Salinomycin induces apoptosis and senescence in breast cancer: Upregulation of p21, downregulation of survivin and histone H3 and H4 hyperacetylation
In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions. Cell viability was measured by CellTiter-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1830; no. 4; pp. 3121 - 3135 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 1872-8006 |
DOI | 10.1016/j.bbagen.2013.01.010 |
Cover
Abstract | In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions.
Cell viability was measured by CellTiter-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay.
Salinomycinwas able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on theMDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associatedwith enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondoside A, respectively.
Our data are the first to link senescence and histone modifications to Salinomycin.
This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells.
► Salinomycin elicits different effects on the MDA-MB 231 cells. ► The magnitude of DNA damage determines the response of the cells to these damages. ► Salinomycin-treated MDA-MB 231cells exhibited markers of senescence. ► Histone H3 and H4 hyperacetylation and elevated expression of the CDK inhibitor, p21 ► Salinomycin potentiates the anticancer activity of frondoside A and 4-hydroxytamoxifen. |
---|---|
AbstractList | In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions.
Cell viability was measured by CellTiter-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay.
Salinomycinwas able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on theMDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associatedwith enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondoside A, respectively.
Our data are the first to link senescence and histone modifications to Salinomycin.
This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells.
► Salinomycin elicits different effects on the MDA-MB 231 cells. ► The magnitude of DNA damage determines the response of the cells to these damages. ► Salinomycin-treated MDA-MB 231cells exhibited markers of senescence. ► Histone H3 and H4 hyperacetylation and elevated expression of the CDK inhibitor, p21 ► Salinomycin potentiates the anticancer activity of frondoside A and 4-hydroxytamoxifen. BACKGROUND: In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions. METHODS: Cell viability was measured by CellTiter-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay. RESULTS: Salinomycinwas able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on theMDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associatedwith enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondoside A, respectively. CONCLUSION: Our data are the first to link senescence and histone modifications to Salinomycin. SIGNIFICANCE: This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells. In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions. Cell viability was measured by Cell Titer-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay. Salinomycin was able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on the MDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associated with enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondo side A, respectively. Our data are the first to link senescence and histone modifications to Salinomycin. This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells. In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions.Cell viability was measured by CellTiter-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay.Salinomycinwas able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on theMDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associatedwith enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondoside A, respectively.Our data are the first to link senescence and histone modifications to Salinomycin.This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells. In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions.BACKGROUNDIn the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions.Cell viability was measured by Cell Titer-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay.METHODSCell viability was measured by Cell Titer-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay.Salinomycin was able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on the MDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associated with enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondo side A, respectively.RESULTSSalinomycin was able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on the MDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associated with enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondo side A, respectively.Our data are the first to link senescence and histone modifications to Salinomycin.CONCLUSIONOur data are the first to link senescence and histone modifications to Salinomycin.This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells.SIGNIFICANCEThis study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells. |
Author | Eid, Ali Iratni, Rabah Attoub, Samir Al Dhaheri, Yusra AbuQamar, Synan Arafat, Kholoud Al Faresi, Nesreen |
Author_xml | – sequence: 1 givenname: Yusra surname: Al Dhaheri fullname: Al Dhaheri, Yusra organization: Department of Biology, College of Science, UAE University, P.O. Box: 17551, United Arab Emirates University, Al-Ain, P.O. Box 15551, United Arab Emirates – sequence: 2 givenname: Samir surname: Attoub fullname: Attoub, Samir organization: Department of Pharmacology & Therapeutics, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box: 17666, United Arab Emirates – sequence: 3 givenname: Kholoud surname: Arafat fullname: Arafat, Kholoud organization: Department of Pharmacology & Therapeutics, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box: 17666, United Arab Emirates – sequence: 4 givenname: Synan surname: AbuQamar fullname: AbuQamar, Synan organization: Department of Biology, College of Science, UAE University, P.O. Box: 17551, United Arab Emirates University, Al-Ain, P.O. Box 15551, United Arab Emirates – sequence: 5 givenname: Ali surname: Eid fullname: Eid, Ali organization: Department of Biology, College of Science, UAE University, P.O. Box: 17551, United Arab Emirates University, Al-Ain, P.O. Box 15551, United Arab Emirates – sequence: 6 givenname: Nesreen surname: Al Faresi fullname: Al Faresi, Nesreen organization: Department of Biology, College of Science, UAE University, P.O. Box: 17551, United Arab Emirates University, Al-Ain, P.O. Box 15551, United Arab Emirates – sequence: 7 givenname: Rabah surname: Iratni fullname: Iratni, Rabah email: R_iratni@uaeu.ac.ae organization: Department of Biology, College of Science, UAE University, P.O. Box: 17551, United Arab Emirates University, Al-Ain, P.O. Box 15551, United Arab Emirates |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23352703$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFN0DgIweyjO0kTnpAQhWwSJU4lD1bjjPZepW1g50s2gfhfXGaggQHalmyx_r-seb_L8iZ8w4JeclgzYCV7_brptE7dGsOTKyBpQ1PyIpVkmcVQHlGViAgz3JWFufkIsY9pFXUxTNyzoUouASxIj9vdW-dP5yMddS6djIYqR78MPpo0821NKLDaNAZTABtAuo4UqNTHa7odgi4m3o9Wu-o7-jA2Vva-h_u7-c4haM9Jvnc8M7GMc1CN-K-3OT07jRg0AbH0yJ5Tp52uo_44uG8JNtPH79db7Kbr5-_XH-4yUxeFWMmdVdCWWHdcNZIYIVsNdSCa2BMdlLmVVdDW0jBWNfKiiPvyhrqvNQCBTSFuCRvlr5D8N8njKM62DRq32uHfoqKz5ZVvJL1oygTLJdMgOQJffWATs0BWzUEe9DhpH67noB8AUzwMQbs_iAM1Byu2qslXDWHq4ClDUl29Y_M2PHerzFo2z8mfr2IO-2V3gUb1fY2AWWakIm8yBPxfiEwOX60GFQ0do69tQHNqFpv___FL0nLyvw |
CitedBy_id | crossref_primary_10_1007_s11064_016_2132_5 crossref_primary_10_1016_j_colsurfb_2016_03_075 crossref_primary_10_1186_s12943_019_1068_1 crossref_primary_10_1016_j_bmcl_2013_07_040 crossref_primary_10_1016_j_omto_2020_07_009 crossref_primary_10_1371_journal_pone_0109630 crossref_primary_10_3390_cancers12071815 crossref_primary_10_1016_j_bbrc_2014_08_065 crossref_primary_10_3892_ol_2017_7014 crossref_primary_10_1016_j_cbi_2018_01_009 crossref_primary_10_3389_fonc_2021_654428 crossref_primary_10_1111_1440_1681_12806 crossref_primary_10_2147_OTT_S246706 crossref_primary_10_3390_app10144732 crossref_primary_10_1016_j_bbrc_2015_09_108 crossref_primary_10_1038_srep13013 crossref_primary_10_1371_journal_pone_0066931 crossref_primary_10_1016_j_clbc_2020_04_004 crossref_primary_10_3390_ijms18051088 crossref_primary_10_3892_ijo_2017_4082 crossref_primary_10_1111_bcpt_12250 crossref_primary_10_18632_oncotarget_11200 crossref_primary_10_1016_j_msec_2021_111899 crossref_primary_10_1016_j_bcp_2022_114989 crossref_primary_10_1016_j_cbi_2023_110642 crossref_primary_10_1016_j_saa_2014_01_083 crossref_primary_10_1016_j_ejphar_2020_173824 crossref_primary_10_1093_nar_gkac479 crossref_primary_10_3389_fimmu_2024_1417201 crossref_primary_10_1007_s10549_015_3376_5 crossref_primary_10_1016_j_ejmech_2018_12_057 crossref_primary_10_1016_j_fct_2017_10_056 crossref_primary_10_1186_s13046_018_0680_z crossref_primary_10_1080_15376516_2021_2008570 crossref_primary_10_1016_j_taap_2022_116178 crossref_primary_10_1155_2017_3481710 crossref_primary_10_1016_j_tet_2018_07_028 crossref_primary_10_1016_j_ejmech_2019_05_031 crossref_primary_10_1007_s00210_016_1225_7 crossref_primary_10_1177_1010428317695035 crossref_primary_10_3390_cancers15102682 crossref_primary_10_3892_mmr_2015_3633 crossref_primary_10_3892_or_2015_4509 crossref_primary_10_1016_j_yexcr_2017_04_026 |
Cites_doi | 10.1111/j.1747-0285.2011.01287.x 10.1016/S1471-4914(01)02026-3 10.1016/j.bcmd.2010.03.008 10.1038/sj.cdd.4400549 10.1016/S0531-5565(00)00108-X 10.1038/sj.onc.1206366 10.1038/bjc.2011.530 10.1093/jnci/djq364 10.1245/s10434-011-1561-2 10.1038/sj.cdd.4402030 10.1073/pnas.1110431108 10.1016/j.ejphar.2011.06.023 10.1016/j.bbrc.2009.10.042 10.1016/j.cell.2009.06.034 10.1111/j.1749-6632.2009.04717.x 10.1016/S1476-5586(04)80051-4 10.1038/nprot.2009.191 10.1073/pnas.91.17.8022 10.1016/j.biopha.2011.06.006 10.1186/1471-2407-10-610 10.1038/sj.onc.1202615 10.1093/oxfordjournals.jbchem.a022549 10.1016/j.bbrc.2011.08.054 10.1038/35042675 10.1158/0008-5472.CAN-03-1872 10.1007/s004120050256 10.1111/j.1476-5381.2010.01089.x 10.1186/1750-2187-3-18 10.1016/j.canlet.2011.05.030 10.1021/bi001603q 10.2174/157340611794859307 10.1007/s10637-011-9685-6 10.1073/pnas.012602599 10.1016/j.bbrc.2011.12.141 10.1371/journal.pone.0024312 10.1038/nrm2233 10.1074/jbc.M112401200 10.4161/cc.9.19.13160 10.1038/sj.onc.1205049 10.1101/gad.7.8.1559 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. Copyright © 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2013.01.010 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 3135 |
ExternalDocumentID | 23352703 10_1016_j_bbagen_2013_01_010 US201600013454 S0304416513000147 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 ACLOT EFKBS L.6 ~HD |
ID | FETCH-LOGICAL-c485t-7af6068e9b21b70157da0932a0117f7748f90d57311fd782e2f690946a3e30b53 |
IEDL.DBID | AIKHN |
ISSN | 0304-4165 0006-3002 |
IngestDate | Sun Sep 28 00:49:55 EDT 2025 Thu Sep 04 15:47:04 EDT 2025 Mon Jul 21 05:56:01 EDT 2025 Tue Jul 01 00:22:00 EDT 2025 Thu Apr 24 22:51:35 EDT 2025 Wed Dec 27 19:21:12 EST 2023 Fri Feb 23 02:32:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | DMSO Histone hyperacetylation DNA damage Senescence-associated beta galactosidase (SA-β-Gal) TBST PARP FACS Fr RIPA p21 DMEM SA-β-Gal SDS-PAGE X-gal Salinomycin 4-HT Apoptosis |
Language | English |
License | Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-7af6068e9b21b70157da0932a0117f7748f90d57311fd782e2f690946a3e30b53 |
Notes | http://dx.doi.org/10.1016/j.bbagen.2013.01.010 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23352703 |
PQID | 1314713072 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2000082879 proquest_miscellaneous_1314713072 pubmed_primary_23352703 crossref_primary_10_1016_j_bbagen_2013_01_010 crossref_citationtrail_10_1016_j_bbagen_2013_01_010 fao_agris_US201600013454 elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_01_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chang, Broude, Dokmanovic, Zhu, Ruth, Xuan, Kandel, Lausch, Christov, Roninson (bb0120) 1999; 59 Wang, Wong, Pan, Tsao, Fung, Kwong, Sham, Nicholls (bb0200) 1998; 58 Kim, Kim, Yoon, Kim, Ro, Kang, Yoon (bb0060) 2012; 30 Zhang, Liang, Zhou, Chen, Chen, Zhang, Kang, Zhao (bb0050) 2011; 313 Hendzel, Wei, Mancini, Van Hooser, Ranalli, Brinkley, Bazett-Jones, Allis (bb0080) 1997; 106 Rebbaa, Zheng, Chou, Mirkin (bb0190) 2003; 22 Ketola, Hilvo, Hyötyläinen, Vuoristo, Ruskeepää, Orešič, Kallioniemi, Iljin (bb0045) 2012; 106 Kim, Yoo, Kang, Ro, Yoon (bb0070) 2012; 418 Chandele, Prasad, Jagtap, Shukla, Shastry (bb0150) 2004; 6 Zhi, Chen, Ji, Zhang, Li, Cai, Liu, Gu, Zhu, Yu (bb0015) 2011; 65 Reed (bb0155) 2001; 7 Huczynski (bb0025) 2012; 79 Maurer, Komina, Wesierska-Gadek (bb0085) 2009; 1171 Romanov, Abramova, Svetlikova, Bykova, Zubova, Aksenov, Fornace, Pospelova, Pospelov (bb0180) 2010; 9 Chang, Swift, Shen, Fang, Broude, Roninson (bb0195) 2002; 99 Debacq-Chainiaux, Erusalimsky, Campisi, Toussaint (bb0075) 2009; 4 Fang, Igarashi, Leung, Sugrue, Lee, Aaronson (bb0220) 1999; 18 Dong, Zhou, Wang, Feng, Lv, Zheng (bb0020) 2011; 18 Riccioni, Dupuis, Bernabei, Petrucci, Pasquini, Mariani, Cianfriglia, Testa (bb0030) 2010; 45 Musgrove, Lee, Buckley, Sutherland (bb0100) 1994; 91 Larsson, Scheele, Liang, Moll, Karlsson, Wahlestedt (bb0185) 2004; 64 Kagawa, Fujiwara, Kadowaki, Fukazawa, Sok-Joo, Roth, Tanaka (bb0215) 1999; 8 Michishita, Nakabayashi, Suzuki, Kaul, Ogino, Fujii, Mitsui, Ayusawa (bb0210) 1999; 126 Lu, Choi, Yu, Castro, Kipps, Carson (bb0035) 2011; 108 Lee, Lee, Kim (bb0135) 2009; 29 Wang (bb0010) 2011; 7 Tam, Theodoras, Shay, Draetta, Pagano (bb0105) 1994; 9 Kim, Yu, Lee, Chun, Choi, Park, Song, Chatterjee, Ahn (bb0040) 2011; 413 Gao, Hu, Li, Liu, Zhang, Guo, Xu, Wang, Jiang, Liu, Zhao, Fang, Chen, Wu (bb0225) 2010; 10 Zhuang, Keith Miskimins (bb0230) 2008; 3 Kim, Chae, Kim, Kim, Kang, Kim, Yoon (bb0055) 2011; 162 Al Marzouqi, Iratni, Nemmar, Arafat (bb0110) 2011; 668 Campisi, d'Adda di Fagagna (bb0165) 2007; 8 Vogelstein, Lane, Levine (bb0160) 2000; 408 Yeo, Hwang, Kang, Kim, Kim, Parka, Choy, Park, Park (bb0205) 2000; 35 Ewald, Desotelle, Wilding, Jarrard (bb0115) 2010; 102 Schwarze, Shi, Fu, Watson, Jarrard (bb0170) 2001; 20 Shin, Sung, Cho, Kim, Ha, Hwang, Chung, Jung, Oh (bb0145) 2001; 40 Choi, Fukui, Zhu (bb0090) 2011; 6 Tamm, Wang, Sausville, Scudiero, Vigna, Oltersdorf, Reed (bb0140) 1998; 58 Fuchs, Heinold, Opelz, Daniel, Naujokat (bb0130) 2009; 390 Gupta, Onder, Jiang, Tao, Kuperwasser, Weinberg, Lander (bb0005) 2009; 138 Han, Wei, Dunaway, Darnowski, Calabresi, Sedivy, Hendrickson, Balan, Pantazis, Wyche (bb0175) 2002; 277 Vergel, Marin, Estevez, Carnero (bb0125) 2010; 2011 Quelle, Ashmun, Shurtleff, Kato, Bar-Sagi, Russel, Sherr (bb0095) 1993; 7 Katayama, Kawaguchi, Berger, Pieper (bb0235) 2007; 14 Kim (10.1016/j.bbagen.2013.01.010_bb0060) 2012; 30 Tamm (10.1016/j.bbagen.2013.01.010_bb0140) 1998; 58 Kim (10.1016/j.bbagen.2013.01.010_bb0070) 2012; 418 Choi (10.1016/j.bbagen.2013.01.010_bb0090) 2011; 6 Zhang (10.1016/j.bbagen.2013.01.010_bb0050) 2011; 313 Reed (10.1016/j.bbagen.2013.01.010_bb0155) 2001; 7 Katayama (10.1016/j.bbagen.2013.01.010_bb0235) 2007; 14 Chang (10.1016/j.bbagen.2013.01.010_bb0120) 1999; 59 Rebbaa (10.1016/j.bbagen.2013.01.010_bb0190) 2003; 22 Gao (10.1016/j.bbagen.2013.01.010_bb0225) 2010; 10 Ketola (10.1016/j.bbagen.2013.01.010_bb0045) 2012; 106 Larsson (10.1016/j.bbagen.2013.01.010_bb0185) 2004; 64 Riccioni (10.1016/j.bbagen.2013.01.010_bb0030) 2010; 45 Hendzel (10.1016/j.bbagen.2013.01.010_bb0080) 1997; 106 Kim (10.1016/j.bbagen.2013.01.010_bb0055) 2011; 162 Huczynski (10.1016/j.bbagen.2013.01.010_bb0025) 2012; 79 Chang (10.1016/j.bbagen.2013.01.010_bb0195) 2002; 99 Al Marzouqi (10.1016/j.bbagen.2013.01.010_bb0110) 2011; 668 Campisi (10.1016/j.bbagen.2013.01.010_bb0165) 2007; 8 Han (10.1016/j.bbagen.2013.01.010_bb0175) 2002; 277 Zhi (10.1016/j.bbagen.2013.01.010_bb0015) 2011; 65 Vergel (10.1016/j.bbagen.2013.01.010_bb0125) 2010; 2011 Yeo (10.1016/j.bbagen.2013.01.010_bb0205) 2000; 35 Fang (10.1016/j.bbagen.2013.01.010_bb0220) 1999; 18 Tam (10.1016/j.bbagen.2013.01.010_bb0105) 1994; 9 Debacq-Chainiaux (10.1016/j.bbagen.2013.01.010_bb0075) 2009; 4 Schwarze (10.1016/j.bbagen.2013.01.010_bb0170) 2001; 20 Wang (10.1016/j.bbagen.2013.01.010_bb0200) 1998; 58 Chandele (10.1016/j.bbagen.2013.01.010_bb0150) 2004; 6 Lee (10.1016/j.bbagen.2013.01.010_bb0135) 2009; 29 Wang (10.1016/j.bbagen.2013.01.010_bb0010) 2011; 7 Quelle (10.1016/j.bbagen.2013.01.010_bb0095) 1993; 7 Romanov (10.1016/j.bbagen.2013.01.010_bb0180) 2010; 9 Gupta (10.1016/j.bbagen.2013.01.010_bb0005) 2009; 138 Vogelstein (10.1016/j.bbagen.2013.01.010_bb0160) 2000; 408 Maurer (10.1016/j.bbagen.2013.01.010_bb0085) 2009; 1171 Musgrove (10.1016/j.bbagen.2013.01.010_bb0100) 1994; 91 Dong (10.1016/j.bbagen.2013.01.010_bb0020) 2011; 18 Fuchs (10.1016/j.bbagen.2013.01.010_bb0130) 2009; 390 Kagawa (10.1016/j.bbagen.2013.01.010_bb0215) 1999; 8 Kim (10.1016/j.bbagen.2013.01.010_bb0040) 2011; 413 Michishita (10.1016/j.bbagen.2013.01.010_bb0210) 1999; 126 Lu (10.1016/j.bbagen.2013.01.010_bb0035) 2011; 108 Zhuang (10.1016/j.bbagen.2013.01.010_bb0230) 2008; 3 Ewald (10.1016/j.bbagen.2013.01.010_bb0115) 2010; 102 Shin (10.1016/j.bbagen.2013.01.010_bb0145) 2001; 40 |
References_xml | – volume: 7 start-page: 1559 year: 1993 end-page: 1571 ident: bb0095 article-title: Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts publication-title: Genes Dev. – volume: 4 start-page: 1798 year: 2009 end-page: 1806 ident: bb0075 article-title: Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo publication-title: Nat. Protoc. – volume: 106 start-page: 348 year: 1997 end-page: 360 ident: bb0080 article-title: Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation publication-title: Chromosoma – volume: 668 start-page: 25 year: 2011 end-page: 34 ident: bb0110 article-title: Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts publication-title: Eur. J. Pharmacol. – volume: 418 start-page: 98 year: 2012 end-page: 103 ident: bb0070 article-title: Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest publication-title: Biochem. Biophys. Res. Commun. – volume: 91 start-page: 8022 year: 1994 end-page: 8026 ident: bb0100 article-title: Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2011 start-page: 725365 year: 2010 ident: bb0125 article-title: Cellular senescence as a target in cancer control publication-title: J. Aging Res. – volume: 58 start-page: 5315 year: 1998 end-page: 5320 ident: bb0140 article-title: IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs publication-title: Cancer Res. – volume: 277 start-page: 17154 year: 2002 end-page: 17160 ident: bb0175 article-title: Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin publication-title: J. Biol. Chem. – volume: 10 start-page: 610 year: 2010 ident: bb0225 article-title: Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc publication-title: BMC Cancer – volume: 9 start-page: 2663 year: 1994 end-page: 2674 ident: bb0105 article-title: Differential expression and regulation of cyclin D1 protein in normal and tumor human cells: association with cdk4 is required for cyclin D1 function in G1 progression publication-title: Oncogene – volume: 7 start-page: 314 year: 2001 end-page: 319 ident: bb0155 article-title: Apoptosis-regulating proteins as targets for drug discovery publication-title: Trends Mol. Med. – volume: 6 start-page: e24312 year: 2011 ident: bb0090 article-title: Role of cyclin B1/Cdc2 up-regulation in the development of mitotic prometaphase arrest in human breast cancer cells treated with nocodazole publication-title: PLoS One – volume: 99 start-page: 389 year: 2002 end-page: 394 ident: bb0195 article-title: Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 start-page: 2789 year: 1999 end-page: 2797 ident: bb0220 article-title: p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53 publication-title: Oncogene – volume: 102 start-page: 1536 year: 2010 end-page: 1546 ident: bb0115 article-title: Therapy-induced senescence in cancer publication-title: J. Natl. Cancer Inst. – volume: 413 start-page: 80 year: 2011 end-page: 86 ident: bb0040 article-title: Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization publication-title: Biochem. Biophys. Res. Commun. – volume: 162 start-page: 773 year: 2011 end-page: 784 ident: bb0055 article-title: Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing p21 protein publication-title: Br. J. Pharmacol. – volume: 58 start-page: 5019 year: 1998 end-page: 5022 ident: bb0200 article-title: Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells publication-title: Cancer Res. – volume: 1171 start-page: 250 year: 2009 end-page: 256 ident: bb0085 article-title: Roscovitine differentially affects asynchronously growing and synchronized human MCF-7 breast cancer cells publication-title: Ann. N. Y. Acad. Sci. – volume: 126 start-page: 1052 year: 1999 end-page: 1059 ident: bb0210 article-title: 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species publication-title: J. Biochem. – volume: 106 start-page: 99 year: 2012 end-page: 106 ident: bb0045 article-title: Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress publication-title: Br. J. Cancer – volume: 20 start-page: 8184 year: 2001 end-page: 8192 ident: bb0170 article-title: Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells publication-title: Oncogene – volume: 64 start-page: 482 year: 2004 end-page: 489 ident: bb0185 article-title: Kinetics of senescence-associated changes of gene expression in an epithelial, temperature-sensitive SV40 large T antigen model publication-title: Cancer Res. – volume: 79 start-page: 235 year: 2012 end-page: 238 ident: bb0025 article-title: Salinomycin — a new cancer drug candidate publication-title: Chem. Biol. Drug Des. – volume: 45 start-page: 86 year: 2010 end-page: 92 ident: bb0030 article-title: The cancer stem cell selective inhibitor Salinomycin is a p-glycoprotein inhibitor publication-title: Blood Cells Mol. Dis. – volume: 35 start-page: 553 year: 2000 end-page: 571 ident: bb0205 article-title: Senescence-like changes induced by hydroxyurea in human diploid fibroblasts publication-title: Exp. Gerontol. – volume: 40 start-page: 1117 year: 2001 end-page: 1123 ident: bb0145 article-title: An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and − publication-title: Biochemistry – volume: 29 start-page: 5039 year: 2009 end-page: 5044 ident: bb0135 article-title: Curcumin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells publication-title: Anticancer. Res. – volume: 8 start-page: 729 year: 2007 end-page: 740 ident: bb0165 article-title: Cellular senescence: when bad things happen to good cells publication-title: Nat. Rev. Mol. Cell Biol. – volume: 14 start-page: 548 year: 2007 end-page: 558 ident: bb0235 article-title: DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells publication-title: Cell Death Differ. – volume: 7 start-page: 106 year: 2011 end-page: 111 ident: bb0010 article-title: Effects of Salinomycin on cancer stem cell in human lung adenocarcinoma A549 cells publication-title: Med. Chem. – volume: 108 start-page: 13253 year: 2011 end-page: 13257 ident: bb0035 article-title: Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 65 start-page: 509 year: 2011 end-page: 515 ident: bb0015 article-title: Salinomycin can effectively kill ALDH (high) stem-like cells on gastric cancer publication-title: Biomed. Pharmacother. – volume: 313 start-page: 137 year: 2011 end-page: 144 ident: bb0050 article-title: Combination of Salinomycin and gemcitabine eliminates pancreatic cancer cells publication-title: Cancer Lett. – volume: 59 start-page: 3761 year: 1999 end-page: 3767 ident: bb0120 article-title: A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents publication-title: Cancer Res. – volume: 3 start-page: 18 year: 2008 ident: bb0230 article-title: Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27 publication-title: J. Mol. Signal. – volume: 390 start-page: 743 year: 2009 end-page: 749 ident: bb0130 article-title: Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells publication-title: Biochem. Biophys. Res. Commun. – volume: 30 start-page: 1311 year: 2012 end-page: 1318 ident: bb0060 article-title: Salinomycin, A p-glycoprotein inhibitor, sensitizes radiation-treated cancer cells by increasing DNA damage and inducing G2 arrest publication-title: Invest. New Drugs – volume: 9 start-page: 3945 year: 2010 end-page: 3955 ident: bb0180 article-title: p21(Waf1) is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate publication-title: Cell Cycle – volume: 18 start-page: 1797 year: 2011 end-page: 1804 ident: bb0020 article-title: Salinomycin selectively targets ‘CD133 publication-title: Ann. Surg. Oncol. – volume: 22 start-page: 2805 year: 2003 end-page: 2811 ident: bb0190 article-title: Caspase inhibition switches doxorubicin-induced apoptosis to senescence publication-title: Oncogene – volume: 138 start-page: 645 year: 2009 end-page: 659 ident: bb0005 article-title: Identification of selective inhibitors of cancer stem cells by high-throughput screening publication-title: Cell – volume: 408 start-page: 307 year: 2000 end-page: 310 ident: bb0160 article-title: Surfing the p53 network publication-title: Nature – volume: 8 start-page: 765 year: 1999 end-page: 772 ident: bb0215 article-title: Overexpression of the p21 sdi1 gene induces senescence-like state in human cancer cells: implication for senescence-directed molecular therapy for cancer publication-title: Cell Death Differ. – volume: 6 start-page: 29 year: 2004 end-page: 40 ident: bb0150 article-title: Upregulation of survivin in G2/M cells and inhibition of caspase 9 activity enhances resistance in staurosporine-induced apoptosis publication-title: Neoplasia – volume: 79 start-page: 235 year: 2012 ident: 10.1016/j.bbagen.2013.01.010_bb0025 article-title: Salinomycin — a new cancer drug candidate publication-title: Chem. Biol. Drug Des. doi: 10.1111/j.1747-0285.2011.01287.x – volume: 58 start-page: 5019 issue: 22 year: 1998 ident: 10.1016/j.bbagen.2013.01.010_bb0200 article-title: Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells publication-title: Cancer Res. – volume: 2011 start-page: 725365 year: 2010 ident: 10.1016/j.bbagen.2013.01.010_bb0125 article-title: Cellular senescence as a target in cancer control publication-title: J. Aging Res. – volume: 59 start-page: 3761 issue: 15 year: 1999 ident: 10.1016/j.bbagen.2013.01.010_bb0120 article-title: A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents publication-title: Cancer Res. – volume: 7 start-page: 314 year: 2001 ident: 10.1016/j.bbagen.2013.01.010_bb0155 article-title: Apoptosis-regulating proteins as targets for drug discovery publication-title: Trends Mol. Med. doi: 10.1016/S1471-4914(01)02026-3 – volume: 45 start-page: 86 issue: 1 year: 2010 ident: 10.1016/j.bbagen.2013.01.010_bb0030 article-title: The cancer stem cell selective inhibitor Salinomycin is a p-glycoprotein inhibitor publication-title: Blood Cells Mol. Dis. doi: 10.1016/j.bcmd.2010.03.008 – volume: 9 start-page: 2663 year: 1994 ident: 10.1016/j.bbagen.2013.01.010_bb0105 article-title: Differential expression and regulation of cyclin D1 protein in normal and tumor human cells: association with cdk4 is required for cyclin D1 function in G1 progression publication-title: Oncogene – volume: 8 start-page: 765 year: 1999 ident: 10.1016/j.bbagen.2013.01.010_bb0215 article-title: Overexpression of the p21 sdi1 gene induces senescence-like state in human cancer cells: implication for senescence-directed molecular therapy for cancer publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4400549 – volume: 35 start-page: 553 issue: 5 year: 2000 ident: 10.1016/j.bbagen.2013.01.010_bb0205 article-title: Senescence-like changes induced by hydroxyurea in human diploid fibroblasts publication-title: Exp. Gerontol. doi: 10.1016/S0531-5565(00)00108-X – volume: 22 start-page: 2805 issue: 18 year: 2003 ident: 10.1016/j.bbagen.2013.01.010_bb0190 article-title: Caspase inhibition switches doxorubicin-induced apoptosis to senescence publication-title: Oncogene doi: 10.1038/sj.onc.1206366 – volume: 106 start-page: 99 issue: 1 year: 2012 ident: 10.1016/j.bbagen.2013.01.010_bb0045 article-title: Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress publication-title: Br. J. Cancer doi: 10.1038/bjc.2011.530 – volume: 102 start-page: 1536 issue: 20 year: 2010 ident: 10.1016/j.bbagen.2013.01.010_bb0115 article-title: Therapy-induced senescence in cancer publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djq364 – volume: 18 start-page: 1797 issue: 6 year: 2011 ident: 10.1016/j.bbagen.2013.01.010_bb0020 article-title: Salinomycin selectively targets ‘CD133+’ cell subpopulations and decreases malignant traits in colorectal cancer lines publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-011-1561-2 – volume: 14 start-page: 548 issue: 3 year: 2007 ident: 10.1016/j.bbagen.2013.01.010_bb0235 article-title: DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402030 – volume: 108 start-page: 13253 issue: 32 year: 2011 ident: 10.1016/j.bbagen.2013.01.010_bb0035 article-title: Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1110431108 – volume: 668 start-page: 25 issue: 1–2 year: 2011 ident: 10.1016/j.bbagen.2013.01.010_bb0110 article-title: Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2011.06.023 – volume: 390 start-page: 743 issue: 3 year: 2009 ident: 10.1016/j.bbagen.2013.01.010_bb0130 article-title: Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.10.042 – volume: 138 start-page: 645 issue: 4 year: 2009 ident: 10.1016/j.bbagen.2013.01.010_bb0005 article-title: Identification of selective inhibitors of cancer stem cells by high-throughput screening publication-title: Cell doi: 10.1016/j.cell.2009.06.034 – volume: 1171 start-page: 250 year: 2009 ident: 10.1016/j.bbagen.2013.01.010_bb0085 article-title: Roscovitine differentially affects asynchronously growing and synchronized human MCF-7 breast cancer cells publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2009.04717.x – volume: 6 start-page: 29 year: 2004 ident: 10.1016/j.bbagen.2013.01.010_bb0150 article-title: Upregulation of survivin in G2/M cells and inhibition of caspase 9 activity enhances resistance in staurosporine-induced apoptosis publication-title: Neoplasia doi: 10.1016/S1476-5586(04)80051-4 – volume: 4 start-page: 1798 issue: 12 year: 2009 ident: 10.1016/j.bbagen.2013.01.010_bb0075 article-title: Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.191 – volume: 91 start-page: 8022 year: 1994 ident: 10.1016/j.bbagen.2013.01.010_bb0100 article-title: Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.91.17.8022 – volume: 29 start-page: 5039 issue: 12 year: 2009 ident: 10.1016/j.bbagen.2013.01.010_bb0135 article-title: Curcumin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells publication-title: Anticancer. Res. – volume: 65 start-page: 509 issue: 7 year: 2011 ident: 10.1016/j.bbagen.2013.01.010_bb0015 article-title: Salinomycin can effectively kill ALDH (high) stem-like cells on gastric cancer publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2011.06.006 – volume: 10 start-page: 610 year: 2010 ident: 10.1016/j.bbagen.2013.01.010_bb0225 article-title: Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc publication-title: BMC Cancer doi: 10.1186/1471-2407-10-610 – volume: 18 start-page: 2789 issue: 18 year: 1999 ident: 10.1016/j.bbagen.2013.01.010_bb0220 article-title: p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53 publication-title: Oncogene doi: 10.1038/sj.onc.1202615 – volume: 126 start-page: 1052 issue: 6 year: 1999 ident: 10.1016/j.bbagen.2013.01.010_bb0210 article-title: 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a022549 – volume: 413 start-page: 80 issue: 1 year: 2011 ident: 10.1016/j.bbagen.2013.01.010_bb0040 article-title: Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.08.054 – volume: 408 start-page: 307 year: 2000 ident: 10.1016/j.bbagen.2013.01.010_bb0160 article-title: Surfing the p53 network publication-title: Nature doi: 10.1038/35042675 – volume: 64 start-page: 482 issue: 2 year: 2004 ident: 10.1016/j.bbagen.2013.01.010_bb0185 article-title: Kinetics of senescence-associated changes of gene expression in an epithelial, temperature-sensitive SV40 large T antigen model publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-1872 – volume: 106 start-page: 348 year: 1997 ident: 10.1016/j.bbagen.2013.01.010_bb0080 article-title: Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation publication-title: Chromosoma doi: 10.1007/s004120050256 – volume: 162 start-page: 773 issue: 3 year: 2011 ident: 10.1016/j.bbagen.2013.01.010_bb0055 article-title: Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing p21 protein publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2010.01089.x – volume: 3 start-page: 18 year: 2008 ident: 10.1016/j.bbagen.2013.01.010_bb0230 article-title: Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1 publication-title: J. Mol. Signal. doi: 10.1186/1750-2187-3-18 – volume: 313 start-page: 137 issue: 2 year: 2011 ident: 10.1016/j.bbagen.2013.01.010_bb0050 article-title: Combination of Salinomycin and gemcitabine eliminates pancreatic cancer cells publication-title: Cancer Lett. doi: 10.1016/j.canlet.2011.05.030 – volume: 40 start-page: 1117 year: 2001 ident: 10.1016/j.bbagen.2013.01.010_bb0145 article-title: An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and −7 publication-title: Biochemistry doi: 10.1021/bi001603q – volume: 7 start-page: 106 issue: 2 year: 2011 ident: 10.1016/j.bbagen.2013.01.010_bb0010 article-title: Effects of Salinomycin on cancer stem cell in human lung adenocarcinoma A549 cells publication-title: Med. Chem. doi: 10.2174/157340611794859307 – volume: 30 start-page: 1311 issue: 4 year: 2012 ident: 10.1016/j.bbagen.2013.01.010_bb0060 article-title: Salinomycin, A p-glycoprotein inhibitor, sensitizes radiation-treated cancer cells by increasing DNA damage and inducing G2 arrest publication-title: Invest. New Drugs doi: 10.1007/s10637-011-9685-6 – volume: 58 start-page: 5315 year: 1998 ident: 10.1016/j.bbagen.2013.01.010_bb0140 article-title: IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs publication-title: Cancer Res. – volume: 99 start-page: 389 issue: 1 year: 2002 ident: 10.1016/j.bbagen.2013.01.010_bb0195 article-title: Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.012602599 – volume: 418 start-page: 98 issue: 1 year: 2012 ident: 10.1016/j.bbagen.2013.01.010_bb0070 article-title: Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.12.141 – volume: 6 start-page: e24312 issue: 8 year: 2011 ident: 10.1016/j.bbagen.2013.01.010_bb0090 article-title: Role of cyclin B1/Cdc2 up-regulation in the development of mitotic prometaphase arrest in human breast cancer cells treated with nocodazole publication-title: PLoS One doi: 10.1371/journal.pone.0024312 – volume: 8 start-page: 729 issue: 9 year: 2007 ident: 10.1016/j.bbagen.2013.01.010_bb0165 article-title: Cellular senescence: when bad things happen to good cells publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2233 – volume: 277 start-page: 17154 issue: 19 year: 2002 ident: 10.1016/j.bbagen.2013.01.010_bb0175 article-title: Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112401200 – volume: 9 start-page: 3945 issue: 19 year: 2010 ident: 10.1016/j.bbagen.2013.01.010_bb0180 article-title: p21(Waf1) is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate publication-title: Cell Cycle doi: 10.4161/cc.9.19.13160 – volume: 20 start-page: 8184 issue: 57 year: 2001 ident: 10.1016/j.bbagen.2013.01.010_bb0170 article-title: Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells publication-title: Oncogene doi: 10.1038/sj.onc.1205049 – volume: 7 start-page: 1559 year: 1993 ident: 10.1016/j.bbagen.2013.01.010_bb0095 article-title: Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts publication-title: Genes Dev. doi: 10.1101/gad.7.8.1559 |
SSID | ssj0000595 ssj0025309 |
Score | 2.3141015 |
Snippet | In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in... BACKGROUND: In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3121 |
SubjectTerms | Acetylation Anti-Bacterial Agents - pharmacology Apoptosis Apoptosis - drug effects beta-galactosidase breast neoplasms Breast Neoplasms - drug therapy Breast Neoplasms - metabolism Breast Neoplasms - pathology caspases cell cycle Cell Line, Tumor Cell Proliferation - drug effects cell viability Cellular Senescence - drug effects Cyclin-Dependent Kinase Inhibitor p21 - genetics Cyclin-Dependent Kinase Inhibitor p21 - physiology Cytoskeletal Proteins - metabolism DNA damage drug therapy Female flow cytometry fluorescent antibody technique G2 Phase - drug effects Glycosides - pharmacology Histone hyperacetylation histones Histones - metabolism Humans Inhibitor of Apoptosis Proteins - antagonists & inhibitors Inhibitor of Apoptosis Proteins - physiology mechanism of action neoplasm cells p21 pro-apoptotic proteins propidium protein synthesis Pyrans - pharmacology Salinomycin Senescence-associated beta galactosidase (SA-β-Gal) Survivin Triterpenes - pharmacology Western blotting |
Title | Salinomycin induces apoptosis and senescence in breast cancer: Upregulation of p21, downregulation of survivin and histone H3 and H4 hyperacetylation |
URI | https://dx.doi.org/10.1016/j.bbagen.2013.01.010 https://www.ncbi.nlm.nih.gov/pubmed/23352703 https://www.proquest.com/docview/1314713072 https://www.proquest.com/docview/2000082879 |
Volume | 1830 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEB5ih9K8hDY94h5hC32sau1K8kp5C6ZBrWke6prmbdmVdlOXIglLDuSl_yL_NzM6UgINgYJA146uGc18w84B8N5GwtnMxp4Vce6FnOeeplhX7mLfuiQ33FBy8tezWboKv5xH5zswH3JhKKyy1_2dTm-1dX9k2n_NabVeT5c0qYdwIqIJGQT6cgS7Aq19PIbdk8-L9OyvQo7a5is03iOCIYOuDfMyBv9bKoTKg7Z-J6XS_ttCjZwu78ehrT06fQL7PZBkJ92zPoUdWxzAo6615NUBPJ4PndyewfUSwTblLmTrgqEPjtysma7KqinrNW4VOatJ5WX09jiAGYpUb1hGErE5Zqtq03WsRx6y0rFK8A8sR_f97uF6i2rnEsnpgm0d48KyNGh305D9RI93ozPbXHUkz2F1-un7PPX6dgxeFsZR40nt0NuJbWIENxJhhMy1j_BPU1k5hzAydomfRzLg3OUIPKxw6Hon4UwHNvBNFLyAcYF3PgTm8DPnMUKfmTR4Xhr0U02I1lTP8Dp-NoFgYIHK-lrl1DLjtxqC0n6pjnGKGKd8jos_Ae-WqupqdTwwXg7cVXdkTqE5eYDyEIVB6QtUxGq1FFSmj8B0GIUTeDdIiEI20_SLLmy5rRUPUEhRWKW4f4xoMTx6sckEXnbidfsqgtLjUEG_-u_Hfg17ou3mQYFHb2DcbLb2LWKqxhzB6OMfftT_ObRefPuxuAH-Fx8x |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIlQuCMqjy9NIHAkbO84m4YZWVAu0vWxX6s2yE7ssQkm0ySL1wr_g__JNHkWVqCoh5ZA4tmN7JuNv5Hkw9tbF0rvcpYGTaREoIYrAkK2r8GnofFZYYck5-eR0tlipL-fx-Q6bj74wZFY5yP5epnfSeiiZDqs5rdfr6ZIO9QAnYjqQAdBPdtkdRWkOwNTvf_218wB-iPujBBVQ9dF_rjPyshZ_LYVBFVEXvZMcaf-9P-16U92MQrvd6OgBuz_ASP6xH-lDtuPKA3a3Tyx5ecD252Met0fs9xJQmzwX8nXJoYGDlg03dVW3VbPGXVnwhgReTnNHBW7JTr3lOfHD5gNf1Zs-Xz0oyCvPayne8QLK-_XiZguh8xPNqcMuinHp-CLqHheKf4O-uzG5ay_7Jo_Z6ujT2XwRDMkYglylcRskxkPXSV1mpbAJQERSmBDgz1BQOQ8QmfosLOIkEsIXgB1OeijemZqZyEWhjaMnbK_Elw8Z91jmIgXwmSUW7xMLLdUq7KVmhn7CfMKikQQ6HyKVU8KMH3o0Sfuue8JpIpwOBa5wwoKrVnUfqeOW-slIXX2N4zQ2k1taHoIZtLmAGNarpaQgfQSlVawm7M3IIRpkpsMXU7pq22gRgUXBqom8uY7sEDx02GzCnvbsdTUVSc5xEM_P_nvYr9n-4uzkWB9_Pv36nN2TXV4PMkF6wfbazda9BLpq7avu7_kDV_QeUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salinomycin+induces+apoptosis+and+senescence+in+breast+cancer%3A+Upregulation+of+p21%2C+downregulation+of+survivin+and+histone+H3+and+H4+hyperacetylation&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Al+Dhaheri%2C+Yusra&rft.au=Attoub%2C+Samir&rft.au=Arafat%2C+Kholoud&rft.au=AbuQamar%2C+Synan&rft.date=2013-04-01&rft.issn=0304-4165&rft.volume=1830+p.3121-3135&rft.spage=3121&rft.epage=3135&rft_id=info:doi/10.1016%2Fj.bbagen.2013.01.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |