Deep Learning with LPC and Wavelet Algorithms for Driving Fault Diagnosis

Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machi...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 18; p. 7072
Main Authors Gong, Cihun-Siyong Alex, Su, Chih-Hui Simon, Liu, Yuan-En, Guu, De-Yu, Chen, Yu-Hua
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22187072

Cover

Abstract Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure.
AbstractList Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure.
Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure.Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents due to mechanical malfunction in urban environments. This paper proposes an early voiceprint driving fault identification system using machine learning algorithms for classification. Previous studies have examined driving fault identification, but less attention has focused on using voiceprint features to locate corresponding faults. This research uses 43 different common vehicle mechanical malfunction condition voiceprint signals to construct the dataset. These datasets were filtered by linear predictive coefficient (LPC) and wavelet transform(WT). After the original voiceprint fault sounds were filtered and obtained the main fault characteristics, the deep neural network (DNN), convolutional neural network (CNN), and long short-term memory (LSTM) architectures are used for identification. The experimental results show that the accuracy of the CNN algorithm is the best for the LPC dataset. In addition, for the wavelet dataset, DNN has the best performance in terms of identification performance and training time. After cross-comparison of experimental results, the wavelet algorithm combined with DNN can improve the identification accuracy by up to 16.57% compared with other deep learning algorithms and reduce the model training time by up to 21.5% compared with other algorithms. Realizing the cross-comparison of recognition results through various machine learning methods, it is possible for the vehicle to proactively remind the driver of the real-time potential hazard of vehicle machinery failure.
Audience Academic
Author Guu, De-Yu
Chen, Yu-Hua
Gong, Cihun-Siyong Alex
Liu, Yuan-En
Su, Chih-Hui Simon
AuthorAffiliation 1 Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
3 Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan
2 Portable Energy System Group, Green Technology Research Center, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
AuthorAffiliation_xml – name: 1 Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
– name: 2 Portable Energy System Group, Green Technology Research Center, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
– name: 3 Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan
Author_xml – sequence: 1
  givenname: Cihun-Siyong Alex
  orcidid: 0000-0001-9414-3798
  surname: Gong
  fullname: Gong, Cihun-Siyong Alex
– sequence: 2
  givenname: Chih-Hui Simon
  surname: Su
  fullname: Su, Chih-Hui Simon
– sequence: 3
  givenname: Yuan-En
  surname: Liu
  fullname: Liu, Yuan-En
– sequence: 4
  givenname: De-Yu
  surname: Guu
  fullname: Guu, De-Yu
– sequence: 5
  givenname: Yu-Hua
  surname: Chen
  fullname: Chen, Yu-Hua
BookMark eNp1kk1r3DAQhk1JaT7aQ_-BoZemsIkky7J8KSy7Tbuw0B5aehRjeexo0Upbyd6Qf1-5DqEJLQJpGD3z6p1B59mJ8w6z7C0lV0VRk-vIGJUVqdiL7IxyxheSMXLyV3yance4I4QVRSFfZaeFoFxwRs-yzRrxkG8RgjOuz-_McJtvv61ycG3-E45occiXtvchXexj3vmQr4M5TuwNjHbI1wZ656OJr7OXHdiIbx7Oi-zHzafvqy-L7dfPm9Vyu9BclsOixJqkqKGiLgFI8lMx1kDRUN5CQxsmEEVRdaXgErjWnHYdEWWTdqAS2uIi28y6rYedOgSzh3CvPBj1J-FDryAMRltUumlbQZngNUVOCEKJpSaEcCY1llInrQ-z1ugOcH8H1j4KUqKm2arH2Sb44wwfxmaPrUY3BLBPHDy9ceZW9f6o6pIkE3USeP8gEPyvEeOg9iZqtBYc-jEqVtFKSFGLMqHvnqE7PwaX5jpRQhDJqiJRVzPVQ-rWuM6nd3VaLe6NTn-kMym_rHhSZFxOBddzgQ4-xoCd0maAwfjJsLH_bPryWcX_B_QbVFvH3w
CitedBy_id crossref_primary_10_1016_j_cirpj_2024_02_003
crossref_primary_10_3390_app142311318
crossref_primary_10_3390_s24072032
crossref_primary_10_1016_j_isatra_2023_01_014
crossref_primary_10_3390_app132212439
crossref_primary_10_1109_JSEN_2025_3530972
Cites_doi 10.1109/ICVRIS.2019.00054
10.1109/TTE.2017.2743419
10.1109/IAC.2018.8780566
10.1038/381607a0
10.1109/TVT.2019.2962334
10.1007/978-3-319-94463-0
10.1049/trit.2018.1008
10.1109/CSIT49958.2020.9322016
10.1007/978-3-642-66286-7
10.1371/journal.pone.0259140
10.1109/CVPR.2015.7298594
10.1109/CC.2014.6969789
10.1109/TASL.2007.910768
10.1109/ICSSE52999.2021.9538437
10.1109/ACCESS.2019.2927169
10.1109/5.726791
10.1109/JSEN.2020.3010291
10.1109/TIM.2007.909958
10.1109/TVT.2020.2973651
10.1109/TITS.2021.3109555
10.1007/3-540-48412-4_35
10.1109/TII.2013.2243743
10.1109/JIOT.2018.2844287
10.1145/769953.769967
10.1109/TMECH.2014.2358674
10.1016/j.sigpro.2013.04.015
10.3390/sym11121454
10.1109/72.105422
10.1109/ICACDOT.2016.7877726
10.1109/TDEI.2002.1007708
10.1109/TIE.2017.2774777
10.1007/s00170-017-0143-2
10.1109/ISLPED52811.2021.9502478
10.1007/BF00344251
10.1109/PDGC.2010.5679963
10.1109/ACCESS.2021.3050243
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s22187072
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_cbdd6126491e400ea5e5c000428ce58c
10.3390/s22187072
PMC9501269
A746532483
10_3390_s22187072
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: National Science and Technology Council (NSTC), Taiwan
  grantid: 110-2221-E-182-053-
– fundername: Chang Gung Memorial Hospital
  grantid: CMRPD2M0111
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c485t-5e90c48b1695aa0338722ba3b14dab1b26ee637f5648a4cc41ff065bff0a18ad3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 14 18:57:49 EDT 2025
Sun Oct 26 04:15:23 EDT 2025
Tue Sep 30 17:18:41 EDT 2025
Thu Oct 02 11:30:20 EDT 2025
Tue Oct 07 07:18:52 EDT 2025
Mon Oct 20 16:50:15 EDT 2025
