Deep Learning with LPC and Wavelet Algorithms for Driving Fault Diagnosis
Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machi...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 22; no. 18; p. 7072 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s22187072 |
Cover
| Abstract | Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure. |
|---|---|
| AbstractList | Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure. Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure.Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure. |
| Audience | Academic |
| Author | Guu, De-Yu Chen, Yu-Hua Gong, Cihun-Siyong Alex Liu, Yuan-En Su, Chih-Hui Simon |
| AuthorAffiliation | 1 Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan 3 Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan 2 Portable Energy System Group, Green Technology Research Center, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan |
| AuthorAffiliation_xml | – name: 1 Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan – name: 2 Portable Energy System Group, Green Technology Research Center, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan – name: 3 Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan |
| Author_xml | – sequence: 1 givenname: Cihun-Siyong Alex orcidid: 0000-0001-9414-3798 surname: Gong fullname: Gong, Cihun-Siyong Alex – sequence: 2 givenname: Chih-Hui Simon surname: Su fullname: Su, Chih-Hui Simon – sequence: 3 givenname: Yuan-En surname: Liu fullname: Liu, Yuan-En – sequence: 4 givenname: De-Yu surname: Guu fullname: Guu, De-Yu – sequence: 5 givenname: Yu-Hua surname: Chen fullname: Chen, Yu-Hua |
| BookMark | eNp1kk1r3DAQhk1JaT7aQ_-BoZemsIkky7J8KSy7Tbuw0B5aehRjeexo0Upbyd6Qf1-5DqEJLQJpGD3z6p1B59mJ8w6z7C0lV0VRk-vIGJUVqdiL7IxyxheSMXLyV3yance4I4QVRSFfZaeFoFxwRs-yzRrxkG8RgjOuz-_McJtvv61ycG3-E45occiXtvchXexj3vmQr4M5TuwNjHbI1wZ656OJr7OXHdiIbx7Oi-zHzafvqy-L7dfPm9Vyu9BclsOixJqkqKGiLgFI8lMx1kDRUN5CQxsmEEVRdaXgErjWnHYdEWWTdqAS2uIi28y6rYedOgSzh3CvPBj1J-FDryAMRltUumlbQZngNUVOCEKJpSaEcCY1llInrQ-z1ugOcH8H1j4KUqKm2arH2Sb44wwfxmaPrUY3BLBPHDy9ceZW9f6o6pIkE3USeP8gEPyvEeOg9iZqtBYc-jEqVtFKSFGLMqHvnqE7PwaX5jpRQhDJqiJRVzPVQ-rWuM6nd3VaLe6NTn-kMym_rHhSZFxOBddzgQ4-xoCd0maAwfjJsLH_bPryWcX_B_QbVFvH3w |
| CitedBy_id | crossref_primary_10_1016_j_cirpj_2024_02_003 crossref_primary_10_3390_app142311318 crossref_primary_10_3390_s24072032 crossref_primary_10_1016_j_isatra_2023_01_014 crossref_primary_10_3390_app132212439 crossref_primary_10_1109_JSEN_2025_3530972 |
| Cites_doi | 10.1109/ICVRIS.2019.00054 10.1109/TTE.2017.2743419 10.1109/IAC.2018.8780566 10.1038/381607a0 10.1109/TVT.2019.2962334 10.1007/978-3-319-94463-0 10.1049/trit.2018.1008 10.1109/CSIT49958.2020.9322016 10.1007/978-3-642-66286-7 10.1371/journal.pone.0259140 10.1109/CVPR.2015.7298594 10.1109/CC.2014.6969789 10.1109/TASL.2007.910768 10.1109/ICSSE52999.2021.9538437 10.1109/ACCESS.2019.2927169 10.1109/5.726791 10.1109/JSEN.2020.3010291 10.1109/TIM.2007.909958 10.1109/TVT.2020.2973651 10.1109/TITS.2021.3109555 10.1007/3-540-48412-4_35 10.1109/TII.2013.2243743 10.1109/JIOT.2018.2844287 10.1145/769953.769967 10.1109/TMECH.2014.2358674 10.1016/j.sigpro.2013.04.015 10.3390/sym11121454 10.1109/72.105422 10.1109/ICACDOT.2016.7877726 10.1109/TDEI.2002.1007708 10.1109/TIE.2017.2774777 10.1007/s00170-017-0143-2 10.1109/ISLPED52811.2021.9502478 10.1007/BF00344251 10.1109/PDGC.2010.5679963 10.1109/ACCESS.2021.3050243 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s22187072 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_cbdd6126491e400ea5e5c000428ce58c 10.3390/s22187072 PMC9501269 A746532483 10_3390_s22187072 |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GrantInformation_xml | – fundername: National Science and Technology Council (NSTC), Taiwan grantid: 110-2221-E-182-053- – fundername: Chang Gung Memorial Hospital grantid: CMRPD2M0111 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c485t-5e90c48b1695aa0338722ba3b14dab1b26ee637f5648a4cc41ff065bff0a18ad3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:57:49 EDT 2025 Sun Oct 26 04:15:23 EDT 2025 Tue Sep 30 17:18:41 EDT 2025 Thu Oct 02 11:30:20 EDT 2025 Tue Oct 07 07:18:52 EDT 2025 Mon Oct 20 16:50:15 EDT 2025 Thu Oct 16 04:34:08 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-5e90c48b1695aa0338722ba3b14dab1b26ee637f5648a4cc41ff065bff0a18ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9414-3798 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22187072 |
| PMID | 36146421 |
| PQID | 2716608273 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cbdd6126491e400ea5e5c000428ce58c unpaywall_primary_10_3390_s22187072 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9501269 proquest_miscellaneous_2717686965 proquest_journals_2716608273 gale_infotracacademiconefile_A746532483 crossref_citationtrail_10_3390_s22187072 crossref_primary_10_3390_s22187072 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Lin (ref_44) 2022; 60 Choi (ref_34) 1992; 3 Weatherspoon (ref_28) 2008; 57 Gong (ref_17) 2020; 20 Zhang (ref_10) 2018; 5 Obeid (ref_13) 2017; 3 ref_14 ref_33 ref_32 Cummings (ref_9) 2022; 23 ref_30 Liu (ref_12) 2020; 69 ref_18 Ameid (ref_19) 2017; 92 Yin (ref_25) 2014; 20 ref_38 ref_15 Yan (ref_21) 2014; 96 ref_37 Olshausen (ref_36) 1996; 381 Ghosh (ref_4) 2018; 3 Lu (ref_11) 2020; 69 Gong (ref_16) 2018; 2018 Wen (ref_40) 2018; 65 ref_24 ref_46 ref_23 Hand (ref_26) 1999; Volume 1642 ref_45 ref_22 ref_20 Lei (ref_31) 2019; 7 ref_42 Shifat (ref_27) 2021; 9 ref_41 ref_1 ref_3 ref_2 Fukushima (ref_35) 1980; 36 LeCun (ref_39) 1998; 86 Hotho (ref_43) 2008; 16 Purkait (ref_7) 2002; 9 ref_29 Yang (ref_8) 2014; 11 ref_5 Dai (ref_6) 2013; 9 |
| References_xml | – ident: ref_3 doi: 10.1109/ICVRIS.2019.00054 – volume: 3 start-page: 694 year: 2017 ident: ref_13 article-title: Early intermittent interturn fault detection and localization for a permanent magnet synchronous motor of electrical vehicles using wavelet transform publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2017.2743419 – ident: ref_30 – ident: ref_22 doi: 10.1109/IAC.2018.8780566 – volume: 381 start-page: 607 year: 1996 ident: ref_36 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – volume: 69 start-page: 1363 year: 2020 ident: ref_12 article-title: Vehicle detection and classification using distributed fiber optic acoustic sensing publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2962334 – ident: ref_41 doi: 10.1007/978-3-319-94463-0 – volume: 3 start-page: 208 year: 2018 ident: ref_4 article-title: Artificial intelligence in internet of things publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2018.1008 – ident: ref_2 doi: 10.1109/CSIT49958.2020.9322016 – volume: 2018 start-page: 4105208 year: 2018 ident: ref_16 article-title: Design and Implementation of Acoustic Sensing System for Online Early Fault Detection in Industrial Fans publication-title: Hindawi J. Sens. – ident: ref_32 doi: 10.1007/978-3-642-66286-7 – ident: ref_18 doi: 10.1371/journal.pone.0259140 – ident: ref_37 doi: 10.1109/CVPR.2015.7298594 – volume: 11 start-page: 1 year: 2014 ident: ref_8 article-title: An overview of Internet of Vehicles publication-title: China Commun. doi: 10.1109/CC.2014.6969789 – volume: 16 start-page: 83 year: 2008 ident: ref_43 article-title: A Backward-Compatible Multichannel Audio Codec publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2007.910768 – ident: ref_46 doi: 10.1109/ICSSE52999.2021.9538437 – volume: 7 start-page: 124087 year: 2019 ident: ref_31 article-title: A Dilated CNN Model for Image Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927169 – volume: 86 start-page: 2278 year: 1998 ident: ref_39 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 20 start-page: 15163 year: 2020 ident: ref_17 article-title: Implementation of machine learning for fault classification on vehicle power transmission system publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3010291 – volume: 57 start-page: 432 year: 2008 ident: ref_28 article-title: Accurate and efficient modeling of FET cold noise sources using ANNs publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2007.909958 – volume: 69 start-page: 4298 year: 2020 ident: ref_11 article-title: Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2973651 – volume: 23 start-page: 12039 year: 2022 ident: ref_9 article-title: Safety Implications of Variability in Autonomous Driving Assist Alerting publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3109555 – volume: Volume 1642 start-page: 415 year: 1999 ident: ref_26 article-title: Pump failure determination using support vector data description publication-title: Advances in Intelligent Data Analysis. IDA doi: 10.1007/3-540-48412-4_35 – volume: 9 start-page: 2226 year: 2013 ident: ref_6 article-title: From model signal to knowledge: A data-driven perspective of fault detection and diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2013.2243743 – volume: 5 start-page: 2431 year: 2018 ident: ref_10 article-title: Fault detection and repairing for intelligent connected vehicles based on dynamic bayesian network model publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2844287 – ident: ref_42 – ident: ref_1 doi: 10.1145/769953.769967 – ident: ref_23 – volume: 20 start-page: 2613 year: 2014 ident: ref_25 article-title: Performance monitoring for vehicle suspension system via fuzzy positivistic C-means clustering based on accelerometer measurements publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2014.2358674 – volume: 96 start-page: 1 year: 2014 ident: ref_21 article-title: Wavelets for fault diagnosis of rotary machines: A review with applications publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.04.015 – ident: ref_24 doi: 10.3390/sym11121454 – volume: 3 start-page: 101 year: 1992 ident: ref_34 article-title: Sensitivity analysis of multilayer perceptron with differentiable activation functions publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.105422 – ident: ref_14 doi: 10.1109/ICACDOT.2016.7877726 – ident: ref_33 – volume: 9 start-page: 433 year: 2002 ident: ref_7 article-title: Time and frequency domain analyses based expert system for impulse fault diagnosis in transformers publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2002.1007708 – volume: 65 start-page: 5990 year: 2018 ident: ref_40 article-title: A new convolutional neural network-based data-driven fault diagnosis method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2774777 – ident: ref_15 – volume: 60 start-page: 5514616 year: 2022 ident: ref_44 article-title: ADMM-ADAM: A New Inverse Imaging Framework Blending the Advantages of Convex Optimization and Deep Learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 92 start-page: 917 year: 2017 ident: ref_19 article-title: Broken rotor bar fault diagnosis using fast Fourier transform applied to field-oriented control induction machine: Simulation and experimental study publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0143-2 – ident: ref_29 doi: 10.1109/ISLPED52811.2021.9502478 – ident: ref_38 – volume: 36 start-page: 193 year: 1980 ident: ref_35 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – ident: ref_45 – ident: ref_5 doi: 10.1109/PDGC.2010.5679963 – ident: ref_20 – volume: 9 start-page: 9429 year: 2021 ident: ref_27 article-title: ANN Assisted Multi Sensor Information Fusion for BLDC Motor Fault Diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050243 |
| SSID | ssj0023338 |
| Score | 2.4145195 |
| Snippet | Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7072 |
| SubjectTerms | Acoustics Algorithms Artificial intelligence Automobiles Big Data convolutional neural network (CNN) Data analysis Data mining Datasets Deep learning deep neural network (DNN) Failure Fault diagnosis Internet of Things linear predictive coefficient (LPC) Machine learning machine learning (ML) Neural networks Repair & maintenance Sensors vehicle early fault diagnosis Vehicles Voice recognition wavelet transform (WT) Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqXloOiEIRgYJcqASXqIk_4-PSZVWqUvVARW-W7djtSiG72s0K8e8ZJ9loVwX1wiWKMnOwxzOeeY79jNBJHqTz1Ps0kLhaFaRIlWAAVQxkm5ITVbRrut-uxPkNu7jltxtXfcU9YR09cGe4U2fLErKwYCr34G_ecM9d1pb6zvPCxdk3K9QaTPVQiwLy6niEKID60yWBTCYzSbayT0vS_3Aqfrg9cm9Vz83vX6aqNnLP5Bl62heNeNQ19gDt-Po5erJBJfgCfR17P8c9W-odjsur-PL6DJu6xD9MvF2iwaPqbrYAwc8lhlIVjxfTuJqAJ2ZVNXjc7bmbLg_RzeTL97PztL8mIXWs4E3KvcrgzeZCcWMy6LkkxBpqc1Yam1sivBdUBi5YYZhzLA8BCg8LT5MXpqQv0W49q_0rhHnInCspDQyAXyCZ5UxG-mpplQDsYhL0aW0-7XoO8XiVRaUBS0RL68HSCXo_qM474oy_KX2OYzAoRK7r9gN4gO49QD_mAQn6GEdQx4iExjjTHyyALkVuKz2SkUMOXJEm6Gg9yLoP1aUmgBgFFEISxMeDGIIs_jkxtZ-tWh2AZUIJniC55RxbTd-W1NP7lq5bcSgChErQh8GN_m2R1__DIm_QPomnNNqtcEdot1ms_FuonRr7rg2TP5A3Fcc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gF4QHyKwEDmQ4KXaIkd28kDQt26aiCoJsTE3iLbcbpKIS1tKsR_z12ahlUDXqIouQd_3Pnud7Z_B_A6LrXzwvuw5JStKrUKM5UgVDHobQrJs7TN6X6eqNPz5OOFvNiDyfYuDB2r3K6J7UJdzB3lyA85BvYK_ZUW7xc_QqoaRbur2xIapiutULxrKcZuwD4nZqwB7B-dTM6-9BBMICLb8AsJBPuHK44eTkea73illrz_-hJ9_djkzXW9ML9-mqq64pPGd-FOF0yy4Wb278Ger-_D7SsUgw_gw8j7BetYVKeM0q7s09kxM3XBvhmqOtGwYTXFnjaX31cMQ1g2Ws4oy8DGZl01bLQ5izdbPYTz8cnX49OwK58QuiSVTSh9FuGbjVUmjYmw55pza4SNk8LY2HLlvRK6lCpJTeJcEpclBiQWnyZOTSEewaCe1_4xMFlGzhVClAkCwpJHViaaaK21zRRiGhPA2-3w5a7jFqcSF1WOGINGOu9HOoCXvehiQ6jxN6EjmoNegDiw2w_z5TTvTCp3tigwPlNJFntcibyRXrqoBYHOy9QF8IZmMCdLxcY40104wC4R51U-1MQthyoqAjjYTnLemfAq_6NwAbzof6Px0Y6Kqf183cogXFOZkgHoHeXYafrun3p22dJ4ZxKDA5UF8KpXo3-PyJP_N_Ep3OJ0L6M9_HYAg2a59s8wWmrs884EfgPc1BPS priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4A98F4RWJB5SHDJJnH8iE-obKkWBKs9ULGcItuxS7UhrdoEBL-ecZJWLQsSEpcoiieRE489801mPiP0PHHC2NTa0BEfrXKCh5JTgCoKrE3BiMzamO6HU34yoe_O2flWFb9PqwQoPmsXaV-FFYIFiyNCoiSLRCxItCjcq299LCnx9lLIOKNX0R5n4I0P0N7k9Gz4uS0q6u_uCIVSQPfRioBJ84_ZMUMtW__lNflynuS1plqoH99VWW4ZofFNpNbd73JPLo6aWh-Zn78xO_7P-91CN3oPFQ87lbqNrtjqDtrf4i28i96OrF3gnpp1in0sF78_O8aqKvAn5beyqPGwnM6X0PB1hcEvxqPlzIcu8Fg1ZY1HXYLfbHUPTcZvPh6fhP2eDKGhGatDZmUMZzrhkikVA8AVhGiV6oQWSieacGt5KhzjNFPUGJo4B16OhqNKMlWkB2hQzSt7H2HmYmOKNHUUUKYjsWZUeK5soSUHoKQC9HI9RLnpCcv9vhllDsDFj2a-Gc0APd2ILjqWjj8JvfbjvBHwxNrthflymvfzNDe6KMDp41QmFpY3q5hlJm6RpbEsMwF64bUk99MfOmNUX8UAr-SJtPKh8IR1oPdpgA7XipT368IqJwBPOXhdApqfbJphRvvfNKqy86aVAQzIJWcBEjsKuNP13ZZq9qXlBpcMPA4uA_Rso6p__yIP_knqIbpOfM1Hm1h3iAb1srGPwBOr9eN-sv0CqF4rdw priority: 102 providerName: Unpaywall |
| Title | Deep Learning with LPC and Wavelet Algorithms for Driving Fault Diagnosis |
| URI | https://www.proquest.com/docview/2716608273 https://www.proquest.com/docview/2717686965 https://pubmed.ncbi.nlm.nih.gov/PMC9501269 https://www.mdpi.com/1424-8220/22/18/7072/pdf?version=1663579084 https://doaj.org/article/cbdd6126491e400ea5e5c000428ce58c |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (WRLC) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4tuwfggHiKwFKZhwSXQuL4kRwQ6m63LIitKkRF9xTZjlMqhbSkqWD_PeM0jTba5cYliuI52OOxZ76x8w3AqyCTxobW9jPqslWZFP1YMIQqCr1Nymkc1Tnds7E4nbLPMz7bg12NzUaB62uhnasnNS3zt39-XXzABf_eIU6E7O_WFP2U9CXuxAfooGJXweGMtYcJNEQYtiUV6op3XFHN2H91X756V_Lmplipi98qzy85otFduNNEkGSwnfJ7sGeL-3D7Eq_gA_g0tHZFGurUOXG5VvJlckxUkZLvypWaqMggny9LbPi5Jhi3kmG5cKkFMlKbvCLD7QW8xfohTEcn345P-03NhL5hEa_63MY-vulAxFwpH0cuKdUq1AFLlQ40FdaKUGZcsEgxY1iQZRiFaHyqIFJp-Aj2i2VhHwPhmW9MGoYZQxSYUV9zJh2XtdSxQCCjPHizU19iGkJxV9ciTxBYOE0nraY9eNGKrrYsGtcJHbk5aAUc8XX9YVnOk2YdJUanKQZlgsWBxe3HKm658WvkZyyPjAev3QwmzmCwM0Y1fxngkBzRVTKQjlAO7TL04HA3ycnO7BKK8FFgVCSx-XnbjCvOHaOowi43tQxiNBEL7oHsGEen692WYvGj5u6OOUYEIvbgZWtG_9bIk_-hkadwi7pfNup7cYewX5Ub-wwDqUr34IacSXxGo489ODg6GU--9uqkRK9eQPhtOp4Mzv8C_ckhvA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEE9hKLC8BBer9j7tA0KhIUpoWnFoRW7uer1OIxknJI6q_il-I7O2kzYqcOvFiuyVtZmd1zfe_QbgXZgrY5m1fk5dtSpX0o8lR6iiMdpkgsZRXdM9PJL9E_5tJEZb8Ht1FsZtq1z5xNpRZ1PjauR7FBN7ifFKsc-zX77rGuW-rq5aaDRqcWAvzhGyLT4Nuri-7yntfT3e7_ttVwHf8EhUvrBxgL_SUMZC6wAhmqI01SwNeabTMKXSWslULiSPNDeGh3mOcTrFqw4jnTF87y24zRn6ErQfNboEeAxf1rAXMRYHewuK8VMFim7EvLo1wPUAcH1T5s6ynOmLc10UVyJe7z7ca1NV0ml06wFs2fIh3L1CYPgIBl1rZ6TlaB0TV9Qlw-_7RJcZ-aFdT4uKdIoxyrE6-7kgmCCT7nziahikp5dFRbrNTr_J4jGc3IgYn8B2OS3tUyAiD4zJGMs5ws2cBqngypFmqzSWiJi0Bx9X4ktMy1zuGmgUCSIYJ-lkLWkP3qyHzhq6jr8N-uLWYD3AMWzXN6bzcdIabGLSLMPsT_I4tOjnrBZWmKCGmMaKyHjwwa1g4vwATsbo9jgD_iXHqJV0lGOuQwNgHuyuFjlpHcQiuVRnD16vH6Npu-81urTTZT0GwaCMpfBAbSjHxtQ3n5STs5okPBaYesjYg7drNfq3RJ79f4qvYKd_fDhMhoOjg-dwh7oTIPU2u13YruZL-wLzsip9WRsDgdObtr4_QYZKgw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IJ4iUMC8BJdoEzu2kwNCS5dVl5aqByr2FhzH2a4Usssmq6p_jV_HOK92VeDWSxTFVuSM553xNwBv_Exqw4xxM2qzVZkUbiQCDFUUWpuU0yisc7pfD8XecfBlyqdb8Ls7C2PLKjudWCvqdKFtjnxA0bEXaK8kG2RtWcTRaPxx-cu1HaTsn9aunUbDIvvm7BTDt_LDZIR7_ZbS8edvu3tu22HA1UHIK5ebyMO7xBcRV8rDcE1SmiiW-EGqEj-hwhjBZMZFEKpA68DPMrTZCV6VH6qU4XuvwXXJWGTLCeX0PNhj-LIGyQgHvUFJ0ZZKT9IN-1e3CbhsDC4XaN5cF0t1dqry_IL1G9-FO63bSoYNn92DLVPch9sXwAwfwGRkzJK0eK0zYhO85OBol6giJd-V7W9RkWE-QzpWJz9Lgs4yGa3mNp9BxmqdV2TUVP3Ny4dwfCVkfATbxaIwj4HwzNM6ZSwLMPTMqJfwQFoAbZlEAqMn5cD7jnyxblHMbTONPMZoxlI67intwKt-6rKB7vjbpE92D_oJFm27frBYzeJWeGOdpCl6giKIfIM6zyhuuPbqcFMbHmoH3tkdjK1OwMVo1R5twE-y6FrxUFoUOxQG5sBOt8lxqyzK-Jy1HXjZD6OY2383qjCLdT0HA0MRCe6A3GCOjaVvjhTzkxowPOLohojIgdc9G_2bIk_-v8QXcAPlLj6YHO4_hVvUHgapK-52YLtarc0zdNGq5HktCwR-XLXw_QHDZ07G |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4A98F4RWJB5SHDJJnH8iE-obKkWBKs9ULGcItuxS7UhrdoEBL-ecZJWLQsSEpcoiieRE489801mPiP0PHHC2NTa0BEfrXKCh5JTgCoKrE3BiMzamO6HU34yoe_O2flWFb9PqwQoPmsXaV-FFYIFiyNCoiSLRCxItCjcq299LCnx9lLIOKNX0R5n4I0P0N7k9Gz4uS0q6u_uCIVSQPfRioBJ84_ZMUMtW__lNflynuS1plqoH99VWW4ZofFNpNbd73JPLo6aWh-Zn78xO_7P-91CN3oPFQ87lbqNrtjqDtrf4i28i96OrF3gnpp1in0sF78_O8aqKvAn5beyqPGwnM6X0PB1hcEvxqPlzIcu8Fg1ZY1HXYLfbHUPTcZvPh6fhP2eDKGhGatDZmUMZzrhkikVA8AVhGiV6oQWSieacGt5KhzjNFPUGJo4B16OhqNKMlWkB2hQzSt7H2HmYmOKNHUUUKYjsWZUeK5soSUHoKQC9HI9RLnpCcv9vhllDsDFj2a-Gc0APd2ILjqWjj8JvfbjvBHwxNrthflymvfzNDe6KMDp41QmFpY3q5hlJm6RpbEsMwF64bUk99MfOmNUX8UAr-SJtPKh8IR1oPdpgA7XipT368IqJwBPOXhdApqfbJphRvvfNKqy86aVAQzIJWcBEjsKuNP13ZZq9qXlBpcMPA4uA_Rso6p__yIP_knqIbpOfM1Hm1h3iAb1srGPwBOr9eN-sv0CqF4rdw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+with+LPC+and+Wavelet+Algorithms+for+Driving+Fault+Diagnosis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cihun-Siyong+Alex+Gong&rft.au=Chih-Hui+Simon+Su&rft.au=Yuan-En+Liu&rft.au=De-Yu+Guu&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=18&rft.spage=7072&rft_id=info:doi/10.3390%2Fs22187072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cbdd6126491e400ea5e5c000428ce58c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |