Future prediction of biogas potential and CH4 emission with boosting algorithms: the case of cattle, small ruminant, and poultry manure from Turkey
Animal waste can be converted into a renewable energy source using biogas technology. This process has an impact on greenhouse gas emissions and is a sustainable source of energy for countries. It can reduce the effects of climate change and protect the planet for future generations. Tier1 and tier2...
Saved in:
| Published in | Environmental science and pollution research international Vol. 31; no. 16; pp. 24461 - 24479 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1614-7499 0944-1344 1614-7499 |
| DOI | 10.1007/s11356-024-32666-7 |
Cover
| Abstract | Animal waste can be converted into a renewable energy source using biogas technology. This process has an impact on greenhouse gas emissions and is a sustainable source of energy for countries. It can reduce the effects of climate change and protect the planet for future generations. Tier1 and tier2 approaches are commonly used in the literature to calculate emissions factors. With boosting algorithms, this study estimated each animal category’s biogas potential and CH
4
emissions (tier1 and tier2 approach) for 2004–2021 in all of Turkey’s provinces. Two different scenarios were created in the study. For scenario-1, the years 2020–2021 were predicted using data from 2004 to 2019, while for scenario-2, the years 2022–2024 were predicted using data from 2004 to 2021. According to the scenario-1 analysis, the eXtreme Gradient Boosting Regressor (XGBR) algorithm was the most successful algorithm with an
R
2
of 0.9883 for animal-based biogas prediction and 0.9835 and 0.9773 for animal-based CH
4
emission predictions (tier1 and tier2 approaches) for the years 2020–2021. When the mean absolute percentage error was evaluated, it was found to be relatively low at 0.46%, 1.07%, and 2.78%, respectively. According to the scenario-2 analysis, the XGBR algorithm predicted the log10 values of the animal-based biogas potential of five major cities in Turkey for the year 2024, with 11.279 for Istanbul, 12.055 for Ankara, 12.309 for Izmir, 11.869 for Bursa, and 12.866 for Antalya. In the estimation of log10 values of CH
4
emission, the tier1 approach yielded estimates of 3.080, 3.652, 3.929, 3.411, and 3.321, respectively, while the tier2 approach yielded estimates of 1.810, 2.806, 2.757, 2.552 and 2.122, respectively.
Graphical Abstract |
|---|---|
| AbstractList | Animal waste can be converted into a renewable energy source using biogas technology. This process has an impact on greenhouse gas emissions and is a sustainable source of energy for countries. It can reduce the effects of climate change and protect the planet for future generations. Tier1 and tier2 approaches are commonly used in the literature to calculate emissions factors. With boosting algorithms, this study estimated each animal category’s biogas potential and CH₄ emissions (tier1 and tier2 approach) for 2004–2021 in all of Turkey’s provinces. Two different scenarios were created in the study. For scenario-1, the years 2020–2021 were predicted using data from 2004 to 2019, while for scenario-2, the years 2022–2024 were predicted using data from 2004 to 2021. According to the scenario-1 analysis, the eXtreme Gradient Boosting Regressor (XGBR) algorithm was the most successful algorithm with an R² of 0.9883 for animal-based biogas prediction and 0.9835 and 0.9773 for animal-based CH₄ emission predictions (tier1 and tier2 approaches) for the years 2020–2021. When the mean absolute percentage error was evaluated, it was found to be relatively low at 0.46%, 1.07%, and 2.78%, respectively. According to the scenario-2 analysis, the XGBR algorithm predicted the log10 values of the animal-based biogas potential of five major cities in Turkey for the year 2024, with 11.279 for Istanbul, 12.055 for Ankara, 12.309 for Izmir, 11.869 for Bursa, and 12.866 for Antalya. In the estimation of log10 values of CH₄ emission, the tier1 approach yielded estimates of 3.080, 3.652, 3.929, 3.411, and 3.321, respectively, while the tier2 approach yielded estimates of 1.810, 2.806, 2.757, 2.552 and 2.122, respectively. Animal waste can be converted into a renewable energy source using biogas technology. This process has an impact on greenhouse gas emissions and is a sustainable source of energy for countries. It can reduce the effects of climate change and protect the planet for future generations. Tier1 and tier2 approaches are commonly used in the literature to calculate emissions factors. With boosting algorithms, this study estimated each animal category’s biogas potential and CH4 emissions (tier1 and tier2 approach) for 2004–2021 in all of Turkey’s provinces. Two different scenarios were created in the study. For scenario-1, the years 2020–2021 were predicted using data from 2004 to 2019, while for scenario-2, the years 2022–2024 were predicted using data from 2004 to 2021. According to the scenario-1 analysis, the eXtreme Gradient Boosting Regressor (XGBR) algorithm was the most successful algorithm with an R2 of 0.9883 for animal-based biogas prediction and 0.9835 and 0.9773 for animal-based CH4 emission predictions (tier1 and tier2 approaches) for the years 2020–2021. When the mean absolute percentage error was evaluated, it was found to be relatively low at 0.46%, 1.07%, and 2.78%, respectively. According to the scenario-2 analysis, the XGBR algorithm predicted the log10 values of the animal-based biogas potential of five major cities in Turkey for the year 2024, with 11.279 for Istanbul, 12.055 for Ankara, 12.309 for Izmir, 11.869 for Bursa, and 12.866 for Antalya. In the estimation of log10 values of CH4 emission, the tier1 approach yielded estimates of 3.080, 3.652, 3.929, 3.411, and 3.321, respectively, while the tier2 approach yielded estimates of 1.810, 2.806, 2.757, 2.552 and 2.122, respectively. Animal waste can be converted into a renewable energy source using biogas technology. This process has an impact on greenhouse gas emissions and is a sustainable source of energy for countries. It can reduce the effects of climate change and protect the planet for future generations. Tier1 and tier2 approaches are commonly used in the literature to calculate emissions factors. With boosting algorithms, this study estimated each animal category's biogas potential and CH4 emissions (tier1 and tier2 approach) for 2004-2021 in all of Turkey's provinces. Two different scenarios were created in the study. For scenario-1, the years 2020-2021 were predicted using data from 2004 to 2019, while for scenario-2, the years 2022-2024 were predicted using data from 2004 to 2021. According to the scenario-1 analysis, the eXtreme Gradient Boosting Regressor (XGBR) algorithm was the most successful algorithm with an R2 of 0.9883 for animal-based biogas prediction and 0.9835 and 0.9773 for animal-based CH4 emission predictions (tier1 and tier2 approaches) for the years 2020-2021. When the mean absolute percentage error was evaluated, it was found to be relatively low at 0.46%, 1.07%, and 2.78%, respectively. According to the scenario-2 analysis, the XGBR algorithm predicted the log10 values of the animal-based biogas potential of five major cities in Turkey for the year 2024, with 11.279 for Istanbul, 12.055 for Ankara, 12.309 for Izmir, 11.869 for Bursa, and 12.866 for Antalya. In the estimation of log10 values of CH4 emission, the tier1 approach yielded estimates of 3.080, 3.652, 3.929, 3.411, and 3.321, respectively, while the tier2 approach yielded estimates of 1.810, 2.806, 2.757, 2.552 and 2.122, respectively.Animal waste can be converted into a renewable energy source using biogas technology. This process has an impact on greenhouse gas emissions and is a sustainable source of energy for countries. It can reduce the effects of climate change and protect the planet for future generations. Tier1 and tier2 approaches are commonly used in the literature to calculate emissions factors. With boosting algorithms, this study estimated each animal category's biogas potential and CH4 emissions (tier1 and tier2 approach) for 2004-2021 in all of Turkey's provinces. Two different scenarios were created in the study. For scenario-1, the years 2020-2021 were predicted using data from 2004 to 2019, while for scenario-2, the years 2022-2024 were predicted using data from 2004 to 2021. According to the scenario-1 analysis, the eXtreme Gradient Boosting Regressor (XGBR) algorithm was the most successful algorithm with an R2 of 0.9883 for animal-based biogas prediction and 0.9835 and 0.9773 for animal-based CH4 emission predictions (tier1 and tier2 approaches) for the years 2020-2021. When the mean absolute percentage error was evaluated, it was found to be relatively low at 0.46%, 1.07%, and 2.78%, respectively. According to the scenario-2 analysis, the XGBR algorithm predicted the log10 values of the animal-based biogas potential of five major cities in Turkey for the year 2024, with 11.279 for Istanbul, 12.055 for Ankara, 12.309 for Izmir, 11.869 for Bursa, and 12.866 for Antalya. In the estimation of log10 values of CH4 emission, the tier1 approach yielded estimates of 3.080, 3.652, 3.929, 3.411, and 3.321, respectively, while the tier2 approach yielded estimates of 1.810, 2.806, 2.757, 2.552 and 2.122, respectively. Animal waste can be converted into a renewable energy source using biogas technology. This process has an impact on greenhouse gas emissions and is a sustainable source of energy for countries. It can reduce the effects of climate change and protect the planet for future generations. Tier1 and tier2 approaches are commonly used in the literature to calculate emissions factors. With boosting algorithms, this study estimated each animal category’s biogas potential and CH 4 emissions (tier1 and tier2 approach) for 2004–2021 in all of Turkey’s provinces. Two different scenarios were created in the study. For scenario-1, the years 2020–2021 were predicted using data from 2004 to 2019, while for scenario-2, the years 2022–2024 were predicted using data from 2004 to 2021. According to the scenario-1 analysis, the eXtreme Gradient Boosting Regressor (XGBR) algorithm was the most successful algorithm with an R 2 of 0.9883 for animal-based biogas prediction and 0.9835 and 0.9773 for animal-based CH 4 emission predictions (tier1 and tier2 approaches) for the years 2020–2021. When the mean absolute percentage error was evaluated, it was found to be relatively low at 0.46%, 1.07%, and 2.78%, respectively. According to the scenario-2 analysis, the XGBR algorithm predicted the log10 values of the animal-based biogas potential of five major cities in Turkey for the year 2024, with 11.279 for Istanbul, 12.055 for Ankara, 12.309 for Izmir, 11.869 for Bursa, and 12.866 for Antalya. In the estimation of log10 values of CH 4 emission, the tier1 approach yielded estimates of 3.080, 3.652, 3.929, 3.411, and 3.321, respectively, while the tier2 approach yielded estimates of 1.810, 2.806, 2.757, 2.552 and 2.122, respectively. Graphical Abstract |
| Author | Cesmeli, Melike Siseci Kumaş, Kazım Akyüz, Ali Pence, Ihsan |
| Author_xml | – sequence: 1 givenname: Ihsan surname: Pence fullname: Pence, Ihsan organization: Department of Software Engineering, Bucak Technology Faculty, Burdur Mehmet Akif Ersoy University – sequence: 2 givenname: Kazım surname: Kumaş fullname: Kumaş, Kazım organization: Bucak Emin Gulmez Vocational School of Technical Sciences, Burdur Mehmet Akif Ersoy University – sequence: 3 givenname: Melike Siseci surname: Cesmeli fullname: Cesmeli, Melike Siseci organization: Department of Software Engineering, Bucak Technology Faculty, Burdur Mehmet Akif Ersoy University – sequence: 4 givenname: Ali surname: Akyüz fullname: Akyüz, Ali email: aliozhanakyuz@gmail.com organization: Bucak Emin Gulmez Vocational School of Technical Sciences, Burdur Mehmet Akif Ersoy University |
| BookMark | eNqNkctu1DAYhSNURC_wAqwssWHRgG-JbTYIjShFqsSmrC3HcTIuiR18aTXPwQvjdEYqdFFY-Zd9ztHx959WR847U1WvEXyHIGTvI0KkaWuIaU1w27Y1e1adoBbRmlEhjv6Yj6vTGG8gxFBg9qI6JpxSxEhzUv26yCkHA5ZgequT9Q74AXTWjyqCxSfjklUTUK4Hm0sKzGxjXEV3Nm1B531M1o1ATaMP5WaOH0DaGqBVNGuOVilN5hzEWU0TCHm2Trl0fh-3-DylsAOzcmuBIfgZXOfww-xeVs8HNUXz6nCeVd8vPl9vLuurb1--bj5d1ZryJtVUdd3Qt1yIXtBec9ZAOhjcYtXxgkN0XDeEczoMWNEW4Z5y3hiCupb1SjNFziqyz81uUbu7UlEuwc4q7CSCckUs94hlQSzvEUtWXB_3riV3s-l1IRTUg9MrK_9-cXYrR39bAoXgjKOS8PaQEPzPbGKShao206Sc8TlKghrSCIIJ_acUC8IYbHizSt88kt74HFwBKAkkRFBOxdqe71U6-BiDGaS2Sa17L13t9PTH8SPrf9E6MI5F7EYTHlo94foNxWDiWQ |
| CitedBy_id | crossref_primary_10_3390_chemosensors12120263 crossref_primary_10_57120_yalvac_1636844 |
| Cites_doi | 10.1016/j.biteb.2023.101432 10.1016/J.RSER.2020.110238 10.1016/j.petrol.2021.109244 10.3168/JDS.2018-15518 10.1016/J.JCLEPRO.2023.137242 10.1007/s12155-021-10375-0 10.3390/su13126751 10.1016/J.SETA.2022.102223 10.1007/s10098-020-01816-z 10.1214/aos/1013203451 10.1016/J.FUEL.2020.119081 10.1007/s10098-021-02156-2 10.1016/J.JESTCH.2018.11.002 10.3390/su11072136 10.1016/j.engappai.2022.105151 10.1016/j.biosystemseng.2018.03.009 10.1016/J.RSER.2021.111338 10.1006/JCSS.1997.1504 10.3390/su13169133 10.1016/j.jenvman.2020.110443 10.1016/J.RSER.2021.111360 10.1016/J.RESCONREC.2018.02.025 10.1016/J.BIORTECH.2021.126433 10.1016/J.RENENE.2020.05.173 10.1016/J.FUEL.2020.118573 10.1016/j.watres.2021.117697 10.1016/j.agsy.2022.103577 10.1016/J.ENVRES.2021.110833 10.1016/j.jclepro.2014.07.007 10.1016/J.JESTCH.2021.04.011 10.1016/J.FUEL.2021.121734 10.1016/j.rser.2022.112704 10.1016/J.RENENE.2021.10.053 10.1016/J.JCLEPRO.2019.01.031 10.1016/J.IJHYDENE.2018.05.132 10.1007/s11356-022-23780-5 10.1007/S13399-021-01532-8 10.1016/J.BIORTECH.2022.128485 10.1016/J.BIOMBIOE.2019.105440 10.1016/J.RENENE.2020.08.091 10.1080/15567036.2022.2085823 10.1016/j.fuel.2022.126055 10.1016/J.JHAZMAT.2020.123710 10.1016/j.spc.2021.08.017 10.1016/BS.AGRON.2018.07.002 10.5455/JAVAR.2020.G402 10.1016/j.jclepro.2014.02.010 10.1007/s12155-020-10216-6 10.1016/j.apenergy.2023.121214 10.1016/j.envint.2022.107488 10.1007/s11356-021-15464-3 10.1016/J.RSER.2011.11.006 10.1142/S0129183123500699 10.1016/J.ANIMAL.2022.100638 10.3390/su12125144 10.1007/S11356-023-28891-1 10.3390/c5020027 10.1007/s13765-016-0224-1 10.1016/j.jclepro.2019.118501 10.1016/J.ENERGY.2019.116541 10.11975/j.issn.1002-6819.2021.22.020 10.1016/J.RENENE.2021.03.009 10.1007/s11869-022-01169-0 10.1145/2939672.2939785 10.1787/9789264234611-en 10.1080/15567036.2020.1776796 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 5PM ADTOC UNPAY |
| DOI | 10.1007/s11356-024-32666-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1614-7499 |
| EndPage | 24479 |
| ExternalDocumentID | 10.1007/s11356-024-32666-7 PMC10998781 10_1007_s11356_024_32666_7 |
| GeographicLocations | Turkey |
| GeographicLocations_xml | – name: Turkey |
| GrantInformation_xml | – fundername: Mehmet Akif Ersoy University |
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6 5PM ADHKG ADTOC AGQPQ UNPAY |
| ID | FETCH-LOGICAL-c485t-4abbfd6899d94dc87504fe262ab82669b8c53884ff2a4612d4885e31b67dac7a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1614-7499 0944-1344 |
| IngestDate | Sun Oct 26 04:12:27 EDT 2025 Tue Sep 30 17:09:39 EDT 2025 Fri Sep 05 12:47:27 EDT 2025 Fri Sep 05 14:50:20 EDT 2025 Tue Oct 07 06:37:05 EDT 2025 Wed Oct 01 04:12:45 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Fri Feb 21 02:40:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | Methane Regression Environmental effect Animal waste XGBR algorithm Machine learning |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-4abbfd6899d94dc87504fe262ab82669b8c53884ff2a4612d4885e31b67dac7a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Responsible Editor: Ta Yeong Wu |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11356-024-32666-7.pdf |
| PMID | 38441735 |
| PQID | 3033948497 |
| PQPubID | 54208 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1007_s11356_024_32666_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10998781 proquest_miscellaneous_3153593234 proquest_miscellaneous_2937705854 proquest_journals_3033948497 crossref_citationtrail_10_1007_s11356_024_32666_7 crossref_primary_10_1007_s11356_024_32666_7 springer_journals_10_1007_s11356_024_32666_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240400 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Environmental science and pollution research international |
| PublicationTitleAbbrev | Environ Sci Pollut Res |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Ceylan, Aydın, Nil, Mamur, Polatoğlu, Sözen (CR7) 2023; 13 Khan, Ahmad, Sultan, Sohoo, Ghimire, Zahid, Sarwar, Farooq, Sajjad, Abdeshahian, Yousaf (CR38) 2021; 13 Freund, Schapire (CR21) 1997; 55 Cheng, Liu, Shehata, Feng, Lin, Xue, Li (CR11) 2021; 402 Usack, Van Doren, Posmanik, Tester, Angenent (CR64) 2019; 102 Herrera, Esteves, Morgado, Esteves (CR29) 2021; 14 Şenol, Ali Dereli̇, Özbilgin (CR56) 2021; 149 Avcioǧlu, Türker (CR3) 2012; 16 CR36 Zaidi, RuiZhe, Shi, Khan, Mushtaq (CR67) 2018; 43 Hajabdollahi Ouderji, Gupta, Mckeown, Yu, Smith, Sloan, You (CR27) 2023; 369 Ocak, Acar (CR49) 2021; 28 Zhang, Nie, Yan (CR69) 2023; 30 Friedman (CR22) 2001; 29 Hayes, May Murray, Catherine Stanton, Zhang, Snape, Hugo Gaze, Kaye Murray (CR28) 2022; 169 Erdogdu, Polat, Ozbay (CR18) 2019; 22 Ludlow, Jalil-Vega, Schmidt Rivera, Garrido, Hawkes, Staffell, Balcombe (CR43) 2021; 28 Otchere, Ganat, Ojero, Tackie-Otoo, Taki (CR51) 2022; 208 Wang, Wehrle, Banerjee, Shi, Deutschmann (CR65) 2021; 163 Chandra Manna, Rahman, Naidu, Sahu, Bhattacharjya, Wanjari, Patra, Chaudhari, Majumdar, Khanna (CR8) 2018; 152 Sharafi, Kazemi, Amiri (CR57) 2023; 408 Zhang, Wu, Calautit (CR68) 2022; 167 CR5 Chen, An, Fang, Zhang, Zhou, Zhou, Zhao (CR9) 2020; 264 Pence, Kumaş, Siseci, Akyüz (CR52) 2022; 30 Kim, Kim, Park (CR41) 2020; 12 Huo, Zhao, Yao, Luo, Zhang, Xie, Jia, Deng, Wei (CR33) 2021; 37 CR44 Liu, Ferrari, Pezzuolo, Alengebawy, Jin, Yang, Li, Ai (CR42) 2023; 205 Almomani (CR1) 2020; 280 Riaño, García-González (CR53) 2015; 103 Chiu, Wen, Hsu, Wang (CR12) 2022; 52 Senocak, Guner Goren (CR54) 2022; 26 Can (CR6) 2020; 243 Ibidhi, Kim, Bharanidharan, Lee, Lee, Kim, Kim (CR34) 2021; 13 Heydari, Abdollahzadeh Sharghi, Rafiee, Mohtasebi (CR30) 2021; 306 Baek, Lee, Park (CR4) 2014; 70 Ganaie, Hu, Malik, Tanveer, Suganthan (CR23) 2022; 115 Najafi, Faizollahzadeh Ardabili (CR46) 2018; 133 Tufaner, Demirci (CR62) 2020; 22 CR15 Khan, Raza Naqvi, Ullah, Ali Ammar Taqvi, Nouman Aslam Khan, Farooq, Taqi Mehran, Juchelková, Štěpanec (CR39) 2023; 332 CR10 De Clercq, Jalota, Shang, Ni, Zhang, Khan, Wen, Caicedo, Yuan (CR14) 2019; 218 Khoshgoftar Manesh, Rezazadeh, Kabiri (CR40) 2020; 159 CR50 Gündoğan, Koçar (CR26) 2022; 15 Shin, Hong, Kim, Yang, Lee, Li (CR58) 2016; 59 Fajobi, Lasode, Adeleke, Ikubanni, Balogun (CR19) 2022; 44 Karaaslan, Gezen (CR37) 2022; 182 Nehra, Jain (CR47) 2023; 22 Heydari, Alborzi, Amini, Hassanvand (CR31) 2023; 34 Jeong, Abbas, Shin, Son, Kim, Cho (CR35) 2021; 205 Zubir, Bong, Ishak, Ho, Hashim (CR70) 2022; 24 Erdin, Ozkaya (CR17) 2019; 11 Sun, Wang, Li, Cui, Guo, Dong (CR60) 2021; 148 Das, Sarker, Haque (CR13) 2020; 7 Gonçalves Neto, Vidal Ozorio, Campos de Abreu, Ferreira dos Santos, Pradelle (CR25) 2021; 285 Senocak, Guner Goren (CR55) 2023; 343 CR24 Yurtkuran (CR66) 2021; 171 Hörtenhuber, Seiringer, Theurl, Größbacher, Piringer, Kral, Zollitsch (CR32) 2022; 16 CR63 Andrade Cruz, Chuenchart, Long, Surendra, Renata Santos Andrade, Bilal, Liu, Tavares Figueiredo, Khanal, Fernando Romanholo Ferreira (CR2) 2022; 345 Ngwabie, Chungong, Yengong (CR48) 2018; 170 Elmaz, Yücel, Mutlu (CR16) 2020; 191 Stolarski, Warmiński, Krzyżaniak, Olba-Zięty, Akincza (CR59) 2020; 133 Tongwane, Moeletsi (CR61) 2021; 195 Melikoglu, Menekse (CR45) 2020; 132 Font-Palma (CR20) 2019; 5 C Font-Palma (32666_CR20) 2019; 5 SJ Hörtenhuber (32666_CR32) 2022; 16 M Khan (32666_CR39) 2023; 332 B Heydari (32666_CR30) 2021; 306 M Melikoglu (32666_CR45) 2020; 132 F Almomani (32666_CR1) 2020; 280 J Shin (32666_CR58) 2016; 59 W Zhang (32666_CR68) 2022; 167 AO Avcioǧlu (32666_CR3) 2012; 16 JG Usack (32666_CR64) 2019; 102 NG Das (32666_CR13) 2020; 7 I Andrade Cruz (32666_CR2) 2022; 345 NM Ngwabie (32666_CR48) 2018; 170 CY Baek (32666_CR4) 2014; 70 32666_CR36 Y Freund (32666_CR21) 1997; 55 Y Wang (32666_CR65) 2021; 163 J Ludlow (32666_CR43) 2021; 28 H Sun (32666_CR60) 2021; 148 C Zhang (32666_CR69) 2023; 30 I Pence (32666_CR52) 2022; 30 MJ Stolarski (32666_CR59) 2020; 133 S Ocak (32666_CR49) 2021; 28 B Najafi (32666_CR46) 2018; 133 H Şenol (32666_CR56) 2021; 149 32666_CR44 M Nehra (32666_CR47) 2023; 22 B Gündoğan (32666_CR26) 2022; 15 MA Zubir (32666_CR70) 2022; 24 M Chandra Manna (32666_CR8) 2018; 152 AA Senocak (32666_CR54) 2022; 26 AB Ceylan (32666_CR7) 2023; 13 A Karaaslan (32666_CR37) 2022; 182 D Cheng (32666_CR11) 2021; 402 F Elmaz (32666_CR16) 2020; 191 F Tufaner (32666_CR62) 2020; 22 MI Tongwane (32666_CR61) 2021; 195 D De Clercq (32666_CR14) 2019; 218 MH Khoshgoftar Manesh (32666_CR40) 2020; 159 DA Otchere (32666_CR51) 2022; 208 A Heydari (32666_CR31) 2023; 34 32666_CR15 AMN Herrera (32666_CR29) 2021; 14 AE Erdogdu (32666_CR18) 2019; 22 A Hayes (32666_CR28) 2022; 169 32666_CR10 32666_CR50 MC Chiu (32666_CR12) 2022; 52 JH Friedman (32666_CR22) 2001; 29 C Erdin (32666_CR17) 2019; 11 32666_CR5 T Liu (32666_CR42) 2023; 205 AA Zaidi (32666_CR67) 2018; 43 S Sharafi (32666_CR57) 2023; 408 S Yurtkuran (32666_CR66) 2021; 171 Z Chen (32666_CR9) 2020; 264 MO Fajobi (32666_CR19) 2022; 44 L Huo (32666_CR33) 2021; 37 Z Hajabdollahi Ouderji (32666_CR27) 2023; 369 B Riaño (32666_CR53) 2015; 103 MA Ganaie (32666_CR23) 2022; 115 R Ibidhi (32666_CR34) 2021; 13 32666_CR24 MU Khan (32666_CR38) 2021; 13 K Jeong (32666_CR35) 2021; 205 A Can (32666_CR6) 2020; 243 D Kim (32666_CR41) 2020; 12 J Gonçalves Neto (32666_CR25) 2021; 285 32666_CR63 AA Senocak (32666_CR55) 2023; 343 |
| References_xml | – volume: 22 start-page: 101432 year: 2023 ident: CR47 article-title: Estimation of renewable biogas energy potential from livestock manure: a case study of India publication-title: Bioresour Technol Rep doi: 10.1016/j.biteb.2023.101432 – volume: 133 start-page: 110238 year: 2020 ident: CR59 article-title: Bioenergy technologies and biomass potential vary in Northern European countries publication-title: Renew Sust Energ Rev doi: 10.1016/J.RSER.2020.110238 – volume: 208 start-page: 109244 year: 2022 ident: CR51 article-title: Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2021.109244 – volume: 102 start-page: 3630 year: 2019 end-page: 3645 ident: CR64 article-title: Harnessing anaerobic digestion for combined cooling, heat, and power on dairy farms: an environmental life cycle and techno-economic assessment of added cooling pathways publication-title: J Dairy Sci doi: 10.3168/JDS.2018-15518 – volume: 408 start-page: 137242 year: 2023 ident: CR57 article-title: Estimating energy consumption and GHG emissions in crop production: A machine learning approach publication-title: J Clean Prod doi: 10.1016/J.JCLEPRO.2023.137242 – volume: 15 start-page: 1894 year: 2022 end-page: 1907 ident: CR26 article-title: Potential usability of Cynara cardunculus L. residues in biogas production in various regions of Turkey publication-title: Bioenergy Res doi: 10.1007/s12155-021-10375-0 – volume: 13 start-page: 6751 year: 2021 ident: CR38 article-title: Biogas production potential from livestock manure in Pakistan publication-title: Sustainability (switzerland) doi: 10.3390/su13126751 – volume: 52 start-page: 102223 year: 2022 ident: CR12 article-title: Key wastes selection and prediction improvement for biogas production through hybrid machine learning methods publication-title: Sustain Energy Technol Assess doi: 10.1016/J.SETA.2022.102223 – volume: 22 start-page: 713 year: 2020 end-page: 724 ident: CR62 article-title: Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-020-01816-z – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: CR22 article-title: Greedy function approximation : a gradient boosting machine publication-title: Ann Stat doi: 10.1214/aos/1013203451 – volume: 285 start-page: 119081 year: 2021 ident: CR25 article-title: Modeling of biogas production from food, fruits and vegetables wastes using artificial neural network (ANN) publication-title: Fuel doi: 10.1016/J.FUEL.2020.119081 – volume: 24 start-page: 363 year: 2022 end-page: 377 ident: CR70 article-title: The trends and projections of greenhouse gas emission by the livestock sector in Malaysia publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-021-02156-2 – volume: 22 start-page: 452 year: 2019 end-page: 457 ident: CR18 article-title: Pyrolysis of goat manure to produce bio-oil publication-title: Eng Sci Technol Int J doi: 10.1016/J.JESTCH.2018.11.002 – volume: 11 start-page: 2136 year: 2019 ident: CR17 article-title: Turkey’s 2023 energy strategies and ınvestment opportunities for renewable energy sources: site selection based on ELECTRE publication-title: Sustainability doi: 10.3390/su11072136 – volume: 115 year: 2022 ident: CR23 article-title: Ensemble deep learning: a review publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105151 – volume: 170 start-page: 31 year: 2018 end-page: 38 ident: CR48 article-title: Characterisation of pig manure for methane emission modelling in Sub-Saharan Africa publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2018.03.009 – volume: 149 start-page: 111338 year: 2021 ident: CR56 article-title: Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030 publication-title: Renew Sust Energ Rev doi: 10.1016/J.RSER.2021.111338 – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: CR21 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J Comput Syst Sci doi: 10.1006/JCSS.1997.1504 – volume: 13 start-page: 9133 year: 2021 ident: CR34 article-title: Developing country-specific methane emission factors and carbon fluxes from enteric fermentation in South Korean dairy cattle production publication-title: Sustainability doi: 10.3390/su13169133 – volume: 264 start-page: 110443 year: 2020 ident: CR9 article-title: Assessment of regional greenhouse gas emission from beef cattle production: a case study of Saskatchewan in Canada publication-title: J Environ Manag doi: 10.1016/j.jenvman.2020.110443 – ident: CR15 – volume: 148 start-page: 111360 year: 2021 ident: CR60 article-title: Potential biomethane production from crop residues in China: contributions to carbon neutrality publication-title: Renew Sust Energ Rev doi: 10.1016/J.RSER.2021.111360 – ident: CR50 – volume: 133 start-page: 169 year: 2018 end-page: 178 ident: CR46 article-title: Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC) publication-title: Resour Conserv Recycl doi: 10.1016/J.RESCONREC.2018.02.025 – volume: 345 start-page: 126433 year: 2022 ident: CR2 article-title: Application of machine learning in anaerobic digestion: perspectives and challenges publication-title: Bioresour Technol doi: 10.1016/J.BIORTECH.2021.126433 – volume: 159 start-page: 87 year: 2020 end-page: 106 ident: CR40 article-title: A feasibility study on the potential, economic, and environmental advantages of biogas production from poultry manure in Iran publication-title: Renew Energy doi: 10.1016/J.RENENE.2020.05.173 – volume: 280 start-page: 118573 year: 2020 ident: CR1 article-title: Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network publication-title: Fuel doi: 10.1016/J.FUEL.2020.118573 – volume: 205 start-page: 117697 year: 2021 ident: CR35 article-title: Prediction of biogas production in anaerobic co-digestion of organic wastes using deep learning models publication-title: Water Res doi: 10.1016/j.watres.2021.117697 – ident: CR36 – volume: 205 start-page: 103577 year: 2023 ident: CR42 article-title: Evaluation and analysis of biogas potential from agricultural waste in Hubei Province, China publication-title: Agric Syst doi: 10.1016/j.agsy.2022.103577 – volume: 195 start-page: 110833 year: 2021 ident: CR61 article-title: Provincial cattle carbon emissions from enteric fermentation and manure management in South Africa publication-title: Environ Res doi: 10.1016/J.ENVRES.2021.110833 – ident: CR5 – volume: 103 start-page: 542 year: 2015 end-page: 548 ident: CR53 article-title: Greenhouse gas emissions of an on-farm swine manure treatment plant - comparison with conventional storage in anaerobic tanks publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.07.007 – volume: 26 start-page: 100992 year: 2022 ident: CR54 article-title: Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: a case study publication-title: Eng Sci Technol Int J doi: 10.1016/J.JESTCH.2021.04.011 – volume: 306 start-page: 121734 year: 2021 ident: CR30 article-title: Use of artificial neural network and adaptive neuro-fuzzy inference system for prediction of biogas production from spearmint essential oil wastewater treatment in up-flow anaerobic sludge blanket reactor publication-title: Fuel doi: 10.1016/J.FUEL.2021.121734 – volume: 167 start-page: 112704 year: 2022 ident: CR68 article-title: A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2022.112704 – volume: 182 start-page: 842 year: 2022 end-page: 854 ident: CR37 article-title: The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coefficient publication-title: Renew Energy doi: 10.1016/J.RENENE.2021.10.053 – volume: 218 start-page: 390 year: 2019 end-page: 399 ident: CR14 article-title: Machine learning powered software for accurate prediction of biogas production: a case study on industrial-scale Chinese production data publication-title: J Clean Prod doi: 10.1016/J.JCLEPRO.2019.01.031 – volume: 43 start-page: 14202 year: 2018 end-page: 14213 ident: CR67 article-title: Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion publication-title: Int J Hydrogen Energy doi: 10.1016/J.IJHYDENE.2018.05.132 – volume: 30 start-page: 22631 year: 2022 end-page: 22652 ident: CR52 article-title: Modeling of energy and emissions from animal manure using machine learning methods: the case of the Western Mediterranean Region, Turkey publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-23780-5 – ident: CR10 – volume: 13 start-page: 5771 year: 2023 end-page: 5786 ident: CR7 article-title: A new hybrid approach in selection of optimum establishment location of the biogas energy production plant publication-title: Biomass Convers Biorefin doi: 10.1007/S13399-021-01532-8 – volume: 369 start-page: 128485 year: 2023 ident: CR27 article-title: Integration of anaerobic digestion with heat pump: machine learning-based technical and environmental assessment publication-title: Bioresour Technol doi: 10.1016/J.BIORTECH.2022.128485 – volume: 132 start-page: 105440 year: 2020 ident: CR45 article-title: Forecasting Turkey’s cattle and sheep manure based biomethane potentials till 2026 publication-title: Biomass Bioenergy doi: 10.1016/J.BIOMBIOE.2019.105440 – volume: 163 start-page: 78 year: 2021 end-page: 87 ident: CR65 article-title: Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling publication-title: Renew Energy doi: 10.1016/J.RENENE.2020.08.091 – volume: 44 start-page: 5314 year: 2022 end-page: 5339 ident: CR19 article-title: Effect of biomass co-digestion and application of artificial intelligence in biogas production: a review publication-title: Energy Sources Part A doi: 10.1080/15567036.2022.2085823 – volume: 332 start-page: 126055 year: 2023 ident: CR39 article-title: Applications of machine learning in thermochemical conversion of biomass-a review publication-title: Fuel doi: 10.1016/j.fuel.2022.126055 – volume: 402 start-page: 123710 year: 2021 ident: CR11 article-title: In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting publication-title: J Hazard Mater doi: 10.1016/J.JHAZMAT.2020.123710 – ident: CR63 – volume: 28 start-page: 1522 year: 2021 end-page: 1537 ident: CR43 article-title: Organic waste to energy: resource potential and barriers to uptake in Chile publication-title: Sustain Prod Consum doi: 10.1016/j.spc.2021.08.017 – volume: 152 start-page: 87 year: 2018 end-page: 148 ident: CR8 article-title: Bio-waste management in subtropical soils of India: future challenges and opportunities in agriculture publication-title: Adv Agron doi: 10.1016/BS.AGRON.2018.07.002 – ident: CR44 – volume: 7 start-page: 133 year: 2020 ident: CR13 article-title: An estimation of greenhouse gas emission from livestock in Bangladesh publication-title: J Adv Vet Anim Res doi: 10.5455/JAVAR.2020.G402 – volume: 70 start-page: 50 year: 2014 end-page: 60 ident: CR4 article-title: Quantification and control of the greenhouse gas emissions from a dairy cow system publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.02.010 – volume: 14 start-page: 1265 year: 2021 end-page: 1276 ident: CR29 article-title: Carbon footprint analysis of bioenergy production from cattle manure in the Brazilian central-west publication-title: Bioenergy Res doi: 10.1007/s12155-020-10216-6 – volume: 343 start-page: 121214 year: 2023 ident: CR55 article-title: Three-phase artificial intelligence-geographic information systems-based biomass network design approach: a case study in Denizli publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121214 – volume: 169 start-page: 107488 year: 2022 ident: CR28 article-title: Predicting selection for antimicrobial resistance in UK wastewater and aquatic environments: ciprofloxacin poses a significant risk publication-title: Environ Int doi: 10.1016/j.envint.2022.107488 – volume: 28 start-page: 66026 year: 2021 end-page: 66042 ident: CR49 article-title: Biofuels from wastes in Marmara Region, Turkey: potentials and constraints publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-15464-3 – volume: 16 start-page: 1557 year: 2012 end-page: 1561 ident: CR3 article-title: Status and potential of biogas energy from animal wastes in Turkey publication-title: Renew Sustain Energy Rev doi: 10.1016/J.RSER.2011.11.006 – volume: 34 start-page: 2350069 year: 2023 ident: CR31 article-title: Configuration optimization of a renewable hybrid system including biogas generator, photovoltaic panel and wind turbine: particle swarm optimization and genetic algorithms publication-title: Int J Mod Phys C doi: 10.1142/S0129183123500699 – volume: 16 start-page: 100638 year: 2022 ident: CR32 article-title: Implementing an appropriate metric for the assessment of greenhouse gas emissions from livestock production: a national case study publication-title: Animal doi: 10.1016/J.ANIMAL.2022.100638 – volume: 12 start-page: 5144 year: 2020 ident: CR41 article-title: A comparative study on the reduction effect in greenhouse gas emissions between the combined heat and power plant and boiler publication-title: Sustainability doi: 10.3390/su12125144 – volume: 30 start-page: 94255 year: 2023 end-page: 94275 ident: CR69 article-title: Estimation of biomass utilization potential in China and the impact on carbon peaking publication-title: Environ Sci Pollut Res doi: 10.1007/S11356-023-28891-1 – volume: 5 start-page: 27 year: 2019 ident: CR20 article-title: Methods for the treatment of cattle manure—a review publication-title: C (basel) doi: 10.3390/c5020027 – volume: 59 start-page: 765 year: 2016 end-page: 773 ident: CR58 article-title: Estimation of potential methane production through the mass balance equations from agricultural biomass in Korea publication-title: Appl Biol Chem doi: 10.1007/s13765-016-0224-1 – volume: 243 start-page: 118501 year: 2020 ident: CR6 article-title: The statistical modeling of potential biogas production capacity from solid waste disposal sites in Turkey publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118501 – volume: 191 start-page: 116541 year: 2020 ident: CR16 article-title: Predictive modeling of biomass gasification with machine learning-based regression methods publication-title: Energy doi: 10.1016/J.ENERGY.2019.116541 – ident: CR24 – volume: 37 start-page: 179 year: 2021 end-page: 187 ident: CR33 article-title: Potentiality of agricultural biomass energy for greenhouse gas emission reduction publication-title: Trans Chin Soc Agric Mach doi: 10.11975/j.issn.1002-6819.2021.22.020 – volume: 171 start-page: 1236 year: 2021 end-page: 1245 ident: CR66 article-title: The effect of agriculture, renewable energy production, and globalization on CO2 emissions in Turkey: a bootstrap ARDL approach publication-title: Renew Energy doi: 10.1016/J.RENENE.2021.03.009 – volume: 44 start-page: 5314 year: 2022 ident: 32666_CR19 publication-title: Energy Sources Part A doi: 10.1080/15567036.2022.2085823 – volume: 408 start-page: 137242 year: 2023 ident: 32666_CR57 publication-title: J Clean Prod doi: 10.1016/J.JCLEPRO.2023.137242 – volume: 11 start-page: 2136 year: 2019 ident: 32666_CR17 publication-title: Sustainability doi: 10.3390/su11072136 – volume: 12 start-page: 5144 year: 2020 ident: 32666_CR41 publication-title: Sustainability doi: 10.3390/su12125144 – volume: 182 start-page: 842 year: 2022 ident: 32666_CR37 publication-title: Renew Energy doi: 10.1016/J.RENENE.2021.10.053 – volume: 264 start-page: 110443 year: 2020 ident: 32666_CR9 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2020.110443 – volume: 191 start-page: 116541 year: 2020 ident: 32666_CR16 publication-title: Energy doi: 10.1016/J.ENERGY.2019.116541 – volume: 205 start-page: 103577 year: 2023 ident: 32666_CR42 publication-title: Agric Syst doi: 10.1016/j.agsy.2022.103577 – volume: 285 start-page: 119081 year: 2021 ident: 32666_CR25 publication-title: Fuel doi: 10.1016/J.FUEL.2020.119081 – volume: 163 start-page: 78 year: 2021 ident: 32666_CR65 publication-title: Renew Energy doi: 10.1016/J.RENENE.2020.08.091 – ident: 32666_CR5 doi: 10.1007/s11869-022-01169-0 – volume: 30 start-page: 22631 year: 2022 ident: 32666_CR52 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-23780-5 – volume: 55 start-page: 119 year: 1997 ident: 32666_CR21 publication-title: J Comput Syst Sci doi: 10.1006/JCSS.1997.1504 – volume: 37 start-page: 179 year: 2021 ident: 32666_CR33 publication-title: Trans Chin Soc Agric Mach doi: 10.11975/j.issn.1002-6819.2021.22.020 – volume: 208 start-page: 109244 year: 2022 ident: 32666_CR51 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2021.109244 – volume: 195 start-page: 110833 year: 2021 ident: 32666_CR61 publication-title: Environ Res doi: 10.1016/J.ENVRES.2021.110833 – volume: 148 start-page: 111360 year: 2021 ident: 32666_CR60 publication-title: Renew Sust Energ Rev doi: 10.1016/J.RSER.2021.111360 – volume: 70 start-page: 50 year: 2014 ident: 32666_CR4 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.02.010 – volume: 13 start-page: 6751 year: 2021 ident: 32666_CR38 publication-title: Sustainability (switzerland) doi: 10.3390/su13126751 – volume: 5 start-page: 27 year: 2019 ident: 32666_CR20 publication-title: C (basel) doi: 10.3390/c5020027 – volume: 133 start-page: 169 year: 2018 ident: 32666_CR46 publication-title: Resour Conserv Recycl doi: 10.1016/J.RESCONREC.2018.02.025 – volume: 343 start-page: 121214 year: 2023 ident: 32666_CR55 publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121214 – volume: 59 start-page: 765 year: 2016 ident: 32666_CR58 publication-title: Appl Biol Chem doi: 10.1007/s13765-016-0224-1 – volume: 22 start-page: 713 year: 2020 ident: 32666_CR62 publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-020-01816-z – volume: 30 start-page: 94255 year: 2023 ident: 32666_CR69 publication-title: Environ Sci Pollut Res doi: 10.1007/S11356-023-28891-1 – volume: 102 start-page: 3630 year: 2019 ident: 32666_CR64 publication-title: J Dairy Sci doi: 10.3168/JDS.2018-15518 – volume: 345 start-page: 126433 year: 2022 ident: 32666_CR2 publication-title: Bioresour Technol doi: 10.1016/J.BIORTECH.2021.126433 – volume: 402 start-page: 123710 year: 2021 ident: 32666_CR11 publication-title: J Hazard Mater doi: 10.1016/J.JHAZMAT.2020.123710 – volume: 133 start-page: 110238 year: 2020 ident: 32666_CR59 publication-title: Renew Sust Energ Rev doi: 10.1016/J.RSER.2020.110238 – volume: 280 start-page: 118573 year: 2020 ident: 32666_CR1 publication-title: Fuel doi: 10.1016/J.FUEL.2020.118573 – ident: 32666_CR24 – volume: 15 start-page: 1894 year: 2022 ident: 32666_CR26 publication-title: Bioenergy Res doi: 10.1007/s12155-021-10375-0 – volume: 218 start-page: 390 year: 2019 ident: 32666_CR14 publication-title: J Clean Prod doi: 10.1016/J.JCLEPRO.2019.01.031 – volume: 13 start-page: 9133 year: 2021 ident: 32666_CR34 publication-title: Sustainability doi: 10.3390/su13169133 – volume: 28 start-page: 66026 year: 2021 ident: 32666_CR49 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-15464-3 – volume: 171 start-page: 1236 year: 2021 ident: 32666_CR66 publication-title: Renew Energy doi: 10.1016/J.RENENE.2021.03.009 – volume: 34 start-page: 2350069 year: 2023 ident: 32666_CR31 publication-title: Int J Mod Phys C doi: 10.1142/S0129183123500699 – volume: 28 start-page: 1522 year: 2021 ident: 32666_CR43 publication-title: Sustain Prod Consum doi: 10.1016/j.spc.2021.08.017 – volume: 13 start-page: 5771 year: 2023 ident: 32666_CR7 publication-title: Biomass Convers Biorefin doi: 10.1007/S13399-021-01532-8 – volume: 243 start-page: 118501 year: 2020 ident: 32666_CR6 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118501 – ident: 32666_CR10 doi: 10.1145/2939672.2939785 – volume: 22 start-page: 452 year: 2019 ident: 32666_CR18 publication-title: Eng Sci Technol Int J doi: 10.1016/J.JESTCH.2018.11.002 – volume: 22 start-page: 101432 year: 2023 ident: 32666_CR47 publication-title: Bioresour Technol Rep doi: 10.1016/j.biteb.2023.101432 – volume: 24 start-page: 363 year: 2022 ident: 32666_CR70 publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-021-02156-2 – volume: 332 start-page: 126055 year: 2023 ident: 32666_CR39 publication-title: Fuel doi: 10.1016/j.fuel.2022.126055 – ident: 32666_CR50 doi: 10.1787/9789264234611-en – volume: 43 start-page: 14202 year: 2018 ident: 32666_CR67 publication-title: Int J Hydrogen Energy doi: 10.1016/J.IJHYDENE.2018.05.132 – volume: 306 start-page: 121734 year: 2021 ident: 32666_CR30 publication-title: Fuel doi: 10.1016/J.FUEL.2021.121734 – volume: 169 start-page: 107488 year: 2022 ident: 32666_CR28 publication-title: Environ Int doi: 10.1016/j.envint.2022.107488 – volume: 14 start-page: 1265 year: 2021 ident: 32666_CR29 publication-title: Bioenergy Res doi: 10.1007/s12155-020-10216-6 – volume: 152 start-page: 87 year: 2018 ident: 32666_CR8 publication-title: Adv Agron doi: 10.1016/BS.AGRON.2018.07.002 – volume: 26 start-page: 100992 year: 2022 ident: 32666_CR54 publication-title: Eng Sci Technol Int J doi: 10.1016/J.JESTCH.2021.04.011 – volume: 29 start-page: 1189 year: 2001 ident: 32666_CR22 publication-title: Ann Stat doi: 10.1214/aos/1013203451 – volume: 369 start-page: 128485 year: 2023 ident: 32666_CR27 publication-title: Bioresour Technol doi: 10.1016/J.BIORTECH.2022.128485 – ident: 32666_CR63 – volume: 7 start-page: 133 year: 2020 ident: 32666_CR13 publication-title: J Adv Vet Anim Res doi: 10.5455/JAVAR.2020.G402 – volume: 205 start-page: 117697 year: 2021 ident: 32666_CR35 publication-title: Water Res doi: 10.1016/j.watres.2021.117697 – volume: 149 start-page: 111338 year: 2021 ident: 32666_CR56 publication-title: Renew Sust Energ Rev doi: 10.1016/J.RSER.2021.111338 – volume: 115 year: 2022 ident: 32666_CR23 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105151 – ident: 32666_CR36 – volume: 52 start-page: 102223 year: 2022 ident: 32666_CR12 publication-title: Sustain Energy Technol Assess doi: 10.1016/J.SETA.2022.102223 – ident: 32666_CR15 – volume: 16 start-page: 1557 year: 2012 ident: 32666_CR3 publication-title: Renew Sustain Energy Rev doi: 10.1016/J.RSER.2011.11.006 – volume: 16 start-page: 100638 year: 2022 ident: 32666_CR32 publication-title: Animal doi: 10.1016/J.ANIMAL.2022.100638 – volume: 159 start-page: 87 year: 2020 ident: 32666_CR40 publication-title: Renew Energy doi: 10.1016/J.RENENE.2020.05.173 – volume: 170 start-page: 31 year: 2018 ident: 32666_CR48 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2018.03.009 – volume: 132 start-page: 105440 year: 2020 ident: 32666_CR45 publication-title: Biomass Bioenergy doi: 10.1016/J.BIOMBIOE.2019.105440 – ident: 32666_CR44 doi: 10.1080/15567036.2020.1776796 – volume: 167 start-page: 112704 year: 2022 ident: 32666_CR68 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2022.112704 – volume: 103 start-page: 542 year: 2015 ident: 32666_CR53 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.07.007 |
| SSID | ssj0020927 |
| Score | 2.4090767 |
| Snippet | Animal waste can be converted into a renewable energy source using biogas technology. This process has an impact on greenhouse gas emissions and is a... |
| SourceID | unpaywall pubmedcentral proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 24461 |
| SubjectTerms | Algorithms Alternative energy sources Animal wastes Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Biogas cattle Climate change Climate effects Earth and Environmental Science Ecotoxicology Emissions energy Environment Environmental Chemistry Environmental Health Estimates Greenhouse gases Methane methane production Poultry manure prediction Predictions Renewable energy sources Research Article small ruminants Waste Water Technology Water Management Water Pollution Control |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_1-qA-iF_F0yoRfPOC3d3sJiuIaLnjEDxEWujbkmyStnC3u-4HpX9H_2Fn9us8wcPnfJBkJpOZzMxvCHkHlo7SWgvmdKwYF84waX3L4jC2RvsaRCB-DXxfRctz_u0ivDggqyEXBsMqB5nYCmqTp_hH_gFEbRBzyWPxufjFsGoUeleHEhqqL61gPrUQY_fIoY_IWBNy-HW--vFzNMFO4q6Ia8w58wLO-zSaLpnOC0IMyOUMVJooYmL3qdrqn39HT44u1IfkfpMV6vZGrdd_vFKLx-RRr17SLx0_PCEHNntKjubbbDZo7K9z9YzcLVpEEVqU6K5BEtHcUX2dX6qKFnmNkUQwQGWGni45xdJw-LlG8fOWgnpeYcw0VetLOKj6alN9pKBO0hQeRpwnbfGRZ7TawEJp2XRBN7N2ugLLWZe3dKMwUZlikgs9a0qQKM_J-WJ-drpkfZUGlnIZ1owDrZ2JwG4zMTepRLx4Z_3IVxpMlyjWMgWhKrlzvuKgTxkQGaENPB0Jo1KhgiMyyfLMviDUQ6Qd6wLufA_7S89JRN-JAhOmYHpNiTcQJEl7CHOspLFOtuDLSMQEiJi0REzElLwfxxQdgMfe3scDnZP-MlfJlvWm5O3YDEeOvhWV2bypEmBpIU7A9uL_7hPA6xKCvhxAH7nDQ-PKEOx7tyW7vmpBv9GDKYX0pmQ2sNt2hfs2NBtZ8j_2_3L__l-RBz5ekDZy6ZhM6rKxr0Epq_Wb_qb9BnJfNXk priority: 102 providerName: ProQuest – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvCsWCjISN9ZVkzixw62qdlmB4NSVyimyHbut2E2iPITK3-APM5PNg62goteMbdmT8XjGM_OZkHfg6SittWBOx4px4VImrW9ZHMY21b4GFYhXA1--RssV_3QWnnVFYVWf7d6HJFtNPRa7eUGICbOcgckRRUzcJXst3taE7B1__PZ5PjhaR7EvugKZv_fcPYRGy_J6XuQQHH1A7jVZoa5-qPX6j_Nn8Yis-plv006-Hza1PjQ_r4E63nZpj8nDziClx1sJekLu2Owp2Z-P9W9A7BRA9Yz8WrQYJLQoMcCDP5XmjurL_FxVtMhrzD2CDipL6cmSU3xMDq_jKF73UjDoK8yypmp9npfwZVN9oGCAUgNHKY5jWkTlGa02wABaNts0nVk7XIEPYJdXdKOwtJliWQw9bUrQQc_JajE_PVmy7l0HZrgMa8ZBOlwagaeXxjw1EhHmnfUjX2lwdqJYSwNqWHLnfMXBAktByYQ28HQkUmWECvbJJMsz-4JQD7F5rAu48z1sLz0nEa8nCtLQgLM2JV7_oxPTgZ7j2xvrZIRrRt4nwPuk5X0ipuT90KfYQn7c2Pqgl5-k2_5VAnZBEHPJYyC_HcjAcozGqMzmTZXAJhDiCLw1_u82AZxHIVjYAbSRO7I5zAzhwXcp2eVFCxOOMU8ppDcls17qxhnetKDZIOr_sf6Xtxv9Fbnvo5y3uU8HZFKXjX0NZl2t33S7-DeicUcL priority: 102 providerName: Springer Nature |
| Title | Future prediction of biogas potential and CH4 emission with boosting algorithms: the case of cattle, small ruminant, and poultry manure from Turkey |
| URI | https://link.springer.com/article/10.1007/s11356-024-32666-7 https://www.proquest.com/docview/3033948497 https://www.proquest.com/docview/2937705854 https://www.proquest.com/docview/3153593234 https://pubmed.ncbi.nlm.nih.gov/PMC10998781 https://link.springer.com/content/pdf/10.1007/s11356-024-32666-7.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1614-7499 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1614-7499 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe29gF44HuiMCoj8UbdkcSJHd5KaalAVBNape4pshNnTLRJlA-h8W_wD3OXJi2dYALxkkqx68aX6_ln393vCHkJOx2ltRYs1r5iXMQRk8Y2zHd9E2lbgwnEo4FPc2-24B-W7vKAvGtzYepo99YluclpQJampDzJovhkl_hmOS4Gz3IG8MPzmBhC8yHpei4g8g7pLuano_OaZo9zZjl1TVfANpwJQPhN7szvB9pfn3ag83rI5NZveofcqpJMXX1Tq9UvS9P0HjHtpDYRKV-HVamH4fdrfI__O-v75G6DXeloo2wPyIFJHpKjyS5VDhobW1E8Ij-mNV0JzXL0BeH7p2lM9WV6oQqapfi7oPtUJREdzzjFunN4ckfxZJgC9i8wIJuq1UWaw5118YYCVqUhrLo4TliTLw9osQaB0LzaRPQM6uEyrJWdX9G1wixoihk09KzKwVw9Jovp5Gw8Y00JCBZy6ZaMgyLFkQebwsjnUSiRjD42tmcrDfsiz9cyBIsteRzbigNYi8AeucaxtCciFQrlHJFOkibmCaEW0viY2OGxbWF_acUSqX08J3JD2Nf1iNW--CBs-NGxTMcq2DE7o_wDkH9Qyz8QPfJq-51sww5yY-_jVp-CxlIUAUAIx-eS-9D8YtsMIkfHjUpMWhUB_F-EeA0bO_7nPg4sXS6AcQf6yD1d3T4ZMonvtySXX2pGcXSPSiGtHhm0Wrh7wpsmNNiq_l_M_-m_dX9Gbtuo63WY1DHplHllngMCLHWfHIqlgKscW33SHb0__ziBz7eT-elnuDv2xnBd2KN-Ywh-ArtHWwE |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOFa-KpQWMBCfWonGc2EFCCC1dbenjtJV6C3bitJV2k7DZqNrfwf_gNzKTJ4vEikvPdiw7M56HZ-YbQt6Cp6ONMZIlJtBMyCRmynLLAi-wseEGRCA-DZyd-5ML8e3Su9wiv9paGEyrbGViJajjLMI38g8gat1AKBHIz_kPhl2jMLrattCo2eLErm7BZSs-HX8F-r7jfHw0HU1Y01WARUJ5SyZgb0nsg58RByKOFOKbJ5b7XBswtf3AqAiEgBJJwrUA_R8Di3vWdYwvYx1J7cK698h94XKJgkCNupQSfhjULWIDIZjjCtEU6dSleo7rYbqvYGAw-T6T64qwt27_zs3sArQPyU6Z5np1q2ezP3Tg-BHZbYxX-qXmtsdky6ZPyN5RXysHg42wKJ6Sn-MKr4TmCwwGIQPQLKHmJrvSBc2zJeYpwQc6jeloIig2nsOnO4pPwxSM_wIzsqmeXQEZltfz4iMFY5VGoHZxnahCXx7SYg4bpYuyTukZVsvl2Cx7saJzjWXQFEto6LRcgLx6Ri7uhFp7ZDvNUvucUAdxfGziioQ7OF85iUJsH9-NvQgcuwFxWoKEUQOQjn06ZmEP7YxEDIGIYUXEUA7I--6bvIYH2Tj7oKVz2IiKIuwZe0DedMPwyzFyo1OblUUIF0bKQ_DsxL_nuKC7PLDGXZij1nio2xlCia-PpDfXFaQ4xkeVVM6ADFt263e46UDDjiX_4_wvNp__NdmZTM9Ow9Pj85N98oDjZalypA7I9nJR2pdg_i3Nq-rOUfL9ri_5b2NAa6o |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAeEK-qWwoYCU6s1SZxYgcJIdR2taVQcWilvQU7sdtKu0nYbFTt7-Df8OuYyZNFYsWlZzuWnXl4xjPzDSFvwNNRWmvBrA4V48ImTBrXsNAPTaJdDSoQnwa-ngXjC_554k82yK-2FgbTKludWCnqJIvxjXwfVK0XcslDsW-btIhvR6OP-Q-GHaQw0tq206hZ5NQsb8B9Kz6cHAGt37ru6Pj8cMyaDgMs5tJfMA77tEkAPkcS8iSWiHVujRu4SoPZHYRaxqAQJLfWVRxsgQTY3TeeowORqFgoD9a9Q-4K2BqmE4pJ7-wdhHW72JBz5nicNwU7ddme4_mY-ssZGE9BwMTqpdhbun_naXbB2i1yv0xztbxR0-kf9-HoEXnYGLL0U815j8mGSZ-Q7eO-bg4GG8VRPCU_RxV2Cc3nGBhCZqCZpfo6u1QFzbMF5izBBypN6OGYU2xCh894FJ-JKTgCBWZnUzW9BDIsrmbFewqGK43hCsZ14gqJeUiLGWyUzss6vWdYLZdj4-z5ks4UlkRTLKeh5-UcdNczcnEr1Nomm2mWmh1CHcT0Mdbj1nVwvnSsRJyfwEv8GJy8AXFagkRxA5aOPTumUQ_zjESMgIhRRcRIDMi77pu8hgpZO3uvpXPUqI0i6pl8QF53w_DLMYqjUpOVRQTCI8QBeHn833M8uMd8sMw9mCNXeKjbGcKKr46k11cVvDjGSqWQzoAMW3brd7juQMOOJf_j_Lvrz_-K3APxjr6cnJ0-Jw9clJUqXWqPbC7mpXkBluBCv6xEjpLvty3jvwH8n3AZ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbK9gAceFdsKchI3FhvSeIkDreqdLVCouLQlcopsmO7VOwmUR5C7d_gDzOTJ1tBBeKamTixMxl_tme-IeQNrHSkUipkVkWS8dBqJoxrWORHRitXgQvErYFPp8FyxT-e--c75EOfC9NEu_dHkm1OA7I0pdVhru3hmPjmeD4Gz3IG8CMIWDgH8R2yG_iAyCdkd3X6-ehLQ7PHOXO8pqYrYBvOQkD4Xe7M7xvanp9G0HkzZHI4N71P7tZpLq--y_X6l6lp8ZCYvlNtRMq3eV2peXJ9g-_xf3v9iDzosCs9ao3tMdkx6ROydzKmyoGw8xXlU_Jj0dCV0LzAsyD8_jSzVF1mF7KkeYbPBdunMtX0eMkp1p3DnTuKO8MUsH-JAdlUri-yAq5syvcUsCpNYNbFdpKGfHlGyw0MCC3qNqJn1jSXY63s4opuJGZBU8ygoWd1Ae7qGVktTs6Ol6wrAcESLvyKcTAkqwNYFOqI60QgGb01buBKBeuiIFIiAY8tuLWu5ADWNPgj33iOCkItk1B6e2SSZql5TqiDND7Gety6DuoLxwqk9gk87SewrpsSp__wcdLxo2OZjnU8Mjvj-Mcw_nEz_nE4JW-He_KWHeRW7YPenuLOU5QxQAgv4oJHIH49iGHI8eBGpiaryxj-lzB8Bws7_mcdD6YuH8C4Bzpiy1aHN0Mm8W1Jevm1YRTH41ERCmdKZr0Vjm94W4dmg-n_Rf_3_039Bbnnoq03YVIHZFIVtXkJCLBSr7of_CcaKFRZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+prediction+of+biogas+potential+and+CH4+emission+with+boosting+algorithms%3A+the+case+of+cattle%2C+small+ruminant%2C+and+poultry+manure+from+Turkey&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Pence%2C+Ihsan&rft.au=Kuma%C5%9F%2C+Kaz%C4%B1m&rft.au=Cesmeli%2C+Melike+Siseci&rft.au=Aky%C3%BCz%2C+Ali&rft.date=2024-04-01&rft.issn=1614-7499&rft.eissn=1614-7499&rft.volume=31&rft.issue=16&rft.spage=24461&rft_id=info:doi/10.1007%2Fs11356-024-32666-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon |