A method for compressing AIS trajectory based on the adaptive core threshold difference Douglas–Peucker algorithm

Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas–Peucker (DP) algorithm, typically use static thresholds based on fixed parameters like ship dimensions or predetermined distances, which limits their adaptive capabilities. In this paper, the ad...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 21408 - 17
Main Authors Zhang, Ting, Wang, Zhiming, Wang, Peiliang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.09.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-71779-4

Cover

Abstract Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas–Peucker (DP) algorithm, typically use static thresholds based on fixed parameters like ship dimensions or predetermined distances, which limits their adaptive capabilities. In this paper, the adaptive core threshold difference-DP (ACTD-DP) algorithm is proposed based on traditional DP algorithm. Firstly, according to the course value of automatic identification system (AIS) data, the original trajectory data is preprocessed and some redundant points are discarded. Then the number of compressed trajectory points corresponding to different thresholds is quantified. The function relationship between them is established by curve fitting method. The characteristics of the function curve are analyzed, and the core threshold and core threshold difference are solved. Finally, the compression factor is introduced to determine the optimal core threshold difference, which is the key parameter to control the accuracy and efficiency of the algorithm. Five different algorithms are used to compress the all ship trajectories in the experimental water area. The average compression ratio (ACR) of the ACTD-DP algorithm is 87.53%, the average length loss ratio (ALLR) is 23.20%, the AMSED (mean synchronous Euclidean distance of all trajectories) is 68.9747 mx, and the TIME is 25.6869 s. Compared with the other four algorithms, the ACTD-DP algorithm shows that the algorithm can not only achieve high compression ratio, but also maintain the integrity of trajectory shape. At the same time, the compression results of four different trajectories show that ACTD-DP algorithm has good robustness and applicability. Therefore, ACTD-DP algorithm has the best compression effect.
AbstractList Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas–Peucker (DP) algorithm, typically use static thresholds based on fixed parameters like ship dimensions or predetermined distances, which limits their adaptive capabilities. In this paper, the adaptive core threshold difference-DP (ACTD-DP) algorithm is proposed based on traditional DP algorithm. Firstly, according to the course value of automatic identification system (AIS) data, the original trajectory data is preprocessed and some redundant points are discarded. Then the number of compressed trajectory points corresponding to different thresholds is quantified. The function relationship between them is established by curve fitting method. The characteristics of the function curve are analyzed, and the core threshold and core threshold difference are solved. Finally, the compression factor is introduced to determine the optimal core threshold difference, which is the key parameter to control the accuracy and efficiency of the algorithm. Five different algorithms are used to compress the all ship trajectories in the experimental water area. The average compression ratio (ACR) of the ACTD-DP algorithm is 87.53%, the average length loss ratio (ALLR) is 23.20%, the AMSED (mean synchronous Euclidean distance of all trajectories) is 68.9747 mx, and the TIME is 25.6869 s. Compared with the other four algorithms, the ACTD-DP algorithm shows that the algorithm can not only achieve high compression ratio, but also maintain the integrity of trajectory shape. At the same time, the compression results of four different trajectories show that ACTD-DP algorithm has good robustness and applicability. Therefore, ACTD-DP algorithm has the best compression effect.
Abstract Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas–Peucker (DP) algorithm, typically use static thresholds based on fixed parameters like ship dimensions or predetermined distances, which limits their adaptive capabilities. In this paper, the adaptive core threshold difference-DP (ACTD-DP) algorithm is proposed based on traditional DP algorithm. Firstly, according to the course value of automatic identification system (AIS) data, the original trajectory data is preprocessed and some redundant points are discarded. Then the number of compressed trajectory points corresponding to different thresholds is quantified. The function relationship between them is established by curve fitting method. The characteristics of the function curve are analyzed, and the core threshold and core threshold difference are solved. Finally, the compression factor is introduced to determine the optimal core threshold difference, which is the key parameter to control the accuracy and efficiency of the algorithm. Five different algorithms are used to compress the all ship trajectories in the experimental water area. The average compression ratio (ACR) of the ACTD-DP algorithm is 87.53%, the average length loss ratio (ALLR) is 23.20%, the AMSED (mean synchronous Euclidean distance of all trajectories) is 68.9747 mx, and the TIME is 25.6869 s. Compared with the other four algorithms, the ACTD-DP algorithm shows that the algorithm can not only achieve high compression ratio, but also maintain the integrity of trajectory shape. At the same time, the compression results of four different trajectories show that ACTD-DP algorithm has good robustness and applicability. Therefore, ACTD-DP algorithm has the best compression effect.
Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas-Peucker (DP) algorithm, typically use static thresholds based on fixed parameters like ship dimensions or predetermined distances, which limits their adaptive capabilities. In this paper, the adaptive core threshold difference-DP (ACTD-DP) algorithm is proposed based on traditional DP algorithm. Firstly, according to the course value of automatic identification system (AIS) data, the original trajectory data is preprocessed and some redundant points are discarded. Then the number of compressed trajectory points corresponding to different thresholds is quantified. The function relationship between them is established by curve fitting method. The characteristics of the function curve are analyzed, and the core threshold and core threshold difference are solved. Finally, the compression factor is introduced to determine the optimal core threshold difference, which is the key parameter to control the accuracy and efficiency of the algorithm. Five different algorithms are used to compress the all ship trajectories in the experimental water area. The average compression ratio (ACR) of the ACTD-DP algorithm is 87.53%, the average length loss ratio (ALLR) is 23.20%, the AMSED (mean synchronous Euclidean distance of all trajectories) is 68.9747 mx, and the TIME is 25.6869 s. Compared with the other four algorithms, the ACTD-DP algorithm shows that the algorithm can not only achieve high compression ratio, but also maintain the integrity of trajectory shape. At the same time, the compression results of four different trajectories show that ACTD-DP algorithm has good robustness and applicability. Therefore, ACTD-DP algorithm has the best compression effect.Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas-Peucker (DP) algorithm, typically use static thresholds based on fixed parameters like ship dimensions or predetermined distances, which limits their adaptive capabilities. In this paper, the adaptive core threshold difference-DP (ACTD-DP) algorithm is proposed based on traditional DP algorithm. Firstly, according to the course value of automatic identification system (AIS) data, the original trajectory data is preprocessed and some redundant points are discarded. Then the number of compressed trajectory points corresponding to different thresholds is quantified. The function relationship between them is established by curve fitting method. The characteristics of the function curve are analyzed, and the core threshold and core threshold difference are solved. Finally, the compression factor is introduced to determine the optimal core threshold difference, which is the key parameter to control the accuracy and efficiency of the algorithm. Five different algorithms are used to compress the all ship trajectories in the experimental water area. The average compression ratio (ACR) of the ACTD-DP algorithm is 87.53%, the average length loss ratio (ALLR) is 23.20%, the AMSED (mean synchronous Euclidean distance of all trajectories) is 68.9747 mx, and the TIME is 25.6869 s. Compared with the other four algorithms, the ACTD-DP algorithm shows that the algorithm can not only achieve high compression ratio, but also maintain the integrity of trajectory shape. At the same time, the compression results of four different trajectories show that ACTD-DP algorithm has good robustness and applicability. Therefore, ACTD-DP algorithm has the best compression effect.
ArticleNumber 21408
Author Wang, Zhiming
Wang, Peiliang
Zhang, Ting
Author_xml – sequence: 1
  givenname: Ting
  surname: Zhang
  fullname: Zhang, Ting
  organization: Merchant Marine College, Shanghai Maritime University, Shandong Transport Vocational College
– sequence: 2
  givenname: Zhiming
  surname: Wang
  fullname: Wang, Zhiming
  organization: Merchant Marine College, Shanghai Maritime University
– sequence: 3
  givenname: Peiliang
  surname: Wang
  fullname: Wang, Peiliang
  email: gfy5216@126.com
  organization: Merchant Marine College, Shanghai Maritime University, Shandong Vocation College of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39271771$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhSNUREvpC7BAltiwCfg3cZajlsJIlUAC1tYd-2bGQxIPdgKaXd-BN-RJ8PxQUBcV3ti6Ot-51_c8LU6GMGBRPGf0NaNCv0mSqUaXlMuyZnXdlPJRccapVCUXnJ_88z4tLlJa03wUbyRrnhSnouE7iJ0VaUZ6HFfBkTZEYkO_iZiSH5ZkNv9ExghrtGOIW7KAhI6EgYwrJOBgM_rvmIGIuZKZVegccb5tMeJgkVyFadlB-nX78yNO9itGAt0yRD-u-mfF4xa6hBfH-7z4cv328-X78ubDu_nl7Ka0UquxVFxLjZZRp2kNrlKVZOgqpyxbUKZbBhyscNRJqBZWYFXn_1Hp0IqFkFqL82J-8HUB1mYTfQ9xawJ4sy-EuDQQR287NDsMuFaVwrwiKgFqJ3MrQGgcq3de4uA1DRvY_oCuuzNk1OwSMYdETE7E7BMxMlOvDtQmhm8TptH0PlnsOhgwTMmI3EoJrXmTpS_vSddhikPez14lpJKKZdWLo2pa9OjuZvgTaBbog8DGkFLE1lg_wujDkLP03cPD8nvof_3wuJeUxcMS49-xH6B-A9dC1YE
CitedBy_id crossref_primary_10_1016_j_cnsns_2025_108752
crossref_primary_10_3390_ijgi14020058
Cites_doi 10.1016/j.trc.2022.103856
10.1109/ICBDA55095.2022.9760355
10.1007/978-3-540-24741-8_44
10.1016/j.joes.2021.03.001
10.1007/s00773-023-00945-6
10.13340/j.jsmu.202208070214
10.1109/ICOSEC51865.2021.9591958
10.1109/ACCESS.2021.3078642
10.1007/s13131-020-1638-5
10.1016/j.enavi.2016.06.002
10.1007/s11804-020-00138-2
10.1016/j.oceaneng.2023.114930
10.1109/OCEANS.2012.6404872
10.1002/9780470669488.ch2
10.1016/j.oceaneng.2020.108086
10.1016/j.oceaneng.2023.114503
10.1007/s12517-021-06930-w
10.1016/j.isci.2023.106383
10.1109/ACCESS.2023.3234121
10.1016/j.ress.2023.109489
10.1016/j.oceaneng.2018.08.005
10.1109/ICMA54519.2022.9856198
10.1007/s10707-021-00434-1
10.1109/ICTIS54573.2021.9798623
10.1016/j.oceaneng.2018.02.060
10.23919/APNOMS.2019.8892899
10.1016/j.oceaneng.2021.109041
10.3390/s19122706
10.1016/j.oceaneng.2022.113036
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-71779-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 17
ExternalDocumentID oai_doaj_org_article_04dea28565e94104aa7d46d5aea9d178
10.1038/s41598-024-71779-4
39271771
10_1038_s41598_024_71779_4
Genre Journal Article
GrantInformation_xml – fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 22010502000
  funderid: http://dx.doi.org/10.13039/501100003399
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 22010502000
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c485t-52848ec10d807ad65641ed6d5c1b018f1a2ac3d0d4a6bc3e6752904dec3b34883
IEDL.DBID M48
ISSN 2045-2322
IngestDate Tue Oct 14 19:07:33 EDT 2025
Sun Oct 26 04:13:15 EDT 2025
Thu Oct 02 12:06:07 EDT 2025
Tue Oct 07 07:48:06 EDT 2025
Wed Feb 19 02:03:11 EST 2025
Wed Oct 01 04:02:05 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Fri Feb 21 02:38:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ship trajectory
ACTD-DP algorithm
AIS
Trajectory compression
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-52848ec10d807ad65641ed6d5c1b018f1a2ac3d0d4a6bc3e6752904dec3b34883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/04dea28565e94104aa7d46d5aea9d178
PMID 39271771
PQID 3104345451
PQPubID 2041939
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_04dea28565e94104aa7d46d5aea9d178
unpaywall_primary_10_1038_s41598_024_71779_4
proquest_miscellaneous_3104538829
proquest_journals_3104345451
pubmed_primary_39271771
crossref_citationtrail_10_1038_s41598_024_71779_4
crossref_primary_10_1038_s41598_024_71779_4
springer_journals_10_1038_s41598_024_71779_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-13
PublicationDateYYYYMMDD 2024-09-13
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References MakrisAEvaluating the effect of compressing algorithms for trajectory similarity and classification problemsGeoInformatica20212567971110.1007/s10707-021-00434-1
Lei, P.-R., Yu, P.-R. & Peng, W.-C. A Framework for maritime anti-collision pattern discovery from AIS network. In 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). 1–4 https://doi.org/10.23919/APNOMS.2019.8892899 (IEEE, 2019).
ShukaiZZhengjiangLXiankuZGuoyouSYaoCA method for AIS track data compression based on Douglas–Peucker algorithmJ. Harbin Eng. Univ.201536595599
HanPYangXBig data-driven automatic generation of ship route planning in complex maritime environmentsActa Oceanol. Sin.20203911312010.1007/s13131-020-1638-5
Barco, S. G., Lockhart, G. G. & Swingle, W. M. Using RADAR & AIS to investigate ship behavior in the Chesapeake Bay ocean approach off of Virginia, USA. In 2012 Oceans. 1–8 https://doi.org/10.1109/OCEANS.2012.6404872 (IEEE, 2012).
MathWorks, I. Matlab. https://www.mathworks.com/products/matlab/ (2024).
JeongSKimT-WGenerating a path-search graph based on ship-trajectory data: Route search via dynamic programming for autonomous shipsOcean Eng.202328311450310.1016/j.oceaneng.2023.114503
GaoMShiG-YShip spatiotemporal key feature point online extraction based on AIS multi-sensor data using an improved sliding window algorithmSensors20191927062019Senso..19.2706G10.3390/s19122706312081316630457
AnKE-navigation services for non-SOLAS shipsInt. J. e-Navigat. Maritime Econ.20164132210.1016/j.enavi.2016.06.002
LiHUnsupervised hierarchical methodology of maritime traffic pattern extraction for knowledge discoveryTransport. Res. Part C Emerg. Technol.202214310385610.1016/j.trc.2022.103856
ZhuFMaZShip trajectory online compression algorithm considering handling patternsIEEE Access20219701827019110.1109/ACCESS.2021.3078642
Guo, Y. & Ding, Z. Application of big data in analyzing the impact of explosive cyclone on ship navigation safety. In 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). 910–913 https://doi.org/10.1109/ICOSEC51865.2021.9591958 (IEEE, 2021).
Meratnia, N. & De By, R. A. Spatiotemporal compression techniques for moving point objects. In (Goos, G. et al. eds.) Advances in Database Technology-EDBT 2004. Lecture Notes in Computer Science. Vol. 2992. 765–782 https://doi.org/10.1007/978-3-540-24741-8_44 (Springer, 2004).
Douglas, D. H. & Peucker, T. K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. In Classics in Cartography (Dodge, M. ed.). 1 Ed. 15–28 https://doi.org/10.1002/9780470669488.ch2 (Wiley, 2011).
Liu, H., Liu, Y. & Zong, Z. Research on ship abnormal behavior detection method based on graph neural network. In 2022 IEEE International Conference on Mechatronics and Automation (ICMA). 834–838 https://doi.org/10.1109/ICMA54519.2022.9856198 (IEEE, 2022).
Jie, G., Xin, S., Xiaowei, S. & Daofang, C. Online compression algorithm of fishing ship trajectories based on improved sliding window. J. Shanghai Maritime Univ.44, 17–24 https://doi.org/10.13340/j.jsmu.202208070214 (2023).
ZhouZZhangYYuanXWangHCompressing AIS trajectory data based on the multi-objective peak Douglas–Peucker algorithmIEEE Access2023116802682110.1109/ACCESS.2023.3234121
BaiXXieZXuXXiaoYAn adaptive threshold fast DBSCAN algorithm with preserved trajectory feature points for vessel trajectory clusteringOcean Eng.202328011493010.1016/j.oceaneng.2023.114930
LiuZLiYZhangZYuWDuYSpatial modeling and analysis based on spatial information of the ship encounters for intelligent navigation safetyReliabil. Eng. Syst. Saf.202323810948910.1016/j.ress.2023.109489
TangCA method for compressing AIS trajectory data based on the adaptive-threshold Douglas–Peucker algorithmOcean Eng.202123210904110.1016/j.oceaneng.2021.109041
Hao, Y., Zheng, P. & Han, Z. Automatic generation of water route based on AIS big data and ECDIS. Arab. J. Geosci.14, 1–8 https://doi.org/10.1007/s12517-021-06930-w (Springer, 2021).
ZhangS-KShiG-YLiuZ-JZhaoZ-WWuZ-LData-driven based automatic maritime routing from massive AIS trajectories in the face of disparityOcean Eng.20181552402502018OcEng.155..240Z10.1016/j.oceaneng.2018.02.060
ZhaoLShiGA method for simplifying ship trajectory based on improved Douglas–Peucker algorithmOcean Eng.201816637462018OcEng.166...37Z10.1016/j.oceaneng.2018.08.005
BlindheimSJohansenTAUtneIBRisk-based supervisory control for autonomous ship navigationJ. Mar. Sci. Technol.20232862464810.1007/s00773-023-00945-6
Cui, C. & Dong, Z. Ship space-time AIS trajectory data compression method. In 2022 7th International Conference on Big Data Analytics (ICBDA). 40–44 https://doi.org/10.1109/ICBDA55095.2022.9760355 (IEEE, 2022).
WeiZXieXZhangXAIS trajectory simplification algorithm considering ship behavioursOcean Eng.202021610808610.1016/j.oceaneng.2020.108086
Qi, Z., Yi, C., Li, X. & Wen, G. Improved sliding window trajectory compression algorithm considering motion characteristics. J. Geomat. Sci. Technol.37, 622–627 (2020) (5 citations (CNKI)[2024-3-13]).
HuangCQiXZhengJZhuRShenJA maritime traffic route extraction method based on density-based spatial clustering of applications with noise for multi-dimensional dataOcean Eng.202326811303610.1016/j.oceaneng.2022.113036
Chen, J., Zhang, J., Chen, H., Zhao, Y. & Wang, H. A TDV attention-based BiGRU network for AIS-based vessel trajectory prediction. iScience26, 106383 https://doi.org/10.1016/j.isci.2023.106383 (2023).
Huang, C. et al. A simulation model for marine traffic environment risk assessment in the traffic separation scheme. In 2021 6th International Conference on Transportation Information and Safety (ICTIS). 213–221 https://doi.org/10.1109/ICTIS54573.2021.9798623 (IEEE, 2021).
KimESensitive resource and traffic density risk analysis of marine spill accidents using automated identification system big dataJ. Mar. Sci. Appl.202019173181408666710.1007/s11804-020-00138-2
MurrayBPereraLPShip behavior prediction via trajectory extraction-based clustering for maritime situation awarenessJ. Ocean Eng. Sci.2022711310.1016/j.joes.2021.03.001
S Jeong (71779_CR15) 2023; 283
71779_CR16
71779_CR17
71779_CR9
71779_CR7
71779_CR12
71779_CR13
71779_CR5
71779_CR4
71779_CR1
S-K Zhang (71779_CR22) 2018; 155
P Han (71779_CR6) 2020; 39
S Blindheim (71779_CR8) 2023; 28
K An (71779_CR3) 2016; 4
Z Zhou (71779_CR28) 2023; 11
71779_CR32
C Huang (71779_CR24) 2023; 268
71779_CR31
X Bai (71779_CR21) 2023; 280
Z Liu (71779_CR10) 2023; 238
L Zhao (71779_CR29) 2018; 166
M Gao (71779_CR19) 2019; 19
B Murray (71779_CR14) 2022; 7
71779_CR27
F Zhu (71779_CR18) 2021; 9
Z Shukai (71779_CR25) 2015; 36
E Kim (71779_CR2) 2020; 19
H Li (71779_CR26) 2022; 143
Z Wei (71779_CR23) 2020; 216
A Makris (71779_CR11) 2021; 25
71779_CR20
C Tang (71779_CR30) 2021; 232
References_xml – reference: HanPYangXBig data-driven automatic generation of ship route planning in complex maritime environmentsActa Oceanol. Sin.20203911312010.1007/s13131-020-1638-5
– reference: Liu, H., Liu, Y. & Zong, Z. Research on ship abnormal behavior detection method based on graph neural network. In 2022 IEEE International Conference on Mechatronics and Automation (ICMA). 834–838 https://doi.org/10.1109/ICMA54519.2022.9856198 (IEEE, 2022).
– reference: BlindheimSJohansenTAUtneIBRisk-based supervisory control for autonomous ship navigationJ. Mar. Sci. Technol.20232862464810.1007/s00773-023-00945-6
– reference: Huang, C. et al. A simulation model for marine traffic environment risk assessment in the traffic separation scheme. In 2021 6th International Conference on Transportation Information and Safety (ICTIS). 213–221 https://doi.org/10.1109/ICTIS54573.2021.9798623 (IEEE, 2021).
– reference: JeongSKimT-WGenerating a path-search graph based on ship-trajectory data: Route search via dynamic programming for autonomous shipsOcean Eng.202328311450310.1016/j.oceaneng.2023.114503
– reference: Cui, C. & Dong, Z. Ship space-time AIS trajectory data compression method. In 2022 7th International Conference on Big Data Analytics (ICBDA). 40–44 https://doi.org/10.1109/ICBDA55095.2022.9760355 (IEEE, 2022).
– reference: MurrayBPereraLPShip behavior prediction via trajectory extraction-based clustering for maritime situation awarenessJ. Ocean Eng. Sci.2022711310.1016/j.joes.2021.03.001
– reference: ZhuFMaZShip trajectory online compression algorithm considering handling patternsIEEE Access20219701827019110.1109/ACCESS.2021.3078642
– reference: GaoMShiG-YShip spatiotemporal key feature point online extraction based on AIS multi-sensor data using an improved sliding window algorithmSensors20191927062019Senso..19.2706G10.3390/s19122706312081316630457
– reference: Lei, P.-R., Yu, P.-R. & Peng, W.-C. A Framework for maritime anti-collision pattern discovery from AIS network. In 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). 1–4 https://doi.org/10.23919/APNOMS.2019.8892899 (IEEE, 2019).
– reference: KimESensitive resource and traffic density risk analysis of marine spill accidents using automated identification system big dataJ. Mar. Sci. Appl.202019173181408666710.1007/s11804-020-00138-2
– reference: WeiZXieXZhangXAIS trajectory simplification algorithm considering ship behavioursOcean Eng.202021610808610.1016/j.oceaneng.2020.108086
– reference: Guo, Y. & Ding, Z. Application of big data in analyzing the impact of explosive cyclone on ship navigation safety. In 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). 910–913 https://doi.org/10.1109/ICOSEC51865.2021.9591958 (IEEE, 2021).
– reference: Chen, J., Zhang, J., Chen, H., Zhao, Y. & Wang, H. A TDV attention-based BiGRU network for AIS-based vessel trajectory prediction. iScience26, 106383 https://doi.org/10.1016/j.isci.2023.106383 (2023).
– reference: MathWorks, I. Matlab. https://www.mathworks.com/products/matlab/ (2024).
– reference: ShukaiZZhengjiangLXiankuZGuoyouSYaoCA method for AIS track data compression based on Douglas–Peucker algorithmJ. Harbin Eng. Univ.201536595599
– reference: MakrisAEvaluating the effect of compressing algorithms for trajectory similarity and classification problemsGeoInformatica20212567971110.1007/s10707-021-00434-1
– reference: ZhaoLShiGA method for simplifying ship trajectory based on improved Douglas–Peucker algorithmOcean Eng.201816637462018OcEng.166...37Z10.1016/j.oceaneng.2018.08.005
– reference: Qi, Z., Yi, C., Li, X. & Wen, G. Improved sliding window trajectory compression algorithm considering motion characteristics. J. Geomat. Sci. Technol.37, 622–627 (2020) (5 citations (CNKI)[2024-3-13]).
– reference: TangCA method for compressing AIS trajectory data based on the adaptive-threshold Douglas–Peucker algorithmOcean Eng.202123210904110.1016/j.oceaneng.2021.109041
– reference: Barco, S. G., Lockhart, G. G. & Swingle, W. M. Using RADAR & AIS to investigate ship behavior in the Chesapeake Bay ocean approach off of Virginia, USA. In 2012 Oceans. 1–8 https://doi.org/10.1109/OCEANS.2012.6404872 (IEEE, 2012).
– reference: Hao, Y., Zheng, P. & Han, Z. Automatic generation of water route based on AIS big data and ECDIS. Arab. J. Geosci.14, 1–8 https://doi.org/10.1007/s12517-021-06930-w (Springer, 2021).
– reference: Douglas, D. H. & Peucker, T. K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. In Classics in Cartography (Dodge, M. ed.). 1 Ed. 15–28 https://doi.org/10.1002/9780470669488.ch2 (Wiley, 2011).
– reference: AnKE-navigation services for non-SOLAS shipsInt. J. e-Navigat. Maritime Econ.20164132210.1016/j.enavi.2016.06.002
– reference: LiuZLiYZhangZYuWDuYSpatial modeling and analysis based on spatial information of the ship encounters for intelligent navigation safetyReliabil. Eng. Syst. Saf.202323810948910.1016/j.ress.2023.109489
– reference: HuangCQiXZhengJZhuRShenJA maritime traffic route extraction method based on density-based spatial clustering of applications with noise for multi-dimensional dataOcean Eng.202326811303610.1016/j.oceaneng.2022.113036
– reference: LiHUnsupervised hierarchical methodology of maritime traffic pattern extraction for knowledge discoveryTransport. Res. Part C Emerg. Technol.202214310385610.1016/j.trc.2022.103856
– reference: BaiXXieZXuXXiaoYAn adaptive threshold fast DBSCAN algorithm with preserved trajectory feature points for vessel trajectory clusteringOcean Eng.202328011493010.1016/j.oceaneng.2023.114930
– reference: Jie, G., Xin, S., Xiaowei, S. & Daofang, C. Online compression algorithm of fishing ship trajectories based on improved sliding window. J. Shanghai Maritime Univ.44, 17–24 https://doi.org/10.13340/j.jsmu.202208070214 (2023).
– reference: ZhouZZhangYYuanXWangHCompressing AIS trajectory data based on the multi-objective peak Douglas–Peucker algorithmIEEE Access2023116802682110.1109/ACCESS.2023.3234121
– reference: ZhangS-KShiG-YLiuZ-JZhaoZ-WWuZ-LData-driven based automatic maritime routing from massive AIS trajectories in the face of disparityOcean Eng.20181552402502018OcEng.155..240Z10.1016/j.oceaneng.2018.02.060
– reference: Meratnia, N. & De By, R. A. Spatiotemporal compression techniques for moving point objects. In (Goos, G. et al. eds.) Advances in Database Technology-EDBT 2004. Lecture Notes in Computer Science. Vol. 2992. 765–782 https://doi.org/10.1007/978-3-540-24741-8_44 (Springer, 2004).
– volume: 143
  start-page: 103856
  year: 2022
  ident: 71779_CR26
  publication-title: Transport. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2022.103856
– ident: 71779_CR27
  doi: 10.1109/ICBDA55095.2022.9760355
– volume: 36
  start-page: 595
  year: 2015
  ident: 71779_CR25
  publication-title: J. Harbin Eng. Univ.
– ident: 71779_CR16
  doi: 10.1007/978-3-540-24741-8_44
– volume: 7
  start-page: 1
  year: 2022
  ident: 71779_CR14
  publication-title: J. Ocean Eng. Sci.
  doi: 10.1016/j.joes.2021.03.001
– volume: 28
  start-page: 624
  year: 2023
  ident: 71779_CR8
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-023-00945-6
– ident: 71779_CR17
  doi: 10.13340/j.jsmu.202208070214
– ident: 71779_CR9
  doi: 10.1109/ICOSEC51865.2021.9591958
– volume: 9
  start-page: 70182
  year: 2021
  ident: 71779_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3078642
– ident: 71779_CR32
– volume: 39
  start-page: 113
  year: 2020
  ident: 71779_CR6
  publication-title: Acta Oceanol. Sin.
  doi: 10.1007/s13131-020-1638-5
– volume: 4
  start-page: 13
  year: 2016
  ident: 71779_CR3
  publication-title: Int. J. e-Navigat. Maritime Econ.
  doi: 10.1016/j.enavi.2016.06.002
– volume: 19
  start-page: 173
  year: 2020
  ident: 71779_CR2
  publication-title: J. Mar. Sci. Appl.
  doi: 10.1007/s11804-020-00138-2
– volume: 280
  start-page: 114930
  year: 2023
  ident: 71779_CR21
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114930
– ident: 71779_CR4
  doi: 10.1109/OCEANS.2012.6404872
– ident: 71779_CR31
  doi: 10.1002/9780470669488.ch2
– volume: 216
  start-page: 108086
  year: 2020
  ident: 71779_CR23
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108086
– volume: 283
  start-page: 114503
  year: 2023
  ident: 71779_CR15
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114503
– ident: 71779_CR7
  doi: 10.1007/s12517-021-06930-w
– ident: 71779_CR12
  doi: 10.1016/j.isci.2023.106383
– ident: 71779_CR20
– volume: 11
  start-page: 6802
  year: 2023
  ident: 71779_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3234121
– volume: 238
  start-page: 109489
  year: 2023
  ident: 71779_CR10
  publication-title: Reliabil. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109489
– volume: 166
  start-page: 37
  year: 2018
  ident: 71779_CR29
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.08.005
– ident: 71779_CR13
  doi: 10.1109/ICMA54519.2022.9856198
– volume: 25
  start-page: 679
  year: 2021
  ident: 71779_CR11
  publication-title: GeoInformatica
  doi: 10.1007/s10707-021-00434-1
– ident: 71779_CR1
  doi: 10.1109/ICTIS54573.2021.9798623
– volume: 155
  start-page: 240
  year: 2018
  ident: 71779_CR22
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.02.060
– ident: 71779_CR5
  doi: 10.23919/APNOMS.2019.8892899
– volume: 232
  start-page: 109041
  year: 2021
  ident: 71779_CR30
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109041
– volume: 19
  start-page: 2706
  year: 2019
  ident: 71779_CR19
  publication-title: Sensors
  doi: 10.3390/s19122706
– volume: 268
  start-page: 113036
  year: 2023
  ident: 71779_CR24
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113036
SSID ssj0000529419
Score 2.469035
Snippet Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas–Peucker (DP) algorithm, typically use static...
Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas-Peucker (DP) algorithm, typically use static...
Abstract Traditional trajectory compression algorithms, such as the siliding window (SW) algorithm and the Douglas–Peucker (DP) algorithm, typically use static...
SourceID doaj
unpaywall
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21408
SubjectTerms 639/705
639/705/1046
639/705/117
704/829
ACTD-DP algorithm
AIS
Algorithms
Compression
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Ship trajectory
Threshold limits
Trajectory compression
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEA9yIOqD-N-ep0TwzSuXf92mj6t4nIIi6MG9hWmSnsraXXa7yL7dd_Ab-kmcabp1BTl98LVNSpKZ6fwmmfyGsWfoRUpQEcOSutC5AdmgzUmZq0nUsghNrD3tQ759Nzk5NW_OirOdUl-UE5bogdPCHQkTIiiLuCNWBmMHgDKYSSggQhVk2V_zFbbaCaYSq7fC1tVwS0Zoe7RCT0W3yRSlH5ZllZvfPFFP2P8nlLlzQnqDXVu3C9h8g9lsxwkd32I3B_TIp2nUt9mV2N5hV1M9yc1dtpryVBGaIxTllC3eZ7m253z6-gPvlvCl36PfcPJdgc9bjvCPQ4AF_fQ4MVriE-xDZ1J8WzvFRz7A7B8X39_HPhGDw-x8vvzcffp6j50ev_r48iQfqirk3tiiw8jTGhu9FMGKEgLiOSNjwBX1shbSNhIUeB1EMDCpvY4YUaiKpOB1rdHc9X22187b-JBxozwGkA2RjpVGNCViGR1FUcdApDYQMia3K-z8QDlOlS9mrj_61tYlqTiUiuul4kzGno99Folw49LWL0hwY0siy-4foAq5QYXc31QoYwdbsbvBglcOYa_RBvGlzNjT8TXaHh2oQBvn69QGHYZVVcYeJHUZR4K4k8aIvQ-3-vPr45dN6HDUsX-Y__7_mP8jdl2RXVBhDH3A9rrlOj5GqNXVT3qr-gkN5yEf
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrRDlgHiWQEFG4kajxo9skgNCW9SqILGqgEq9WY7tLEJLsuxmhfbGf-Af8kuYyatFQiuuiR3ZmRnPZ8_4G4CX6EUSIzxuS_JYhsrwAm2O81CMveSxK3xu6Rzyw3R8dqHeX8aXOzDt78JQWmW_JjYLtassnZEfIQxRUqG_528W30OqGkXR1b6EhulKK7jXDcXYDdgVxIw1gt3jk-n5x-HUheJaimfd7ZlIpkcr9GB0y0xQWmKSZKH6y0M1RP7_Qp_XIqe34da6XJjNDzOfX3NOp3fhTocq2aRVg3uw48v7cLOtM7l5AKsJaytFM4SojLLIm-zXcsYm7z6xemm-Nmf3G0Y-zbGqZAgLmXFmQYshI6ZLfIJ9KFbF-poq1rMOfv_--evcNwkazMxn-NfqL98ewsXpyee3Z2FXbSG0Ko1r3JGmKvWWRy6NEuMQ5ynu3djFlucRTwtuhLHSRU6ZcW6lx52GyCLlvJW5xGVAPoJRWZX-MTAlLG4sCyIjS1RUJIhxpI_i3DsiuzEuAN7_YW07KnKqiDHXTUhcprqVikap6EYqWgXwauizaIk4trY-JsENLYlEu3lQLWe6s0lNgzciRUjrUSkiZUziFE7YeJM5nqQBHPRi151lr_SVHgbwYniNNkmBFlP6at22QUeSiiyA_VZdhpEgHqUxYu_DXn-uPr5tQoeDjv3H_J9sH_pT2BOk8VQKQx7AqF6u_TMEV3X-vLOYP1NzHu4
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9QwDLaWWSHggHhTWFCQuDEVzaPT9FgQq2UkENKy0t4iN0kX0NAZzXSE5sZ_4B_yS3D6YlegFVzbOEpqu_4cOzbAc7IiGQpPbkmZylghr0jnOI_FzEueusqXNpxDvns_OzpR89P0dA-mw12YC_H7tnT3hkxMuAYmQt5gluWxugL7mgRTT2C_KObH8_FMJUStFM_7uzFE_vJP4gv2py3T_zdseS4uegOubesV7r7hYnHO9Bzegps9ZmRFx-TbsOfrO3C16yK5uwubgnV9oBkBUBZyxNvc1vqMFW-PWbPGL-3J_I4Fi-XYsmYE-hg6XIVfHQt1LOkJ0YRIFBs6pljPenD98_uPD75Nv2C4OFuuPzefvt6Dk8M3H18fxX0vhdgqnTbkb2qlveWJ00mGjlCc4t7NXGp5mXBdcRRopUucwllppSc_QuSJct7KUpKSy_swqZe1fwhMCUtuYxVKjWUqqTJCMNInaeldKGWDLgI-fGFj-0Ljod_FwrQBb6lNxxVDXDEtV4yK4MVIs-rKbFw6-lVg3DgylMhuH5DkmF7jTFg8Ck2A1ZNQJAoxc4o2jB5zxzMdwcHAdtPr7cYQ2FVSEarkETwbX5PGhTAK1n657caQmdAij-BBJy7jSghthjUS9XSQn9-TX7ah6Shj_7D_R_83-2O4LoIGhMYX8gAmzXrrnxCUasqnvQb9Auv9E1M
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN5o2fiRxjguiKkhUlWClcrIc2yktS3a1mxVaTvwH_iG_hJkku7SoqsrVsSPbmfF8kxl_A_ASrUhuRUC3pExlrCyvUOc4j0UWJE99FUpH_yE_7Gd7I_X-MD3saXLoLsyZ-L3UO3M0MHQJTFDWYJ4XsboKG1mKuHsAG6P9g-Fnqh6HuCRGaCD6WzHnDzxjeVqC_vNQ5amI6E24vqindvndjsenjM7u7a560bzlKqRck6_bi6bcdj_-YXK83HruwK0ee7JhJyx34Uqo78G1rhrl8j7Mh6yrJ80QyDLKNW9zZOsjNnz3kTUze9L-4V8ysnyeTWqG4JFZb6d0ZDLiw8QWHEMRLbaqvOIC60H675-_DkKbxsHs-GgyO26-fHsAo923n97sxX1NhtgpnTbot2qlg-OJ10luPaJBxYPPfOp4mXBdcSuskz7xymalkwH9EVEkygcnS4mHhXwIg3pSh8fAlHDoflZEWZarpMoRCcmQpGXwRIljfQR89b2M6wnLqW7G2LSBc6lNt5kGN9O0m2lUBK_WY6YdXceFvV-TGKx7EtV224BfzPSaa2jyVmgEvqFQ6Lxam3uFC7bBFp7nOoLNlRCZXv_nBkGzkgrRKY_gxfoxai6FY2wdJouuD5obLYoIHnXCt54JolaaI47eWknj35dftKCttcReYv1P_q_7U7ghSHCpgIbchEEzW4RnCMma8nmvi38AsvgpVA
  priority: 102
  providerName: Unpaywall
Title A method for compressing AIS trajectory based on the adaptive core threshold difference Douglas–Peucker algorithm
URI https://link.springer.com/article/10.1038/s41598-024-71779-4
https://www.ncbi.nlm.nih.gov/pubmed/39271771
https://www.proquest.com/docview/3104345451
https://www.proquest.com/docview/3104538829
https://doi.org/10.1038/s41598-024-71779-4
https://doaj.org/article/04dea28565e94104aa7d46d5aea9d178
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB_ugagfxLfVs6wgfvGi2UeazQeRXLnjLFwpnoX6KWyym4rE9HEt2v_emTzqCeW4T4HNbtjdmcn8Zh_zA3iLXiQ0wmFYkgbSU4bnaHOce6LnJA9s7tKM1iEvhr3zsRpMgsketMdtmwm82hnaEZ_UeFl8-LPYfEaD_1RfGdcfr9AJ0UUxQScLwzDy1Lv5wiNiKdqAbVg29uEQnVdE7A4XTQRQp_8WkaroPygvu4f4QjRXa3Z_-T_3VWX53wVNr22r3oe763JuNr9NUVzzXGcP4UEDOVlc68gj2HPlY7hTk1BunsAiZjWNNEP8yuiIeXU0tpyy-MslWy3Nz2phf8PI4Vk2KxliRmasmdOfklEaTCzBNrSRxVrClcyxBpt7I1ed3WCmmOJsrX78egrjs9Nv_XOvIWLwMqWDFQarWmmXcd9qPzQWIaDizvZskPHU5zrnRphMWt8q00sz6TAIEZGvrMtkKvEPIZ_BQTkr3QtgSmQYc-aUpyxUfh4i_JHOD1JnKQ-OsR3g7fwmWZOlnMgyiqTaLZc6qWWSoEySSiaJ6sD7bZt5naPjxtonJLZtTcqvXRXMltOkMdeEOm-ERrTrUD18ZUxoFQ7YOBNZHuoOHLVCT1qdTRApK6kQkvIOvNm-RnOlPRhTutm6roM-RouoA89rZdn2BKEq9RFbH7fa8-_jNw3oeKthtxj_y1v07RXcE6T0RJUhj-BgtVy71wi-VmkX9sNJ2IXDOB5cDvB5cjocfcXSfq_frRY0upWB4ZvxcBR__wsn9yzl
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxNBDLZKK1Q4IN4ECgwSnOiqO4_N7h4qlEKrlLZRBa3U23R2ZhKEwibkoSo3_gP_hx_DL8HeV4uEIi697s6sPGuP_XnssQFeoxWJjfDolmSRDJThfdxznAei7SWPXN9nls4hj3rt7qn6eBadrcCv-i4MpVXWOrFQ1G5k6Yx8C2GIkgrtPX83_h5Q1yiKrtYtNEzVWsFtFyXGqosdB35xgS7cdHv_A_L7jRB7uyfvu0HVZSCwKolm6IklKvGWhy4JY-MQ3yjuXdtFlmchT_rcCGOlC50y7cxKjwhbpKFy3spMovhL_O4NWEPiUnT-1nZ2e8efmlMeiqMpnla3dUKZbE3RYtKtNkFpkHGcBuovi1g0DvgX2r0Sqb0N6_N8bBYXZji8Ygz37sKdCsWyTil292DF5_fhZtnXcvEAph1WdqZmCIkZZa0X2bb5gHX2P7PZxHwtYgULRjbUsVHOEIYy48yYlC-jypr4BOdQbIzVPVysZxXc__3j57EvEkKYGQ6QS7Mv3x7C6bX890ewmo9y_wSYEhYd2T4VP4tV2I8RU0kfRpl3VFzHuBbw-g9rW5U-pw4cQ12E4GWiS65o5IouuKJVC942c8Zl4Y-lo3eIcc1IKtpdPBhNBrrSAZqINyJBCO1RKEJlTOwULth4kzoeJy3YqNmuK00y1Zdy34JXzWvUARTYMbkfzcsxaLgSkbbgcSkuDSWIf4lGnL1Zy8_lx5ctaLORsf9Y_9PlpL-E9e7J0aE-3O8dPINbgqSf2nDIDVidTeb-OQK7Wfai2j0Mzq97w_4B-SNbkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRbwOiDeFBYwEJzZq_EidHBAqLNWWhdVKsFJvxrGdIlSS0qZa9cZ_4N_wc_glzOS1i4QqLntN7MjOzHg-e8bzEfIMvIgy3MO2JI1EIA3LwOYYC_jACxa5zKcWzyE_HA72j-W7STTZIr_auzCYVtmuidVC7QqLZ-R9gCFSSPD3rJ81aRFHe6NX8-8BMkhhpLWl06hV5MCvT2D7tnw53gNZP-d89PbTm_2gYRgIrIyjEnZhsYy9ZaGLQ2UcYBvJvBu4yLI0ZHHGDDdWuNBJM0it8ICueRJK561IBai-gO9eIBeVEAmmE6qJ6s53MIImWdLc0wlF3F-Cr8T7bBwTIJVKAvmXL6woA_6Fc8_EaK-RK6t8btYnZjY74wZHN8j1Br_SYa1wN8mWz2-RSzWj5fo2WQ5pzUlNAQxTzFev8mzzKR2OP9JyYb5WUYI1Re_paJFTAKDUODPHZZdiTU14An0wKkZb9hbraQP0f__4eeSrVBBqZlOQSfnl2x1yfC5__S7Zzovc3ydUcgtb2AzLnikZZgrQlPBhlHqHZXWM6xHW_mFtm6LnyL0x01XwXcS6looGqehKKlr2yIuuz7wu-bGx9WsUXNcSy3VXD4rFVDfWr3HwhscAnj0oRSiNUU7ChI03iWMq7pGdVuy6WUOW-lTje-Rp9xqsH0M6JvfFqm4DLivmSY_cq9WlGwkgXxwj9N5t9ef045smtNvp2H_M_8HmoT8hl8FM9fvx4cFDcpWj8iP_htgh2-Vi5R8BoivTx5XpUPL5vG31D2OIWSw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN5o2fiRxjguiKkhUlWClcrIc2yktS3a1mxVaTvwH_iG_hJkku7SoqsrVsSPbmfF8kxl_A_ASrUhuRUC3pExlrCyvUOc4j0UWJE99FUpH_yE_7Gd7I_X-MD3saXLoLsyZ-L3UO3M0MHQJTFDWYJ4XsboKG1mKuHsAG6P9g-Fnqh6HuCRGaCD6WzHnDzxjeVqC_vNQ5amI6E24vqindvndjsenjM7u7a560bzlKqRck6_bi6bcdj_-YXK83HruwK0ee7JhJyx34Uqo78G1rhrl8j7Mh6yrJ80QyDLKNW9zZOsjNnz3kTUze9L-4V8ysnyeTWqG4JFZb6d0ZDLiw8QWHEMRLbaqvOIC60H675-_DkKbxsHs-GgyO26-fHsAo923n97sxX1NhtgpnTbot2qlg-OJ10luPaJBxYPPfOp4mXBdcSuskz7xymalkwH9EVEkygcnS4mHhXwIg3pSh8fAlHDoflZEWZarpMoRCcmQpGXwRIljfQR89b2M6wnLqW7G2LSBc6lNt5kGN9O0m2lUBK_WY6YdXceFvV-TGKx7EtV224BfzPSaa2jyVmgEvqFQ6Lxam3uFC7bBFp7nOoLNlRCZXv_nBkGzkgrRKY_gxfoxai6FY2wdJouuD5obLYoIHnXCt54JolaaI47eWknj35dftKCttcReYv1P_q_7U7ghSHCpgIbchEEzW4RnCMma8nmvi38AsvgpVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+compressing+AIS+trajectory+based+on+the+adaptive+core+threshold+difference+Douglas-Peucker+algorithm&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Ting&rft.au=Wang%2C+Zhiming&rft.au=Wang%2C+Peiliang&rft.date=2024-09-13&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=21408&rft_id=info:doi/10.1038%2Fs41598-024-71779-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon