Comparison of AI-integrated pathways with human-AI interaction in population mammographic screening for breast cancer
Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementatio...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 7525 - 12 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.08.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-024-51725-8 |
Cover
Abstract | Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9–2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6–10.9% reduction in assessments and 48–80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption.
Successful human-AI collaboration could greatly contribute to breast cancer mammographic screening. Here, the authors use a large-scale retrospective mammography dataset to simulate and compare five plausible AI-integrated screening pathways, finding optimal ways in which human-AI collaboration could be implemented in real-world settings. |
---|---|
AbstractList | Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9-2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6-10.9% reduction in assessments and 48-80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption. Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9–2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6–10.9% reduction in assessments and 48–80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption.Successful human-AI collaboration could greatly contribute to breast cancer mammographic screening. Here, the authors use a large-scale retrospective mammography dataset to simulate and compare five plausible AI-integrated screening pathways, finding optimal ways in which human-AI collaboration could be implemented in real-world settings. Abstract Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9–2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6–10.9% reduction in assessments and 48–80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption. Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9–2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6–10.9% reduction in assessments and 48–80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption. Successful human-AI collaboration could greatly contribute to breast cancer mammographic screening. Here, the authors use a large-scale retrospective mammography dataset to simulate and compare five plausible AI-integrated screening pathways, finding optimal ways in which human-AI collaboration could be implemented in real-world settings. Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9-2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6-10.9% reduction in assessments and 48-80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption.Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9-2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6-10.9% reduction in assessments and 48-80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption. |
ArticleNumber | 7525 |
Author | Elliott, Michael S. Carneiro, Gustavo Peña-Solorzano, Carlos A. Brotchie, Peter McCarthy, Davis J. Wang, Chong Hopper, John L. Frazer, Helen M. L. Lippey, Jocelyn F. Kwok, Chun Fung Chen, Yuanhong |
Author_xml | – sequence: 1 givenname: Helen M. L. orcidid: 0000-0001-9399-8102 surname: Frazer fullname: Frazer, Helen M. L. email: helen.frazer@svha.org.au organization: St Vincent’s BreastScreen, St Vincent’s Hospital Melbourne, BreastScreen Victoria, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne – sequence: 2 givenname: Carlos A. orcidid: 0000-0002-1734-7284 surname: Peña-Solorzano fullname: Peña-Solorzano, Carlos A. organization: Bioinformatics and Cellular Genomics Unit, St Vincent’s Institute of Medical Research, Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne – sequence: 3 givenname: Chun Fung orcidid: 0000-0002-0716-3879 surname: Kwok fullname: Kwok, Chun Fung organization: Bioinformatics and Cellular Genomics Unit, St Vincent’s Institute of Medical Research, Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne – sequence: 4 givenname: Michael S. orcidid: 0000-0002-2406-4522 surname: Elliott fullname: Elliott, Michael S. organization: Bioinformatics and Cellular Genomics Unit, St Vincent’s Institute of Medical Research, Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne – sequence: 5 givenname: Yuanhong surname: Chen fullname: Chen, Yuanhong organization: School of Computer Science, Australian Institute for Machine Learning, University of Adelaide – sequence: 6 givenname: Chong orcidid: 0000-0003-0022-0217 surname: Wang fullname: Wang, Chong organization: School of Computer Science, Australian Institute for Machine Learning, University of Adelaide – sequence: 8 givenname: Jocelyn F. surname: Lippey fullname: Lippey, Jocelyn F. organization: St Vincent’s BreastScreen, St Vincent’s Hospital Melbourne, Department of Surgery, St Vincent’s Hospital Melbourne, Department of Surgery, University of Melbourne – sequence: 9 givenname: John L. surname: Hopper fullname: Hopper, John L. organization: Centre for Epidemiology & Biostatistics, Melbourne School of Population and Global Health, University of Melbourne – sequence: 10 givenname: Peter surname: Brotchie fullname: Brotchie, Peter organization: Department of Radiology, St Vincent’s Hospital Melbourne – sequence: 11 givenname: Gustavo surname: Carneiro fullname: Carneiro, Gustavo organization: School of Computer Science, Australian Institute for Machine Learning, University of Adelaide, Centre for Vision, Speech and Signal Processing (CVSSP), The University of Surrey – sequence: 12 givenname: Davis J. orcidid: 0000-0002-2218-6833 surname: McCarthy fullname: McCarthy, Davis J. organization: Bioinformatics and Cellular Genomics Unit, St Vincent’s Institute of Medical Research, Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39214982$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktvGyEUhVGVqknd_IEuKqRuupmWpweWVtSHpUjdtGvE8LCxZmAKjKL8-2A7TasswgYu-s7honvegouYogPgPUafMaLiS2GYrfsOEdZx3BPeiVfgiiCGu1bRi__Ol-C6lANqi0osGHsDLqkkmElBrsByk6ZZ51BShMnDzbYLsbpd1tVZOOu6v9P3Bd6Fuof7ZdKx22zhkcja1NA0IcI5zcuoT9Wkpyk18bwPBhaTnYsh7qBPGQ7Z6VKh0dG4_A689nos7vpxX4Hf377-uvnR3f78vr3Z3HaGCV47rLmTxjJpiLHWMi6YwN5SOhjTrzGmHg_eU897xCWh1gwUEdQ7ZqUWg_Z0BbZnX5v0Qc05TDrfq6SDOl2kvFM612BGp4ghCBvuBSOWGb8emOXUruWaaCS0MM3r09lrzunP4kpVUyjGjaOOLi1FUSSlQD1ujazAx2foIS05tp8eKSE5o5g36sMjtQyTs0_t_R1OA8gZMDmVkp1_QjBSxxCocwhUC4E6hUCJJhLPRCbU03Rq1mF8WUrP0tLeiTuX_7X9guoBtP_GYQ |
CitedBy_id | crossref_primary_10_1007_s00432_024_06010_y crossref_primary_10_1016_j_esmorw_2025_100120 crossref_primary_10_1016_S2589_7500_24_00173_0 crossref_primary_10_1007_s10549_025_07662_1 crossref_primary_10_2214_AJR_24_32588 crossref_primary_10_1016_j_clnesp_2024_10_001 crossref_primary_10_3390_medicina61020242 crossref_primary_10_1016_j_trecan_2024_10_007 crossref_primary_10_1148_radiol_242566 |
Cites_doi | 10.1016/j.ebiom.2023.104498 10.1038/s41598-018-22437-z 10.1186/s12885-023-10890-7 10.1109/TMI.2019.2945514 10.1148/radiol.211105 10.1148/ryai.220072 10.1007/978-3-031-16437-8_2 10.1016/S2589-7500(20)30185-0 10.1007/s00330-023-10514-5 10.1177/0962280214541852 10.1111/1754-9485.13278 10.1158/1538-7445.SABCS22-OT3-18-03 10.5281/zenodo.12633016 10.1080/00365510701666031 10.1016/j.breast.2020.02.004 10.1136/amiajnl-2011-000089 10.1148/radiol.2019182908 10.1258/jms.2012.011127 10.1148/radiol.212381 10.1016/j.bspc.2020.102366 10.1016/S2589-7500(22)00070-X 10.1609/aaai.v31i1.11231 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1001/jamaoncol.2020.3321 10.1007/BF02295996 10.1016/S1470-2045(23)00298-X 10.1109/CVPR52688.2022.01167 10.1016/S2589-7500(20)30003-0 10.1001/jamanetworkopen.2020.0265 10.1016/j.breast.2019.10.001 10.1148/radiol.2018181371 10.1093/jnci/djy222 10.1109/CVPR.2017.243 10.1136/bmj.n1872 10.1109/CVPR.2017.195 10.1109/CVPR42600.2020.01155 10.1148/radiol.210948 10.24963/ijcai.2020/212 10.1038/s41586-019-1799-6 10.1007/978-3-031-16437-8_1 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Contributor | Weideman, Prue C Karthik, Ravishankar Schmidt, Daniel Al-Qershi, Osamah Makalic, Enes Fox, Samantha K Kunicki, Katrina Nguyen, Tuong L Ralalage, Prabhathi Basnayake Li, Shuai Hill, Brendan |
Contributor_xml | – sequence: 1 givenname: Osamah surname: Al-Qershi fullname: Al-Qershi, Osamah – sequence: 2 givenname: Samantha K surname: Fox fullname: Fox, Samantha K – sequence: 3 givenname: Brendan surname: Hill fullname: Hill, Brendan – sequence: 4 givenname: Ravishankar surname: Karthik fullname: Karthik, Ravishankar – sequence: 5 givenname: Katrina surname: Kunicki fullname: Kunicki, Katrina – sequence: 6 givenname: Shuai surname: Li fullname: Li, Shuai – sequence: 7 givenname: Enes surname: Makalic fullname: Makalic, Enes – sequence: 8 givenname: Tuong L surname: Nguyen fullname: Nguyen, Tuong L – sequence: 9 givenname: Prabhathi Basnayake surname: Ralalage fullname: Ralalage, Prabhathi Basnayake – sequence: 10 givenname: Daniel surname: Schmidt fullname: Schmidt, Daniel – sequence: 11 givenname: Prue C surname: Weideman fullname: Weideman, Prue C |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | The BRAIx Team BRAIx Team |
CorporateAuthor_xml | – name: The BRAIx Team – name: BRAIx Team |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-024-51725-8 |
DatabaseName | SpringerLink Journals Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_2c201c5f842d4cf6b4d53d6962a08a8c 39214982 10_1038_s41467_024_51725_8 |
Genre | Journal Article Comparative Study |
GeographicLocations | Victoria |
GeographicLocations_xml | – name: Victoria |
GrantInformation_xml | – fundername: Department of Health, Australian Government (Department of Health) grantid: MRFAI000090 funderid: 501100003921 – fundername: Ramaciotti Foundations (Clive and Vera Ramaciotti Foundations) funderid: 100009860 – fundername: - Royal Australian and New Zealand College of Radiologists Clinical Research Grant - St Vincent’s Hospital Melbourne Research Endowment Fund – fundername: Department of Health | National Health and Medical Research Council (NHMRC) grantid: GNT1195595 funderid: 501100000925 – fundername: Department of Health | National Health and Medical Research Council (NHMRC) grantid: GNT1195595 – fundername: Department of Health, Australian Government (Department of Health) grantid: MRFAI000090 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c485t-1a5e9cd49c2cddd458481fd33bcc76113f1bff3f5705923dcb30207e4d9a8baf3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Fri Sep 05 03:30:14 EDT 2025 Wed Aug 13 06:05:49 EDT 2025 Mon Jul 21 06:05:21 EDT 2025 Tue Jul 01 02:37:31 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Fri Feb 21 02:37:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-1a5e9cd49c2cddd458481fd33bcc76113f1bff3f5705923dcb30207e4d9a8baf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2218-6833 0000-0001-9399-8102 0000-0002-2406-4522 0000-0003-0022-0217 0000-0002-1734-7284 0000-0002-0716-3879 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-51725-8 |
PMID | 39214982 |
PQID | 3098954315 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c201c5f842d4cf6b4d53d6962a08a8c proquest_miscellaneous_3099807192 proquest_journals_3098954315 pubmed_primary_39214982 crossref_primary_10_1038_s41467_024_51725_8 crossref_citationtrail_10_1038_s41467_024_51725_8 springer_journals_10_1038_s41467_024_51725_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-30 |
PublicationDateYYYYMMDD | 2024-08-30 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | McKinneyScottMayerInternational evaluation of an ai system for breast cancer screeningNature202057789942020Natur.577...89M1:CAS:528:DC%2BB3cXjsFKlsA%3D%3D10.1038/s41586-019-1799-631894144 OyeladeONEzugwuAEA deep learning model using data augmentation for detection of architectural distortion in whole and patches of imagesBiomed. Signal Process. Control20216510236610.1016/j.bspc.2020.102366 Liu, Z. et al. A convnet for the 2020s. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11976–11986 (IEEE, 2022). TrajmanALuizRRMcnemar χ2 test revisited: comparing sensitivity and specificity of diagnostic examinationsScand. J. Clin. Lab. Invest.20086877801:STN:280:DC%2BD1c%2FmvVyhug%3D%3D10.1080/0036551070166603118224558 McNemarQNote on the sampling error of the difference between correlated proportions or percentagesPsychometrika1947121531571:STN:280:DyaH2s%2Fhs1aksA%3D%3D10.1007/BF0229599620254758 Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014). Wang, C. et al. Knowledge distillation to ensemble global and interpretable prototype-based mammogram classification models. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 14–24 (Springer, 2022). MarinovichMLArtificial intelligence (AI) for breast cancer screening: BreastScreen population-based cohort study of cancer detectionEBioMedicine2023901044981:CAS:528:DC%2BB3sXksVWmu70%3D10.1016/j.ebiom.2023.104498368632559996220 MorrellSTaylorRRoderDDobsonAMammography screening and breast cancer mortality in australia: an aggregate cohort studyJ. Med. Screen.201219263410.1258/jms.2012.01112722345322 Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI Conference on Artificial Intelligence (AAAI Press, 2017). Reddi, S. J., Kale, S. & Kumar, S. On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237 (2019). FrazerHelenMLAdmani: annotated digital mammograms and associated non-image datasetsRadiol. Artif. Intell.20225e22007210.1148/ryai.2200723703543110077091 Chollet, F. Xception: deep learning with depthwise separable convolutions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7 (IEEE, 2017). LeeJMBreast cancer risk, worry, and anxiety: effect on patient perceptions of false-positive screening resultsBreast20205010411210.1016/j.breast.2020.02.004321354587375679 FrazerHelenMLQinAKPanHBrotchiePEvaluation of deep learning-based artificial intelligence techniques for breast cancer detection on mammograms: results from a retrospective study using a breastscreen victoria datasetJ. Med. Imag. Rad. Oncol.20216552953710.1111/1754-9485.13278 LeibigCCombining the strengths of radiologists and ai for breast cancer screening: a retrospective analysisLancet Digit. Health20224e507e5191:CAS:528:DC%2BB3sXis1Slu70%3D10.1016/S2589-7500(22)00070-X357504009839981 Chen, Y. et al. Multi-view local co-occurrence and global consistency learning improve mammogram classification generalisation. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 3–13 (Cham, Springer, 2022). Tan, M. & Le, Q. Efficientnet: rethinking model scaling for convolutional neural networks. In Proc. 36th International Conference on Machine Learning 6105–6114 (PMLR, 2019). Australian Institute of Health and Welfare. BreastScreen Australia Monitoring Report 2022 (Australian Institute of Health and Welfare, 2022). ByngDAbstract ot3-18-03: the praim study: a prospective multicenter observational study of an integrated artificial intelligence system with live monitoringCancer Res.202383OT31810.1158/1538-7445.SABCS22-OT3-18-03 ShoshanYArtificial intelligence for reducing workload in breast cancer screening with digital breast tomosynthesisRadiology2022303697710.1148/radiol.21110535040677 Wilder, B., Horvitz, E. & Kamar, E. Learning to complement humans. In IJCAI (ed. Bessiere, C.) 1526–1533 (ijcai.org, 2020). Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In 33rd Conference onNeural Information Processing Systems 8024–8035 (Curran Associates, Inc., 2019). Rodríguez-RuizAStand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologistsdembrowerJ. Natl. Cancer Inst.201911191692210.1093/jnci/djy222308344366748773 LångKArtificial intelligence-supported screen reading versus standard double reading in the mammography screening with artificial intelligence trial (masai): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy studyLancet Oncol.20232493694410.1016/S1470-2045(23)00298-X37541274 KimHyo-EunChanges in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader studyLancet Digit. Health20202e138e14810.1016/S2589-7500(20)30003-033334578 YoudenWJIndex for rating diagnostic testsCancer1950332351:STN:280:DyaG3c%2FhsFeisw%3D%3D10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-315405679 YalaASchusterTMilesRBarzilayRLehmanCA deep learning model to triage screening mammograms: a simulation studyRadiology2019293384610.1148/radiol.201918290831385754 SchaffterTEvaluation of combined artificial intelligence and radiologist assessment to interpret screening mammogramsJAMA Netw. Open20203e200265e20026510.1001/jamanetworkopen.2020.0265321190947052735 Freeman, K. et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ374, n1872 (2021). CarterSMThe ethical, legal and social implications of using artificial intelligence systems in breast cancer careBreast202049253210.1016/j.breast.2019.10.00131677530 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016). Strand, F. Artificial intelligence in large-scale breast cancer screening (screentrustcad). ClinicalTrials.gov identifier: NCT04778670. Updated: 2023-03-14. Accessed: 2024-04-08. https://clinicaltrials.gov/study/NCT04778670. LarsenMArtificial intelligence evaluation of 122,969 mammography examinations from a population-based screening programRadiology202230350251110.1148/radiol.21238135348377 WuNDeep neural networks improve radiologists’ performance in breast cancer screeningIEEE Trans. Med. Imag.2020391184119410.1109/TMI.2019.2945514 Al-Bazzaz, H., Janicijevic, M. & Strand, F. Reader bias in breast cancer screening related to cancer prevalence and artificial intelligence decision support—a reader study. Eur. Radiol.34, 5415–5424 (2024). DembrowerKEffect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation studyLancet Digit. Health20202e468e47410.1016/S2589-7500(20)30185-033328114 RibliDezsőHorváthAUngerZPollnerPéterCsabaiIstvánDetecting and classifying lesions in mammograms with deep learningSci. Rep.20188171:CAS:528:DC%2BC1cXhs1Oru73F10.1038/s41598-018-22437-z GoddardKRoudsariAWyattJCAutomation bias: a systematic review of frequency, effect mediators, and mitigatorsJ. Am. Med. Inform. Assoc.20121912112710.1136/amiajnl-2011-00008921685142 Wang, Q. et al. ECA-Net: efficient channel attention for deep convolutional neural networks. In CVPR 11531–11539 (Computer Vision Foundation / IEEE, 2020). Cancer Australia. Guidance for the management of early breast cancer: recommendations and practice points. Cancer Australia (2020). Rodríguez-RuizADetection of breast cancer with mammography: effect of an artificial intelligence support systemRadiology201929030531410.1148/radiol.201818137130457482 Lauritzen, A. D. et al. An artificial intelligence–based mammography screening protocol for breast cancer: Outcome and radiologist workload. Radiology304, 41–49 (2022). SalimMExternal evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammogramsJAMA Oncol.202061581158810.1001/jamaoncol.2020.3321328525367453345 Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7 (IEEE, 2017). KimSLeeWDoes mcnemar’s test compare the sensitivities and specificities of two diagnostic tests?Stat. Methods Med. Res.201726142154359271910.1177/096228021454185224996898 Kwok, C. F. & Elliott, M. S. Braix-project/retrospective-cohort-study: v3.0.0. Zenodohttps://doi.org/10.5281/zenodo.12633016 (2024). World Cancer Research Fund. Breast cancer. https://www.wcrf.org/dietandcancer/breast-cancer/ (2021). SharmaNMulti-vendor evaluation of artificial intelligence as an independent reader for double reading in breast cancer screening on 275,900 mammogramsBMC Cancer20232310.1186/s12885-023-10890-73720871710197505 51725_CR25 JM Lee (51725_CR46) 2020; 50 C Leibig (51725_CR17) 2022; 4 51725_CR26 Hyo-Eun Kim (51725_CR7) 2020; 2 51725_CR29 A Trajman (51725_CR48) 2008; 68 M Larsen (51725_CR14) 2022; 303 N Sharma (51725_CR20) 2023; 23 ScottMayer McKinney (51725_CR6) 2020; 577 Dezső Ribli (51725_CR8) 2018; 8 T Schaffter (51725_CR10) 2020; 3 51725_CR13 ON Oyelade (51725_CR42) 2021; 65 51725_CR1 HelenML Frazer (51725_CR28) 2022; 5 51725_CR2 51725_CR18 Y Shoshan (51725_CR16) 2022; 303 A Rodríguez-Ruiz (51725_CR5) 2019; 290 Q McNemar (51725_CR47) 1947; 12 S Morrell (51725_CR3) 2012; 19 D Byng (51725_CR24) 2023; 83 51725_CR45 N Wu (51725_CR11) 2020; 39 HelenML Frazer (51725_CR12) 2021; 65 ML Marinovich (51725_CR22) 2023; 90 K Dembrower (51725_CR19) 2020; 2 K Lång (51725_CR21) 2023; 24 SM Carter (51725_CR23) 2020; 49 S Kim (51725_CR49) 2017; 26 51725_CR41 51725_CR40 WJ Youden (51725_CR44) 1950; 3 51725_CR43 M Salim (51725_CR9) 2020; 6 51725_CR34 51725_CR33 51725_CR36 51725_CR35 51725_CR38 51725_CR37 51725_CR39 A Rodríguez-Ruiz (51725_CR4) 2019; 111 A Yala (51725_CR15) 2019; 293 51725_CR30 51725_CR32 K Goddard (51725_CR27) 2012; 19 51725_CR31 |
References_xml | – reference: KimSLeeWDoes mcnemar’s test compare the sensitivities and specificities of two diagnostic tests?Stat. Methods Med. Res.201726142154359271910.1177/096228021454185224996898 – reference: GoddardKRoudsariAWyattJCAutomation bias: a systematic review of frequency, effect mediators, and mitigatorsJ. Am. Med. Inform. Assoc.20121912112710.1136/amiajnl-2011-00008921685142 – reference: LångKArtificial intelligence-supported screen reading versus standard double reading in the mammography screening with artificial intelligence trial (masai): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy studyLancet Oncol.20232493694410.1016/S1470-2045(23)00298-X37541274 – reference: McKinneyScottMayerInternational evaluation of an ai system for breast cancer screeningNature202057789942020Natur.577...89M1:CAS:528:DC%2BB3cXjsFKlsA%3D%3D10.1038/s41586-019-1799-631894144 – reference: ShoshanYArtificial intelligence for reducing workload in breast cancer screening with digital breast tomosynthesisRadiology2022303697710.1148/radiol.21110535040677 – reference: Chen, Y. et al. Multi-view local co-occurrence and global consistency learning improve mammogram classification generalisation. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 3–13 (Cham, Springer, 2022). – reference: World Cancer Research Fund. Breast cancer. https://www.wcrf.org/dietandcancer/breast-cancer/ (2021). – reference: Reddi, S. J., Kale, S. & Kumar, S. On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237 (2019). – reference: Lauritzen, A. D. et al. An artificial intelligence–based mammography screening protocol for breast cancer: Outcome and radiologist workload. Radiology304, 41–49 (2022). – reference: LarsenMArtificial intelligence evaluation of 122,969 mammography examinations from a population-based screening programRadiology202230350251110.1148/radiol.21238135348377 – reference: LeeJMBreast cancer risk, worry, and anxiety: effect on patient perceptions of false-positive screening resultsBreast20205010411210.1016/j.breast.2020.02.004321354587375679 – reference: FrazerHelenMLQinAKPanHBrotchiePEvaluation of deep learning-based artificial intelligence techniques for breast cancer detection on mammograms: results from a retrospective study using a breastscreen victoria datasetJ. Med. Imag. Rad. Oncol.20216552953710.1111/1754-9485.13278 – reference: Freeman, K. et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ374, n1872 (2021). – reference: WuNDeep neural networks improve radiologists’ performance in breast cancer screeningIEEE Trans. Med. Imag.2020391184119410.1109/TMI.2019.2945514 – reference: MarinovichMLArtificial intelligence (AI) for breast cancer screening: BreastScreen population-based cohort study of cancer detectionEBioMedicine2023901044981:CAS:528:DC%2BB3sXksVWmu70%3D10.1016/j.ebiom.2023.104498368632559996220 – reference: DembrowerKEffect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation studyLancet Digit. Health20202e468e47410.1016/S2589-7500(20)30185-033328114 – reference: McNemarQNote on the sampling error of the difference between correlated proportions or percentagesPsychometrika1947121531571:STN:280:DyaH2s%2Fhs1aksA%3D%3D10.1007/BF0229599620254758 – reference: Strand, F. Artificial intelligence in large-scale breast cancer screening (screentrustcad). ClinicalTrials.gov identifier: NCT04778670. Updated: 2023-03-14. Accessed: 2024-04-08. https://clinicaltrials.gov/study/NCT04778670. – reference: TrajmanALuizRRMcnemar χ2 test revisited: comparing sensitivity and specificity of diagnostic examinationsScand. J. Clin. Lab. Invest.20086877801:STN:280:DC%2BD1c%2FmvVyhug%3D%3D10.1080/0036551070166603118224558 – reference: Wang, C. et al. Knowledge distillation to ensemble global and interpretable prototype-based mammogram classification models. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 14–24 (Springer, 2022). – reference: Al-Bazzaz, H., Janicijevic, M. & Strand, F. Reader bias in breast cancer screening related to cancer prevalence and artificial intelligence decision support—a reader study. Eur. Radiol.34, 5415–5424 (2024). – reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016). – reference: Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI Conference on Artificial Intelligence (AAAI Press, 2017). – reference: Australian Institute of Health and Welfare. BreastScreen Australia Monitoring Report 2022 (Australian Institute of Health and Welfare, 2022). – reference: Chollet, F. Xception: deep learning with depthwise separable convolutions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7 (IEEE, 2017). – reference: Rodríguez-RuizADetection of breast cancer with mammography: effect of an artificial intelligence support systemRadiology201929030531410.1148/radiol.201818137130457482 – reference: YoudenWJIndex for rating diagnostic testsCancer1950332351:STN:280:DyaG3c%2FhsFeisw%3D%3D10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-315405679 – reference: Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In 33rd Conference onNeural Information Processing Systems 8024–8035 (Curran Associates, Inc., 2019). – reference: Liu, Z. et al. A convnet for the 2020s. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11976–11986 (IEEE, 2022). – reference: Wang, Q. et al. ECA-Net: efficient channel attention for deep convolutional neural networks. In CVPR 11531–11539 (Computer Vision Foundation / IEEE, 2020). – reference: Cancer Australia. Guidance for the management of early breast cancer: recommendations and practice points. Cancer Australia (2020). – reference: Wilder, B., Horvitz, E. & Kamar, E. Learning to complement humans. In IJCAI (ed. Bessiere, C.) 1526–1533 (ijcai.org, 2020). – reference: Kwok, C. F. & Elliott, M. S. Braix-project/retrospective-cohort-study: v3.0.0. Zenodohttps://doi.org/10.5281/zenodo.12633016 (2024). – reference: ByngDAbstract ot3-18-03: the praim study: a prospective multicenter observational study of an integrated artificial intelligence system with live monitoringCancer Res.202383OT31810.1158/1538-7445.SABCS22-OT3-18-03 – reference: CarterSMThe ethical, legal and social implications of using artificial intelligence systems in breast cancer careBreast202049253210.1016/j.breast.2019.10.00131677530 – reference: OyeladeONEzugwuAEA deep learning model using data augmentation for detection of architectural distortion in whole and patches of imagesBiomed. Signal Process. Control20216510236610.1016/j.bspc.2020.102366 – reference: YalaASchusterTMilesRBarzilayRLehmanCA deep learning model to triage screening mammograms: a simulation studyRadiology2019293384610.1148/radiol.201918290831385754 – reference: SharmaNMulti-vendor evaluation of artificial intelligence as an independent reader for double reading in breast cancer screening on 275,900 mammogramsBMC Cancer20232310.1186/s12885-023-10890-73720871710197505 – reference: Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7 (IEEE, 2017). – reference: KimHyo-EunChanges in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader studyLancet Digit. Health20202e138e14810.1016/S2589-7500(20)30003-033334578 – reference: LeibigCCombining the strengths of radiologists and ai for breast cancer screening: a retrospective analysisLancet Digit. Health20224e507e5191:CAS:528:DC%2BB3sXis1Slu70%3D10.1016/S2589-7500(22)00070-X357504009839981 – reference: FrazerHelenMLAdmani: annotated digital mammograms and associated non-image datasetsRadiol. Artif. Intell.20225e22007210.1148/ryai.2200723703543110077091 – reference: SalimMExternal evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammogramsJAMA Oncol.202061581158810.1001/jamaoncol.2020.3321328525367453345 – reference: SchaffterTEvaluation of combined artificial intelligence and radiologist assessment to interpret screening mammogramsJAMA Netw. Open20203e200265e20026510.1001/jamanetworkopen.2020.0265321190947052735 – reference: Tan, M. & Le, Q. Efficientnet: rethinking model scaling for convolutional neural networks. In Proc. 36th International Conference on Machine Learning 6105–6114 (PMLR, 2019). – reference: MorrellSTaylorRRoderDDobsonAMammography screening and breast cancer mortality in australia: an aggregate cohort studyJ. Med. Screen.201219263410.1258/jms.2012.01112722345322 – reference: RibliDezsőHorváthAUngerZPollnerPéterCsabaiIstvánDetecting and classifying lesions in mammograms with deep learningSci. Rep.20188171:CAS:528:DC%2BC1cXhs1Oru73F10.1038/s41598-018-22437-z – reference: Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014). – reference: Rodríguez-RuizAStand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologistsdembrowerJ. Natl. Cancer Inst.201911191692210.1093/jnci/djy222308344366748773 – ident: 51725_CR2 – volume: 90 start-page: 104498 year: 2023 ident: 51725_CR22 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2023.104498 – volume: 8 start-page: 1 year: 2018 ident: 51725_CR8 publication-title: Sci. Rep. doi: 10.1038/s41598-018-22437-z – volume: 23 year: 2023 ident: 51725_CR20 publication-title: BMC Cancer doi: 10.1186/s12885-023-10890-7 – volume: 39 start-page: 1184 year: 2020 ident: 51725_CR11 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2019.2945514 – volume: 303 start-page: 69 year: 2022 ident: 51725_CR16 publication-title: Radiology doi: 10.1148/radiol.211105 – volume: 5 start-page: e220072 year: 2022 ident: 51725_CR28 publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.220072 – ident: 51725_CR38 doi: 10.1007/978-3-031-16437-8_2 – ident: 51725_CR33 – ident: 51725_CR40 – volume: 2 start-page: e468 year: 2020 ident: 51725_CR19 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30185-0 – ident: 51725_CR26 doi: 10.1007/s00330-023-10514-5 – volume: 26 start-page: 142 year: 2017 ident: 51725_CR49 publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280214541852 – volume: 65 start-page: 529 year: 2021 ident: 51725_CR12 publication-title: J. Med. Imag. Rad. Oncol. doi: 10.1111/1754-9485.13278 – volume: 83 start-page: OT3 year: 2023 ident: 51725_CR24 publication-title: Cancer Res. doi: 10.1158/1538-7445.SABCS22-OT3-18-03 – ident: 51725_CR43 doi: 10.5281/zenodo.12633016 – ident: 51725_CR25 – volume: 68 start-page: 77 year: 2008 ident: 51725_CR48 publication-title: Scand. J. Clin. Lab. Invest. doi: 10.1080/00365510701666031 – volume: 50 start-page: 104 year: 2020 ident: 51725_CR46 publication-title: Breast doi: 10.1016/j.breast.2020.02.004 – volume: 19 start-page: 121 year: 2012 ident: 51725_CR27 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/amiajnl-2011-000089 – volume: 293 start-page: 38 year: 2019 ident: 51725_CR15 publication-title: Radiology doi: 10.1148/radiol.2019182908 – volume: 19 start-page: 26 year: 2012 ident: 51725_CR3 publication-title: J. Med. Screen. doi: 10.1258/jms.2012.011127 – volume: 303 start-page: 502 year: 2022 ident: 51725_CR14 publication-title: Radiology doi: 10.1148/radiol.212381 – volume: 65 start-page: 102366 year: 2021 ident: 51725_CR42 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102366 – volume: 4 start-page: e507 year: 2022 ident: 51725_CR17 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(22)00070-X – ident: 51725_CR34 doi: 10.1609/aaai.v31i1.11231 – volume: 3 start-page: 32 year: 1950 ident: 51725_CR44 publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – ident: 51725_CR45 – volume: 6 start-page: 1581 year: 2020 ident: 51725_CR9 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2020.3321 – volume: 12 start-page: 153 year: 1947 ident: 51725_CR47 publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 24 start-page: 936 year: 2023 ident: 51725_CR21 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(23)00298-X – ident: 51725_CR36 doi: 10.1109/CVPR52688.2022.01167 – volume: 2 start-page: e138 year: 2020 ident: 51725_CR7 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30003-0 – volume: 3 start-page: e200265 year: 2020 ident: 51725_CR10 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.0265 – volume: 49 start-page: 25 year: 2020 ident: 51725_CR23 publication-title: Breast doi: 10.1016/j.breast.2019.10.001 – volume: 290 start-page: 305 year: 2019 ident: 51725_CR5 publication-title: Radiology doi: 10.1148/radiol.2018181371 – volume: 111 start-page: 916 year: 2019 ident: 51725_CR4 publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djy222 – ident: 51725_CR31 doi: 10.1109/CVPR.2017.243 – ident: 51725_CR39 – ident: 51725_CR1 – ident: 51725_CR13 doi: 10.1136/bmj.n1872 – ident: 51725_CR35 doi: 10.1109/CVPR.2017.195 – ident: 51725_CR32 doi: 10.1109/CVPR42600.2020.01155 – ident: 51725_CR18 doi: 10.1148/radiol.210948 – ident: 51725_CR29 doi: 10.24963/ijcai.2020/212 – volume: 577 start-page: 89 year: 2020 ident: 51725_CR6 publication-title: Nature doi: 10.1038/s41586-019-1799-6 – ident: 51725_CR41 – ident: 51725_CR37 doi: 10.1007/978-3-031-16437-8_1 – ident: 51725_CR30 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0000391844 |
Score | 2.5324168 |
Snippet | Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform... Abstract Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7525 |
SubjectTerms | 631/114/1305 692/308/575 692/4028/67/1347 692/700/1421/1770 692/700/478/2772 Aged Artificial Intelligence Automation Bias Breast cancer Breast Neoplasms - diagnosis Breast Neoplasms - diagnostic imaging Collaboration Cooperation Datasets Early Detection of Cancer - methods Female Human performance Humanities and Social Sciences Humans Mammography Mammography - methods Mass Screening - methods Middle Aged multidisciplinary Performance degradation Retrospective Studies Science Science (multidisciplinary) Sensitivity and Specificity Victoria - epidemiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyI9XO1SgRvGrqbSXaT47NYWg-eLPQWkkkCgr5X3gfS_95Jdt-24tfF27KZXZL8JvORSWYYeyNLMAxsFBkGFGqALKwcsgCErJWPqk31gOyn_uxCfbzUl7dKfZUzYWN64HHijiWSikKdjZJRYe6Dihpib3vpW-MNFunb2vaWM1VlMFhyXdR0S6YFc7xRVSaQShKalLYW5idNVBP2_87K_CVCWhXP6QN2f7IY-WLs6SG7k5YP2d2xhuT1I7Y7mSsJ8lXmi3MxZ4CIvNQb_u6vN7xst_Jaj08sznmhWI83GuiZX81FvPg3T3xZk1h_QU4Shbxc6hQny5aHcnx9y7Gwyfoxuzj98PnkTEy1FAQqo7ei8zpZjMqixBhjiY6aLkeAgDj0XQe5CzkTPgPZWxIiBsKwHZKK1pvgMzxhB8vVMj1jHFMBRAcCMirfdz4NIeioEwAoBX3Duv28OpwSjZd6F19dDXiDcSMWjrBwFQtnGvZ2_uZqTLPxV-r3Ba6ZsqTIri-IcdzEOO5fjNOwoz3Yblq3GwetNbakB9ANez0304orYRS_TKtdpbGGLDMrG_Z0ZJK5J2RtkstpqOXdnmtufv7nAT3_HwN6we7Jwt5lw7s9Ygfb9S69JItpG17VxfEDE7sQeg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxUxEA71FMEX8e5qlQi-aehuLrvZB5HT0tL6cBCx0LeQqxT07PFckP57Z7KXImrflt3ZJZtvMpnMJPMR8pZjMky0gSXReCYbkVjLm8SEF0lJG2QZ8wbZRX12IT9dqss9shjPwuC2ytEmZkMdOo8x8kNRtrrFg9vq4-onQ9YozK6OFBp2oFYIH3KJsTtkH0yyKmdk_-hk8fnLFHXBeuhayuH0TCn04UZmWwFTFVMwmSum_5ihciH_f3mff2VO84R0-oDcHzxJOu-hf0j24vIRudtzS14_JrvjiWGQdonOz9lUGSJQ5CH-Za83FMOwNPP0sfk5RYl1f9IBrulqIveiPyx0QC5ufeUpWBpY_UKjKHi81OG29i31qD7rJ-Ti9OTr8RkbOBaYl1ptWWVVbH2Qrec-hIBZU12lIITzvqmrSqTKpQS4NeCHcRG8A2zLJsrQWu1sEk_JbNkt43NCfSwrr5QDgIO0dWVj45wKKgohpBR1QaqxX40fCpAjD8Z3kxPhQpseCwNYmIyF0QV5N72z6stv3Cp9hHBNklg6O9_o1t_MMBIN9xzbmbTkQfpUOxmUCHVbc1tqq31BDkawzTCeN-ZG-wryZnoMIxHTK3YZu12WaTV4bC0vyLNeSaaWgBcKS1ENT96PWnPz8f__0Ivb2_KS3OOouBjiLg_IbLvexVfgI23d60HxfwPS3w6D priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals Open Access dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1RfAi1apdWyVCb21wN5PsJsfXh6X10JOF3kI-RdD3yvtA-t87yX6IWAvelt3JMrszk5lkJr8h5ITnZBjowBJ0nokOEtO8Sww8JClsEHUsBbLX7eWN-Hwrb3cIH8_ClKL9AmlZpumxOuzjWhSTRo_CJPpcydQTsqc6kFmr5-182lfJiOdKiOF8TA3qgaF_-KAC1f9QfPlXbrS4nIt98nyIFems5-4F2YmLl-Rp3z3y_oBs51MPQbpMdHbFJuyHQHOn4Z_2fk3zRistnfjY7IpmilV_lgGv6d3Uvov-sKiRBb76m6c4l-D6FpmiGNNSlwvXN9RnBVm9IjcXn77ML9nQRYF5oeSGNVZG7YPQnvsQQs6LqiYFAOd91zYNpMalhJLpMNLiELxD6dVdFEFb5WyC12R3sVzEQ0J9rBsvpUMRBmHbxsbOORlkBAAhoK1IM_5X4weI8dzp4rspqW5QppeFQVmYIgujKnI6jbnrATYepT7P4pooMzh2ubFcfTWDshjueeYzKcGD8Kl1IkgIrW65rZVVviLHo7DNYLFrA7VWOgMDyIp8mB6jreUEil3E5bbQaIUxmeYVedMrycQJxpm42FT45GzUmt8v__cHvf0_8iPyjGdFzpva9THZ3ay28R1GRRv3vpjBL98dBcA priority: 102 providerName: Springer Nature |
Title | Comparison of AI-integrated pathways with human-AI interaction in population mammographic screening for breast cancer |
URI | https://link.springer.com/article/10.1038/s41467-024-51725-8 https://www.ncbi.nlm.nih.gov/pubmed/39214982 https://www.proquest.com/docview/3098954315 https://www.proquest.com/docview/3099807192 https://doaj.org/article/2c201c5f842d4cf6b4d53d6962a08a8c |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB71IVAviHcDZWUkbmBI_EjsA0LbVZd2DxUCVtpb5NgxQiq77T4E--8ZOw-E2HJJIsexHM-MZ8ZjzwfwioVgGNeOel5YKgruqWaFp9xyL4VxIq3jBtnL_HwqJjM524MO7qgdwNVO1y7gSU2XV29_3Ww_oMC_b46Mq3crEcUdtQ2VqI8lVftwGONFYStfa-7HmZlrdGhEe3Zm96dHcBdNBvQbFPtLVcWM_rvM0H9CqFEzje_DvdakJMOGBx7AXj1_CHcakMntI9iMeqhBsvBkeEH7FBGOBEDin2a7ImE9lkTAPjq8IKHGsjnygM_kukf5Ij8MMm7Mcv3dEpxy0A3GThE0fUkV9reviQ18tHwM0_HZ19E5bcEWqBVKrmlmZK2tE9oy65wL4VOVecd5ZW2RZxn3WeU9ErBAg4xxZyskclrUwmmjKuP5EziYL-b1MRBbp5mVskJKO2HyzNRFVUkna865EDxPIOvGtbRtJvIAiHFVxog4V2VDlhLJUkaylCqB1_03100ejv_WPg3k6muGHNqxYLH8VrYiWTLLQj-9EswJ6_NKOMldrnNmUmWUTeCkI3bZ8WXJU610yB8gE3jZv0aRDHEWM68Xm1hHKzTdNEvgacMkfU863krgTcc1fxq__Yee3drQczhigX3DMnd6Agfr5aZ-gXbSuhrAfjEr8KrGHwdwOBxOvkzwfnp2-ekzlo7y0SCuQAyikPwGS6ARvQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE1hN_EicQ4W2pdUuLSuEWqk31_EDVSqbZR-q9s_x2xg7jwoBvfUWJY419ozH4xnPfAi9pSEYxkpLPCsM4QXzpKSFJ8wwL7i2PHXxguwkH53wz6fidAP96nJhwrXKTidGRW1rE3zk2ywtZRkSt8XH2U8SUKNCdLWD0NAttILdiSXG2sSOQ7e-hCPcYmf8Cfj9jtKD_eO9EWlRBojhUixJpoUrjeWlocZaG-KGMvOWscoYOONnzGeV90B5AZYIZdZUMLq0cNyWWlbaM-j3FtrkwYEyQJu7-5Ov33ovT6i_Ljlvs3VSJrcXPOom2BqJAONBEPnHjhiBA_5l7f4VqY0b4MF9dK-1XPGwEbUHaMNNH6LbDZbl-hFa7fWIhrj2eDgmfSUKiwPu8aVeL3Bw--KIC0iGYxxazJvMCnjGsx5MDP_QMOGxmPa5waDZ4LQNRGGwsHEVrtEvsQniOn-MTm5ktp-gwbSeumcIG5dmRogKBMpynWfaFVUlrHCMMc5ZnqCsm1dl2oLnAXfjQsXAO5Oq4YUCXqjICyUT9L7_Z9aU-7i29W5gV98ylOqOL-r5d9WufEUNDXR6yanlxucVt4LZvMypTqWWJkFbHbNVqz8W6kraE_Sm_wwrP4Rz9NTVq9imlGAhljRBTxsh6SkBqxeOvhK-fOik5qrz_w_o-fW0vEZ3RsdfjtTReHL4At2lQYiDez3dQoPlfOVegn22rF61iwCjs5ted78BDfhMsA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEagXxLsLBYwEJ7A28SNxDggtLasuRRUHKu3NOH4gJNhd9qFq_xq_jhnnUSGgt96ixLHGnodnPPZ8hLzgmAwTlWdRlI7JUkRW8TIy4URU0nqZhXRA9rQ4PpMfpmq6Q351d2HwWGVnE5Oh9nOHe-RDkVW6wovbahjbYxGfjsZvFz8ZIkhhprWD02hE5CRszyF8W72ZHAGvX3I-fv_58Ji1CAPMSa3WLLcqVM7LynHnvcecoc6jF6J2DuL7XMS8jhGoLsEL4cK7GkaWlUH6yuraRgH9XiPXSyElwkaU07Lf38HK61rK9p5OJvRwJZNVgkWRKXAbFNN_rIUJMuBffu5fOdq09I1vk1utz0pHjZDdITthdpfcaFAst_fI5rDHMqTzSEcT1teg8BQRj8_tdkVxw5cmREA2mlBssWzuVMAzXfQwYvSHhelNZbS_OQo2DeJsIIqCb01rPEC_pg4FdXmfnF3JXD8gu7P5LOwT6kKWO6VqECUvbZHbUNa18ioIAZwQxYDk3bwa15Y6R8SN7yal3IU2DS8M8MIkXhg9IK_6fxZNoY9LW79DdvUtsUh3ejFffjWtzhvuONIZteReuljU0ivhi6rgNtNWuwE56JhtWsuxMhdyPiDP-8-g85jIsbMw36Q2lQbfsOID8rARkp4S8Hch6NXw5XUnNRed_39Ajy6n5Rm5CdpmPk5OTx6TPY4yjPvq2QHZXS834Qk4Zuv6adIASr5ctcr9BvlNSkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+AI-integrated+pathways+with+human-AI+interaction+in+population+mammographic+screening+for+breast+cancer&rft.jtitle=Nature+communications&rft.au=Frazer%2C+Helen+M+L&rft.au=Pe%C3%B1a-Solorzano%2C+Carlos+A&rft.au=Kwok%2C+Chun+Fung&rft.au=Elliott%2C+Michael+S&rft.date=2024-08-30&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=7525&rft_id=info:doi/10.1038%2Fs41467-024-51725-8&rft_id=info%3Apmid%2F39214982&rft.externalDocID=39214982 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |