A New Sliding Mode Control Algorithm of IGC System for Intercepting Great Maneuvering Target Based on EDO

To intercept the great maneuvering target, combining with the sliding mode and the extended disturbance observer, a new control algorithm for integrated guidance and control (IGC) system is proposed in this paper. Firstly, the paper formulates the Missile–Target problem. Then the paper establishes a...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 19; p. 7618
Main Authors Niu, Kang, Chen, Xi, Yang, Di, Li, Jiaxun, Yu, Jianqiao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22197618

Cover

More Information
Summary:To intercept the great maneuvering target, combining with the sliding mode and the extended disturbance observer, a new control algorithm for integrated guidance and control (IGC) system is proposed in this paper. Firstly, the paper formulates the Missile–Target problem. Then the paper establishes an uncertain IGC dynamic model where the nonlinearities, the perturbations and the maneuvering of the target are regarded as disturbance. Secondly, a second-order disturbance observer is designed to estimate the disturbance and their derivatives.. After this, combining with the second-order disturbance observer, a modified sliding surface and the corresponding reaching law are designed to obtain the rudder deflection command directly. Thus, the real sense of IGC system is achieved. Next, the paper uses the Lyapunov stability theory to prove the stability of the system. Finally, the paper provides different simulation cases, which have different maneuver modes of the target, to demonstrate the superiority of the proposed method in reducing the response time, increasing the rudder response, and having a high interception probability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22197618