Thu Oct 16 04:34:08 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-5e90c48b1695aa0338722ba3b14dab1b26ee637f5648a4cc41ff065bff0a18ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9414-3798
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22187072
PMID 36146421
PQID 2716608273
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_cbdd6126491e400ea5e5c000428ce58c
unpaywall_primary_10_3390_s22187072
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9501269
proquest_miscellaneous_2717686965
proquest_journals_2716608273
gale_infotracacademiconefile_A746532483
crossref_citationtrail_10_3390_s22187072
crossref_primary_10_3390_s22187072
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lin (ref_44) 2022; 60
Choi (ref_34) 1992; 3
Weatherspoon (ref_28) 2008; 57
Gong (ref_17) 2020; 20
Zhang (ref_10) 2018; 5
Obeid (ref_13) 2017; 3
ref_14
ref_33
ref_32
Cummings (ref_9) 2022; 23
ref_30
Liu (ref_12) 2020; 69
ref_18
Ameid (ref_19) 2017; 92
Yin (ref_25) 2014; 20
ref_38
ref_15
Yan (ref_21) 2014; 96
ref_37
Olshausen (ref_36) 1996; 381
Ghosh (ref_4) 2018; 3
Lu (ref_11) 2020; 69
Gong (ref_16) 2018; 2018
Wen (ref_40) 2018; 65
ref_24
ref_46
ref_23
Hand (ref_26) 1999; Volume 1642
ref_45
ref_22
ref_20
Lei (ref_31) 2019; 7
ref_42
Shifat (ref_27) 2021; 9
ref_41
ref_1
ref_3
ref_2
Fukushima (ref_35) 1980; 36
LeCun (ref_39) 1998; 86
Hotho (ref_43) 2008; 16
Purkait (ref_7) 2002; 9
ref_29
Yang (ref_8) 2014; 11
ref_5
Dai (ref_6) 2013; 9
References_xml – ident: ref_3
  doi: 10.1109/ICVRIS.2019.00054
– volume: 3
  start-page: 694
  year: 2017
  ident: ref_13
  article-title: Early intermittent interturn fault detection and localization for a permanent magnet synchronous motor of electrical vehicles using wavelet transform
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2017.2743419
– ident: ref_30
– ident: ref_22
  doi: 10.1109/IAC.2018.8780566
– volume: 381
  start-page: 607
  year: 1996
  ident: ref_36
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 69
  start-page: 1363
  year: 2020
  ident: ref_12
  article-title: Vehicle detection and classification using distributed fiber optic acoustic sensing
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2962334
– ident: ref_41
  doi: 10.1007/978-3-319-94463-0
– volume: 3
  start-page: 208
  year: 2018
  ident: ref_4
  article-title: Artificial intelligence in internet of things
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2018.1008
– ident: ref_2
  doi: 10.1109/CSIT49958.2020.9322016
– volume: 2018
  start-page: 4105208
  year: 2018
  ident: ref_16
  article-title: Design and Implementation of Acoustic Sensing System for Online Early Fault Detection in Industrial Fans
  publication-title: Hindawi J. Sens.
– ident: ref_32
  doi: 10.1007/978-3-642-66286-7
– ident: ref_18
  doi: 10.1371/journal.pone.0259140
– ident: ref_37
  doi: 10.1109/CVPR.2015.7298594
– volume: 11
  start-page: 1
  year: 2014
  ident: ref_8
  article-title: An overview of Internet of Vehicles
  publication-title: China Commun.
  doi: 10.1109/CC.2014.6969789
– volume: 16
  start-page: 83
  year: 2008
  ident: ref_43
  article-title: A Backward-Compatible Multichannel Audio Codec
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2007.910768
– ident: ref_46
  doi: 10.1109/ICSSE52999.2021.9538437
– volume: 7
  start-page: 124087
  year: 2019
  ident: ref_31
  article-title: A Dilated CNN Model for Image Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927169
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_39
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 20
  start-page: 15163
  year: 2020
  ident: ref_17
  article-title: Implementation of machine learning for fault classification on vehicle power transmission system
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3010291
– volume: 57
  start-page: 432
  year: 2008
  ident: ref_28
  article-title: Accurate and efficient modeling of FET cold noise sources using ANNs
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2007.909958
– volume: 69
  start-page: 4298
  year: 2020
  ident: ref_11
  article-title: Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2973651
– volume: 23
  start-page: 12039
  year: 2022
  ident: ref_9
  article-title: Safety Implications of Variability in Autonomous Driving Assist Alerting
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3109555
– volume: Volume 1642
  start-page: 415
  year: 1999
  ident: ref_26
  article-title: Pump failure determination using support vector data description
  publication-title: Advances in Intelligent Data Analysis. IDA
  doi: 10.1007/3-540-48412-4_35
– volume: 9
  start-page: 2226
  year: 2013
  ident: ref_6
  article-title: From model signal to knowledge: A data-driven perspective of fault detection and diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2013.2243743
– volume: 5
  start-page: 2431
  year: 2018
  ident: ref_10
  article-title: Fault detection and repairing for intelligent connected vehicles based on dynamic bayesian network model
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2844287
– ident: ref_42
– ident: ref_1
  doi: 10.1145/769953.769967
– ident: ref_23
– volume: 20
  start-page: 2613
  year: 2014
  ident: ref_25
  article-title: Performance monitoring for vehicle suspension system via fuzzy positivistic C-means clustering based on accelerometer measurements
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2014.2358674
– volume: 96
  start-page: 1
  year: 2014
  ident: ref_21
  article-title: Wavelets for fault diagnosis of rotary machines: A review with applications
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.04.015
– ident: ref_24
  doi: 10.3390/sym11121454
– volume: 3
  start-page: 101
  year: 1992
  ident: ref_34
  article-title: Sensitivity analysis of multilayer perceptron with differentiable activation functions
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.105422
– ident: ref_14
  doi: 10.1109/ICACDOT.2016.7877726
– ident: ref_33
– volume: 9
  start-page: 433
  year: 2002
  ident: ref_7
  article-title: Time and frequency domain analyses based expert system for impulse fault diagnosis in transformers
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2002.1007708
– volume: 65
  start-page: 5990
  year: 2018
  ident: ref_40
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– ident: ref_15
– volume: 60
  start-page: 5514616
  year: 2022
  ident: ref_44
  article-title: ADMM-ADAM: A New Inverse Imaging Framework Blending the Advantages of Convex Optimization and Deep Learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 92
  start-page: 917
  year: 2017
  ident: ref_19
  article-title: Broken rotor bar fault diagnosis using fast Fourier transform applied to field-oriented control induction machine: Simulation and experimental study
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0143-2
– ident: ref_29
  doi: 10.1109/ISLPED52811.2021.9502478
– ident: ref_38
– volume: 36
  start-page: 193
  year: 1980
  ident: ref_35
  article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– ident: ref_45
– ident: ref_5
  doi: 10.1109/PDGC.2010.5679963
– ident: ref_20
– volume: 9
  start-page: 9429
  year: 2021
  ident: ref_27
  article-title: ANN Assisted Multi Sensor Information Fusion for BLDC Motor Fault Diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050243
SSID ssj0023338
Score 2.4145195
Snippet Vehicle fault detection and diagnosis (VFDD) along with predictive maintenance (PdM) are indispensable for early diagnosis in order to prevent severe accidents...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7072
SubjectTerms Acoustics
Algorithms
Artificial intelligence
Automobiles
Big Data
convolutional neural network (CNN)
Data analysis
Data mining
Datasets
Deep learning
deep neural network (DNN)
Failure
Fault diagnosis
Internet of Things
linear predictive coefficient (LPC)
Machine learning
machine learning (ML)
Neural networks
Repair & maintenance
Sensors
vehicle early fault diagnosis
Vehicles
Voice recognition
wavelet transform (WT)
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqXloOiEIRgYJcqASXqIk_4-PSZVWqUvVARW-W7djtSiG72s0K8e8ZJ9loVwX1wiWKMnOwxzOeeY79jNBJHqTz1Ps0kLhaFaRIlWAAVQxkm5ITVbRrut-uxPkNu7jltxtXfcU9YR09cGe4U2fLErKwYCr34G_ecM9d1pb6zvPCxdk3K9QaTPVQiwLy6niEKID60yWBTCYzSbayT0vS_3Aqfrg9cm9Vz83vX6aqNnLP5Bl62heNeNQ19gDt-Po5erJBJfgCfR17P8c9W-odjsur-PL6DJu6xD9MvF2iwaPqbrYAwc8lhlIVjxfTuJqAJ2ZVNXjc7bmbLg_RzeTL97PztL8mIXWs4E3KvcrgzeZCcWMy6LkkxBpqc1Yam1sivBdUBi5YYZhzLA8BCg8LT5MXpqQv0W49q_0rhHnInCspDQyAXyCZ5UxG-mpplQDsYhL0aW0-7XoO8XiVRaUBS0RL68HSCXo_qM474oy_KX2OYzAoRK7r9gN4gO49QD_mAQn6GEdQx4iExjjTHyyALkVuKz2SkUMOXJEm6Gg9yLoP1aUmgBgFFEISxMeDGIIs_jkxtZ-tWh2AZUIJniC55RxbTd-W1NP7lq5bcSgChErQh8GN_m2R1__DIm_QPomnNNqtcEdot1ms_FuonRr7rg2TP5A3Fcc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gF4QHyKwEDmQ4KXaIkd28kDQt26aiCoJsTE3iLbcbpKIS1tKsR_z12ahlUDXqIouQd_3Pnud7Z_B_A6LrXzwvuw5JStKrUKM5UgVDHobQrJs7TN6X6eqNPz5OOFvNiDyfYuDB2r3K6J7UJdzB3lyA85BvYK_ZUW7xc_QqoaRbur2xIapiutULxrKcZuwD4nZqwB7B-dTM6-9BBMICLb8AsJBPuHK44eTkea73illrz_-hJ9_djkzXW9ML9-mqq64pPGd-FOF0yy4Wb278Ger-_D7SsUgw_gw8j7BetYVKeM0q7s09kxM3XBvhmqOtGwYTXFnjaX31cMQ1g2Ws4oy8DGZl01bLQ5izdbPYTz8cnX49OwK58QuiSVTSh9FuGbjVUmjYmw55pza4SNk8LY2HLlvRK6lCpJTeJcEpclBiQWnyZOTSEewaCe1_4xMFlGzhVClAkCwpJHViaaaK21zRRiGhPA2-3w5a7jFqcSF1WOGINGOu9HOoCXvehiQ6jxN6EjmoNegDiw2w_z5TTvTCp3tigwPlNJFntcibyRXrqoBYHOy9QF8IZmMCdLxcY40104wC4R51U-1MQthyoqAjjYTnLemfAq_6NwAbzof6Px0Y6Kqf183cogXFOZkgHoHeXYafrun3p22dJ4ZxKDA5UF8KpXo3-PyJP_N_Ep3OJ0L6M9_HYAg2a59s8wWmrs884EfgPc1BPS
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4A98F4RWJB5SHDJJnH8iE-obKkWBKs9ULGcItuxS7UhrdoEBL-ecZJWLQsSEpcoiieRE489801mPiP0PHHC2NTa0BEfrXKCh5JTgCoKrE3BiMzamO6HU34yoe_O2flWFb9PqwQoPmsXaV-FFYIFiyNCoiSLRCxItCjcq299LCnx9lLIOKNX0R5n4I0P0N7k9Gz4uS0q6u_uCIVSQPfRioBJ84_ZMUMtW__lNflynuS1plqoH99VWW4ZofFNpNbd73JPLo6aWh-Zn78xO_7P-91CN3oPFQ87lbqNrtjqDtrf4i28i96OrF3gnpp1in0sF78_O8aqKvAn5beyqPGwnM6X0PB1hcEvxqPlzIcu8Fg1ZY1HXYLfbHUPTcZvPh6fhP2eDKGhGatDZmUMZzrhkikVA8AVhGiV6oQWSieacGt5KhzjNFPUGJo4B16OhqNKMlWkB2hQzSt7H2HmYmOKNHUUUKYjsWZUeK5soSUHoKQC9HI9RLnpCcv9vhllDsDFj2a-Gc0APd2ILjqWjj8JvfbjvBHwxNrthflymvfzNDe6KMDp41QmFpY3q5hlJm6RpbEsMwF64bUk99MfOmNUX8UAr-SJtPKh8IR1oPdpgA7XipT368IqJwBPOXhdApqfbJphRvvfNKqy86aVAQzIJWcBEjsKuNP13ZZq9qXlBpcMPA4uA_Rso6p__yIP_knqIbpOfM1Hm1h3iAb1srGPwBOr9eN-sv0CqF4rdw
  priority: 102
  providerName: Unpaywall
Title Deep Learning with LPC and Wavelet Algorithms for Driving Fault Diagnosis
URI https://www.proquest.com/docview/2716608273
https://www.proquest.com/docview/2717686965
https://pubmed.ncbi.nlm.nih.gov/PMC9501269
https://www.mdpi.com/1424-8220/22/18/7072/pdf?version=1663579084
https://doaj.org/article/cbdd6126491e400ea5e5c000428ce58c
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (WRLC)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4tuwfggHiKwFKZhwSXQuL4kRwQ6m63LIitKkRF9xTZjlMqhbSkqWD_PeM0jTba5cYliuI52OOxZ76x8w3AqyCTxobW9jPqslWZFP1YMIQqCr1Nymkc1Tnds7E4nbLPMz7bg12NzUaB62uhnasnNS3zt39-XXzABf_eIU6E7O_WFP2U9CXuxAfooGJXweGMtYcJNEQYtiUV6op3XFHN2H91X756V_Lmplipi98qzy85otFduNNEkGSwnfJ7sGeL-3D7Eq_gA_g0tHZFGurUOXG5VvJlckxUkZLvypWaqMggny9LbPi5Jhi3kmG5cKkFMlKbvCLD7QW8xfohTEcn345P-03NhL5hEa_63MY-vulAxFwpH0cuKdUq1AFLlQ40FdaKUGZcsEgxY1iQZRiFaHyqIFJp-Aj2i2VhHwPhmW9MGoYZQxSYUV9zJh2XtdSxQCCjPHizU19iGkJxV9ciTxBYOE0nraY9eNGKrrYsGtcJHbk5aAUc8XX9YVnOk2YdJUanKQZlgsWBxe3HKm658WvkZyyPjAev3QwmzmCwM0Y1fxngkBzRVTKQjlAO7TL04HA3ycnO7BKK8FFgVCSx-XnbjCvOHaOowi43tQxiNBEL7oHsGEen692WYvGj5u6OOUYEIvbgZWtG_9bIk_-hkadwi7pfNup7cYewX5Ub-wwDqUr34IacSXxGo489ODg6GU--9uqkRK9eQPhtOp4Mzv8C_ckhvA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEE9hKLC8BBer9j7tA0KhIUpoWnFoRW7uer1OIxknJI6q_il-I7O2kzYqcOvFiuyVtZmd1zfe_QbgXZgrY5m1fk5dtSpX0o8lR6iiMdpkgsZRXdM9PJL9E_5tJEZb8Ht1FsZtq1z5xNpRZ1PjauR7FBN7ifFKsc-zX77rGuW-rq5aaDRqcWAvzhGyLT4Nuri-7yntfT3e7_ttVwHf8EhUvrBxgL_SUMZC6wAhmqI01SwNeabTMKXSWslULiSPNDeGh3mOcTrFqw4jnTF87y24zRn6ErQfNboEeAxf1rAXMRYHewuK8VMFim7EvLo1wPUAcH1T5s6ynOmLc10UVyJe7z7ca1NV0ml06wFs2fIh3L1CYPgIBl1rZ6TlaB0TV9Qlw-_7RJcZ-aFdT4uKdIoxyrE6-7kgmCCT7nziahikp5dFRbrNTr_J4jGc3IgYn8B2OS3tUyAiD4zJGMs5ws2cBqngypFmqzSWiJi0Bx9X4ktMy1zuGmgUCSIYJ-lkLWkP3qyHzhq6jr8N-uLWYD3AMWzXN6bzcdIabGLSLMPsT_I4tOjnrBZWmKCGmMaKyHjwwa1g4vwATsbo9jgD_iXHqJV0lGOuQwNgHuyuFjlpHcQiuVRnD16vH6Npu-81urTTZT0GwaCMpfBAbSjHxtQ3n5STs5okPBaYesjYg7drNfq3RJ79f4qvYKd_fDhMhoOjg-dwh7oTIPU2u13YruZL-wLzsip9WRsDgdObtr4_QYZKgw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IJ4iUMC8BJdoEzu2kwNCS5dVl5aqByr2FhzH2a4Usssmq6p_jV_HOK92VeDWSxTFVuSM553xNwBv_Exqw4xxM2qzVZkUbiQCDFUUWpuU0yisc7pfD8XecfBlyqdb8Ls7C2PLKjudWCvqdKFtjnxA0bEXaK8kG2RtWcTRaPxx-cu1HaTsn9aunUbDIvvm7BTDt_LDZIR7_ZbS8edvu3tu22HA1UHIK5ebyMO7xBcRV8rDcE1SmiiW-EGqEj-hwhjBZMZFEKpA68DPMrTZCV6VH6qU4XuvwXXJWGTLCeX0PNhj-LIGyQgHvUFJ0ZZKT9IN-1e3CbhsDC4XaN5cF0t1dqry_IL1G9-FO63bSoYNn92DLVPch9sXwAwfwGRkzJK0eK0zYhO85OBol6giJd-V7W9RkWE-QzpWJz9Lgs4yGa3mNp9BxmqdV2TUVP3Ny4dwfCVkfATbxaIwj4HwzNM6ZSwLMPTMqJfwQFoAbZlEAqMn5cD7jnyxblHMbTONPMZoxlI67intwKt-6rKB7vjbpE92D_oJFm27frBYzeJWeGOdpCl6giKIfIM6zyhuuPbqcFMbHmoH3tkdjK1OwMVo1R5twE-y6FrxUFoUOxQG5sBOt8lxqyzK-Jy1HXjZD6OY2383qjCLdT0HA0MRCe6A3GCOjaVvjhTzkxowPOLohojIgdc9G_2bIk_-v8QXcAPlLj6YHO4_hVvUHgapK-52YLtarc0zdNGq5HktCwR-XLXw_QHDZ07G
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4A98F4RWJB5SHDJJnH8iE-obKkWBKs9ULGcItuxS7UhrdoEBL-ecZJWLQsSEpcoiieRE489801mPiP0PHHC2NTa0BEfrXKCh5JTgCoKrE3BiMzamO6HU34yoe_O2flWFb9PqwQoPmsXaV-FFYIFiyNCoiSLRCxItCjcq299LCnx9lLIOKNX0R5n4I0P0N7k9Gz4uS0q6u_uCIVSQPfRioBJ84_ZMUMtW__lNflynuS1plqoH99VWW4ZofFNpNbd73JPLo6aWh-Zn78xO_7P-91CN3oPFQ87lbqNrtjqDtrf4i28i96OrF3gnpp1in0sF78_O8aqKvAn5beyqPGwnM6X0PB1hcEvxqPlzIcu8Fg1ZY1HXYLfbHUPTcZvPh6fhP2eDKGhGatDZmUMZzrhkikVA8AVhGiV6oQWSieacGt5KhzjNFPUGJo4B16OhqNKMlWkB2hQzSt7H2HmYmOKNHUUUKYjsWZUeK5soSUHoKQC9HI9RLnpCcv9vhllDsDFj2a-Gc0APd2ILjqWjj8JvfbjvBHwxNrthflymvfzNDe6KMDp41QmFpY3q5hlJm6RpbEsMwF64bUk99MfOmNUX8UAr-SJtPKh8IR1oPdpgA7XipT368IqJwBPOXhdApqfbJphRvvfNKqy86aVAQzIJWcBEjsKuNP13ZZq9qXlBpcMPA4uA_Rso6p__yIP_knqIbpOfM1Hm1h3iAb1srGPwBOr9eN-sv0CqF4rdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+with+LPC+and+Wavelet+Algorithms+for+Driving+Fault+Diagnosis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cihun-Siyong+Alex+Gong&rft.au=Chih-Hui+Simon+Su&rft.au=Yuan-En+Liu&rft.au=De-Yu+Guu&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=18&rft.spage=7072&rft_id=info:doi/10.3390%2Fs22187072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cbdd6126491e400ea5e5c000428ce58c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon