CR14 article-title: RANet: A custom CNN model and quanvolutional neural network for the automated detection of rheumatoid arthritis in hand thermal images publication-title: Sci. Rep. doi: 10.1038/s41598-023-42111-3 – volume: 34 start-page: 582 year: 1992 end-page: 584 ident: CR12 article-title: Complications occurring from diagnostic venipuncture publication-title: J. Fam. Pract. – volume: 183 year: 2022 ident: CR3 article-title: IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2021.109119 – volume: 8 start-page: 3475 year: 2019 end-page: 3482 ident: CR51 article-title: Detection of Diabetes Mellitus using Tongue images publication-title: Int. J. Recent Technol. Eng. – volume: 70 start-page: 625 year: 2015 end-page: 631 ident: CR31 article-title: Multi-modality medical image fusion using discrete wavelet transform publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.057 – volume: 49 start-page: 1445 year: 2021 end-page: 1447 ident: CR36 article-title: The environment has effects on infrared temperature screening for COVID-19 infection publication-title: Am. J. Infect. Control doi: 10.1016/j.ajic.2021.08.002 – volume: 12 start-page: 186 year: 2022 ident: CR18 article-title: Panoramic tongue imaging and deep convolutional machine learning model for diabetes diagnosis in humans publication-title: Sci. Rep. doi: 10.1038/s41598-021-03879-4 – volume: 26 start-page: 77 year: 2008 end-page: 82 ident: CR9 article-title: Microvascular and macrovascular complications of diabetes publication-title: Clin. Diabetes doi: 10.2337/diaclin.26.2.77 – volume: 2010 year: 2010 ident: CR32 article-title: Medical image fusion via an effective wavelet-based approach publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2010/579341 – volume: 155 start-page: 709 year: 2014 end-page: 713 ident: CR17 article-title: Tongue diagnosis system for quantitative assessment of coating in patients with functional dyspepsia: A clinical trial publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2014.06.010 – volume: 88 start-page: 1322 year: 2008 end-page: 1335 ident: CR11 article-title: Diabetes-related microvascular and macrovascular diseases in the physical therapy setting publication-title: Phys. Ther. doi: 10.2522/ptj.20080008 – volume: 19 start-page: 194 year: 2023 end-page: 200 ident: CR5 article-title: Applying the WHO global targets for diabetes mellitus publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-022-00793-1 – volume: 10 start-page: 59564 year: 2022 end-page: 59591 ident: CR21 article-title: Detection of diabetes mellitus with deep learning and data augmentation techniques on foot thermography publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3180036 – volume: SMC-3 start-page: 610 year: 1973 end-page: 621 ident: CR38 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 235 start-page: 1113 year: 2021 end-page: 1127 ident: CR16 article-title: Deep learning techniques for automated classification of autism using thermal imaging publication-title: J. Eng. Med. doi: 10.1177/09544119211024778 – volume: 33 start-page: 807 year: 2023 end-page: 821 ident: CR41 article-title: Automated diagnosis of COVID stages using texture-based Gabor features in variational mode decomposition from CT images publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22865 – volume: 65 start-page: 30 year: 2014 end-page: 35 ident: CR35 article-title: Time required to stabilize thermographic images at rest publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2014.02.008 – volume: 43 start-page: 23 year: 2019 ident: CR29 article-title: Infrared thermal imaging for diabetes detection and measurement publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1140-1 – volume: 43 start-page: S14 year: 2020 end-page: S31 ident: CR6 article-title: Classification and diagnosis of diabetes: Standards of medical care in diabetes-2020 publication-title: Diabetes Care doi: 10.2337/dc20-S002 – volume: 79 start-page: 11213 year: 2020 end-page: 11236 ident: CR49 article-title: Diabetic plantar pressure analysis using image fusion publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6269-x – volume: 9 start-page: 371 year: 2018 end-page: 381 ident: CR50 article-title: A proposed automated system to classify diabetic foot from thermography publication-title: Int. J. Sci. Eng. Res. – volume: 12 start-page: 1170 year: 2022 ident: CR44 article-title: An explainable machine learning-based clinical decision support system for prediction of gestational diabetes mellitus publication-title: Sci. Rep. doi: 10.1038/s41598-022-05112-2 – year: 2022 ident: CR46 article-title: Potential of thermal imaging to detect complications in diabetes: Rationale for diabetes screening with thermal imaging publication-title: Artificial Intelligence-based Infrared Thermal Image Processing and its Applications doi: 10.1201/9781003245780 – volume: 19 start-page: 252 year: 2023 ident: CR2 article-title: Interventions in people newly diagnosed with type 1 diabetes mellitus publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-023-00825-4 – volume: 21 start-page: 147 year: 2010 end-page: 155 ident: CR10 article-title: Type 2 diabetes and vascular complications: A pathophysiologic view publication-title: Biomed. Res. India – volume: 9 year: 2023 ident: CR22 article-title: Application of machine learning in Chinese medicine differentiation of dampness-heat pattern in patients with type 2 diabetes mellitus publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e13289 – volume: 138 start-page: 271 year: 2018 end-page: 281 ident: CR4 article-title: IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2018.02.023 – volume: 2018 start-page: 6841460 year: 2018 ident: CR30 article-title: Relationship between tongue temperature estimated by infrared thermography, tongue color, and cold-heat pathological patterns: A retrospective chart review study publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2018/6841460 – volume: 63 year: 2021 ident: CR45 article-title: Computer aided diagnosis of obesity based on thermal imaging using various convolutional neural networks publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102233 – volume: 2013 year: 2013 ident: CR19 article-title: Tongue color analysis for medical application publication-title: Evid. Based Complem. Alternat. Med. doi: 10.1155/2013/264742 – ident: CR13 – volume: 4 start-page: 916 year: 2022 end-page: 921 ident: CR23 article-title: Developing robust benchmarks for driving forward AI innovation in healthcare publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00559-4 – volume: 19 start-page: 53 year: 2017 end-page: 68 ident: CR33 article-title: Software tool for thermographic inspection using multimodal fusing of thermal and visible images publication-title: Ing. Compet. – year: 2022 ident: CR34 article-title: Protocol for standardized data collection in humans publication-title: Artificial Intelligence-Based Infrared Thermal Image Processing and Its Applications doi: 10.1201/9781003245780-2 – year: 2023 ident: CR47 article-title: A survey of artificial intelligence in tongue image for disease diagnosis and syndrome differentiation publication-title: Digit. Health doi: 10.1177/20552076231191044 – volume: 3 start-page: 8671 year: 2015 end-page: 8676 ident: CR25 article-title: Diabetes mellitus discovery based on tongue texture features using log Gabor filter mechanism publication-title: Int. J. Innov. Res. Comput. Commun. Eng. – volume: 2020 start-page: 635 year: 2020 end-page: 638 ident: CR52 article-title: Using convolutional neural network for diabetes mellitus diagnosis based on tongue images publication-title: J. Eng. – year: 2017 ident: CR28 article-title: Tongue images classification based on constrained high dispersal network publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2017/7452427 – volume: 34 start-page: 3204 year: 2022 end-page: 3225 ident: CR24 article-title: Machine learning and artificial intelligence-based diabetes mellitus detection and self-management: A systematic review publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2020.06.013 – volume: 13 start-page: 2971 year: 2023 ident: CR8 article-title: Socioeconomic inequality in awareness, treatment and control of diabetes among adults in India: Evidence from National Family Health Survey of India (NFHS), 2019–2021 publication-title: Sci. Rep. doi: 10.1038/s41598-023-29978-y – volume: 10 start-page: 235341201 year: 2021 ident: 64150_CR53 publication-title: Netw. Model. Anal. Health inform. – volume: 2018 start-page: 6841460 year: 2018 ident: 64150_CR30 publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2018/6841460 – year: 2017 ident: 64150_CR28 publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2017/7452427 – volume: 2020 start-page: 635 year: 2020 ident: 64150_CR52 publication-title: J. Eng. – volume: 19 start-page: 252 year: 2023 ident: 64150_CR2 publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-023-00825-4 – volume-title: Artificial Intelligence-based Infrared Thermal Image Processing and its Applications year: 2022 ident: 64150_CR46 doi: 10.1201/9781003245780 – volume: SMC-3 start-page: 610 year: 1973 ident: 64150_CR38 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 26 start-page: 77 year: 2008 ident: 64150_CR9 publication-title: Clin. Diabetes doi: 10.2337/diaclin.26.2.77 – volume: 43 start-page: S14 year: 2020 ident: 64150_CR6 publication-title: Diabetes Care doi: 10.2337/dc20-S002 – volume: 2013 year: 2013 ident: 64150_CR19 publication-title: Evid. Based Complem. Alternat. Med. doi: 10.1155/2013/264742 – volume: 9 year: 2023 ident: 64150_CR22 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e13289 – volume: 79 start-page: 11213 year: 2020 ident: 64150_CR49 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6269-x – volume: 296 start-page: 1102 year: 2013 ident: 64150_CR54 publication-title: Anat. Rec. (Hoboken). doi: 10.1002/ar.22711 – volume: 34 start-page: 3204 year: 2022 ident: 64150_CR24 publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2020.06.013 – volume: 8 start-page: 3475 year: 2019 ident: 64150_CR51 publication-title: Int. J. Recent Technol. Eng. – volume: 138 start-page: 271 year: 2018 ident: 64150_CR4 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2018.02.023 – ident: 64150_CR13 doi: 10.1109/CCE56709.2022.9975973 – volume: 42 start-page: 829 year: 2022 ident: 64150_CR39 publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2022.06.005 – volume: 183 year: 2022 ident: 64150_CR3 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2021.109119 – volume: 17 start-page: 7894 year: 2020 ident: 64150_CR43 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17217894 – volume: 19 start-page: 194 year: 2023 ident: 64150_CR5 publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-022-00793-1 – volume: 43 start-page: 23 year: 2019 ident: 64150_CR29 publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1140-1 – volume-title: Artificial Intelligence-Based Infrared Thermal Image Processing and Its Applications year: 2022 ident: 64150_CR34 doi: 10.1201/9781003245780-2 – volume: 27 start-page: 13093 year: 2022 ident: 64150_CR15 publication-title: Soft Comput. J. doi: 10.1007/s00500-021-06668-3 – volume: 21 start-page: 147 year: 2010 ident: 64150_CR10 publication-title: Biomed. Res. India – volume: 19 start-page: 53 year: 2017 ident: 64150_CR33 publication-title: Ing. Compet. – volume: 2017 start-page: 1 year: 2017 ident: 64150_CR27 publication-title: Biomed. Res. Int. doi: 10.1155/2017/7961494 – volume: 12 start-page: 1170 year: 2022 ident: 64150_CR44 publication-title: Sci. Rep. doi: 10.1038/s41598-022-05112-2 – volume: 63 year: 2021 ident: 64150_CR45 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102233 – volume: 235 start-page: 1113 year: 2021 ident: 64150_CR16 publication-title: J. Eng. Med. doi: 10.1177/09544119211024778 – volume: 6 start-page: 850 year: 2015 ident: 64150_CR1 publication-title: World J. Diabetes doi: 10.4239/wjd.v6.i6.850 – volume: 2010 year: 2010 ident: 64150_CR32 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2010/579341 – volume: 155 year: 2023 ident: 64150_CR37 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106652 – volume: 88 start-page: 1322 year: 2008 ident: 64150_CR11 publication-title: Phys. Ther. doi: 10.2522/ptj.20080008 – volume: 2015 start-page: 1 year: 2015 ident: 64150_CR26 publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2015/897580 – volume: 137 year: 2021 ident: 64150_CR20 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104838 – volume: 155 start-page: 709 year: 2014 ident: 64150_CR17 publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2014.06.010 – year: 2023 ident: 64150_CR47 publication-title: Digit. Health doi: 10.1177/20552076231191044 – volume: 13 start-page: 2971 year: 2023 ident: 64150_CR8 publication-title: Sci. Rep. doi: 10.1038/s41598-023-29978-y – volume: 12 start-page: 186 year: 2022 ident: 64150_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-021-03879-4 – volume: 65 start-page: 30 year: 2014 ident: 64150_CR35 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2014.02.008 – volume: 24 start-page: 1565 year: 2006 ident: 64150_CR42 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 3 start-page: 8671 year: 2015 ident: 64150_CR25 publication-title: Int. J. Innov. Res. Comput. Commun. Eng. – volume: 33 start-page: 246 year: 2023 ident: 64150_CR40 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22797 – volume: 23 start-page: 1563 year: 2000 ident: 64150_CR7 publication-title: Diabetes Care doi: 10.2337/diacare.23.10.1563 – volume: 13 start-page: 15638 year: 2023 ident: 64150_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-023-42111-3 – volume: 4 start-page: 916 year: 2022 ident: 64150_CR23 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00559-4 – volume: 70 start-page: 625 year: 2015 ident: 64150_CR31 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.057 – volume: 49 start-page: 1445 year: 2021 ident: 64150_CR36 publication-title: Am. J. Infect. Control doi: 10.1016/j.ajic.2021.08.002 – volume: 34 start-page: 582 year: 1992 ident: 64150_CR12 publication-title: J. Fam. Pract. – volume: 33 start-page: 807 year: 2023 ident: 64150_CR41 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22865 – volume: 10 start-page: 59564 year: 2022 ident: 64150_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3180036 – volume: 9 start-page: 371 year: 2018 ident: 64150_CR50 publication-title: Int. J. Sci. Eng. Res. – volume: 7 start-page: 8 year: 2019 ident: 64150_CR48 publication-title: J. Comput. Commun. doi: 10.4236/jcc.2019.73002 |
SSID | ssj0000529419 |
Score | 2.4641144 |
Snippet | The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of discrete... Abstract The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14571 |
SubjectTerms | 631/114/1305 631/114/1564 692/700/1421 Adult Algorithms Biochemical tests Blood Glucose - analysis Cameras Deep learning Diabetes Diabetes Mellitus Discrete wavelet transform Female Humanities and Social Sciences Humans Image fusion Image processing Image Processing, Computer-Assisted - methods Learning algorithms Machine Learning Machine learning classifier Male Middle Aged multidisciplinary Science Science (multidisciplinary) Support Vector Machine Thermal tongue image Tongue Tongue - diagnostic imaging Tongue - pathology Type II diabetes mellitus Visible tongue image Wavelet Analysis Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejUOhlrF23ZeuKC71tof6KEx-70lIG66mF3oyd2I9CX95oXg777yfZeWnHPnrZIRAcO9iSbEmW_RMhxzVoURGkKLVsAzgoTpROV7IEhkNp6BqWwKq_XenLG_X1trp9kuoLz4RleOBMuJNK6mC8865zrZLBeeONjJFjltwoZEIvBTX2xJnKqN7CKG6mWzJMNicDaCq8TSZUqeGVlewXTZQA-_9kZf4WIU2K5-IVeTlZjPQ093SXvAj9HtnOOSR_vCbj9apfjIHeLWFloHHE3S_q-g6eDDdCV5GilbeEn2A53ib391ODgd71dLP_SpeIzrkeB4qn4Rd0mQ5aBjpllljQGfB12Cc3F-fXZ5fllEuhbFVTrWHRqxvJfFvzVnWKBQ1-hwzovOhO87TJpozuwNprFeuA4k0dwZT1LDhTA-HkG7LVr_rwjtCmckFwF2VbReWMcyxgLE5H7nmMHS8I39DVthPQOOa7uLcp4C0bm3lhgRc28cKygnya23zPMBv_rP0F2TXXRIjsVACCYyfBsc8JTkEONsy207wdLKx4YKBi7LggR_NnmHEYRnF9WI2pjkimlCjI2ywkc08w6qsqYwryeSM1jz__-4De_48BfSA7AsWb6VKoA7K1fhjDR7CY1v4wTY6fQ_EPvg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEA-6IngRv62uEsGbls1X0-YkKi6LoKddeLeQNsljYV-7u309-N87k6ZdRN1DoaRJSTKTmV9mkhlC3tegRUWQotSyC7BBcaJ0upIlEBxKg29YClb946c-OVPfN9UmG9zGfKxykYlJUPuhQxv5EfAiQAf06n26vCoxaxR6V3MKjbvkHgeoglxdb-rVxoJeLMVNvivDZHM0gr7CO2VClRpeWcn-0EcpbP-_sOZfftKkfo4fkYcZN9LPM6Efkzuhf0Luz5kkfz0l0-nQb6dAz3cgH2ic0AZGXe_hmYOO0CFSxHo7-AmW453y9iI3GOl5TxcrLN1hjM79NFI8E7-lu3TcMtCcX2JL17Cv4zNydvzt9OtJmTMqlJ1qqj2IvrqRrO1q3imvWNCw-5ABtzDaa55MbcpoD5ivU8wH0zZ1BEDbsuBMDRMnn5ODfujDS0KbygXBXZRdFZUzzrGAHjkdectj9LwgfJlX2-Vw45j14sImt7ds7EwLC7SwiRaWFeTD2uZyDrZxa-0vSK61JgbKTgXD9dbmdWehRzAM1zrvOiWDa01rZIwckyxHIauCHC7Etnn1jvaG1wrybv0M6w6dKa4Pw5TqiASoREFezEyy9gR9v6oypiAfF665-fn_B_Tq9r68Jg8EMi7TpVCH5GB_PYU3gIj27dvE9r8Btt4GBQ priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da90gFD-UlsFeRvedrisW9raFGTUmPt6NlnJhfVkLfRNN9FLoTUpz87D_fkdjMsa6wR4CwWhQjx7Pl78D8KHCU5Q5znLJG4cKimG5kSXPkeBY6tqaRrDqb5fy4lqsb8qbPWDzXZgYtB8hLSObnqPDPg940ITLYEzkEl9pjmr6QV1xhpvxYLVaf18vlpXguxKFSjdkKK8fafzbKRTB-h-TMP_wjsZD5_wQniVpkaym_j2HPde9gCdT_sgfL2G86rvN6MjtFrkC8WOwfBHTtfhMUCOk9yRIeFv8SSgPN8ntXWowkNuOzLZXsg3InLtxICESfkO2McjSkZRVYkMWsNfhFVyfn119vchTHoW8EXW5Q4ZX1Zzapioa0QrqJOoc3AXFRbayiAY2oWSLkl4jaOuUrSuPYqylzqgKJ46_hv2u79xbIHVpHCuM503phVHGUBf8cNIXtvC-LTIo5nnVTQIZD7ku7nR0dvNaT7TQSAsdaaFpBh-XNvcTxMY_a38J5FpqBnjsWNA_bHRaLhp7hMMw1rSmEdwZq6zi3hchtbJnvMzgeCa2Tnt20MjtUDgNfuMMTpfPuNuCC8V0rh9jHRbFKJbBm2mRLD0JHl9RKpXBp3nV_Pr53wd09H_V38FTFhYylTkTx7C_exjde5SLdvYkbYSfU8IFIQ priority: 102 providerName: Springer Nature |
Title | Tongue image fusion and analysis of thermal and visible images in diabetes mellitus using machine learning techniques |
URI | https://link.springer.com/article/10.1038/s41598-024-64150-0 https://www.ncbi.nlm.nih.gov/pubmed/38914599 https://www.proquest.com/docview/3071634584 https://www.proquest.com/docview/3072000812 https://doaj.org/article/536e9babadac43eab9b93ff12883f235 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6lsFexr7nrgsa7G3zZkuybD-MkYaWEmgZWwN5M7IthUJib3EM7X-_O_ljjGWDPZgYRRaW7qT7nc76HcDbGK0oN4L7ShQGHRTNfa0i4aPAsdSUSeDIqi-v1MVCzpfR8gCGdEf9ADZ7XTvKJ7XYrj_c_rj7jBP-U3dkPPnYoBGig2Jc-gpvAx9d-CO0TJy0_LKH-x3XN0-ly_VBJOw-ggnen6PZ38xvtspR-u_DoX_EUJ1pOn8ED3tMyaadEjyGA1M9gftdlsm7p9Be19WqNexmg2sHsy3tjzFdlXh1hCSstoxw4AYboXI6b56v-wcadlOxYYeWbYi_c9c2jL6XX7GN-xTTsD73xIqNlLDNM1icn13PLvw-24JfyCTa4bIYJyLIizgsZCkDo9AzEYbcG1Wq0G3DyVSViAcLGZQmzZPYItjNA6PTGAdOPIfDqq7MS2BJpA0PtRVFZKVOtQ4MReuUDfPQ2jL0IBzGNSt6KnLKiLHOXEhcJFkniwxlkTlZZIEH78ZnvndEHP-sfUriGmsSibYrqLerrJ-TGb4RdkPnutSFFEbnaZ4Ka0NKwGy5iDw4GYSdDYqZ4ZqIEJaiyx68Gf_GOUmBFl2ZunV1uANb3IMXnZKMb0JxYRmlqQfvB6351fjfO3T8X91_BQ846XGgfC5P4HC3bc1rBE-7fAL34mU8gaPpdP5tjr-nZ1dfvmLpTM0mbkNi4ubMT2_KFK0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThDVsZ3XASFe1ZY-Tltpb8ZJ7FWlblKajVD_FL-RGedRIaC3HiJFjmPZnhn784xnBuB1iruosFKEiSwtHlCMCE0SyxAJjqW2yrgPVn14lMyO1bdFvNiAX6MvDF2rHNdEv1BXTUk68h3kRYQOZNX7cPYjpKxRZF0dU2j0bLFvL37ika19v_cF6ftGiN2v88-zcMgqEJYqi9co_mkmeVGmUakqxW2CCFxagvFJlURe3aTypELcUype2bzIUoegruDW5GmcZxLbvQE3leSKYvWni3TS6ZDVTEX54JvDZbbT4v5IPmxChQm-8pD_sf_5NAH_wrZ_2WX9drd7D-4OOJV97BnrPmzY-gHc6jNXXjyEbt7Uy86ykxWuR8x1pHNjpq7w6YOcsMYxwpYrbITKyYe9OB1-aNlJzUatL1tRTNB11zK6g79kK3-907Ihn8WSTWFm20dwfC1z_Rg266a2T4BlsbEiMk6WsVMmN4ZbsgAmLioi56oogGicV10O4c0py8ap9mZ2memeFhppoT0tNA_g7fTPWR_c48ran4hcU00KzO0LmvOlHuRcY49wGKYwlSmVtKbIi1w6F1FSZydkHMD2SGw9rBatvuTtAF5Nn1HOyXhjatt0vo7wAE4EsNUzydQTsjWrOM8DeDdyzWXj_x_Q06v78hJuz-aHB_pg72j_GdwRxMQ8CYXahs31eWefIxpbFy-8CDD4ft0y9xuFLkAp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJThCtYzuvA0JAWbUUKg6ttDfjJPaqUjcpzUaof41fx4zzqBDQWw-RIsexnMzDn2fGMwAvU1xFhZUiTGRpcYNiRGiSWIZIcGy1VcZ9suqvB8nukfq8iBcb8Gs8C0NhlaNO9Iq6akqykc-QFxE6kFdv5oawiG8783enP0KqIEWe1rGcRs8i-_b8J27f2rd7O0jrV0LMPx1-3A2HCgNhqbJ4jaogzSQvyjQqVaW4TRCNS0uQPqmSyJueVJ5UiIFKxSubF1nqEOAV3Jo8jfNM4rjX4HoqlaRwsnSRTvYd8qCpKB_O6XCZzVpcK-k8m1Bhgrc85H-shb5kwL9w7l8-Wr_0ze_A7QGzsvc9k92FDVvfgxt9Fcvz-9AdNvWys-x4hbqJuY7sb8zUFV59whPWOEY4c4WDUDudZy9Ohhdadlyz0QLMVpQfdN21jOLxl2zlQz0tG2pbLNmUcrZ9AEdX8q8fwmbd1PYRsCw2VkTGyTJ2yuTGcEvewMRFReRcFQUQjf9Vl0Oqc6q4caK9y11muqeFRlpoTwvNA3g9vXPaJ_q4tPcHItfUk5J0-4bmbKkHmdc4I_wMU5jKlEpaU-RFLp2LqMCzEzIOYHskth40R6sv-DyAF9NjlHly5JjaNp3vIzyYEwFs9UwyzYT8zirO8wDejFxzMfj_P-jx5XN5DjdR2vSXvYP9J3BLEA_zJBRqGzbXZ519isBsXTzzEsDg-1WL3G_CgkRk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tongue+image+fusion+and+analysis+of+thermal+and+visible+images+in+diabetes+mellitus+using+machine+learning+techniques&rft.jtitle=Scientific+reports&rft.au=Thirunavukkarasu%2C+Usharani&rft.au=Umapathy%2C+Snekhalatha&rft.au=Ravi%2C+Vinayakumar&rft.au=Alahmadi%2C+Tahani+Jaser&rft.date=2024-06-24&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-64150-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_64150_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |