Application of YOLOv4 Algorithm for Foreign Object Detection on a Belt Conveyor in a Low-Illumination Environment
The most common failures of belt conveyors are runout, coal piles and longitudinal tears. The detection methods for longitudinal tearing are currently not particularly effective. A key study area for minimizing longitudinal belt tears with the advancement of machine learning is how to use machine vi...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 22; no. 18; p. 6851 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s22186851 |
Cover
| Abstract | The most common failures of belt conveyors are runout, coal piles and longitudinal tears. The detection methods for longitudinal tearing are currently not particularly effective. A key study area for minimizing longitudinal belt tears with the advancement of machine learning is how to use machine vision technology to detect foreign items on the belt. In this study, the real-time detection of foreign items on belt conveyors is accomplished using a machine vision method. Firstly, the KinD++ low-light image enhancement algorithm is used to improve the quality of the captured low-quality images through feature processing. Then, the GridMask method partially masks the foreign objects in the training images, thus extending the data set. Finally, the YOLOv4 algorithm with optimized anchor boxes is combined to achieve efficient detection of foreign objects in belt conveyors, and the method is verified as effective. |
|---|---|
| AbstractList | The most common failures of belt conveyors are runout, coal piles and longitudinal tears. The detection methods for longitudinal tearing are currently not particularly effective. A key study area for minimizing longitudinal belt tears with the advancement of machine learning is how to use machine vision technology to detect foreign items on the belt. In this study, the real-time detection of foreign items on belt conveyors is accomplished using a machine vision method. Firstly, the KinD++ low-light image enhancement algorithm is used to improve the quality of the captured low-quality images through feature processing. Then, the GridMask method partially masks the foreign objects in the training images, thus extending the data set. Finally, the YOLOv4 algorithm with optimized anchor boxes is combined to achieve efficient detection of foreign objects in belt conveyors, and the method is verified as effective. The most common failures of belt conveyors are runout, coal piles and longitudinal tears. The detection methods for longitudinal tearing are currently not particularly effective. A key study area for minimizing longitudinal belt tears with the advancement of machine learning is how to use machine vision technology to detect foreign items on the belt. In this study, the real-time detection of foreign items on belt conveyors is accomplished using a machine vision method. Firstly, the KinD++ low-light image enhancement algorithm is used to improve the quality of the captured low-quality images through feature processing. Then, the GridMask method partially masks the foreign objects in the training images, thus extending the data set. Finally, the YOLOv4 algorithm with optimized anchor boxes is combined to achieve efficient detection of foreign objects in belt conveyors, and the method is verified as effective.The most common failures of belt conveyors are runout, coal piles and longitudinal tears. The detection methods for longitudinal tearing are currently not particularly effective. A key study area for minimizing longitudinal belt tears with the advancement of machine learning is how to use machine vision technology to detect foreign items on the belt. In this study, the real-time detection of foreign items on belt conveyors is accomplished using a machine vision method. Firstly, the KinD++ low-light image enhancement algorithm is used to improve the quality of the captured low-quality images through feature processing. Then, the GridMask method partially masks the foreign objects in the training images, thus extending the data set. Finally, the YOLOv4 algorithm with optimized anchor boxes is combined to achieve efficient detection of foreign objects in belt conveyors, and the method is verified as effective. |
| Audience | Academic |
| Author | Li, Jun Xu, Liang Ma, Sencai Sun, Xu Chen, Yiming Pang, Yusong Cheng, Gang |
| AuthorAffiliation | 2 School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China 3 Faculty Mechanical, Maritime and Materials Engineering, Delft University of Technology, 2628 Delft, The Netherlands 1 Shandong Zhongheng Optoelectronic Technology Co., Ltd., Zaozhuang 277000, China |
| AuthorAffiliation_xml | – name: 2 School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China – name: 3 Faculty Mechanical, Maritime and Materials Engineering, Delft University of Technology, 2628 Delft, The Netherlands – name: 1 Shandong Zhongheng Optoelectronic Technology Co., Ltd., Zaozhuang 277000, China |
| Author_xml | – sequence: 1 givenname: Yiming surname: Chen fullname: Chen, Yiming – sequence: 2 givenname: Xu surname: Sun fullname: Sun, Xu – sequence: 3 givenname: Liang surname: Xu fullname: Xu, Liang – sequence: 4 givenname: Sencai surname: Ma fullname: Ma, Sencai – sequence: 5 givenname: Jun surname: Li fullname: Li, Jun – sequence: 6 givenname: Yusong orcidid: 0000-0001-8094-3436 surname: Pang fullname: Pang, Yusong – sequence: 7 givenname: Gang surname: Cheng fullname: Cheng, Gang |
| BookMark | eNp9kk1r3DAQhk1JaT7aQ_-BoZc24ERflqVLYbtN2oWFvbSHnoQsS44WWXJke8P--2rXISShFB1GvHrmHY1G59mJD15n2UcIrjDm4HpACDLKSvgmO4MEkYIhBE6e7U-z82HYAoAwxuxddoopJBQBcJbdL_reWSVHG3weTP5ns97sSL5wbYh2vOtyE2J-G6K2rc839VarMf-uxxSOCT6X-TftxnwZ_E7vE2sP0jo8FCvnps762fnG72wMvtN-fJ-9NdIN-sNjvMh-3978Wv4s1psfq-ViXSjCyrEogUbKgBLqktBaMZmagZBjXuqkQNpIAlRDpUElhwzxRplKI0oaYwgtFccX2Wr2bYLcij7aTsa9CNKKoxBiK2QcrXJaMIYMwaiWgABCKa45hzVlNa9rWCXb5HU5e02-l_sH6dyTIQTiMAPxNIMEf53hfqo73ajUc5TuxQ1ennh7J9qwE7wEhPMyGXx-NIjhftLDKDo7KO2c9DpMg0AVrCirIGAJ_fQK3YYp-vSuB4pSUBFOE3U1U61M3VpvQqqr0mp0Z1X6S8YmfVGlh8MIUZQSvswJKoZhiNr8t93rV6yy43HqqYh1_8j4Cy8k1fE |
| CitedBy_id | crossref_primary_10_3390_s24165251 crossref_primary_10_1109_ACCESS_2023_3317048 crossref_primary_10_1016_j_measurement_2023_112735 crossref_primary_10_1007_s40747_023_01011_9 crossref_primary_10_1007_s11760_024_03046_y crossref_primary_10_1038_s41598_023_35962_3 |
| Cites_doi | 10.4028/www.scientific.net/AMM.130-134.2107 10.1038/scientificamerican1277-108 10.1145/3343031.3350926 10.1109/83.597272 10.1080/19392699.2018.1496912 10.1016/j.measurement.2022.111598 10.3390/app12010107 10.3390/agriculture12081202 10.1016/j.coal.2014.04.006 10.1260/1708-5284.12.3.247 10.4028/www.scientific.net/AMM.275-277.2350 10.1016/j.measurement.2021.110445 10.1088/1361-6501/ac3709 10.1016/j.measurement.2020.107856 10.1109/83.557356 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s22186851 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_882f432ba0404663b991b68b9bb17f7e 10.3390/s22186851 PMC9504995 A746532262 10_3390_s22186851 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c485t-50e2cf051e546bc8a142119395ee5416da40cd6af2591829dcf7e264dff465c93 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:40:46 EDT 2025 Sun Oct 26 04:10:07 EDT 2025 Tue Sep 30 17:18:42 EDT 2025 Fri Sep 05 09:25:57 EDT 2025 Tue Oct 07 07:46:50 EDT 2025 Mon Oct 20 16:55:45 EDT 2025 Thu Oct 16 04:46:07 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-50e2cf051e546bc8a142119395ee5416da40cd6af2591829dcf7e264dff465c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8094-3436 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22186851 |
| PMID | 36146200 |
| PQID | 2716607496 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_882f432ba0404663b991b68b9bb17f7e unpaywall_primary_10_3390_s22186851 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9504995 proquest_miscellaneous_2717687108 proquest_journals_2716607496 gale_infotracacademiconefile_A746532262 crossref_primary_10_3390_s22186851 crossref_citationtrail_10_3390_s22186851 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Land (ref_13) 1978; 237 Chen (ref_8) 2021; 33 Xu (ref_9) 2022; 200 Li (ref_11) 2015; 12 ref_23 ref_22 ref_21 ref_20 Zhao (ref_10) 2011; 130–134 Wang (ref_4) 2018; 41 Zhao (ref_6) 2013; 275–277 ref_2 ref_19 ref_18 Yang (ref_1) 2020; 165 ref_17 ref_16 Jobson (ref_14) 1997; 6 Yu (ref_12) 2017; 17 ref_5 Kelloway (ref_7) 2014; 128–129 Zhang (ref_3) 2022; 189 Jobson (ref_15) 2002; 6 |
| References_xml | – volume: 130–134 start-page: 2107 year: 2011 ident: ref_10 article-title: Image processing and recognition system based on DaVinci technology for coal and gangue publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.130-134.2107 – volume: 237 start-page: 108 year: 1978 ident: ref_13 article-title: The Retinex theory of color vision publication-title: Sci. Am. doi: 10.1038/scientificamerican1277-108 – ident: ref_16 doi: 10.1145/3343031.3350926 – ident: ref_2 – volume: 6 start-page: 965 year: 2002 ident: ref_15 article-title: A multiscale retinex for bridging the gap between color images and the human observation of scenes publication-title: IEEE Trans. Image Process. doi: 10.1109/83.597272 – volume: 41 start-page: 603 year: 2018 ident: ref_4 article-title: Research on methods to differentiate coal and gangue using image processing and a support vector machine publication-title: Int. J. Coal Prep. Util. doi: 10.1080/19392699.2018.1496912 – volume: 200 start-page: 111598 year: 2022 ident: ref_9 article-title: Measuring bulk material flow—Incorporating RFID and point cloud data processing publication-title: Measurement doi: 10.1016/j.measurement.2022.111598 – ident: ref_5 doi: 10.3390/app12010107 – ident: ref_22 doi: 10.3390/agriculture12081202 – volume: 128–129 start-page: 55 year: 2014 ident: ref_7 article-title: Quantitative chemical profiling of coal using core-scanning X-Ray fluorescence techniques publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2014.04.006 – volume: 12 start-page: 247 year: 2015 ident: ref_11 article-title: Research on recognition of coal and gangue based on image processing publication-title: World J. Eng. doi: 10.1260/1708-5284.12.3.247 – ident: ref_17 – ident: ref_18 – ident: ref_19 – volume: 275–277 start-page: 2350 year: 2013 ident: ref_6 article-title: Recognition of coal and gangue based on X-Ray publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.275-277.2350 – ident: ref_23 – ident: ref_21 – volume: 189 start-page: 110445 year: 2022 ident: ref_3 article-title: Improving coal/gangue recognition efficiency based on liquid intervention with infrared imager at low emissivity publication-title: Measurement doi: 10.1016/j.measurement.2021.110445 – volume: 33 start-page: 015107 year: 2021 ident: ref_8 article-title: Coal gangue recognition using multichannel auditory spectrogram of hydraulic support sound in convolutional neural network publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac3709 – ident: ref_20 – volume: 165 start-page: 107856 year: 2020 ident: ref_1 article-title: Infrared spectrum analysis method for detection and early warning of longitudinal tear of mine conveyor belt publication-title: Measurement doi: 10.1016/j.measurement.2020.107856 – volume: 17 start-page: 66 year: 2017 ident: ref_12 article-title: A new method for image recognition of coal and coal gangue publication-title: Mod. Comput. – volume: 6 start-page: 451 year: 1997 ident: ref_14 article-title: Properties and performance of a center/surround Retinex publication-title: IEEE Trans. Image Process. doi: 10.1109/83.557356 |
| SSID | ssj0023338 |
| Score | 2.4730568 |
| Snippet | The most common failures of belt conveyors are runout, coal piles and longitudinal tears. The detection methods for longitudinal tearing are currently not... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 6851 |
| SubjectTerms | Algorithms belt conveyor Belt conveyors Coal mining Decomposition Deep learning Image processing KinD++ algorithm Light low-light enhancement Machine vision Mean square errors Methods Testing YOLOv4 algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXoAD4ikCBZmHBJeoedhOfNyWVgUV9kKlcrJsx25XCkmhWar-e2aSbLqrgrhwdSaSMw97vnj8DcBbNHngLkliJ5SNOfpEbJ1VcZWYRPnK5qaky8mfv8jDY_7pRJystfqimrCBHnhQ3A5mgIHnmTXobRy3R4sJjZWlVdamRSg8rb5JqVZgaoRaOSKvgUcoR1C_c5FR66VSpBu7T0_Sf3MpvlkeeXvZnJurS1PXa3vPwX24NyaNbDZM9gHc8s1DuLtGJfgIfsyuT6JZG9i3-dH8F2ez-rRF-H_2nWFyysY-nGxu6e8L--C7vhALX2iYYbu-7tgeVaFfoeyCho7ay_gj9UJeDD8N2f71vbjHcHyw_3XvMB7bKcSOl6KLReIzFzAIveDSutKknOjdciU8jqSyMjxxlTQBERGiDlU5VC_mS1UIXAqn8iew1bSNfwpMOlEpIUwQvuCqsAZXfJ_xqshTgnB5BO9XatZu5Bqnlhe1RsxBFtGTRSJ4PYmeDwQbfxLaJVtNAsSJ3Q-gp-jRU_S_PCWCd2RpTZGLk3FmvICAn0QcWHpWENccpqNZBNsrZ9BjSF_oDJGlxIRLyQheTY8xGOmExTS-XfYyCN8waSsjKDacaGPqm0-axVlP660EwU8RwZvJ3f6ukWf_QyPP4U5Gtzn6krlt2Op-Lv0LzLE6-7IPp99fNiSf priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IJ4iUJB5SHCJmoedxAeEdstWBZVdhKhUTpFfaVcKybbNUvXfM5PNZrsqcLUdyc7M2PPZM98AvEWRF9wEgW-E1D5HnfC10dK3gQqkszpWGSUnf50kB0f8y7E43oLJKheGwipXe2K7Udva0B35boSOfYLnnUw-zs98qhpFr6urEhqqK61gP7QUY7dgOyJmrAFsj8aTb997CBYjIlvyC8UI9ncvIirJlIlw41RqyftvbtE3wyZvL6q5urpUZXntTNq_D_c6Z5INl9J_AFuuegh3r1EMPoKz4fqFmtUF-zk9nP7mbFie4OKa018MnVbW1edkU023MuyTa9oALfygYoqNXNmwPYpOv8KxM2o6rC_9z1Qjeba8TGTjdb7cYzjaH__YO_C7Mgu-4ZlofBG4yBRonE7wRJtMhZxo32IpHLaEiVU8MDZRBSIlRCPSmiJ16EfZouCJMDJ-AoOqrtxTYIkRVgqhCuFQUqlWeBK4iNs0DgnaxR68X_3m3HQc5FQKo8wRi5BE8l4iHrzuh86XxBt_GzQiWfUDiCu7bajPT_LO9HLEEAWPI61wv-LoYGl0iXWSaal1mOJSPHhHks7JonEyRnWJCbgk4sbKhylx0KGbGnmws1KGvDP1i3ytmB686rvRSOnlRVWuXrRjENahM5d5kG4o0cbUN3uq2WlL9y0FwVLhwZte3f79R579f4rP4U5E-RttkNwODJrzhXuBXlWjX3am8gdhUiNG priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gAceCMCBZmHBJc0L9uJTygtrQoqXQ6s1J4i23HaiJAs22yr8uuZSbLbXQoSEldnItmZ8fj7nHkQ8gZUXjDj-67hUrsMbMLVRks395Uvba4jlWBy8udDsT9hn4740UoWP4ZVAhUvOyeNWVgunGC-F4ZekHgC4IE3zYv358NdUgDnZRCJBBO4NgQHND4iG5PDL-lxl1Q0vN0XFIqA3XtnIfZgSniwdgx11fqv--TrcZI35_VUXV6oqlo5hPbuErWYfh978m1r3uot8_O3yo7_s7575M6AUGnam9R9csPWD8jtlbqFD8mP9Oq3N20Kejw-GJ8zmlYnzaxsT79TQMJ0aPpJxxqveugH23ZRX_BCTRXdtlVLdzDk_RJkSxw6aC7cj9h4uexvKOnuVRLeIzLZ2_26s-8OvRtcwxLeuty3oSlgx1vOhDaJgrUGABYltzASiFwx3-RCFUC_gOLI3BSxBXCWFwUT3MjoMRnVTW2fECoMzyXnquA2ZjLWCo4XG7I8jgLki5FD3i1UmZmhsDn216gyIDio9WypdYe8WopO-2oefxLaRntYCmAB7m6gmZ1kw37OgJgULAq1AifIQEsacLYWiZZaBzEsxSFv0ZoydBMwGaOGbAdYEhbcytIYC9sB9g0dsrkwuGzwH2dZCDRWALqTwiEvl49h5-PvHFXbZt7JAFcEhJg4JF4z1LWprz-py9OuhrjkyHW5Q14vTfrvX-TpP0k9I7dCzA3pAvA2yaidze1zQGytfjFsyl_zljrP priority: 102 providerName: Unpaywall |
| Title | Application of YOLOv4 Algorithm for Foreign Object Detection on a Belt Conveyor in a Low-Illumination Environment |
| URI | https://www.proquest.com/docview/2716607496 https://www.proquest.com/docview/2717687108 https://pubmed.ncbi.nlm.nih.gov/PMC9504995 https://www.mdpi.com/1424-8220/22/18/6851/pdf?version=1663136801 https://doaj.org/article/882f432ba0404663b991b68b9bb17f7e |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t4wF4QHyKwKjMh4CXjDSxk_gBoXa0DLS1E6JS9xTZjrNVKunHUkb_e-7SNFu1IfHSB-dS2b67-PezfXcAb1HlGTee5xohtcvRJlxttHRTT3nSpjpQMQUnH_fCwwH_PhTDLVhfa64m8OJWakf1pAbz8f6f2fIzOvwnYpxI2T9e-FRYCaHDu-nMpXpSdO5aFdfYhl1csyQVdTjm9fmCHwRljWsK83JxifRWOYc2_21jpSoT-t_8bN-8SnlnkU_V8lKNx9fWqe4DuF8BTNZaWcRD2LL5I7h3Le3gY5i1rk6t2SRjp_2j_m_OWuMzHFZx_oshkGVVzU7W17RTw77Yory0hS_kTLG2HRfsgG6sL1F2RE1Hk0v3G9VNHq02GFnnKobuCQy6nZ8Hh25VesE1PBaFKzzrmwwd1goeahMrnKkmYj0pLLY0w1Rxz6ShypA9IUORqckii9gqzTIeCiODp7CTT3L7DFhoRCqFUJmwEZeRVrg6WJ-nUdAkuhc48GE9zYmp8pJTeYxxgvyENJLUGnHgdS06XSXjuE2oTbqqBSh_dtkwmZ8llTsmyCsyHvha4TeMI-jSCJN1GGupdTPCoTjwnjSdkN1hZ4yqghVwSJQvK2lFlJcOoavvwN7aGJK19SY-stAQwZkMHXhVP0bHpdMYldvJopRBqocAL3Yg2jCija5vPslH52UKcCmIqgoH3tTm9u8Zef4ffXgBd30K7Chvz-3BTjFf2JcItwrdgO1oGOFv3P3agN12p3fyo1FuXTRKn8K2Qe-kdfoXngQvlw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5VA4IJ7CUGB5CS5W_dj144BQ-lJC0-bSSuHk7q7XbaRgp41DlD_Fb2TGdpxGBW697o6l9c7szDe78wD4iCzPuHYcW4tY2RxlwlZaxXbqSCc2qfJlRMnJxydB94x_H4rhBvxe5sJQWOVSJ1aKOi003ZHveAjsA7R3cfBtcmVT1yh6XV220KjF4sgs5uiyTb_29pG_nzzv8OB0r2s3XQVszSNR2sIxns5QFo3ggdKRdDlVOfNjYXDEDVLJHZ0GMkPHAMF3nOosNAgb0izjgdBUfAlV_j3uoy7B8xMOVw6ej_5eXb3I92NnZ-pRw6dIuGs2r2oNcNsA3A7K3JrlE7mYy_H4hsU7fAQPG6jKOrVsPYYNkz-BBzcKGD6Fq87q_ZsVGfsx6A9-cdYZX-DWlZc_GUJi1nT_ZANFdz5s35RV-Bd-kDPJds24ZHsU-75A2hEN9Yu53aMOzKP6qpIdrLLxnsHZnWz3c9jMi9y8ABZokcZCyEwYlINQSbQzxuNp6LvkOPoWfFluc6KbCufUaGOcoKdDHElajljwviWd1GU9_ka0S7xqCagSdzVQXF8kzcFO0EPJuO8pidqQI3xTCLhVEKlYKTfEX7HgM3E6IX2Bi9GySXvAX6LKW0knpAp3CII9C7aXwpA0imSarMTegnftNKoAeteRuSlmFQ06jQgVIwvCNSFaW_r6TD66rIqJx4KcXmHBh1bc_r0jL_-_xLew1T097if93snRK7jvUaZIFY63DZvl9cy8RvxWqjfVoWFwften9A8aGVkR |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJxqHgK0wLLS3Cx4ti7fhwQSptGDQ0NByqFk9ldr9tIxk4bhyh_jV_HjO0kjQrcet1dS-ud9-7MNwBvkeQp145jaxEpmyNP2EqryE4c6UQmUZ4MqTj5y4l_dMo_j8RoC34va2EorXKpEytFnRSa7shbLjr2Ptq7yG-lTVrE127v0-TCpg5S9NK6bKdRs8ixWcwxfJt-7HeR1u9ct3f47eDIbjoM2JqHorSFY1ydIl8awX2lQ9nmhHjmRcLgSNtPJHd04ssUgwR0xKNEp4FBFyJJU-4LTUBMqP5vBR5-gbIUjNbBnoexX41khJNOa-pS86dQtDfsX9Um4LoxuJ6geWeWT-RiLrPsivXr3Yedxm1lnZrPHsCWyR_CvStgho_gorN-C2dFyr4PB8NfnHWyMzy68vwnQ_eYNZ1A2VDR_Q_rmrJKBcMPcibZvslKdkB58AtcO6ahQTG3-9SNeVxfW7LDdWXeYzi9keN-Att5kZunwHwtkkgImQqDPBEoiTbHuDwJvDYFkZ4FH5bHHOsG7ZyabmQxRj1EkXhFEQter5ZOaoiPvy3aJ1qtFhAqdzVQXJ7FjZDHGK2k3HOVRM3I0ZVT6HwrP1SRUu0Af8WC90TpmHQHbkbLpgQCf4lQuOJOQGh36BC7FuwtmSFulMo0XouABa9W06gO6I1H5qaYVWswgES3MbQg2GCija1vzuTj8wpYPBIUAAsL3qzY7d8n8uz_W3wJt1E-40H_5HgX7rpUNFJl5u3Bdnk5M8_RlSvVi0pmGPy4aSH9A1DYXVQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gAceCMCBZmHBJc0L9uJTygtrQoqXQ6s1J4i23HaiJAs22yr8uuZSbLbXQoSEldnItmZ8fj7nHkQ8gZUXjDj-67hUrsMbMLVRks395Uvba4jlWBy8udDsT9hn4740UoWP4ZVAhUvOyeNWVgunGC-F4ZekHgC4IE3zYv358NdUgDnZRCJBBO4NgQHND4iG5PDL-lxl1Q0vN0XFIqA3XtnIfZgSniwdgx11fqv--TrcZI35_VUXV6oqlo5hPbuErWYfh978m1r3uot8_O3yo7_s7575M6AUGnam9R9csPWD8jtlbqFD8mP9Oq3N20Kejw-GJ8zmlYnzaxsT79TQMJ0aPpJxxqveugH23ZRX_BCTRXdtlVLdzDk_RJkSxw6aC7cj9h4uexvKOnuVRLeIzLZ2_26s-8OvRtcwxLeuty3oSlgx1vOhDaJgrUGABYltzASiFwx3-RCFUC_gOLI3BSxBXCWFwUT3MjoMRnVTW2fECoMzyXnquA2ZjLWCo4XG7I8jgLki5FD3i1UmZmhsDn216gyIDio9WypdYe8WopO-2oefxLaRntYCmAB7m6gmZ1kw37OgJgULAq1AifIQEsacLYWiZZaBzEsxSFv0ZoydBMwGaOGbAdYEhbcytIYC9sB9g0dsrkwuGzwH2dZCDRWALqTwiEvl49h5-PvHFXbZt7JAFcEhJg4JF4z1LWprz-py9OuhrjkyHW5Q14vTfrvX-TpP0k9I7dCzA3pAvA2yaidze1zQGytfjFsyl_zljrP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+YOLOv4+Algorithm+for+Foreign+Object+Detection+on+a+Belt+Conveyor+in+a+Low-Illumination+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Yiming&rft.au=Sun%2C+Xu&rft.au=Xu%2C+Liang&rft.au=Ma%2C+Sencai&rft.date=2022-09-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=18&rft_id=info:doi/10.3390%2Fs22186851&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |