Fault Detection of Wind Turbine Gearboxes Based on IBOA-ERF
As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine ge...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 22; no. 18; p. 6826 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s22186826 |
Cover
| Abstract | As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate. |
|---|---|
| AbstractList | As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate. As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate.As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate. |
| Audience | Academic |
| Author | Peng, Zhonghui Tang, Mingzhu Wu, Huawei Tang, Jun Cao, Chenhuan Zhu, Hongqiu Wang, Yifan |
| AuthorAffiliation | 1 School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China 2 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China 3 School of Automation, Central South University, Changsha 410083, China |
| AuthorAffiliation_xml | – name: 3 School of Automation, Central South University, Changsha 410083, China – name: 1 School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China – name: 2 Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China |
| Author_xml | – sequence: 1 givenname: Mingzhu orcidid: 0000-0002-9371-3207 surname: Tang fullname: Tang, Mingzhu – sequence: 2 givenname: Chenhuan surname: Cao fullname: Cao, Chenhuan – sequence: 3 givenname: Huawei surname: Wu fullname: Wu, Huawei – sequence: 4 givenname: Hongqiu orcidid: 0000-0003-0063-0363 surname: Zhu fullname: Zhu, Hongqiu – sequence: 5 givenname: Jun surname: Tang fullname: Tang, Jun – sequence: 6 givenname: Zhonghui surname: Peng fullname: Peng, Zhonghui – sequence: 7 givenname: Yifan surname: Wang fullname: Wang, Yifan |
| BookMark | eNp9kltrFDEUx4NU7EUf_AYDvmhh2twmySAI29qtC4WCVHwMuc2aZTbZJjPafnszTim2iOQhOSe_8z8XziHYCzE4AN4ieEJIC08zxkgwgdkLcIAoprXAGO799d4HhzlvIMSEEPEK7BOGKEOcHoCPSzX2Q_XZDc4MPoYqdtV3H2x1Mybtg6sunUo63rlcnansbFWQ1dn1or74unwNXnaqz-7Nw30Evi0vbs6_1FfXl6vzxVVtqGiGGhlssdMd19RyyhHiBmJVytUNxh3UWjnlGESNxgZrRoklDRHMIq1oS2BLjsBq1rVRbeQu-a1K9zIqL_84YlpLlQZveiepbrRtW2oM07QxRmstCKNIGFUsQYvW8aw1hp26_6X6_lEQQTlNUz5Os8CfZng36q2zxoUhqf5JBU9_gv8h1_GnbBsIBRZF4P2DQIq3o8uD3PpsXN-r4OKYJeaIM8HadkLfPUM3cUyhzHWiGIOCkKmik5laq9KtD10seU051m29KVvR-eJfcMoagjHhJeDDHGBSzDm57r_tnj5jjR_UtBUlie__EfEbVazCGg |
| CitedBy_id | crossref_primary_10_1142_S0218348X23401473 crossref_primary_10_3390_en16104123 crossref_primary_10_1016_j_heliyon_2024_e39268 crossref_primary_10_1142_S0218348X23401394 crossref_primary_10_1007_s42835_023_01677_8 crossref_primary_10_3390_en15218059 crossref_primary_10_3390_s23156741 |
| Cites_doi | 10.1109/TIE.2018.2856205 10.1109/TIE.2018.2844805 10.1016/j.neunet.2020.07.036 10.1016/j.isatra.2019.07.001 10.18637/jss.v046.i11 10.1016/j.jocs.2020.101104 10.1109/TNNLS.2015.2479117 10.1007/s00500-018-3102-4 10.1109/TIE.2019.2901565 10.1007/s00521-015-1870-7 10.1016/j.apenergy.2022.118773 10.1016/j.neucom.2020.07.061 10.1016/j.energy.2021.120750 10.1016/j.enconman.2021.114002 10.1007/s10462-020-09909-3 10.1007/s11432-018-9729-5 10.1109/TDSC.2019.2922958 10.1016/j.measurement.2022.111280 10.3390/s21186215 10.1016/j.apenergy.2022.118821 10.1109/TAC.2021.3071021 10.1016/j.enbuild.2018.12.032 10.3390/en13040807 10.1016/j.measurement.2019.107002 10.1016/j.ins.2014.02.156 10.1016/j.asoc.2021.107146 10.1109/TII.2018.2799600 10.1016/j.renene.2018.10.047 10.1016/j.ymssp.2017.08.038 10.1016/j.conbuildmat.2019.117000 10.1109/TSMC.2019.2932616 10.3233/JIFS-210815 10.1007/s00521-019-04570-6 10.1016/j.advengsoft.2017.07.002 10.1109/TITS.2020.3029946 10.1016/j.ymssp.2020.106861 10.1007/s10845-019-01522-8 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s22186826 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals - DOAJ (NTUSG) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_4b5bd994cc6b45ccbbb836418ca5cc84 10.3390/s22186826 PMC9500828 A746532237 10_3390_s22186826 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62173050 – fundername: Energy Conservation and Emission Reduction Hunan University Student Innovation and Entrepreneurship Education Center, Changsha University of Science and Technology’s “The Double First Class University Plan” International Cooperation and Development Project in Scientific Research grantid: 2018IC14 – fundername: National Key R&D Program of China grantid: 2019YFE0105300 – fundername: Graduate Scientific Research Innovation Project of Changsha University of Science and Technology grantid: CXCLY2022094 – fundername: Hunan Provincial Department of Transportation’s 2018 Science and Technology Progress and Innovation Plan Project grantid: 201843 – fundername: General Projects of Hunan University Students’ Innovation and Entrepreneurship Training Program grantid: 2565 – fundername: Hubei Superior and Distinctive Discipline Group of “New Energy Vehicle and Smart Transportation”, the Open Fund of Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle grantid: ZDSYS202201 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c485t-1c2d2ebf7b4d747117c02a682b522f0bbaeae6015b2c2b643d35386d1ba493093 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:43:22 EDT 2025 Sun Oct 26 03:43:38 EDT 2025 Tue Sep 30 17:18:47 EDT 2025 Fri Sep 05 07:14:23 EDT 2025 Tue Oct 07 07:34:52 EDT 2025 Mon Oct 20 16:56:27 EDT 2025 Thu Oct 16 04:46:06 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-1c2d2ebf7b4d747117c02a682b522f0bbaeae6015b2c2b643d35386d1ba493093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0002-9371-3207 0000-0003-0063-0363 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22186826 |
| PMID | 36146174 |
| PQID | 2716608336 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4b5bd994cc6b45ccbbb836418ca5cc84 unpaywall_primary_10_3390_s22186826 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9500828 proquest_miscellaneous_2717686998 proquest_journals_2716608336 gale_infotracacademiconefile_A746532237 crossref_primary_10_3390_s22186826 crossref_citationtrail_10_3390_s22186826 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Feng (ref_14) 2020; 230 Qin (ref_5) 2019; 66 Stetco (ref_13) 2019; 133 Jiang (ref_4) 2019; 66 Song (ref_25) 2022; 312 Neshat (ref_23) 2021; 236 Jiang (ref_15) 2016; 131 Zhang (ref_39) 2020; 67 Arora (ref_21) 2019; 23 Luo (ref_22) 2021; 41 Mirjalili (ref_34) 2016; 27 Zhang (ref_29) 2014; 273 Chen (ref_10) 2022; 23 Langfelder (ref_38) 2012; 46 Yang (ref_19) 2020; 415 Yang (ref_20) 2020; 46 Liu (ref_3) 2020; 149 Liang (ref_12) 2021; 18 Long (ref_27) 2021; 103 Long (ref_28) 2021; 229 Wang (ref_9) 2018; 101 Shehab (ref_33) 2020; 32 Cui (ref_32) 2019; 62 Duan (ref_31) 2016; 27 Chakraborty (ref_17) 2019; 185 Han (ref_2) 2022; 67 Hua (ref_30) 2021; 51 Zhang (ref_37) 2018; 14 ref_1 Azamfar (ref_26) 2020; 144 Wang (ref_11) 2020; 96 Xu (ref_18) 2020; 31 Tang (ref_8) 2021; 9 Liu (ref_16) 2022; 196 Mirjalili (ref_36) 2017; 114 Abualigah (ref_35) 2021; 54 Song (ref_24) 2022; 312 ref_7 ref_6 |
| References_xml | – volume: 66 start-page: 3814 year: 2019 ident: ref_5 article-title: The Optimized Deep Belief Networks with Improved Logistic Sigmoid Units and Their Application in Fault Diagnosis for Planetary Gearboxes of Wind Turbines publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2856205 – volume: 66 start-page: 3196 year: 2019 ident: ref_4 article-title: Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2844805 – volume: 131 start-page: 276 year: 2016 ident: ref_15 article-title: SVM-Boosting based on Markov resampling: Theory and algorithm publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.07.036 – volume: 96 start-page: 457 year: 2020 ident: ref_11 article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.07.001 – volume: 46 start-page: 1 year: 2012 ident: ref_38 article-title: Fast R Functions for Robust Correlations and Hierarchical Clustering publication-title: J. Stat. Softw. doi: 10.18637/jss.v046.i11 – volume: 46 start-page: 101104 year: 2020 ident: ref_20 article-title: Nature-inspired optimization algorithms: Challenges and open problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2020.101104 – volume: 27 start-page: 2413 year: 2016 ident: ref_31 article-title: Echo State Networks with Orthogonal Pigeon- Inspired Optimization for Image Restoration publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2479117 – volume: 23 start-page: 715 year: 2019 ident: ref_21 article-title: Butterfly optimization algorithm: A novel approach for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3102-4 – volume: 67 start-page: 2380 year: 2020 ident: ref_39 article-title: A Correlation-Based Distributed Fault Detection Method and Its Application to a Hot Tandem Rolling Mill Process publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2901565 – volume: 27 start-page: 495 year: 2016 ident: ref_34 article-title: Multi-Verse Optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 312 start-page: 118773 year: 2022 ident: ref_24 article-title: Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.118773 – volume: 415 start-page: 295 year: 2020 ident: ref_19 article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: 229 start-page: 120750 year: 2021 ident: ref_28 article-title: Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2021.120750 – volume: 236 start-page: 114002 year: 2021 ident: ref_23 article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114002 – volume: 54 start-page: 2567 year: 2021 ident: ref_35 article-title: Advances in Sine Cosine Algorithm: A comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09909-3 – ident: ref_1 – volume: 62 start-page: 70212 year: 2019 ident: ref_32 article-title: A pigeon-inspired optimization algorithm for many-objective optimization problems publication-title: Sci. China-Inf. Sci. doi: 10.1007/s11432-018-9729-5 – volume: 18 start-page: 1632 year: 2021 ident: ref_12 article-title: Efficient and Secure Decision Tree Classification for Cloud-Assisted Online Diagnosis Services publication-title: IEEE Trans. Dependable Secur. Comput. doi: 10.1109/TDSC.2019.2922958 – volume: 196 start-page: 111280 year: 2022 ident: ref_16 article-title: A rotor fault diagnosis method based on BP-Adaboost weighted by non-fuzzy solution coefficients publication-title: Measurement doi: 10.1016/j.measurement.2022.111280 – ident: ref_7 doi: 10.3390/s21186215 – volume: 312 start-page: 118821 year: 2022 ident: ref_25 article-title: Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118821 – volume: 67 start-page: 1952 year: 2022 ident: ref_2 article-title: Boundary Feedback Control of a Nonhomogeneous Wind Turbine Tower with Exogenous Disturbances publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2021.3071021 – volume: 9 start-page: 378 year: 2021 ident: ref_8 article-title: Cost-Sensitive LightGBM-Based Online Fault Detection Method for Wind Turbine Gearboxes publication-title: Front. Energy Res. – volume: 185 start-page: 326 year: 2019 ident: ref_17 article-title: Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.12.032 – ident: ref_6 doi: 10.3390/en13040807 – volume: 149 start-page: 107002 year: 2020 ident: ref_3 article-title: Zhang. A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings publication-title: Measurement doi: 10.1016/j.measurement.2019.107002 – volume: 273 start-page: 329 year: 2014 ident: ref_29 article-title: A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.156 – volume: 103 start-page: 107146 year: 2021 ident: ref_27 article-title: Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107146 – volume: 14 start-page: 4841 year: 2018 ident: ref_37 article-title: A Common and Individual Feature Extraction-Based Multimode Process Monitoring Method with Application to the Finishing Mill Process publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2799600 – volume: 133 start-page: 620 year: 2019 ident: ref_13 article-title: Machine learning methods for wind turbine condition monitoring: A review publication-title: Renew. Energy doi: 10.1016/j.renene.2018.10.047 – volume: 101 start-page: 292 year: 2018 ident: ref_9 article-title: Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.08.038 – volume: 230 start-page: 117000 year: 2020 ident: ref_14 article-title: Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117000 – volume: 51 start-page: 3713 year: 2021 ident: ref_30 article-title: Exponential Chaotic Model for Generating Robust Chaos publication-title: IEEE Trans. Syst. Man Cybern.-Syst. doi: 10.1109/TSMC.2019.2932616 – volume: 41 start-page: 3463 year: 2021 ident: ref_22 article-title: Reverse guidance butterfly optimization algorithm integrated with information cross-sharing publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-210815 – volume: 32 start-page: 9859 year: 2020 ident: ref_33 article-title: Moth-flame optimization algorithm: Variants and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04570-6 – volume: 114 start-page: 163 year: 2017 ident: ref_36 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 23 start-page: 1700 year: 2022 ident: ref_10 article-title: Huang. Data-Driven Fault Diagnosis for Traction Systems in High-Speed Trains: A Survey, Challenges, and Perspectives publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3029946 – volume: 144 start-page: 106861 year: 2020 ident: ref_26 article-title: Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106861 – volume: 31 start-page: 1467 year: 2020 ident: ref_18 article-title: Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning publication-title: J. Intell. Manuf. doi: 10.1007/s10845-019-01522-8 |
| SSID | ssj0023338 |
| Score | 2.4093661 |
| Snippet | As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 6826 |
| SubjectTerms | Accuracy Air-turbines Algorithms Alternative energy sources butterfly optimization algorithm Classification Datasets Decision trees extreme random forest Failure fault detection Fault location (Engineering) Feature selection gearbox Machine learning Mechanical properties Methods Optimization algorithms Testing Turbines Wavelet transforms Wind farms Wind power wind turbine |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - DOAJ (NTUSG) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB5KX6wPYq3i1lZiK-jL0ttNsj_w6U57bQUVpMW-hUySpYVjr_R2af3vnWT3ljuq-NLH3R2WyUwmmY9MvgF4n4y0FhUXFN8Vj2mH0DHKUsa5zcnJlXU8EGl_-56dXoivl_JypdWXrwnr6IE7wx0JlGjLUhiToZDGIGLBM5EURtNTEZhAR0W5BFM91OKEvDoeIU6g_miR-tZLhWdQWNl9Akn_w6X4YXnkk7a-0b_v9Gy2svdMn8OzPmlk407Zbdhw9Qt4ukIluAOfprqdNeyLa0JtVc3mFftFeJudt7cEfh07oSmN83u3YBPauCwjkbPJj3F8_HP6Ei6mx-efT-O-MUJsRCGbODGpTR1WOQrrQWWSm1GqaXxI2VQ1QtROO0JaElOTIuUcltO6ltkEtSj90ecr2KzntXsNDLOSIyZOF7kVjlP-WEoCxZaQDf3aFRF8XBpMmZ413DevmClCD962arBtBAeD6E1HlfE3oYm3-iDg2a3DC_K56n2u_ufzCD54nykfg6SM0f1VAhqSZ7NS49yzxlHik0ewt3Sr6oNzoVLCiBmlnpy0eTd8prDyZyW6dvM2yBAQywiMRpCvTYc11de_1NdXgaC7lIEZMILDYeL82yK7j2GRN7CV-nsZofhtDzab29btU7bU4NsQGH8APl8R0A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gF4QHyKjIHChwQv0ZrY-RJCqIWWgURB0yb2FvlsByZVSWkTAf89d24aWg14THyK7POdfb_4_DuAZ-FQKVkKSf5dioB2CBVgnMdBalKa5NJY4Yi0P86S4zP54Tw-34PZ5i4Mp1Vu1kS3UJta8z_yo4gC-4TiBZG8XnwPuGoUn65uSmiorrSCeeUoxq7AfsTMWAPYH09mn096CCYIka35hQSB_aNVxCWZMmZW2NqVHHn_5SX6ctrk1bZaqF8_1Hy-tSdNb8KNLpj0R-vZvwV7troN17coBu_Ay6lq543_1jYu56ry69L_QjjcP22XBIqt_45MHeufduWPaUMzPom8H38aBZOT6V04m05O3xwHXcGEQMssboJQRyayWKYoDYPNMNXDSNH4kKKscoiorLKEwGKMdIQUixhB611iQlQy5yPRezCo6sreBx-TXCCGVmWpkVZQXJnHBJYNIR76tM08eLFRWKE7NnEuajEvCFWwbotetx486UUXawqNvwmNWeu9ALNeuxf18mvROVEhMUaT51LrBGWsNSJmIpFhphU9ZdKD5zxnBfsmdUar7ooBDYlZropRymxyFBClHhxuprXonHZV_DExDx73zeRufIaiKlu3ToYAWkIg1YN0xxx2ur7bUl18c8TdeewYAz142hvOvzVy8P8uPoBrEd_EcOluhzBolq19SPFRg486o_8NlmYOlw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wAceCMCCwoPCS7ZNI6dhzigFrYsSCwIbcXuKfLYDqyokqpNeP16xm4atSxISBzbTKtxZsYzXzLzGeBxNJSSlzGn-C7jgDKEDFDkIkh1SkYutYkdkfbbw-Rgyt8ci-ONKX7bVklQ_NRt0nYKK6AMNgwZC6MsTKgWDue6fP61e5YUUb50Lpieh51EUDU-gJ3p4fvRiRsq6n69IhSKCd2HS2bPYMoslcJGGnJs_Wf35LN9khfaai5_fJOz2UYSmlwBuVZ_1XvyZa9tcE_9_I3Z8X_WdxUudxWqP1q51DU4Z6rrcGmDt_AGPJvIdtb4L03jGrkqvy79jwTu_aN2QUjb-K8ofrD-bpb-mLKk9knk9fjdKNj_MLkJ08n-0YuDoDuFIVA8E00QKaaZwTJFri2CjVI1ZJJURSrdyiGiNNIQrBPIFEMqcHRMm2iiI5Q8t-9Zb8GgqitzG3xM8hgxMjJLNTcxFau5IASuCUbRX5vMg6droxSqoyi3J2XMCoIq1n5Fbz8PHvai8xUvx5-ExtayvYCl0nZf1ItPRReZBUeBOs-5UglyoRQiZnHCo0xJ-pRxD55YvyhswJMySnZzC7QkS51VjFJLUUdVVurB7tp1im4nWBaMAGlCdW5M2jzoL1MM2xczsjJ162QI9SWEfD1It1xuS_XtK9XpZ8cGngtHQ-jBo945_35H7vyT1F24yOyUh2ul24VBs2jNPaq9GrzfhdcvKPomQg priority: 102 providerName: Unpaywall |
| Title | Fault Detection of Wind Turbine Gearboxes Based on IBOA-ERF |
| URI | https://www.proquest.com/docview/2716608336 https://www.proquest.com/docview/2717686998 https://pubmed.ncbi.nlm.nih.gov/PMC9500828 https://www.mdpi.com/1424-8220/22/18/6826/pdf?version=1663048807 https://doaj.org/article/4b5bd994cc6b45ccbbb836418ca5cc84 |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central Free customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ4LxgPgUgVGFDwleAk3sxIkQQi00G0gr07SK8hT5bAeQomS0idj-e85pGq3aeOElUpKTZZ_vfPeLnd8BvPSHUvKccfLvnHkUIaSHYRJ6Qgua5Fwb1hJpH02jwxn_Mg_nW7CusdkpcHkttLP1pGaL4s3574sP5PDvLeIkyP52GdjCSpQnb8MuBajEVnA44v1mQsAIhq1IhTbF9-AGi2xda8E3olJL3n91ib56bPJmU57Jiz-yKC7FpPQO3O6SSXe0mv27sGXKe3DrEsXgfXiXyqao3U-mbs9clW6Vu98Ih7unzYJAsXEPyNSxOjdLd0wBTbsk8nn8deRNTtIHMEsnpx8Pva5ggqd4HNaerwIdGMwFcm3Bpi_UMJA0VKQsKx8iSiMNIbAQAxUg5SKa0XoXaR8lT-yW6EPYKavSPAIXo4Qh-kbGQnPDKK9MQgLLmhAPNW1iB16vFZapjk3cFrUoMkIVVs1Zr2YHnveiZysKjeuExlbrvYBlvW4fVIsfWedEGccQdZJwpSLkoVKIGLOI-7GSdBdzB17ZOcustVBnlOx-MaAhWZarbCQsmxwlRMKB_fW0ZmubywLCjhGlpIx686x_Te5m91BkaaqmlSGAFhFIdUBsmMNG1zfflL9-tsTdSdgyBjrwojecf2vk8X-3_wT2AvuTRnsSbh926kVjnlLqVOMAtsVc0DVODwawO55Mj08G7WeIQesy9Gw2PR59_wvXZxzc |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH6qyqFwQKzCtIDZBBer8cx4E0IooQ0JXZBQquY2zGaKFNkhiVX6p_iNvJnYbqICtx5tP1njN2_7PDPfA3gVdoRgOWXo3zkNMEOIQEZZFCQ6wUnOtaGOSPvoOB6csM_jaLwBv5uzMHZbZRMTXaDWpbL_yHcJFvYx1gs0_jD9GdiuUXZ1tWmhsTSLA3NxjpBt_n64h_P7mpD-_ujjIKi7CgSKpdEiCBXRxMg8kUxbRBYmqkNEnBKJpUjekVIYYRCmRJIoIjFha4pBIdahFCyjjnwJQ_4NRjGWoP8k40uARxHvLdmLKM06u3NiGz6llrdhJee51gBXE8DVTZlbVTEVF-diMlnJeP07cLsuVf3u0rbuwoYp7sGtFQLD-_CuL6rJwt8zC7ejq_DL3D9FlO-PqhlCbuN_Qo3J8peZ-z1Ml9pHkWHvSzfY_9p_ACfXoriHsFmUhXkEvowzKmVoRJpoZihWrVmEUFwjnsJXm9SDt43CuKq5ym3LjAlHzGJ1y1vdevCiFZ0uCTr-JtSzWm8FLKe2u1HOvvPaRTmTkdRZxpSKJYuUklKmNGZhqgRepcyDN3bOuPV8HIwS9QEG_CTLocW7ieWqw3Ir8WCnmVZeh4Q5vzRgD563j9GZ7QqNKExZORmEfzFCYA-SNXNYG_r6k-LHmaMFzyLHR-jBy9Zw_q2Rx_8f4jPYGoyODvnh8PhgG24Se-bDbazbgc3FrDJPsBJbyKfO_H34dt3-9gcFekRo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB5VReJ4QJzCUMBcghcr8e76EkIoITUNhYJQK_K27GVAiuyQxCr9a_w6Zje2m6jAWx-THUWb2bk-e_YbgKdhXwhWUIb-XdAAM4QIZJRFQaITPORCG-qItD8cxHtH7N0kmmzB7_YujG2rbGOiC9S6UvYZeY9gYR9jvUDjXtG0RXwa5a9nPwM7Qcq-aW3HaaxMZN-cHCN8W7waj_CsnxGS7x6-2QuaCQOBYmm0DEJFNDGySCTTFp2FieoTEadEYllS9KUURhiELJEkikhM3ppigIh1KAXLqCNiwvB_IaE0s-2EyeQU7FHEfismI1zs9xbEDn9KLYfDWv5zYwLOJoOzDZqX6nImTo7FdLqW_fJrcLUpW_3Bys6uw5Ypb8CVNTLDm_AyF_V06Y_M0nV3lX5V-F8Q8fuH9Rzht_HfosZk9css_CGmTu2jyHj4cRDsfs5vwdG5KO42bJdVae6AL-OMShkakSaaGYoVbBYhLNeIrfCnTerBi1ZhXDW85XZ8xpQjfrG65Z1uPXjcic5WZB1_ExparXcCll_bfVHNv_HGXTmTkdRZxpSKJYuUklKmNGZhqgR-SpkHz-2ZcRsFcDNKNJcZ8C9ZPi0-SCxvHZZeiQc77bHyJjws-Kkxe_CoW0bHtm9rRGmq2skgFIwRDnuQbJjDxtY3V8of3x1FeBY5bkIPnnSG82-N3P3_Fh_CRfQ0_n58sH8PLhN7_cP12O3A9nJem_tYlC3lA2f9Pnw9b3f7A0-ESKs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wAceCMCCwoPCS7ZNI6dhzigFrYsSCwIbcXuKfLYDqyokqpNeP16xm4atSxISBzbTKtxZsYzXzLzGeBxNJSSlzGn-C7jgDKEDFDkIkh1SkYutYkdkfbbw-Rgyt8ci-ONKX7bVklQ_NRt0nYKK6AMNgwZC6MsTKgWDue6fP61e5YUUb50Lpieh51EUDU-gJ3p4fvRiRsq6n69IhSKCd2HS2bPYMoslcJGGnJs_Wf35LN9khfaai5_fJOz2UYSmlwBuVZ_1XvyZa9tcE_9_I3Z8X_WdxUudxWqP1q51DU4Z6rrcGmDt_AGPJvIdtb4L03jGrkqvy79jwTu_aN2QUjb-K8ofrD-bpb-mLKk9knk9fjdKNj_MLkJ08n-0YuDoDuFIVA8E00QKaaZwTJFri2CjVI1ZJJURSrdyiGiNNIQrBPIFEMqcHRMm2iiI5Q8t-9Zb8GgqitzG3xM8hgxMjJLNTcxFau5IASuCUbRX5vMg6droxSqoyi3J2XMCoIq1n5Fbz8PHvai8xUvx5-ExtayvYCl0nZf1ItPRReZBUeBOs-5UglyoRQiZnHCo0xJ-pRxD55YvyhswJMySnZzC7QkS51VjFJLUUdVVurB7tp1im4nWBaMAGlCdW5M2jzoL1MM2xczsjJ162QI9SWEfD1It1xuS_XtK9XpZ8cGngtHQ-jBo945_35H7vyT1F24yOyUh2ul24VBs2jNPaq9GrzfhdcvKPomQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Detection+of+Wind+Turbine+Gearboxes+Based+on+IBOA-ERF&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tang%2C+Mingzhu&rft.au=Cao%2C+Chenhuan&rft.au=Wu%2C+Huawei&rft.au=Zhu%2C+Hongqiu&rft.date=2022-09-01&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=18&rft_id=info:doi/10.3390%2Fs22186826&rft_id=info%3Apmid%2F36146174&rft.externalDocID=PMC9500828 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |