Fault Detection of Wind Turbine Gearboxes Based on IBOA-ERF

As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine ge...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 18; p. 6826
Main Authors Tang, Mingzhu, Cao, Chenhuan, Wu, Huawei, Zhu, Hongqiu, Tang, Jun, Peng, Zhonghui, Wang, Yifan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22186826

Cover

Abstract As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate.
AbstractList As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate.
As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate.As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate.
Audience Academic
Author Peng, Zhonghui
Tang, Mingzhu
Wu, Huawei
Tang, Jun
Cao, Chenhuan
Zhu, Hongqiu
Wang, Yifan
AuthorAffiliation 1 School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China
2 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China
3 School of Automation, Central South University, Changsha 410083, China
AuthorAffiliation_xml – name: 3 School of Automation, Central South University, Changsha 410083, China
– name: 1 School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China
– name: 2 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China
Author_xml – sequence: 1
  givenname: Mingzhu
  orcidid: 0000-0002-9371-3207
  surname: Tang
  fullname: Tang, Mingzhu
– sequence: 2
  givenname: Chenhuan
  surname: Cao
  fullname: Cao, Chenhuan
– sequence: 3
  givenname: Huawei
  surname: Wu
  fullname: Wu, Huawei
– sequence: 4
  givenname: Hongqiu
  orcidid: 0000-0003-0063-0363
  surname: Zhu
  fullname: Zhu, Hongqiu
– sequence: 5
  givenname: Jun
  surname: Tang
  fullname: Tang, Jun
– sequence: 6
  givenname: Zhonghui
  surname: Peng
  fullname: Peng, Zhonghui
– sequence: 7
  givenname: Yifan
  surname: Wang
  fullname: Wang, Yifan
BookMark eNp9kltrFDEUx4NU7EUf_AYDvmhh2twmySAI29qtC4WCVHwMuc2aZTbZJjPafnszTim2iOQhOSe_8z8XziHYCzE4AN4ieEJIC08zxkgwgdkLcIAoprXAGO799d4HhzlvIMSEEPEK7BOGKEOcHoCPSzX2Q_XZDc4MPoYqdtV3H2x1Mybtg6sunUo63rlcnansbFWQ1dn1or74unwNXnaqz-7Nw30Evi0vbs6_1FfXl6vzxVVtqGiGGhlssdMd19RyyhHiBmJVytUNxh3UWjnlGESNxgZrRoklDRHMIq1oS2BLjsBq1rVRbeQu-a1K9zIqL_84YlpLlQZveiepbrRtW2oM07QxRmstCKNIGFUsQYvW8aw1hp26_6X6_lEQQTlNUz5Os8CfZng36q2zxoUhqf5JBU9_gv8h1_GnbBsIBRZF4P2DQIq3o8uD3PpsXN-r4OKYJeaIM8HadkLfPUM3cUyhzHWiGIOCkKmik5laq9KtD10seU051m29KVvR-eJfcMoagjHhJeDDHGBSzDm57r_tnj5jjR_UtBUlie__EfEbVazCGg
CitedBy_id crossref_primary_10_1142_S0218348X23401473
crossref_primary_10_3390_en16104123
crossref_primary_10_1016_j_heliyon_2024_e39268
crossref_primary_10_1142_S0218348X23401394
crossref_primary_10_1007_s42835_023_01677_8
crossref_primary_10_3390_en15218059
crossref_primary_10_3390_s23156741
Cites_doi 10.1109/TIE.2018.2856205
10.1109/TIE.2018.2844805
10.1016/j.neunet.2020.07.036
10.1016/j.isatra.2019.07.001
10.18637/jss.v046.i11
10.1016/j.jocs.2020.101104
10.1109/TNNLS.2015.2479117
10.1007/s00500-018-3102-4
10.1109/TIE.2019.2901565
10.1007/s00521-015-1870-7
10.1016/j.apenergy.2022.118773
10.1016/j.neucom.2020.07.061
10.1016/j.energy.2021.120750
10.1016/j.enconman.2021.114002
10.1007/s10462-020-09909-3
10.1007/s11432-018-9729-5
10.1109/TDSC.2019.2922958
10.1016/j.measurement.2022.111280
10.3390/s21186215
10.1016/j.apenergy.2022.118821
10.1109/TAC.2021.3071021
10.1016/j.enbuild.2018.12.032
10.3390/en13040807
10.1016/j.measurement.2019.107002
10.1016/j.ins.2014.02.156
10.1016/j.asoc.2021.107146
10.1109/TII.2018.2799600
10.1016/j.renene.2018.10.047
10.1016/j.ymssp.2017.08.038
10.1016/j.conbuildmat.2019.117000
10.1109/TSMC.2019.2932616
10.3233/JIFS-210815
10.1007/s00521-019-04570-6
10.1016/j.advengsoft.2017.07.002
10.1109/TITS.2020.3029946
10.1016/j.ymssp.2020.106861
10.1007/s10845-019-01522-8
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s22186826
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals - DOAJ (NTUSG)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_4b5bd994cc6b45ccbbb836418ca5cc84
10.3390/s22186826
PMC9500828
A746532237
10_3390_s22186826
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62173050
– fundername: Energy Conservation and Emission Reduction Hunan University Student Innovation and Entrepreneurship Education Center, Changsha University of Science and Technology’s “The Double First Class University Plan” International Cooperation and Development Project in Scientific Research
  grantid: 2018IC14
– fundername: National Key R&D Program of China
  grantid: 2019YFE0105300
– fundername: Graduate Scientific Research Innovation Project of Changsha University of Science and Technology
  grantid: CXCLY2022094
– fundername: Hunan Provincial Department of Transportation’s 2018 Science and Technology Progress and Innovation Plan Project
  grantid: 201843
– fundername: General Projects of Hunan University Students’ Innovation and Entrepreneurship Training Program
  grantid: 2565
– fundername: Hubei Superior and Distinctive Discipline Group of “New Energy Vehicle and Smart Transportation”, the Open Fund of Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle
  grantid: ZDSYS202201
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c485t-1c2d2ebf7b4d747117c02a682b522f0bbaeae6015b2c2b643d35386d1ba493093
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:43:22 EDT 2025
Sun Oct 26 03:43:38 EDT 2025
Tue Sep 30 17:18:47 EDT 2025
Fri Sep 05 07:14:23 EDT 2025
Tue Oct 07 07:34:52 EDT 2025
Mon Oct 20 16:56:27 EDT 2025
Thu Oct 16 04:46:06 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-1c2d2ebf7b4d747117c02a682b522f0bbaeae6015b2c2b643d35386d1ba493093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-9371-3207
0000-0003-0063-0363
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22186826
PMID 36146174
PQID 2716608336
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_4b5bd994cc6b45ccbbb836418ca5cc84
unpaywall_primary_10_3390_s22186826
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9500828
proquest_miscellaneous_2717686998
proquest_journals_2716608336
gale_infotracacademiconefile_A746532237
crossref_primary_10_3390_s22186826
crossref_citationtrail_10_3390_s22186826
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Feng (ref_14) 2020; 230
Qin (ref_5) 2019; 66
Stetco (ref_13) 2019; 133
Jiang (ref_4) 2019; 66
Song (ref_25) 2022; 312
Neshat (ref_23) 2021; 236
Jiang (ref_15) 2016; 131
Zhang (ref_39) 2020; 67
Arora (ref_21) 2019; 23
Luo (ref_22) 2021; 41
Mirjalili (ref_34) 2016; 27
Zhang (ref_29) 2014; 273
Chen (ref_10) 2022; 23
Langfelder (ref_38) 2012; 46
Yang (ref_19) 2020; 415
Yang (ref_20) 2020; 46
Liu (ref_3) 2020; 149
Liang (ref_12) 2021; 18
Long (ref_27) 2021; 103
Long (ref_28) 2021; 229
Wang (ref_9) 2018; 101
Shehab (ref_33) 2020; 32
Cui (ref_32) 2019; 62
Duan (ref_31) 2016; 27
Chakraborty (ref_17) 2019; 185
Han (ref_2) 2022; 67
Hua (ref_30) 2021; 51
Zhang (ref_37) 2018; 14
ref_1
Azamfar (ref_26) 2020; 144
Wang (ref_11) 2020; 96
Xu (ref_18) 2020; 31
Tang (ref_8) 2021; 9
Liu (ref_16) 2022; 196
Mirjalili (ref_36) 2017; 114
Abualigah (ref_35) 2021; 54
Song (ref_24) 2022; 312
ref_7
ref_6
References_xml – volume: 66
  start-page: 3814
  year: 2019
  ident: ref_5
  article-title: The Optimized Deep Belief Networks with Improved Logistic Sigmoid Units and Their Application in Fault Diagnosis for Planetary Gearboxes of Wind Turbines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2856205
– volume: 66
  start-page: 3196
  year: 2019
  ident: ref_4
  article-title: Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2844805
– volume: 131
  start-page: 276
  year: 2016
  ident: ref_15
  article-title: SVM-Boosting based on Markov resampling: Theory and algorithm
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.036
– volume: 96
  start-page: 457
  year: 2020
  ident: ref_11
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.07.001
– volume: 46
  start-page: 1
  year: 2012
  ident: ref_38
  article-title: Fast R Functions for Robust Correlations and Hierarchical Clustering
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v046.i11
– volume: 46
  start-page: 101104
  year: 2020
  ident: ref_20
  article-title: Nature-inspired optimization algorithms: Challenges and open problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2020.101104
– volume: 27
  start-page: 2413
  year: 2016
  ident: ref_31
  article-title: Echo State Networks with Orthogonal Pigeon- Inspired Optimization for Image Restoration
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2479117
– volume: 23
  start-page: 715
  year: 2019
  ident: ref_21
  article-title: Butterfly optimization algorithm: A novel approach for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3102-4
– volume: 67
  start-page: 2380
  year: 2020
  ident: ref_39
  article-title: A Correlation-Based Distributed Fault Detection Method and Its Application to a Hot Tandem Rolling Mill Process
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2901565
– volume: 27
  start-page: 495
  year: 2016
  ident: ref_34
  article-title: Multi-Verse Optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 312
  start-page: 118773
  year: 2022
  ident: ref_24
  article-title: Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118773
– volume: 415
  start-page: 295
  year: 2020
  ident: ref_19
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 229
  start-page: 120750
  year: 2021
  ident: ref_28
  article-title: Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120750
– volume: 236
  start-page: 114002
  year: 2021
  ident: ref_23
  article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114002
– volume: 54
  start-page: 2567
  year: 2021
  ident: ref_35
  article-title: Advances in Sine Cosine Algorithm: A comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09909-3
– ident: ref_1
– volume: 62
  start-page: 70212
  year: 2019
  ident: ref_32
  article-title: A pigeon-inspired optimization algorithm for many-objective optimization problems
  publication-title: Sci. China-Inf. Sci.
  doi: 10.1007/s11432-018-9729-5
– volume: 18
  start-page: 1632
  year: 2021
  ident: ref_12
  article-title: Efficient and Secure Decision Tree Classification for Cloud-Assisted Online Diagnosis Services
  publication-title: IEEE Trans. Dependable Secur. Comput.
  doi: 10.1109/TDSC.2019.2922958
– volume: 196
  start-page: 111280
  year: 2022
  ident: ref_16
  article-title: A rotor fault diagnosis method based on BP-Adaboost weighted by non-fuzzy solution coefficients
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111280
– ident: ref_7
  doi: 10.3390/s21186215
– volume: 312
  start-page: 118821
  year: 2022
  ident: ref_25
  article-title: Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118821
– volume: 67
  start-page: 1952
  year: 2022
  ident: ref_2
  article-title: Boundary Feedback Control of a Nonhomogeneous Wind Turbine Tower with Exogenous Disturbances
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2021.3071021
– volume: 9
  start-page: 378
  year: 2021
  ident: ref_8
  article-title: Cost-Sensitive LightGBM-Based Online Fault Detection Method for Wind Turbine Gearboxes
  publication-title: Front. Energy Res.
– volume: 185
  start-page: 326
  year: 2019
  ident: ref_17
  article-title: Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.12.032
– ident: ref_6
  doi: 10.3390/en13040807
– volume: 149
  start-page: 107002
  year: 2020
  ident: ref_3
  article-title: Zhang. A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107002
– volume: 273
  start-page: 329
  year: 2014
  ident: ref_29
  article-title: A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.156
– volume: 103
  start-page: 107146
  year: 2021
  ident: ref_27
  article-title: Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107146
– volume: 14
  start-page: 4841
  year: 2018
  ident: ref_37
  article-title: A Common and Individual Feature Extraction-Based Multimode Process Monitoring Method with Application to the Finishing Mill Process
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2799600
– volume: 133
  start-page: 620
  year: 2019
  ident: ref_13
  article-title: Machine learning methods for wind turbine condition monitoring: A review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.10.047
– volume: 101
  start-page: 292
  year: 2018
  ident: ref_9
  article-title: Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.08.038
– volume: 230
  start-page: 117000
  year: 2020
  ident: ref_14
  article-title: Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117000
– volume: 51
  start-page: 3713
  year: 2021
  ident: ref_30
  article-title: Exponential Chaotic Model for Generating Robust Chaos
  publication-title: IEEE Trans. Syst. Man Cybern.-Syst.
  doi: 10.1109/TSMC.2019.2932616
– volume: 41
  start-page: 3463
  year: 2021
  ident: ref_22
  article-title: Reverse guidance butterfly optimization algorithm integrated with information cross-sharing
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-210815
– volume: 32
  start-page: 9859
  year: 2020
  ident: ref_33
  article-title: Moth-flame optimization algorithm: Variants and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04570-6
– volume: 114
  start-page: 163
  year: 2017
  ident: ref_36
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 23
  start-page: 1700
  year: 2022
  ident: ref_10
  article-title: Huang. Data-Driven Fault Diagnosis for Traction Systems in High-Speed Trains: A Survey, Challenges, and Perspectives
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3029946
– volume: 144
  start-page: 106861
  year: 2020
  ident: ref_26
  article-title: Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106861
– volume: 31
  start-page: 1467
  year: 2020
  ident: ref_18
  article-title: Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-019-01522-8
SSID ssj0023338
Score 2.4093661
Snippet As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6826
SubjectTerms Accuracy
Air-turbines
Algorithms
Alternative energy sources
butterfly optimization algorithm
Classification
Datasets
Decision trees
extreme random forest
Failure
fault detection
Fault location (Engineering)
Feature selection
gearbox
Machine learning
Mechanical properties
Methods
Optimization algorithms
Testing
Turbines
Wavelet transforms
Wind farms
Wind power
wind turbine
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - DOAJ (NTUSG)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB5KX6wPYq3i1lZiK-jL0ttNsj_w6U57bQUVpMW-hUySpYVjr_R2af3vnWT3ljuq-NLH3R2WyUwmmY9MvgF4n4y0FhUXFN8Vj2mH0DHKUsa5zcnJlXU8EGl_-56dXoivl_JypdWXrwnr6IE7wx0JlGjLUhiToZDGIGLBM5EURtNTEZhAR0W5BFM91OKEvDoeIU6g_miR-tZLhWdQWNl9Akn_w6X4YXnkk7a-0b_v9Gy2svdMn8OzPmlk407Zbdhw9Qt4ukIluAOfprqdNeyLa0JtVc3mFftFeJudt7cEfh07oSmN83u3YBPauCwjkbPJj3F8_HP6Ei6mx-efT-O-MUJsRCGbODGpTR1WOQrrQWWSm1GqaXxI2VQ1QtROO0JaElOTIuUcltO6ltkEtSj90ecr2KzntXsNDLOSIyZOF7kVjlP-WEoCxZaQDf3aFRF8XBpMmZ413DevmClCD962arBtBAeD6E1HlfE3oYm3-iDg2a3DC_K56n2u_ufzCD54nykfg6SM0f1VAhqSZ7NS49yzxlHik0ewt3Sr6oNzoVLCiBmlnpy0eTd8prDyZyW6dvM2yBAQywiMRpCvTYc11de_1NdXgaC7lIEZMILDYeL82yK7j2GRN7CV-nsZofhtDzab29btU7bU4NsQGH8APl8R0A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gF4QHyKjIHChwQv0ZrY-RJCqIWWgURB0yb2FvlsByZVSWkTAf89d24aWg14THyK7POdfb_4_DuAZ-FQKVkKSf5dioB2CBVgnMdBalKa5NJY4Yi0P86S4zP54Tw-34PZ5i4Mp1Vu1kS3UJta8z_yo4gC-4TiBZG8XnwPuGoUn65uSmiorrSCeeUoxq7AfsTMWAPYH09mn096CCYIka35hQSB_aNVxCWZMmZW2NqVHHn_5SX6ctrk1bZaqF8_1Hy-tSdNb8KNLpj0R-vZvwV7troN17coBu_Ay6lq543_1jYu56ry69L_QjjcP22XBIqt_45MHeufduWPaUMzPom8H38aBZOT6V04m05O3xwHXcGEQMssboJQRyayWKYoDYPNMNXDSNH4kKKscoiorLKEwGKMdIQUixhB611iQlQy5yPRezCo6sreBx-TXCCGVmWpkVZQXJnHBJYNIR76tM08eLFRWKE7NnEuajEvCFWwbotetx486UUXawqNvwmNWeu9ALNeuxf18mvROVEhMUaT51LrBGWsNSJmIpFhphU9ZdKD5zxnBfsmdUar7ooBDYlZropRymxyFBClHhxuprXonHZV_DExDx73zeRufIaiKlu3ToYAWkIg1YN0xxx2ur7bUl18c8TdeewYAz142hvOvzVy8P8uPoBrEd_EcOluhzBolq19SPFRg486o_8NlmYOlw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wAceCMCCwoPCS7ZNI6dhzigFrYsSCwIbcXuKfLYDqyokqpNeP16xm4atSxISBzbTKtxZsYzXzLzGeBxNJSSlzGn-C7jgDKEDFDkIkh1SkYutYkdkfbbw-Rgyt8ci-ONKX7bVklQ_NRt0nYKK6AMNgwZC6MsTKgWDue6fP61e5YUUb50Lpieh51EUDU-gJ3p4fvRiRsq6n69IhSKCd2HS2bPYMoslcJGGnJs_Wf35LN9khfaai5_fJOz2UYSmlwBuVZ_1XvyZa9tcE_9_I3Z8X_WdxUudxWqP1q51DU4Z6rrcGmDt_AGPJvIdtb4L03jGrkqvy79jwTu_aN2QUjb-K8ofrD-bpb-mLKk9knk9fjdKNj_MLkJ08n-0YuDoDuFIVA8E00QKaaZwTJFri2CjVI1ZJJURSrdyiGiNNIQrBPIFEMqcHRMm2iiI5Q8t-9Zb8GgqitzG3xM8hgxMjJLNTcxFau5IASuCUbRX5vMg6droxSqoyi3J2XMCoIq1n5Fbz8PHvai8xUvx5-ExtayvYCl0nZf1ItPRReZBUeBOs-5UglyoRQiZnHCo0xJ-pRxD55YvyhswJMySnZzC7QkS51VjFJLUUdVVurB7tp1im4nWBaMAGlCdW5M2jzoL1MM2xczsjJ162QI9SWEfD1It1xuS_XtK9XpZ8cGngtHQ-jBo945_35H7vyT1F24yOyUh2ul24VBs2jNPaq9GrzfhdcvKPomQg
  priority: 102
  providerName: Unpaywall
Title Fault Detection of Wind Turbine Gearboxes Based on IBOA-ERF
URI https://www.proquest.com/docview/2716608336
https://www.proquest.com/docview/2717686998
https://pubmed.ncbi.nlm.nih.gov/PMC9500828
https://www.mdpi.com/1424-8220/22/18/6826/pdf?version=1663048807
https://doaj.org/article/4b5bd994cc6b45ccbbb836418ca5cc84
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central Free
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ4LxgPgUgVGFDwleAk3sxIkQQi00G0gr07SK8hT5bAeQomS0idj-e85pGq3aeOElUpKTZZ_vfPeLnd8BvPSHUvKccfLvnHkUIaSHYRJ6Qgua5Fwb1hJpH02jwxn_Mg_nW7CusdkpcHkttLP1pGaL4s3574sP5PDvLeIkyP52GdjCSpQnb8MuBajEVnA44v1mQsAIhq1IhTbF9-AGi2xda8E3olJL3n91ib56bPJmU57Jiz-yKC7FpPQO3O6SSXe0mv27sGXKe3DrEsXgfXiXyqao3U-mbs9clW6Vu98Ih7unzYJAsXEPyNSxOjdLd0wBTbsk8nn8deRNTtIHMEsnpx8Pva5ggqd4HNaerwIdGMwFcm3Bpi_UMJA0VKQsKx8iSiMNIbAQAxUg5SKa0XoXaR8lT-yW6EPYKavSPAIXo4Qh-kbGQnPDKK9MQgLLmhAPNW1iB16vFZapjk3cFrUoMkIVVs1Zr2YHnveiZysKjeuExlbrvYBlvW4fVIsfWedEGccQdZJwpSLkoVKIGLOI-7GSdBdzB17ZOcustVBnlOx-MaAhWZarbCQsmxwlRMKB_fW0ZmubywLCjhGlpIx686x_Te5m91BkaaqmlSGAFhFIdUBsmMNG1zfflL9-tsTdSdgyBjrwojecf2vk8X-3_wT2AvuTRnsSbh926kVjnlLqVOMAtsVc0DVODwawO55Mj08G7WeIQesy9Gw2PR59_wvXZxzc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH6qyqFwQKzCtIDZBBer8cx4E0IooQ0JXZBQquY2zGaKFNkhiVX6p_iNvJnYbqICtx5tP1njN2_7PDPfA3gVdoRgOWXo3zkNMEOIQEZZFCQ6wUnOtaGOSPvoOB6csM_jaLwBv5uzMHZbZRMTXaDWpbL_yHcJFvYx1gs0_jD9GdiuUXZ1tWmhsTSLA3NxjpBt_n64h_P7mpD-_ujjIKi7CgSKpdEiCBXRxMg8kUxbRBYmqkNEnBKJpUjekVIYYRCmRJIoIjFha4pBIdahFCyjjnwJQ_4NRjGWoP8k40uARxHvLdmLKM06u3NiGz6llrdhJee51gBXE8DVTZlbVTEVF-diMlnJeP07cLsuVf3u0rbuwoYp7sGtFQLD-_CuL6rJwt8zC7ejq_DL3D9FlO-PqhlCbuN_Qo3J8peZ-z1Ml9pHkWHvSzfY_9p_ACfXoriHsFmUhXkEvowzKmVoRJpoZihWrVmEUFwjnsJXm9SDt43CuKq5ym3LjAlHzGJ1y1vdevCiFZ0uCTr-JtSzWm8FLKe2u1HOvvPaRTmTkdRZxpSKJYuUklKmNGZhqgRepcyDN3bOuPV8HIwS9QEG_CTLocW7ieWqw3Ir8WCnmVZeh4Q5vzRgD563j9GZ7QqNKExZORmEfzFCYA-SNXNYG_r6k-LHmaMFzyLHR-jBy9Zw_q2Rx_8f4jPYGoyODvnh8PhgG24Se-bDbazbgc3FrDJPsBJbyKfO_H34dt3-9gcFekRo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB5VReJ4QJzCUMBcghcr8e76EkIoITUNhYJQK_K27GVAiuyQxCr9a_w6Zje2m6jAWx-THUWb2bk-e_YbgKdhXwhWUIb-XdAAM4QIZJRFQaITPORCG-qItD8cxHtH7N0kmmzB7_YujG2rbGOiC9S6UvYZeY9gYR9jvUDjXtG0RXwa5a9nPwM7Qcq-aW3HaaxMZN-cHCN8W7waj_CsnxGS7x6-2QuaCQOBYmm0DEJFNDGySCTTFp2FieoTEadEYllS9KUURhiELJEkikhM3ppigIh1KAXLqCNiwvB_IaE0s-2EyeQU7FHEfismI1zs9xbEDn9KLYfDWv5zYwLOJoOzDZqX6nImTo7FdLqW_fJrcLUpW_3Bys6uw5Ypb8CVNTLDm_AyF_V06Y_M0nV3lX5V-F8Q8fuH9Rzht_HfosZk9css_CGmTu2jyHj4cRDsfs5vwdG5KO42bJdVae6AL-OMShkakSaaGYoVbBYhLNeIrfCnTerBi1ZhXDW85XZ8xpQjfrG65Z1uPXjcic5WZB1_ExparXcCll_bfVHNv_HGXTmTkdRZxpSKJYuUklKmNGZhqgR-SpkHz-2ZcRsFcDNKNJcZ8C9ZPi0-SCxvHZZeiQc77bHyJjws-Kkxe_CoW0bHtm9rRGmq2skgFIwRDnuQbJjDxtY3V8of3x1FeBY5bkIPnnSG82-N3P3_Fh_CRfQ0_n58sH8PLhN7_cP12O3A9nJem_tYlC3lA2f9Pnw9b3f7A0-ESKs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wAceCMCCwoPCS7ZNI6dhzigFrYsSCwIbcXuKfLYDqyokqpNeP16xm4atSxISBzbTKtxZsYzXzLzGeBxNJSSlzGn-C7jgDKEDFDkIkh1SkYutYkdkfbbw-Rgyt8ci-ONKX7bVklQ_NRt0nYKK6AMNgwZC6MsTKgWDue6fP61e5YUUb50Lpieh51EUDU-gJ3p4fvRiRsq6n69IhSKCd2HS2bPYMoslcJGGnJs_Wf35LN9khfaai5_fJOz2UYSmlwBuVZ_1XvyZa9tcE_9_I3Z8X_WdxUudxWqP1q51DU4Z6rrcGmDt_AGPJvIdtb4L03jGrkqvy79jwTu_aN2QUjb-K8ofrD-bpb-mLKk9knk9fjdKNj_MLkJ08n-0YuDoDuFIVA8E00QKaaZwTJFri2CjVI1ZJJURSrdyiGiNNIQrBPIFEMqcHRMm2iiI5Q8t-9Zb8GgqitzG3xM8hgxMjJLNTcxFau5IASuCUbRX5vMg6droxSqoyi3J2XMCoIq1n5Fbz8PHvai8xUvx5-ExtayvYCl0nZf1ItPRReZBUeBOs-5UglyoRQiZnHCo0xJ-pRxD55YvyhswJMySnZzC7QkS51VjFJLUUdVVurB7tp1im4nWBaMAGlCdW5M2jzoL1MM2xczsjJ162QI9SWEfD1It1xuS_XtK9XpZ8cGngtHQ-jBo945_35H7vyT1F24yOyUh2ul24VBs2jNPaq9GrzfhdcvKPomQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+of+Wind+Turbine+Gearboxes+Based+on+IBOA-ERF&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tang%2C+Mingzhu&rft.au=Cao%2C+Chenhuan&rft.au=Wu%2C+Huawei&rft.au=Zhu%2C+Hongqiu&rft.date=2022-09-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=18&rft_id=info:doi/10.3390%2Fs22186826&rft_id=info%3Apmid%2F36146174&rft.externalDocID=PMC9500828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon