Salinomycin induces apoptosis and senescence in breast cancer: Upregulation of p21, downregulation of survivin and histone H3 and H4 hyperacetylation

In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions. Cell viability was measured by CellTiter-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1830; no. 4; pp. 3121 - 3135
Main Authors Al Dhaheri, Yusra, Attoub, Samir, Arafat, Kholoud, AbuQamar, Synan, Eid, Ali, Al Faresi, Nesreen, Iratni, Rabah
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2013
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
1872-8006
DOI10.1016/j.bbagen.2013.01.010

Cover

Abstract In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions. Cell viability was measured by CellTiter-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay. Salinomycinwas able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on theMDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associatedwith enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondoside A, respectively. Our data are the first to link senescence and histone modifications to Salinomycin. This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells. ► Salinomycin elicits different effects on the MDA-MB 231 cells. ► The magnitude of DNA damage determines the response of the cells to these damages. ► Salinomycin-treated MDA-MB 231cells exhibited markers of senescence. ► Histone H3 and H4 hyperacetylation and elevated expression of the CDK inhibitor, p21 ► Salinomycin potentiates the anticancer activity of frondoside A and 4-hydroxytamoxifen.
AbstractList In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions. Cell viability was measured by CellTiter-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay. Salinomycinwas able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on theMDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associatedwith enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondoside A, respectively. Our data are the first to link senescence and histone modifications to Salinomycin. This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells. ► Salinomycin elicits different effects on the MDA-MB 231 cells. ► The magnitude of DNA damage determines the response of the cells to these damages. ► Salinomycin-treated MDA-MB 231cells exhibited markers of senescence. ► Histone H3 and H4 hyperacetylation and elevated expression of the CDK inhibitor, p21 ► Salinomycin potentiates the anticancer activity of frondoside A and 4-hydroxytamoxifen.
BACKGROUND: In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions. METHODS: Cell viability was measured by CellTiter-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay. RESULTS: Salinomycinwas able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on theMDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associatedwith enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondoside A, respectively. CONCLUSION: Our data are the first to link senescence and histone modifications to Salinomycin. SIGNIFICANCE: This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells.
In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions. Cell viability was measured by Cell Titer-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay. Salinomycin was able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on the MDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associated with enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondo side A, respectively. Our data are the first to link senescence and histone modifications to Salinomycin. This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells.
In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions.Cell viability was measured by CellTiter-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay.Salinomycinwas able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on theMDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associatedwith enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondoside A, respectively.Our data are the first to link senescence and histone modifications to Salinomycin.This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells.
In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions.BACKGROUNDIn the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions.Cell viability was measured by Cell Titer-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay.METHODSCell viability was measured by Cell Titer-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated β-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay.Salinomycin was able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on the MDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associated with enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondo side A, respectively.RESULTSSalinomycin was able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on the MDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associated with enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-β-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondo side A, respectively.Our data are the first to link senescence and histone modifications to Salinomycin.CONCLUSIONOur data are the first to link senescence and histone modifications to Salinomycin.This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells.SIGNIFICANCEThis study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells.
Author Eid, Ali
Iratni, Rabah
Attoub, Samir
Al Dhaheri, Yusra
AbuQamar, Synan
Arafat, Kholoud
Al Faresi, Nesreen
Author_xml – sequence: 1
  givenname: Yusra
  surname: Al Dhaheri
  fullname: Al Dhaheri, Yusra
  organization: Department of Biology, College of Science, UAE University, P.O. Box: 17551, United Arab Emirates University, Al-Ain, P.O. Box 15551, United Arab Emirates
– sequence: 2
  givenname: Samir
  surname: Attoub
  fullname: Attoub, Samir
  organization: Department of Pharmacology & Therapeutics, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box: 17666, United Arab Emirates
– sequence: 3
  givenname: Kholoud
  surname: Arafat
  fullname: Arafat, Kholoud
  organization: Department of Pharmacology & Therapeutics, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, P.O. Box: 17666, United Arab Emirates
– sequence: 4
  givenname: Synan
  surname: AbuQamar
  fullname: AbuQamar, Synan
  organization: Department of Biology, College of Science, UAE University, P.O. Box: 17551, United Arab Emirates University, Al-Ain, P.O. Box 15551, United Arab Emirates
– sequence: 5
  givenname: Ali
  surname: Eid
  fullname: Eid, Ali
  organization: Department of Biology, College of Science, UAE University, P.O. Box: 17551, United Arab Emirates University, Al-Ain, P.O. Box 15551, United Arab Emirates
– sequence: 6
  givenname: Nesreen
  surname: Al Faresi
  fullname: Al Faresi, Nesreen
  organization: Department of Biology, College of Science, UAE University, P.O. Box: 17551, United Arab Emirates University, Al-Ain, P.O. Box 15551, United Arab Emirates
– sequence: 7
  givenname: Rabah
  surname: Iratni
  fullname: Iratni, Rabah
  email: R_iratni@uaeu.ac.ae
  organization: Department of Biology, College of Science, UAE University, P.O. Box: 17551, United Arab Emirates University, Al-Ain, P.O. Box 15551, United Arab Emirates
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23352703$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFN0DgIweyjO0kTnpAQhWwSJU4lD1bjjPZepW1g50s2gfhfXGaggQHalmyx_r-seb_L8iZ8w4JeclgzYCV7_brptE7dGsOTKyBpQ1PyIpVkmcVQHlGViAgz3JWFufkIsY9pFXUxTNyzoUouASxIj9vdW-dP5yMddS6djIYqR78MPpo0821NKLDaNAZTABtAuo4UqNTHa7odgi4m3o9Wu-o7-jA2Vva-h_u7-c4haM9Jvnc8M7GMc1CN-K-3OT07jRg0AbH0yJ5Tp52uo_44uG8JNtPH79db7Kbr5-_XH-4yUxeFWMmdVdCWWHdcNZIYIVsNdSCa2BMdlLmVVdDW0jBWNfKiiPvyhrqvNQCBTSFuCRvlr5D8N8njKM62DRq32uHfoqKz5ZVvJL1oygTLJdMgOQJffWATs0BWzUEe9DhpH67noB8AUzwMQbs_iAM1Byu2qslXDWHq4ClDUl29Y_M2PHerzFo2z8mfr2IO-2V3gUb1fY2AWWakIm8yBPxfiEwOX60GFQ0do69tQHNqFpv___FL0nLyvw
CitedBy_id crossref_primary_10_1007_s11064_016_2132_5
crossref_primary_10_1016_j_colsurfb_2016_03_075
crossref_primary_10_1186_s12943_019_1068_1
crossref_primary_10_1016_j_bmcl_2013_07_040
crossref_primary_10_1016_j_omto_2020_07_009
crossref_primary_10_1371_journal_pone_0109630
crossref_primary_10_3390_cancers12071815
crossref_primary_10_1016_j_bbrc_2014_08_065
crossref_primary_10_3892_ol_2017_7014
crossref_primary_10_1016_j_cbi_2018_01_009
crossref_primary_10_3389_fonc_2021_654428
crossref_primary_10_1111_1440_1681_12806
crossref_primary_10_2147_OTT_S246706
crossref_primary_10_3390_app10144732
crossref_primary_10_1016_j_bbrc_2015_09_108
crossref_primary_10_1038_srep13013
crossref_primary_10_1371_journal_pone_0066931
crossref_primary_10_1016_j_clbc_2020_04_004
crossref_primary_10_3390_ijms18051088
crossref_primary_10_3892_ijo_2017_4082
crossref_primary_10_1111_bcpt_12250
crossref_primary_10_18632_oncotarget_11200
crossref_primary_10_1016_j_msec_2021_111899
crossref_primary_10_1016_j_bcp_2022_114989
crossref_primary_10_1016_j_cbi_2023_110642
crossref_primary_10_1016_j_saa_2014_01_083
crossref_primary_10_1016_j_ejphar_2020_173824
crossref_primary_10_1093_nar_gkac479
crossref_primary_10_3389_fimmu_2024_1417201
crossref_primary_10_1007_s10549_015_3376_5
crossref_primary_10_1016_j_ejmech_2018_12_057
crossref_primary_10_1016_j_fct_2017_10_056
crossref_primary_10_1186_s13046_018_0680_z
crossref_primary_10_1080_15376516_2021_2008570
crossref_primary_10_1016_j_taap_2022_116178
crossref_primary_10_1155_2017_3481710
crossref_primary_10_1016_j_tet_2018_07_028
crossref_primary_10_1016_j_ejmech_2019_05_031
crossref_primary_10_1007_s00210_016_1225_7
crossref_primary_10_1177_1010428317695035
crossref_primary_10_3390_cancers15102682
crossref_primary_10_3892_mmr_2015_3633
crossref_primary_10_3892_or_2015_4509
crossref_primary_10_1016_j_yexcr_2017_04_026
Cites_doi 10.1111/j.1747-0285.2011.01287.x
10.1016/S1471-4914(01)02026-3
10.1016/j.bcmd.2010.03.008
10.1038/sj.cdd.4400549
10.1016/S0531-5565(00)00108-X
10.1038/sj.onc.1206366
10.1038/bjc.2011.530
10.1093/jnci/djq364
10.1245/s10434-011-1561-2
10.1038/sj.cdd.4402030
10.1073/pnas.1110431108
10.1016/j.ejphar.2011.06.023
10.1016/j.bbrc.2009.10.042
10.1016/j.cell.2009.06.034
10.1111/j.1749-6632.2009.04717.x
10.1016/S1476-5586(04)80051-4
10.1038/nprot.2009.191
10.1073/pnas.91.17.8022
10.1016/j.biopha.2011.06.006
10.1186/1471-2407-10-610
10.1038/sj.onc.1202615
10.1093/oxfordjournals.jbchem.a022549
10.1016/j.bbrc.2011.08.054
10.1038/35042675
10.1158/0008-5472.CAN-03-1872
10.1007/s004120050256
10.1111/j.1476-5381.2010.01089.x
10.1186/1750-2187-3-18
10.1016/j.canlet.2011.05.030
10.1021/bi001603q
10.2174/157340611794859307
10.1007/s10637-011-9685-6
10.1073/pnas.012602599
10.1016/j.bbrc.2011.12.141
10.1371/journal.pone.0024312
10.1038/nrm2233
10.1074/jbc.M112401200
10.4161/cc.9.19.13160
10.1038/sj.onc.1205049
10.1101/gad.7.8.1559
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright © 2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2013.01.010
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 3135
ExternalDocumentID 23352703
10_1016_j_bbagen_2013_01_010
US201600013454
S0304416513000147
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
ACLOT
EFKBS
L.6
~HD
ID FETCH-LOGICAL-c485t-7af6068e9b21b70157da0932a0117f7748f90d57311fd782e2f690946a3e30b53
IEDL.DBID AIKHN
ISSN 0304-4165
0006-3002
IngestDate Sun Sep 28 00:49:55 EDT 2025
Thu Sep 04 15:47:04 EDT 2025
Mon Jul 21 05:56:01 EDT 2025
Tue Jul 01 00:22:00 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Wed Dec 27 19:21:12 EST 2023
Fri Feb 23 02:32:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords DMSO
Histone hyperacetylation
DNA damage
Senescence-associated beta galactosidase (SA-β-Gal)
TBST
PARP
FACS
Fr
RIPA
p21
DMEM
SA-β-Gal
SDS-PAGE
X-gal
Salinomycin
4-HT
Apoptosis
Language English
License Copyright © 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-7af6068e9b21b70157da0932a0117f7748f90d57311fd782e2f690946a3e30b53
Notes http://dx.doi.org/10.1016/j.bbagen.2013.01.010
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23352703
PQID 1314713072
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2000082879
proquest_miscellaneous_1314713072
pubmed_primary_23352703
crossref_primary_10_1016_j_bbagen_2013_01_010
crossref_citationtrail_10_1016_j_bbagen_2013_01_010
fao_agris_US201600013454
elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_01_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chang, Broude, Dokmanovic, Zhu, Ruth, Xuan, Kandel, Lausch, Christov, Roninson (bb0120) 1999; 59
Wang, Wong, Pan, Tsao, Fung, Kwong, Sham, Nicholls (bb0200) 1998; 58
Kim, Kim, Yoon, Kim, Ro, Kang, Yoon (bb0060) 2012; 30
Zhang, Liang, Zhou, Chen, Chen, Zhang, Kang, Zhao (bb0050) 2011; 313
Hendzel, Wei, Mancini, Van Hooser, Ranalli, Brinkley, Bazett-Jones, Allis (bb0080) 1997; 106
Rebbaa, Zheng, Chou, Mirkin (bb0190) 2003; 22
Ketola, Hilvo, Hyötyläinen, Vuoristo, Ruskeepää, Orešič, Kallioniemi, Iljin (bb0045) 2012; 106
Kim, Yoo, Kang, Ro, Yoon (bb0070) 2012; 418
Chandele, Prasad, Jagtap, Shukla, Shastry (bb0150) 2004; 6
Zhi, Chen, Ji, Zhang, Li, Cai, Liu, Gu, Zhu, Yu (bb0015) 2011; 65
Reed (bb0155) 2001; 7
Huczynski (bb0025) 2012; 79
Maurer, Komina, Wesierska-Gadek (bb0085) 2009; 1171
Romanov, Abramova, Svetlikova, Bykova, Zubova, Aksenov, Fornace, Pospelova, Pospelov (bb0180) 2010; 9
Chang, Swift, Shen, Fang, Broude, Roninson (bb0195) 2002; 99
Debacq-Chainiaux, Erusalimsky, Campisi, Toussaint (bb0075) 2009; 4
Fang, Igarashi, Leung, Sugrue, Lee, Aaronson (bb0220) 1999; 18
Dong, Zhou, Wang, Feng, Lv, Zheng (bb0020) 2011; 18
Riccioni, Dupuis, Bernabei, Petrucci, Pasquini, Mariani, Cianfriglia, Testa (bb0030) 2010; 45
Musgrove, Lee, Buckley, Sutherland (bb0100) 1994; 91
Larsson, Scheele, Liang, Moll, Karlsson, Wahlestedt (bb0185) 2004; 64
Kagawa, Fujiwara, Kadowaki, Fukazawa, Sok-Joo, Roth, Tanaka (bb0215) 1999; 8
Michishita, Nakabayashi, Suzuki, Kaul, Ogino, Fujii, Mitsui, Ayusawa (bb0210) 1999; 126
Lu, Choi, Yu, Castro, Kipps, Carson (bb0035) 2011; 108
Lee, Lee, Kim (bb0135) 2009; 29
Wang (bb0010) 2011; 7
Tam, Theodoras, Shay, Draetta, Pagano (bb0105) 1994; 9
Kim, Yu, Lee, Chun, Choi, Park, Song, Chatterjee, Ahn (bb0040) 2011; 413
Gao, Hu, Li, Liu, Zhang, Guo, Xu, Wang, Jiang, Liu, Zhao, Fang, Chen, Wu (bb0225) 2010; 10
Zhuang, Keith Miskimins (bb0230) 2008; 3
Kim, Chae, Kim, Kim, Kang, Kim, Yoon (bb0055) 2011; 162
Al Marzouqi, Iratni, Nemmar, Arafat (bb0110) 2011; 668
Campisi, d'Adda di Fagagna (bb0165) 2007; 8
Vogelstein, Lane, Levine (bb0160) 2000; 408
Yeo, Hwang, Kang, Kim, Kim, Parka, Choy, Park, Park (bb0205) 2000; 35
Ewald, Desotelle, Wilding, Jarrard (bb0115) 2010; 102
Schwarze, Shi, Fu, Watson, Jarrard (bb0170) 2001; 20
Shin, Sung, Cho, Kim, Ha, Hwang, Chung, Jung, Oh (bb0145) 2001; 40
Choi, Fukui, Zhu (bb0090) 2011; 6
Tamm, Wang, Sausville, Scudiero, Vigna, Oltersdorf, Reed (bb0140) 1998; 58
Fuchs, Heinold, Opelz, Daniel, Naujokat (bb0130) 2009; 390
Gupta, Onder, Jiang, Tao, Kuperwasser, Weinberg, Lander (bb0005) 2009; 138
Han, Wei, Dunaway, Darnowski, Calabresi, Sedivy, Hendrickson, Balan, Pantazis, Wyche (bb0175) 2002; 277
Vergel, Marin, Estevez, Carnero (bb0125) 2010; 2011
Quelle, Ashmun, Shurtleff, Kato, Bar-Sagi, Russel, Sherr (bb0095) 1993; 7
Katayama, Kawaguchi, Berger, Pieper (bb0235) 2007; 14
Kim (10.1016/j.bbagen.2013.01.010_bb0060) 2012; 30
Tamm (10.1016/j.bbagen.2013.01.010_bb0140) 1998; 58
Kim (10.1016/j.bbagen.2013.01.010_bb0070) 2012; 418
Choi (10.1016/j.bbagen.2013.01.010_bb0090) 2011; 6
Zhang (10.1016/j.bbagen.2013.01.010_bb0050) 2011; 313
Reed (10.1016/j.bbagen.2013.01.010_bb0155) 2001; 7
Katayama (10.1016/j.bbagen.2013.01.010_bb0235) 2007; 14
Chang (10.1016/j.bbagen.2013.01.010_bb0120) 1999; 59
Rebbaa (10.1016/j.bbagen.2013.01.010_bb0190) 2003; 22
Gao (10.1016/j.bbagen.2013.01.010_bb0225) 2010; 10
Ketola (10.1016/j.bbagen.2013.01.010_bb0045) 2012; 106
Larsson (10.1016/j.bbagen.2013.01.010_bb0185) 2004; 64
Riccioni (10.1016/j.bbagen.2013.01.010_bb0030) 2010; 45
Hendzel (10.1016/j.bbagen.2013.01.010_bb0080) 1997; 106
Kim (10.1016/j.bbagen.2013.01.010_bb0055) 2011; 162
Huczynski (10.1016/j.bbagen.2013.01.010_bb0025) 2012; 79
Chang (10.1016/j.bbagen.2013.01.010_bb0195) 2002; 99
Al Marzouqi (10.1016/j.bbagen.2013.01.010_bb0110) 2011; 668
Campisi (10.1016/j.bbagen.2013.01.010_bb0165) 2007; 8
Han (10.1016/j.bbagen.2013.01.010_bb0175) 2002; 277
Zhi (10.1016/j.bbagen.2013.01.010_bb0015) 2011; 65
Vergel (10.1016/j.bbagen.2013.01.010_bb0125) 2010; 2011
Yeo (10.1016/j.bbagen.2013.01.010_bb0205) 2000; 35
Fang (10.1016/j.bbagen.2013.01.010_bb0220) 1999; 18
Tam (10.1016/j.bbagen.2013.01.010_bb0105) 1994; 9
Debacq-Chainiaux (10.1016/j.bbagen.2013.01.010_bb0075) 2009; 4
Schwarze (10.1016/j.bbagen.2013.01.010_bb0170) 2001; 20
Wang (10.1016/j.bbagen.2013.01.010_bb0200) 1998; 58
Chandele (10.1016/j.bbagen.2013.01.010_bb0150) 2004; 6
Lee (10.1016/j.bbagen.2013.01.010_bb0135) 2009; 29
Wang (10.1016/j.bbagen.2013.01.010_bb0010) 2011; 7
Quelle (10.1016/j.bbagen.2013.01.010_bb0095) 1993; 7
Romanov (10.1016/j.bbagen.2013.01.010_bb0180) 2010; 9
Gupta (10.1016/j.bbagen.2013.01.010_bb0005) 2009; 138
Vogelstein (10.1016/j.bbagen.2013.01.010_bb0160) 2000; 408
Maurer (10.1016/j.bbagen.2013.01.010_bb0085) 2009; 1171
Musgrove (10.1016/j.bbagen.2013.01.010_bb0100) 1994; 91
Dong (10.1016/j.bbagen.2013.01.010_bb0020) 2011; 18
Fuchs (10.1016/j.bbagen.2013.01.010_bb0130) 2009; 390
Kagawa (10.1016/j.bbagen.2013.01.010_bb0215) 1999; 8
Kim (10.1016/j.bbagen.2013.01.010_bb0040) 2011; 413
Michishita (10.1016/j.bbagen.2013.01.010_bb0210) 1999; 126
Lu (10.1016/j.bbagen.2013.01.010_bb0035) 2011; 108
Zhuang (10.1016/j.bbagen.2013.01.010_bb0230) 2008; 3
Ewald (10.1016/j.bbagen.2013.01.010_bb0115) 2010; 102
Shin (10.1016/j.bbagen.2013.01.010_bb0145) 2001; 40
References_xml – volume: 7
  start-page: 1559
  year: 1993
  end-page: 1571
  ident: bb0095
  article-title: Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts
  publication-title: Genes Dev.
– volume: 4
  start-page: 1798
  year: 2009
  end-page: 1806
  ident: bb0075
  article-title: Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo
  publication-title: Nat. Protoc.
– volume: 106
  start-page: 348
  year: 1997
  end-page: 360
  ident: bb0080
  article-title: Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation
  publication-title: Chromosoma
– volume: 668
  start-page: 25
  year: 2011
  end-page: 34
  ident: bb0110
  article-title: Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts
  publication-title: Eur. J. Pharmacol.
– volume: 418
  start-page: 98
  year: 2012
  end-page: 103
  ident: bb0070
  article-title: Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 91
  start-page: 8022
  year: 1994
  end-page: 8026
  ident: bb0100
  article-title: Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 2011
  start-page: 725365
  year: 2010
  ident: bb0125
  article-title: Cellular senescence as a target in cancer control
  publication-title: J. Aging Res.
– volume: 58
  start-page: 5315
  year: 1998
  end-page: 5320
  ident: bb0140
  article-title: IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs
  publication-title: Cancer Res.
– volume: 277
  start-page: 17154
  year: 2002
  end-page: 17160
  ident: bb0175
  article-title: Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 610
  year: 2010
  ident: bb0225
  article-title: Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc
  publication-title: BMC Cancer
– volume: 9
  start-page: 2663
  year: 1994
  end-page: 2674
  ident: bb0105
  article-title: Differential expression and regulation of cyclin D1 protein in normal and tumor human cells: association with cdk4 is required for cyclin D1 function in G1 progression
  publication-title: Oncogene
– volume: 7
  start-page: 314
  year: 2001
  end-page: 319
  ident: bb0155
  article-title: Apoptosis-regulating proteins as targets for drug discovery
  publication-title: Trends Mol. Med.
– volume: 6
  start-page: e24312
  year: 2011
  ident: bb0090
  article-title: Role of cyclin B1/Cdc2 up-regulation in the development of mitotic prometaphase arrest in human breast cancer cells treated with nocodazole
  publication-title: PLoS One
– volume: 99
  start-page: 389
  year: 2002
  end-page: 394
  ident: bb0195
  article-title: Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 18
  start-page: 2789
  year: 1999
  end-page: 2797
  ident: bb0220
  article-title: p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53
  publication-title: Oncogene
– volume: 102
  start-page: 1536
  year: 2010
  end-page: 1546
  ident: bb0115
  article-title: Therapy-induced senescence in cancer
  publication-title: J. Natl. Cancer Inst.
– volume: 413
  start-page: 80
  year: 2011
  end-page: 86
  ident: bb0040
  article-title: Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 162
  start-page: 773
  year: 2011
  end-page: 784
  ident: bb0055
  article-title: Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing p21 protein
  publication-title: Br. J. Pharmacol.
– volume: 58
  start-page: 5019
  year: 1998
  end-page: 5022
  ident: bb0200
  article-title: Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells
  publication-title: Cancer Res.
– volume: 1171
  start-page: 250
  year: 2009
  end-page: 256
  ident: bb0085
  article-title: Roscovitine differentially affects asynchronously growing and synchronized human MCF-7 breast cancer cells
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 126
  start-page: 1052
  year: 1999
  end-page: 1059
  ident: bb0210
  article-title: 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species
  publication-title: J. Biochem.
– volume: 106
  start-page: 99
  year: 2012
  end-page: 106
  ident: bb0045
  article-title: Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress
  publication-title: Br. J. Cancer
– volume: 20
  start-page: 8184
  year: 2001
  end-page: 8192
  ident: bb0170
  article-title: Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells
  publication-title: Oncogene
– volume: 64
  start-page: 482
  year: 2004
  end-page: 489
  ident: bb0185
  article-title: Kinetics of senescence-associated changes of gene expression in an epithelial, temperature-sensitive SV40 large T antigen model
  publication-title: Cancer Res.
– volume: 79
  start-page: 235
  year: 2012
  end-page: 238
  ident: bb0025
  article-title: Salinomycin — a new cancer drug candidate
  publication-title: Chem. Biol. Drug Des.
– volume: 45
  start-page: 86
  year: 2010
  end-page: 92
  ident: bb0030
  article-title: The cancer stem cell selective inhibitor Salinomycin is a p-glycoprotein inhibitor
  publication-title: Blood Cells Mol. Dis.
– volume: 35
  start-page: 553
  year: 2000
  end-page: 571
  ident: bb0205
  article-title: Senescence-like changes induced by hydroxyurea in human diploid fibroblasts
  publication-title: Exp. Gerontol.
– volume: 40
  start-page: 1117
  year: 2001
  end-page: 1123
  ident: bb0145
  article-title: An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and −
  publication-title: Biochemistry
– volume: 29
  start-page: 5039
  year: 2009
  end-page: 5044
  ident: bb0135
  article-title: Curcumin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells
  publication-title: Anticancer. Res.
– volume: 8
  start-page: 729
  year: 2007
  end-page: 740
  ident: bb0165
  article-title: Cellular senescence: when bad things happen to good cells
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 14
  start-page: 548
  year: 2007
  end-page: 558
  ident: bb0235
  article-title: DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells
  publication-title: Cell Death Differ.
– volume: 7
  start-page: 106
  year: 2011
  end-page: 111
  ident: bb0010
  article-title: Effects of Salinomycin on cancer stem cell in human lung adenocarcinoma A549 cells
  publication-title: Med. Chem.
– volume: 108
  start-page: 13253
  year: 2011
  end-page: 13257
  ident: bb0035
  article-title: Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 65
  start-page: 509
  year: 2011
  end-page: 515
  ident: bb0015
  article-title: Salinomycin can effectively kill ALDH (high) stem-like cells on gastric cancer
  publication-title: Biomed. Pharmacother.
– volume: 313
  start-page: 137
  year: 2011
  end-page: 144
  ident: bb0050
  article-title: Combination of Salinomycin and gemcitabine eliminates pancreatic cancer cells
  publication-title: Cancer Lett.
– volume: 59
  start-page: 3761
  year: 1999
  end-page: 3767
  ident: bb0120
  article-title: A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents
  publication-title: Cancer Res.
– volume: 3
  start-page: 18
  year: 2008
  ident: bb0230
  article-title: Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27
  publication-title: J. Mol. Signal.
– volume: 390
  start-page: 743
  year: 2009
  end-page: 749
  ident: bb0130
  article-title: Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 30
  start-page: 1311
  year: 2012
  end-page: 1318
  ident: bb0060
  article-title: Salinomycin, A p-glycoprotein inhibitor, sensitizes radiation-treated cancer cells by increasing DNA damage and inducing G2 arrest
  publication-title: Invest. New Drugs
– volume: 9
  start-page: 3945
  year: 2010
  end-page: 3955
  ident: bb0180
  article-title: p21(Waf1) is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate
  publication-title: Cell Cycle
– volume: 18
  start-page: 1797
  year: 2011
  end-page: 1804
  ident: bb0020
  article-title: Salinomycin selectively targets ‘CD133
  publication-title: Ann. Surg. Oncol.
– volume: 22
  start-page: 2805
  year: 2003
  end-page: 2811
  ident: bb0190
  article-title: Caspase inhibition switches doxorubicin-induced apoptosis to senescence
  publication-title: Oncogene
– volume: 138
  start-page: 645
  year: 2009
  end-page: 659
  ident: bb0005
  article-title: Identification of selective inhibitors of cancer stem cells by high-throughput screening
  publication-title: Cell
– volume: 408
  start-page: 307
  year: 2000
  end-page: 310
  ident: bb0160
  article-title: Surfing the p53 network
  publication-title: Nature
– volume: 8
  start-page: 765
  year: 1999
  end-page: 772
  ident: bb0215
  article-title: Overexpression of the p21 sdi1 gene induces senescence-like state in human cancer cells: implication for senescence-directed molecular therapy for cancer
  publication-title: Cell Death Differ.
– volume: 6
  start-page: 29
  year: 2004
  end-page: 40
  ident: bb0150
  article-title: Upregulation of survivin in G2/M cells and inhibition of caspase 9 activity enhances resistance in staurosporine-induced apoptosis
  publication-title: Neoplasia
– volume: 79
  start-page: 235
  year: 2012
  ident: 10.1016/j.bbagen.2013.01.010_bb0025
  article-title: Salinomycin — a new cancer drug candidate
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/j.1747-0285.2011.01287.x
– volume: 58
  start-page: 5019
  issue: 22
  year: 1998
  ident: 10.1016/j.bbagen.2013.01.010_bb0200
  article-title: Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells
  publication-title: Cancer Res.
– volume: 2011
  start-page: 725365
  year: 2010
  ident: 10.1016/j.bbagen.2013.01.010_bb0125
  article-title: Cellular senescence as a target in cancer control
  publication-title: J. Aging Res.
– volume: 59
  start-page: 3761
  issue: 15
  year: 1999
  ident: 10.1016/j.bbagen.2013.01.010_bb0120
  article-title: A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents
  publication-title: Cancer Res.
– volume: 7
  start-page: 314
  year: 2001
  ident: 10.1016/j.bbagen.2013.01.010_bb0155
  article-title: Apoptosis-regulating proteins as targets for drug discovery
  publication-title: Trends Mol. Med.
  doi: 10.1016/S1471-4914(01)02026-3
– volume: 45
  start-page: 86
  issue: 1
  year: 2010
  ident: 10.1016/j.bbagen.2013.01.010_bb0030
  article-title: The cancer stem cell selective inhibitor Salinomycin is a p-glycoprotein inhibitor
  publication-title: Blood Cells Mol. Dis.
  doi: 10.1016/j.bcmd.2010.03.008
– volume: 9
  start-page: 2663
  year: 1994
  ident: 10.1016/j.bbagen.2013.01.010_bb0105
  article-title: Differential expression and regulation of cyclin D1 protein in normal and tumor human cells: association with cdk4 is required for cyclin D1 function in G1 progression
  publication-title: Oncogene
– volume: 8
  start-page: 765
  year: 1999
  ident: 10.1016/j.bbagen.2013.01.010_bb0215
  article-title: Overexpression of the p21 sdi1 gene induces senescence-like state in human cancer cells: implication for senescence-directed molecular therapy for cancer
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4400549
– volume: 35
  start-page: 553
  issue: 5
  year: 2000
  ident: 10.1016/j.bbagen.2013.01.010_bb0205
  article-title: Senescence-like changes induced by hydroxyurea in human diploid fibroblasts
  publication-title: Exp. Gerontol.
  doi: 10.1016/S0531-5565(00)00108-X
– volume: 22
  start-page: 2805
  issue: 18
  year: 2003
  ident: 10.1016/j.bbagen.2013.01.010_bb0190
  article-title: Caspase inhibition switches doxorubicin-induced apoptosis to senescence
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206366
– volume: 106
  start-page: 99
  issue: 1
  year: 2012
  ident: 10.1016/j.bbagen.2013.01.010_bb0045
  article-title: Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2011.530
– volume: 102
  start-page: 1536
  issue: 20
  year: 2010
  ident: 10.1016/j.bbagen.2013.01.010_bb0115
  article-title: Therapy-induced senescence in cancer
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djq364
– volume: 18
  start-page: 1797
  issue: 6
  year: 2011
  ident: 10.1016/j.bbagen.2013.01.010_bb0020
  article-title: Salinomycin selectively targets ‘CD133+’ cell subpopulations and decreases malignant traits in colorectal cancer lines
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-011-1561-2
– volume: 14
  start-page: 548
  issue: 3
  year: 2007
  ident: 10.1016/j.bbagen.2013.01.010_bb0235
  article-title: DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402030
– volume: 108
  start-page: 13253
  issue: 32
  year: 2011
  ident: 10.1016/j.bbagen.2013.01.010_bb0035
  article-title: Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1110431108
– volume: 668
  start-page: 25
  issue: 1–2
  year: 2011
  ident: 10.1016/j.bbagen.2013.01.010_bb0110
  article-title: Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2011.06.023
– volume: 390
  start-page: 743
  issue: 3
  year: 2009
  ident: 10.1016/j.bbagen.2013.01.010_bb0130
  article-title: Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2009.10.042
– volume: 138
  start-page: 645
  issue: 4
  year: 2009
  ident: 10.1016/j.bbagen.2013.01.010_bb0005
  article-title: Identification of selective inhibitors of cancer stem cells by high-throughput screening
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.034
– volume: 1171
  start-page: 250
  year: 2009
  ident: 10.1016/j.bbagen.2013.01.010_bb0085
  article-title: Roscovitine differentially affects asynchronously growing and synchronized human MCF-7 breast cancer cells
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.04717.x
– volume: 6
  start-page: 29
  year: 2004
  ident: 10.1016/j.bbagen.2013.01.010_bb0150
  article-title: Upregulation of survivin in G2/M cells and inhibition of caspase 9 activity enhances resistance in staurosporine-induced apoptosis
  publication-title: Neoplasia
  doi: 10.1016/S1476-5586(04)80051-4
– volume: 4
  start-page: 1798
  issue: 12
  year: 2009
  ident: 10.1016/j.bbagen.2013.01.010_bb0075
  article-title: Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.191
– volume: 91
  start-page: 8022
  year: 1994
  ident: 10.1016/j.bbagen.2013.01.010_bb0100
  article-title: Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.91.17.8022
– volume: 29
  start-page: 5039
  issue: 12
  year: 2009
  ident: 10.1016/j.bbagen.2013.01.010_bb0135
  article-title: Curcumin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells
  publication-title: Anticancer. Res.
– volume: 65
  start-page: 509
  issue: 7
  year: 2011
  ident: 10.1016/j.bbagen.2013.01.010_bb0015
  article-title: Salinomycin can effectively kill ALDH (high) stem-like cells on gastric cancer
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2011.06.006
– volume: 10
  start-page: 610
  year: 2010
  ident: 10.1016/j.bbagen.2013.01.010_bb0225
  article-title: Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-10-610
– volume: 18
  start-page: 2789
  issue: 18
  year: 1999
  ident: 10.1016/j.bbagen.2013.01.010_bb0220
  article-title: p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1202615
– volume: 126
  start-page: 1052
  issue: 6
  year: 1999
  ident: 10.1016/j.bbagen.2013.01.010_bb0210
  article-title: 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a022549
– volume: 413
  start-page: 80
  issue: 1
  year: 2011
  ident: 10.1016/j.bbagen.2013.01.010_bb0040
  article-title: Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.08.054
– volume: 408
  start-page: 307
  year: 2000
  ident: 10.1016/j.bbagen.2013.01.010_bb0160
  article-title: Surfing the p53 network
  publication-title: Nature
  doi: 10.1038/35042675
– volume: 64
  start-page: 482
  issue: 2
  year: 2004
  ident: 10.1016/j.bbagen.2013.01.010_bb0185
  article-title: Kinetics of senescence-associated changes of gene expression in an epithelial, temperature-sensitive SV40 large T antigen model
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-03-1872
– volume: 106
  start-page: 348
  year: 1997
  ident: 10.1016/j.bbagen.2013.01.010_bb0080
  article-title: Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation
  publication-title: Chromosoma
  doi: 10.1007/s004120050256
– volume: 162
  start-page: 773
  issue: 3
  year: 2011
  ident: 10.1016/j.bbagen.2013.01.010_bb0055
  article-title: Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing p21 protein
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2010.01089.x
– volume: 3
  start-page: 18
  year: 2008
  ident: 10.1016/j.bbagen.2013.01.010_bb0230
  article-title: Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1
  publication-title: J. Mol. Signal.
  doi: 10.1186/1750-2187-3-18
– volume: 313
  start-page: 137
  issue: 2
  year: 2011
  ident: 10.1016/j.bbagen.2013.01.010_bb0050
  article-title: Combination of Salinomycin and gemcitabine eliminates pancreatic cancer cells
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2011.05.030
– volume: 40
  start-page: 1117
  year: 2001
  ident: 10.1016/j.bbagen.2013.01.010_bb0145
  article-title: An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and −7
  publication-title: Biochemistry
  doi: 10.1021/bi001603q
– volume: 7
  start-page: 106
  issue: 2
  year: 2011
  ident: 10.1016/j.bbagen.2013.01.010_bb0010
  article-title: Effects of Salinomycin on cancer stem cell in human lung adenocarcinoma A549 cells
  publication-title: Med. Chem.
  doi: 10.2174/157340611794859307
– volume: 30
  start-page: 1311
  issue: 4
  year: 2012
  ident: 10.1016/j.bbagen.2013.01.010_bb0060
  article-title: Salinomycin, A p-glycoprotein inhibitor, sensitizes radiation-treated cancer cells by increasing DNA damage and inducing G2 arrest
  publication-title: Invest. New Drugs
  doi: 10.1007/s10637-011-9685-6
– volume: 58
  start-page: 5315
  year: 1998
  ident: 10.1016/j.bbagen.2013.01.010_bb0140
  article-title: IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs
  publication-title: Cancer Res.
– volume: 99
  start-page: 389
  issue: 1
  year: 2002
  ident: 10.1016/j.bbagen.2013.01.010_bb0195
  article-title: Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.012602599
– volume: 418
  start-page: 98
  issue: 1
  year: 2012
  ident: 10.1016/j.bbagen.2013.01.010_bb0070
  article-title: Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.12.141
– volume: 6
  start-page: e24312
  issue: 8
  year: 2011
  ident: 10.1016/j.bbagen.2013.01.010_bb0090
  article-title: Role of cyclin B1/Cdc2 up-regulation in the development of mitotic prometaphase arrest in human breast cancer cells treated with nocodazole
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024312
– volume: 8
  start-page: 729
  issue: 9
  year: 2007
  ident: 10.1016/j.bbagen.2013.01.010_bb0165
  article-title: Cellular senescence: when bad things happen to good cells
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2233
– volume: 277
  start-page: 17154
  issue: 19
  year: 2002
  ident: 10.1016/j.bbagen.2013.01.010_bb0175
  article-title: Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112401200
– volume: 9
  start-page: 3945
  issue: 19
  year: 2010
  ident: 10.1016/j.bbagen.2013.01.010_bb0180
  article-title: p21(Waf1) is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.19.13160
– volume: 20
  start-page: 8184
  issue: 57
  year: 2001
  ident: 10.1016/j.bbagen.2013.01.010_bb0170
  article-title: Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1205049
– volume: 7
  start-page: 1559
  year: 1993
  ident: 10.1016/j.bbagen.2013.01.010_bb0095
  article-title: Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts
  publication-title: Genes Dev.
  doi: 10.1101/gad.7.8.1559
SSID ssj0000595
ssj0025309
Score 2.3141015
Snippet In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in...
BACKGROUND: In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3121
SubjectTerms Acetylation
Anti-Bacterial Agents - pharmacology
Apoptosis
Apoptosis - drug effects
beta-galactosidase
breast neoplasms
Breast Neoplasms - drug therapy
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
caspases
cell cycle
Cell Line, Tumor
Cell Proliferation - drug effects
cell viability
Cellular Senescence - drug effects
Cyclin-Dependent Kinase Inhibitor p21 - genetics
Cyclin-Dependent Kinase Inhibitor p21 - physiology
Cytoskeletal Proteins - metabolism
DNA damage
drug therapy
Female
flow cytometry
fluorescent antibody technique
G2 Phase - drug effects
Glycosides - pharmacology
Histone hyperacetylation
histones
Histones - metabolism
Humans
Inhibitor of Apoptosis Proteins - antagonists & inhibitors
Inhibitor of Apoptosis Proteins - physiology
mechanism of action
neoplasm cells
p21
pro-apoptotic proteins
propidium
protein synthesis
Pyrans - pharmacology
Salinomycin
Senescence-associated beta galactosidase (SA-β-Gal)
Survivin
Triterpenes - pharmacology
Western blotting
Title Salinomycin induces apoptosis and senescence in breast cancer: Upregulation of p21, downregulation of survivin and histone H3 and H4 hyperacetylation
URI https://dx.doi.org/10.1016/j.bbagen.2013.01.010
https://www.ncbi.nlm.nih.gov/pubmed/23352703
https://www.proquest.com/docview/1314713072
https://www.proquest.com/docview/2000082879
Volume 1830
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEB5ih9K8hDY94h5hC32sau1K8kp5C6ZBrWke6prmbdmVdlOXIglLDuSl_yL_NzM6UgINgYJA146uGc18w84B8N5GwtnMxp4Vce6FnOeeplhX7mLfuiQ33FBy8tezWboKv5xH5zswH3JhKKyy1_2dTm-1dX9k2n_NabVeT5c0qYdwIqIJGQT6cgS7Aq19PIbdk8-L9OyvQo7a5is03iOCIYOuDfMyBv9bKoTKg7Z-J6XS_ttCjZwu78ehrT06fQL7PZBkJ92zPoUdWxzAo6615NUBPJ4PndyewfUSwTblLmTrgqEPjtysma7KqinrNW4VOatJ5WX09jiAGYpUb1hGErE5Zqtq03WsRx6y0rFK8A8sR_f97uF6i2rnEsnpgm0d48KyNGh305D9RI93ozPbXHUkz2F1-un7PPX6dgxeFsZR40nt0NuJbWIENxJhhMy1j_BPU1k5hzAydomfRzLg3OUIPKxw6Hon4UwHNvBNFLyAcYF3PgTm8DPnMUKfmTR4Xhr0U02I1lTP8Dp-NoFgYIHK-lrl1DLjtxqC0n6pjnGKGKd8jos_Ae-WqupqdTwwXg7cVXdkTqE5eYDyEIVB6QtUxGq1FFSmj8B0GIUTeDdIiEI20_SLLmy5rRUPUEhRWKW4f4xoMTx6sckEXnbidfsqgtLjUEG_-u_Hfg17ou3mQYFHb2DcbLb2LWKqxhzB6OMfftT_ObRefPuxuAH-Fx8x
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIlQuCMqjy9NIHAkbO84m4YZWVAu0vWxX6s2yE7ssQkm0ySL1wr_g__JNHkWVqCoh5ZA4tmN7JuNv5Hkw9tbF0rvcpYGTaREoIYrAkK2r8GnofFZYYck5-eR0tlipL-fx-Q6bj74wZFY5yP5epnfSeiiZDqs5rdfr6ZIO9QAnYjqQAdBPdtkdRWkOwNTvf_218wB-iPujBBVQ9dF_rjPyshZ_LYVBFVEXvZMcaf-9P-16U92MQrvd6OgBuz_ASP6xH-lDtuPKA3a3Tyx5ecD252Met0fs9xJQmzwX8nXJoYGDlg03dVW3VbPGXVnwhgReTnNHBW7JTr3lOfHD5gNf1Zs-Xz0oyCvPayne8QLK-_XiZguh8xPNqcMuinHp-CLqHheKf4O-uzG5ay_7Jo_Z6ujT2XwRDMkYglylcRskxkPXSV1mpbAJQERSmBDgz1BQOQ8QmfosLOIkEsIXgB1OeijemZqZyEWhjaMnbK_Elw8Z91jmIgXwmSUW7xMLLdUq7KVmhn7CfMKikQQ6HyKVU8KMH3o0Sfuue8JpIpwOBa5wwoKrVnUfqeOW-slIXX2N4zQ2k1taHoIZtLmAGNarpaQgfQSlVawm7M3IIRpkpsMXU7pq22gRgUXBqom8uY7sEDx02GzCnvbsdTUVSc5xEM_P_nvYr9n-4uzkWB9_Pv36nN2TXV4PMkF6wfbazda9BLpq7avu7_kDV_QeUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salinomycin+induces+apoptosis+and+senescence+in+breast+cancer%3A+Upregulation+of+p21%2C+downregulation+of+survivin+and+histone+H3+and+H4+hyperacetylation&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Al+Dhaheri%2C+Yusra&rft.au=Attoub%2C+Samir&rft.au=Arafat%2C+Kholoud&rft.au=AbuQamar%2C+Synan&rft.date=2013-04-01&rft.issn=0304-4165&rft.volume=1830+p.3121-3135&rft.spage=3121&rft.epage=3135&rft_id=info:doi/10.1016%2Fj.bbagen.2013.01.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon