Comparison of AI-integrated pathways with human-AI interaction in population mammographic screening for breast cancer

Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementatio...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 7525 - 12
Main Authors Frazer, Helen M. L., Peña-Solorzano, Carlos A., Kwok, Chun Fung, Elliott, Michael S., Chen, Yuanhong, Wang, Chong, Lippey, Jocelyn F., Hopper, John L., Brotchie, Peter, Carneiro, Gustavo, McCarthy, Davis J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.08.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-024-51725-8

Cover

Abstract Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9–2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6–10.9% reduction in assessments and 48–80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption. Successful human-AI collaboration could greatly contribute to breast cancer mammographic screening. Here, the authors use a large-scale retrospective mammography dataset to simulate and compare five plausible AI-integrated screening pathways, finding optimal ways in which human-AI collaboration could be implemented in real-world settings.
AbstractList Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9-2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6-10.9% reduction in assessments and 48-80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption.
Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9–2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6–10.9% reduction in assessments and 48–80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption.Successful human-AI collaboration could greatly contribute to breast cancer mammographic screening. Here, the authors use a large-scale retrospective mammography dataset to simulate and compare five plausible AI-integrated screening pathways, finding optimal ways in which human-AI collaboration could be implemented in real-world settings.
Abstract Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9–2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6–10.9% reduction in assessments and 48–80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption.
Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9–2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6–10.9% reduction in assessments and 48–80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption. Successful human-AI collaboration could greatly contribute to breast cancer mammographic screening. Here, the authors use a large-scale retrospective mammography dataset to simulate and compare five plausible AI-integrated screening pathways, finding optimal ways in which human-AI collaboration could be implemented in real-world settings.
Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9-2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6-10.9% reduction in assessments and 48-80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption.Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9-2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6-10.9% reduction in assessments and 48-80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption.
ArticleNumber 7525
Author Elliott, Michael S.
Carneiro, Gustavo
Peña-Solorzano, Carlos A.
Brotchie, Peter
McCarthy, Davis J.
Wang, Chong
Hopper, John L.
Frazer, Helen M. L.
Lippey, Jocelyn F.
Kwok, Chun Fung
Chen, Yuanhong
Author_xml – sequence: 1
  givenname: Helen M. L.
  orcidid: 0000-0001-9399-8102
  surname: Frazer
  fullname: Frazer, Helen M. L.
  email: helen.frazer@svha.org.au
  organization: St Vincent’s BreastScreen, St Vincent’s Hospital Melbourne, BreastScreen Victoria, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne
– sequence: 2
  givenname: Carlos A.
  orcidid: 0000-0002-1734-7284
  surname: Peña-Solorzano
  fullname: Peña-Solorzano, Carlos A.
  organization: Bioinformatics and Cellular Genomics Unit, St Vincent’s Institute of Medical Research, Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne
– sequence: 3
  givenname: Chun Fung
  orcidid: 0000-0002-0716-3879
  surname: Kwok
  fullname: Kwok, Chun Fung
  organization: Bioinformatics and Cellular Genomics Unit, St Vincent’s Institute of Medical Research, Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne
– sequence: 4
  givenname: Michael S.
  orcidid: 0000-0002-2406-4522
  surname: Elliott
  fullname: Elliott, Michael S.
  organization: Bioinformatics and Cellular Genomics Unit, St Vincent’s Institute of Medical Research, Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne
– sequence: 5
  givenname: Yuanhong
  surname: Chen
  fullname: Chen, Yuanhong
  organization: School of Computer Science, Australian Institute for Machine Learning, University of Adelaide
– sequence: 6
  givenname: Chong
  orcidid: 0000-0003-0022-0217
  surname: Wang
  fullname: Wang, Chong
  organization: School of Computer Science, Australian Institute for Machine Learning, University of Adelaide
– sequence: 8
  givenname: Jocelyn F.
  surname: Lippey
  fullname: Lippey, Jocelyn F.
  organization: St Vincent’s BreastScreen, St Vincent’s Hospital Melbourne, Department of Surgery, St Vincent’s Hospital Melbourne, Department of Surgery, University of Melbourne
– sequence: 9
  givenname: John L.
  surname: Hopper
  fullname: Hopper, John L.
  organization: Centre for Epidemiology & Biostatistics, Melbourne School of Population and Global Health, University of Melbourne
– sequence: 10
  givenname: Peter
  surname: Brotchie
  fullname: Brotchie, Peter
  organization: Department of Radiology, St Vincent’s Hospital Melbourne
– sequence: 11
  givenname: Gustavo
  surname: Carneiro
  fullname: Carneiro, Gustavo
  organization: School of Computer Science, Australian Institute for Machine Learning, University of Adelaide, Centre for Vision, Speech and Signal Processing (CVSSP), The University of Surrey
– sequence: 12
  givenname: Davis J.
  orcidid: 0000-0002-2218-6833
  surname: McCarthy
  fullname: McCarthy, Davis J.
  organization: Bioinformatics and Cellular Genomics Unit, St Vincent’s Institute of Medical Research, Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39214982$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvGyEUhVGVqknd_IEuKqRuupmWpweWVtSHpUjdtGvE8LCxZmAKjKL8-2A7TasswgYu-s7honvegouYogPgPUafMaLiS2GYrfsOEdZx3BPeiVfgiiCGu1bRi__Ol-C6lANqi0osGHsDLqkkmElBrsByk6ZZ51BShMnDzbYLsbpd1tVZOOu6v9P3Bd6Fuof7ZdKx22zhkcja1NA0IcI5zcuoT9Wkpyk18bwPBhaTnYsh7qBPGQ7Z6VKh0dG4_A689nos7vpxX4Hf377-uvnR3f78vr3Z3HaGCV47rLmTxjJpiLHWMi6YwN5SOhjTrzGmHg_eU897xCWh1gwUEdQ7ZqUWg_Z0BbZnX5v0Qc05TDrfq6SDOl2kvFM612BGp4ghCBvuBSOWGb8emOXUruWaaCS0MM3r09lrzunP4kpVUyjGjaOOLi1FUSSlQD1ujazAx2foIS05tp8eKSE5o5g36sMjtQyTs0_t_R1OA8gZMDmVkp1_QjBSxxCocwhUC4E6hUCJJhLPRCbU03Rq1mF8WUrP0tLeiTuX_7X9guoBtP_GYQ
CitedBy_id crossref_primary_10_1007_s00432_024_06010_y
crossref_primary_10_1016_j_esmorw_2025_100120
crossref_primary_10_1016_S2589_7500_24_00173_0
crossref_primary_10_1007_s10549_025_07662_1
crossref_primary_10_2214_AJR_24_32588
crossref_primary_10_1016_j_clnesp_2024_10_001
crossref_primary_10_3390_medicina61020242
crossref_primary_10_1016_j_trecan_2024_10_007
crossref_primary_10_1148_radiol_242566
Cites_doi 10.1016/j.ebiom.2023.104498
10.1038/s41598-018-22437-z
10.1186/s12885-023-10890-7
10.1109/TMI.2019.2945514
10.1148/radiol.211105
10.1148/ryai.220072
10.1007/978-3-031-16437-8_2
10.1016/S2589-7500(20)30185-0
10.1007/s00330-023-10514-5
10.1177/0962280214541852
10.1111/1754-9485.13278
10.1158/1538-7445.SABCS22-OT3-18-03
10.5281/zenodo.12633016
10.1080/00365510701666031
10.1016/j.breast.2020.02.004
10.1136/amiajnl-2011-000089
10.1148/radiol.2019182908
10.1258/jms.2012.011127
10.1148/radiol.212381
10.1016/j.bspc.2020.102366
10.1016/S2589-7500(22)00070-X
10.1609/aaai.v31i1.11231
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1001/jamaoncol.2020.3321
10.1007/BF02295996
10.1016/S1470-2045(23)00298-X
10.1109/CVPR52688.2022.01167
10.1016/S2589-7500(20)30003-0
10.1001/jamanetworkopen.2020.0265
10.1016/j.breast.2019.10.001
10.1148/radiol.2018181371
10.1093/jnci/djy222
10.1109/CVPR.2017.243
10.1136/bmj.n1872
10.1109/CVPR.2017.195
10.1109/CVPR42600.2020.01155
10.1148/radiol.210948
10.24963/ijcai.2020/212
10.1038/s41586-019-1799-6
10.1007/978-3-031-16437-8_1
10.1109/CVPR.2016.90
ContentType Journal Article
Contributor Weideman, Prue C
Karthik, Ravishankar
Schmidt, Daniel
Al-Qershi, Osamah
Makalic, Enes
Fox, Samantha K
Kunicki, Katrina
Nguyen, Tuong L
Ralalage, Prabhathi Basnayake
Li, Shuai
Hill, Brendan
Contributor_xml – sequence: 1
  givenname: Osamah
  surname: Al-Qershi
  fullname: Al-Qershi, Osamah
– sequence: 2
  givenname: Samantha K
  surname: Fox
  fullname: Fox, Samantha K
– sequence: 3
  givenname: Brendan
  surname: Hill
  fullname: Hill, Brendan
– sequence: 4
  givenname: Ravishankar
  surname: Karthik
  fullname: Karthik, Ravishankar
– sequence: 5
  givenname: Katrina
  surname: Kunicki
  fullname: Kunicki, Katrina
– sequence: 6
  givenname: Shuai
  surname: Li
  fullname: Li, Shuai
– sequence: 7
  givenname: Enes
  surname: Makalic
  fullname: Makalic, Enes
– sequence: 8
  givenname: Tuong L
  surname: Nguyen
  fullname: Nguyen, Tuong L
– sequence: 9
  givenname: Prabhathi Basnayake
  surname: Ralalage
  fullname: Ralalage, Prabhathi Basnayake
– sequence: 10
  givenname: Daniel
  surname: Schmidt
  fullname: Schmidt, Daniel
– sequence: 11
  givenname: Prue C
  surname: Weideman
  fullname: Weideman, Prue C
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor The BRAIx Team
BRAIx Team
CorporateAuthor_xml – name: The BRAIx Team
– name: BRAIx Team
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-024-51725-8
DatabaseName SpringerLink Journals Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_2c201c5f842d4cf6b4d53d6962a08a8c
39214982
10_1038_s41467_024_51725_8
Genre Journal Article
Comparative Study
GeographicLocations Victoria
GeographicLocations_xml – name: Victoria
GrantInformation_xml – fundername: Department of Health, Australian Government (Department of Health)
  grantid: MRFAI000090
  funderid: 501100003921
– fundername: Ramaciotti Foundations (Clive and Vera Ramaciotti Foundations)
  funderid: 100009860
– fundername: - Royal Australian and New Zealand College of Radiologists Clinical Research Grant - St Vincent’s Hospital Melbourne Research Endowment Fund
– fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  grantid: GNT1195595
  funderid: 501100000925
– fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  grantid: GNT1195595
– fundername: Department of Health, Australian Government (Department of Health)
  grantid: MRFAI000090
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c485t-1a5e9cd49c2cddd458481fd33bcc76113f1bff3f5705923dcb30207e4d9a8baf3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:32 EDT 2025
Fri Sep 05 03:30:14 EDT 2025
Wed Aug 13 06:05:49 EDT 2025
Mon Jul 21 06:05:21 EDT 2025
Tue Jul 01 02:37:31 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 21 02:37:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-1a5e9cd49c2cddd458481fd33bcc76113f1bff3f5705923dcb30207e4d9a8baf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2218-6833
0000-0001-9399-8102
0000-0002-2406-4522
0000-0003-0022-0217
0000-0002-1734-7284
0000-0002-0716-3879
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-51725-8
PMID 39214982
PQID 3098954315
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_2c201c5f842d4cf6b4d53d6962a08a8c
proquest_miscellaneous_3099807192
proquest_journals_3098954315
pubmed_primary_39214982
crossref_primary_10_1038_s41467_024_51725_8
crossref_citationtrail_10_1038_s41467_024_51725_8
springer_journals_10_1038_s41467_024_51725_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-30
PublicationDateYYYYMMDD 2024-08-30
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References McKinneyScottMayerInternational evaluation of an ai system for breast cancer screeningNature202057789942020Natur.577...89M1:CAS:528:DC%2BB3cXjsFKlsA%3D%3D10.1038/s41586-019-1799-631894144
OyeladeONEzugwuAEA deep learning model using data augmentation for detection of architectural distortion in whole and patches of imagesBiomed. Signal Process. Control20216510236610.1016/j.bspc.2020.102366
Liu, Z. et al. A convnet for the 2020s. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11976–11986 (IEEE, 2022).
TrajmanALuizRRMcnemar χ2 test revisited: comparing sensitivity and specificity of diagnostic examinationsScand. J. Clin. Lab. Invest.20086877801:STN:280:DC%2BD1c%2FmvVyhug%3D%3D10.1080/0036551070166603118224558
McNemarQNote on the sampling error of the difference between correlated proportions or percentagesPsychometrika1947121531571:STN:280:DyaH2s%2Fhs1aksA%3D%3D10.1007/BF0229599620254758
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
Wang, C. et al. Knowledge distillation to ensemble global and interpretable prototype-based mammogram classification models. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 14–24 (Springer, 2022).
MarinovichMLArtificial intelligence (AI) for breast cancer screening: BreastScreen population-based cohort study of cancer detectionEBioMedicine2023901044981:CAS:528:DC%2BB3sXksVWmu70%3D10.1016/j.ebiom.2023.104498368632559996220
MorrellSTaylorRRoderDDobsonAMammography screening and breast cancer mortality in australia: an aggregate cohort studyJ. Med. Screen.201219263410.1258/jms.2012.01112722345322
Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI Conference on Artificial Intelligence (AAAI Press, 2017).
Reddi, S. J., Kale, S. & Kumar, S. On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237 (2019).
FrazerHelenMLAdmani: annotated digital mammograms and associated non-image datasetsRadiol. Artif. Intell.20225e22007210.1148/ryai.2200723703543110077091
Chollet, F. Xception: deep learning with depthwise separable convolutions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7 (IEEE, 2017).
LeeJMBreast cancer risk, worry, and anxiety: effect on patient perceptions of false-positive screening resultsBreast20205010411210.1016/j.breast.2020.02.004321354587375679
FrazerHelenMLQinAKPanHBrotchiePEvaluation of deep learning-based artificial intelligence techniques for breast cancer detection on mammograms: results from a retrospective study using a breastscreen victoria datasetJ. Med. Imag. Rad. Oncol.20216552953710.1111/1754-9485.13278
LeibigCCombining the strengths of radiologists and ai for breast cancer screening: a retrospective analysisLancet Digit. Health20224e507e5191:CAS:528:DC%2BB3sXis1Slu70%3D10.1016/S2589-7500(22)00070-X357504009839981
Chen, Y. et al. Multi-view local co-occurrence and global consistency learning improve mammogram classification generalisation. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 3–13 (Cham, Springer, 2022).
Tan, M. & Le, Q. Efficientnet: rethinking model scaling for convolutional neural networks. In Proc. 36th International Conference on Machine Learning 6105–6114 (PMLR, 2019).
Australian Institute of Health and Welfare. BreastScreen Australia Monitoring Report 2022 (Australian Institute of Health and Welfare, 2022).
ByngDAbstract ot3-18-03: the praim study: a prospective multicenter observational study of an integrated artificial intelligence system with live monitoringCancer Res.202383OT31810.1158/1538-7445.SABCS22-OT3-18-03
ShoshanYArtificial intelligence for reducing workload in breast cancer screening with digital breast tomosynthesisRadiology2022303697710.1148/radiol.21110535040677
Wilder, B., Horvitz, E. & Kamar, E. Learning to complement humans. In IJCAI (ed. Bessiere, C.) 1526–1533 (ijcai.org, 2020).
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In 33rd Conference onNeural Information Processing Systems 8024–8035 (Curran Associates, Inc., 2019).
Rodríguez-RuizAStand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologistsdembrowerJ. Natl. Cancer Inst.201911191692210.1093/jnci/djy222308344366748773
LångKArtificial intelligence-supported screen reading versus standard double reading in the mammography screening with artificial intelligence trial (masai): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy studyLancet Oncol.20232493694410.1016/S1470-2045(23)00298-X37541274
KimHyo-EunChanges in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader studyLancet Digit. Health20202e138e14810.1016/S2589-7500(20)30003-033334578
YoudenWJIndex for rating diagnostic testsCancer1950332351:STN:280:DyaG3c%2FhsFeisw%3D%3D10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-315405679
YalaASchusterTMilesRBarzilayRLehmanCA deep learning model to triage screening mammograms: a simulation studyRadiology2019293384610.1148/radiol.201918290831385754
SchaffterTEvaluation of combined artificial intelligence and radiologist assessment to interpret screening mammogramsJAMA Netw. Open20203e200265e20026510.1001/jamanetworkopen.2020.0265321190947052735
Freeman, K. et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ374, n1872 (2021).
CarterSMThe ethical, legal and social implications of using artificial intelligence systems in breast cancer careBreast202049253210.1016/j.breast.2019.10.00131677530
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
Strand, F. Artificial intelligence in large-scale breast cancer screening (screentrustcad). ClinicalTrials.gov identifier: NCT04778670. Updated: 2023-03-14. Accessed: 2024-04-08. https://clinicaltrials.gov/study/NCT04778670.
LarsenMArtificial intelligence evaluation of 122,969 mammography examinations from a population-based screening programRadiology202230350251110.1148/radiol.21238135348377
WuNDeep neural networks improve radiologists’ performance in breast cancer screeningIEEE Trans. Med. Imag.2020391184119410.1109/TMI.2019.2945514
Al-Bazzaz, H., Janicijevic, M. & Strand, F. Reader bias in breast cancer screening related to cancer prevalence and artificial intelligence decision support—a reader study. Eur. Radiol.34, 5415–5424 (2024).
DembrowerKEffect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation studyLancet Digit. Health20202e468e47410.1016/S2589-7500(20)30185-033328114
RibliDezsőHorváthAUngerZPollnerPéterCsabaiIstvánDetecting and classifying lesions in mammograms with deep learningSci. Rep.20188171:CAS:528:DC%2BC1cXhs1Oru73F10.1038/s41598-018-22437-z
GoddardKRoudsariAWyattJCAutomation bias: a systematic review of frequency, effect mediators, and mitigatorsJ. Am. Med. Inform. Assoc.20121912112710.1136/amiajnl-2011-00008921685142
Wang, Q. et al. ECA-Net: efficient channel attention for deep convolutional neural networks. In CVPR 11531–11539 (Computer Vision Foundation / IEEE, 2020).
Cancer Australia. Guidance for the management of early breast cancer: recommendations and practice points. Cancer Australia (2020).
Rodríguez-RuizADetection of breast cancer with mammography: effect of an artificial intelligence support systemRadiology201929030531410.1148/radiol.201818137130457482
Lauritzen, A. D. et al. An artificial intelligence–based mammography screening protocol for breast cancer: Outcome and radiologist workload. Radiology304, 41–49 (2022).
SalimMExternal evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammogramsJAMA Oncol.202061581158810.1001/jamaoncol.2020.3321328525367453345
Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7 (IEEE, 2017).
KimSLeeWDoes mcnemar’s test compare the sensitivities and specificities of two diagnostic tests?Stat. Methods Med. Res.201726142154359271910.1177/096228021454185224996898
Kwok, C. F. & Elliott, M. S. Braix-project/retrospective-cohort-study: v3.0.0. Zenodohttps://doi.org/10.5281/zenodo.12633016 (2024).
World Cancer Research Fund. Breast cancer. https://www.wcrf.org/dietandcancer/breast-cancer/ (2021).
SharmaNMulti-vendor evaluation of artificial intelligence as an independent reader for double reading in breast cancer screening on 275,900 mammogramsBMC Cancer20232310.1186/s12885-023-10890-73720871710197505
51725_CR25
JM Lee (51725_CR46) 2020; 50
C Leibig (51725_CR17) 2022; 4
51725_CR26
Hyo-Eun Kim (51725_CR7) 2020; 2
51725_CR29
A Trajman (51725_CR48) 2008; 68
M Larsen (51725_CR14) 2022; 303
N Sharma (51725_CR20) 2023; 23
ScottMayer McKinney (51725_CR6) 2020; 577
Dezső Ribli (51725_CR8) 2018; 8
T Schaffter (51725_CR10) 2020; 3
51725_CR13
ON Oyelade (51725_CR42) 2021; 65
51725_CR1
HelenML Frazer (51725_CR28) 2022; 5
51725_CR2
51725_CR18
Y Shoshan (51725_CR16) 2022; 303
A Rodríguez-Ruiz (51725_CR5) 2019; 290
Q McNemar (51725_CR47) 1947; 12
S Morrell (51725_CR3) 2012; 19
D Byng (51725_CR24) 2023; 83
51725_CR45
N Wu (51725_CR11) 2020; 39
HelenML Frazer (51725_CR12) 2021; 65
ML Marinovich (51725_CR22) 2023; 90
K Dembrower (51725_CR19) 2020; 2
K Lång (51725_CR21) 2023; 24
SM Carter (51725_CR23) 2020; 49
S Kim (51725_CR49) 2017; 26
51725_CR41
51725_CR40
WJ Youden (51725_CR44) 1950; 3
51725_CR43
M Salim (51725_CR9) 2020; 6
51725_CR34
51725_CR33
51725_CR36
51725_CR35
51725_CR38
51725_CR37
51725_CR39
A Rodríguez-Ruiz (51725_CR4) 2019; 111
A Yala (51725_CR15) 2019; 293
51725_CR30
51725_CR32
K Goddard (51725_CR27) 2012; 19
51725_CR31
References_xml – reference: KimSLeeWDoes mcnemar’s test compare the sensitivities and specificities of two diagnostic tests?Stat. Methods Med. Res.201726142154359271910.1177/096228021454185224996898
– reference: GoddardKRoudsariAWyattJCAutomation bias: a systematic review of frequency, effect mediators, and mitigatorsJ. Am. Med. Inform. Assoc.20121912112710.1136/amiajnl-2011-00008921685142
– reference: LångKArtificial intelligence-supported screen reading versus standard double reading in the mammography screening with artificial intelligence trial (masai): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy studyLancet Oncol.20232493694410.1016/S1470-2045(23)00298-X37541274
– reference: McKinneyScottMayerInternational evaluation of an ai system for breast cancer screeningNature202057789942020Natur.577...89M1:CAS:528:DC%2BB3cXjsFKlsA%3D%3D10.1038/s41586-019-1799-631894144
– reference: ShoshanYArtificial intelligence for reducing workload in breast cancer screening with digital breast tomosynthesisRadiology2022303697710.1148/radiol.21110535040677
– reference: Chen, Y. et al. Multi-view local co-occurrence and global consistency learning improve mammogram classification generalisation. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 3–13 (Cham, Springer, 2022).
– reference: World Cancer Research Fund. Breast cancer. https://www.wcrf.org/dietandcancer/breast-cancer/ (2021).
– reference: Reddi, S. J., Kale, S. & Kumar, S. On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237 (2019).
– reference: Lauritzen, A. D. et al. An artificial intelligence–based mammography screening protocol for breast cancer: Outcome and radiologist workload. Radiology304, 41–49 (2022).
– reference: LarsenMArtificial intelligence evaluation of 122,969 mammography examinations from a population-based screening programRadiology202230350251110.1148/radiol.21238135348377
– reference: LeeJMBreast cancer risk, worry, and anxiety: effect on patient perceptions of false-positive screening resultsBreast20205010411210.1016/j.breast.2020.02.004321354587375679
– reference: FrazerHelenMLQinAKPanHBrotchiePEvaluation of deep learning-based artificial intelligence techniques for breast cancer detection on mammograms: results from a retrospective study using a breastscreen victoria datasetJ. Med. Imag. Rad. Oncol.20216552953710.1111/1754-9485.13278
– reference: Freeman, K. et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ374, n1872 (2021).
– reference: WuNDeep neural networks improve radiologists’ performance in breast cancer screeningIEEE Trans. Med. Imag.2020391184119410.1109/TMI.2019.2945514
– reference: MarinovichMLArtificial intelligence (AI) for breast cancer screening: BreastScreen population-based cohort study of cancer detectionEBioMedicine2023901044981:CAS:528:DC%2BB3sXksVWmu70%3D10.1016/j.ebiom.2023.104498368632559996220
– reference: DembrowerKEffect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation studyLancet Digit. Health20202e468e47410.1016/S2589-7500(20)30185-033328114
– reference: McNemarQNote on the sampling error of the difference between correlated proportions or percentagesPsychometrika1947121531571:STN:280:DyaH2s%2Fhs1aksA%3D%3D10.1007/BF0229599620254758
– reference: Strand, F. Artificial intelligence in large-scale breast cancer screening (screentrustcad). ClinicalTrials.gov identifier: NCT04778670. Updated: 2023-03-14. Accessed: 2024-04-08. https://clinicaltrials.gov/study/NCT04778670.
– reference: TrajmanALuizRRMcnemar χ2 test revisited: comparing sensitivity and specificity of diagnostic examinationsScand. J. Clin. Lab. Invest.20086877801:STN:280:DC%2BD1c%2FmvVyhug%3D%3D10.1080/0036551070166603118224558
– reference: Wang, C. et al. Knowledge distillation to ensemble global and interpretable prototype-based mammogram classification models. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 14–24 (Springer, 2022).
– reference: Al-Bazzaz, H., Janicijevic, M. & Strand, F. Reader bias in breast cancer screening related to cancer prevalence and artificial intelligence decision support—a reader study. Eur. Radiol.34, 5415–5424 (2024).
– reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
– reference: Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI Conference on Artificial Intelligence (AAAI Press, 2017).
– reference: Australian Institute of Health and Welfare. BreastScreen Australia Monitoring Report 2022 (Australian Institute of Health and Welfare, 2022).
– reference: Chollet, F. Xception: deep learning with depthwise separable convolutions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7 (IEEE, 2017).
– reference: Rodríguez-RuizADetection of breast cancer with mammography: effect of an artificial intelligence support systemRadiology201929030531410.1148/radiol.201818137130457482
– reference: YoudenWJIndex for rating diagnostic testsCancer1950332351:STN:280:DyaG3c%2FhsFeisw%3D%3D10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-315405679
– reference: Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In 33rd Conference onNeural Information Processing Systems 8024–8035 (Curran Associates, Inc., 2019).
– reference: Liu, Z. et al. A convnet for the 2020s. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11976–11986 (IEEE, 2022).
– reference: Wang, Q. et al. ECA-Net: efficient channel attention for deep convolutional neural networks. In CVPR 11531–11539 (Computer Vision Foundation / IEEE, 2020).
– reference: Cancer Australia. Guidance for the management of early breast cancer: recommendations and practice points. Cancer Australia (2020).
– reference: Wilder, B., Horvitz, E. & Kamar, E. Learning to complement humans. In IJCAI (ed. Bessiere, C.) 1526–1533 (ijcai.org, 2020).
– reference: Kwok, C. F. & Elliott, M. S. Braix-project/retrospective-cohort-study: v3.0.0. Zenodohttps://doi.org/10.5281/zenodo.12633016 (2024).
– reference: ByngDAbstract ot3-18-03: the praim study: a prospective multicenter observational study of an integrated artificial intelligence system with live monitoringCancer Res.202383OT31810.1158/1538-7445.SABCS22-OT3-18-03
– reference: CarterSMThe ethical, legal and social implications of using artificial intelligence systems in breast cancer careBreast202049253210.1016/j.breast.2019.10.00131677530
– reference: OyeladeONEzugwuAEA deep learning model using data augmentation for detection of architectural distortion in whole and patches of imagesBiomed. Signal Process. Control20216510236610.1016/j.bspc.2020.102366
– reference: YalaASchusterTMilesRBarzilayRLehmanCA deep learning model to triage screening mammograms: a simulation studyRadiology2019293384610.1148/radiol.201918290831385754
– reference: SharmaNMulti-vendor evaluation of artificial intelligence as an independent reader for double reading in breast cancer screening on 275,900 mammogramsBMC Cancer20232310.1186/s12885-023-10890-73720871710197505
– reference: Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7 (IEEE, 2017).
– reference: KimHyo-EunChanges in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader studyLancet Digit. Health20202e138e14810.1016/S2589-7500(20)30003-033334578
– reference: LeibigCCombining the strengths of radiologists and ai for breast cancer screening: a retrospective analysisLancet Digit. Health20224e507e5191:CAS:528:DC%2BB3sXis1Slu70%3D10.1016/S2589-7500(22)00070-X357504009839981
– reference: FrazerHelenMLAdmani: annotated digital mammograms and associated non-image datasetsRadiol. Artif. Intell.20225e22007210.1148/ryai.2200723703543110077091
– reference: SalimMExternal evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammogramsJAMA Oncol.202061581158810.1001/jamaoncol.2020.3321328525367453345
– reference: SchaffterTEvaluation of combined artificial intelligence and radiologist assessment to interpret screening mammogramsJAMA Netw. Open20203e200265e20026510.1001/jamanetworkopen.2020.0265321190947052735
– reference: Tan, M. & Le, Q. Efficientnet: rethinking model scaling for convolutional neural networks. In Proc. 36th International Conference on Machine Learning 6105–6114 (PMLR, 2019).
– reference: MorrellSTaylorRRoderDDobsonAMammography screening and breast cancer mortality in australia: an aggregate cohort studyJ. Med. Screen.201219263410.1258/jms.2012.01112722345322
– reference: RibliDezsőHorváthAUngerZPollnerPéterCsabaiIstvánDetecting and classifying lesions in mammograms with deep learningSci. Rep.20188171:CAS:528:DC%2BC1cXhs1Oru73F10.1038/s41598-018-22437-z
– reference: Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
– reference: Rodríguez-RuizAStand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologistsdembrowerJ. Natl. Cancer Inst.201911191692210.1093/jnci/djy222308344366748773
– ident: 51725_CR2
– volume: 90
  start-page: 104498
  year: 2023
  ident: 51725_CR22
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2023.104498
– volume: 8
  start-page: 1
  year: 2018
  ident: 51725_CR8
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22437-z
– volume: 23
  year: 2023
  ident: 51725_CR20
  publication-title: BMC Cancer
  doi: 10.1186/s12885-023-10890-7
– volume: 39
  start-page: 1184
  year: 2020
  ident: 51725_CR11
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2019.2945514
– volume: 303
  start-page: 69
  year: 2022
  ident: 51725_CR16
  publication-title: Radiology
  doi: 10.1148/radiol.211105
– volume: 5
  start-page: e220072
  year: 2022
  ident: 51725_CR28
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.220072
– ident: 51725_CR38
  doi: 10.1007/978-3-031-16437-8_2
– ident: 51725_CR33
– ident: 51725_CR40
– volume: 2
  start-page: e468
  year: 2020
  ident: 51725_CR19
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30185-0
– ident: 51725_CR26
  doi: 10.1007/s00330-023-10514-5
– volume: 26
  start-page: 142
  year: 2017
  ident: 51725_CR49
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280214541852
– volume: 65
  start-page: 529
  year: 2021
  ident: 51725_CR12
  publication-title: J. Med. Imag. Rad. Oncol.
  doi: 10.1111/1754-9485.13278
– volume: 83
  start-page: OT3
  year: 2023
  ident: 51725_CR24
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.SABCS22-OT3-18-03
– ident: 51725_CR43
  doi: 10.5281/zenodo.12633016
– ident: 51725_CR25
– volume: 68
  start-page: 77
  year: 2008
  ident: 51725_CR48
  publication-title: Scand. J. Clin. Lab. Invest.
  doi: 10.1080/00365510701666031
– volume: 50
  start-page: 104
  year: 2020
  ident: 51725_CR46
  publication-title: Breast
  doi: 10.1016/j.breast.2020.02.004
– volume: 19
  start-page: 121
  year: 2012
  ident: 51725_CR27
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/amiajnl-2011-000089
– volume: 293
  start-page: 38
  year: 2019
  ident: 51725_CR15
  publication-title: Radiology
  doi: 10.1148/radiol.2019182908
– volume: 19
  start-page: 26
  year: 2012
  ident: 51725_CR3
  publication-title: J. Med. Screen.
  doi: 10.1258/jms.2012.011127
– volume: 303
  start-page: 502
  year: 2022
  ident: 51725_CR14
  publication-title: Radiology
  doi: 10.1148/radiol.212381
– volume: 65
  start-page: 102366
  year: 2021
  ident: 51725_CR42
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102366
– volume: 4
  start-page: e507
  year: 2022
  ident: 51725_CR17
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(22)00070-X
– ident: 51725_CR34
  doi: 10.1609/aaai.v31i1.11231
– volume: 3
  start-page: 32
  year: 1950
  ident: 51725_CR44
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– ident: 51725_CR45
– volume: 6
  start-page: 1581
  year: 2020
  ident: 51725_CR9
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.3321
– volume: 12
  start-page: 153
  year: 1947
  ident: 51725_CR47
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 24
  start-page: 936
  year: 2023
  ident: 51725_CR21
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(23)00298-X
– ident: 51725_CR36
  doi: 10.1109/CVPR52688.2022.01167
– volume: 2
  start-page: e138
  year: 2020
  ident: 51725_CR7
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30003-0
– volume: 3
  start-page: e200265
  year: 2020
  ident: 51725_CR10
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.0265
– volume: 49
  start-page: 25
  year: 2020
  ident: 51725_CR23
  publication-title: Breast
  doi: 10.1016/j.breast.2019.10.001
– volume: 290
  start-page: 305
  year: 2019
  ident: 51725_CR5
  publication-title: Radiology
  doi: 10.1148/radiol.2018181371
– volume: 111
  start-page: 916
  year: 2019
  ident: 51725_CR4
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djy222
– ident: 51725_CR31
  doi: 10.1109/CVPR.2017.243
– ident: 51725_CR39
– ident: 51725_CR1
– ident: 51725_CR13
  doi: 10.1136/bmj.n1872
– ident: 51725_CR35
  doi: 10.1109/CVPR.2017.195
– ident: 51725_CR32
  doi: 10.1109/CVPR42600.2020.01155
– ident: 51725_CR18
  doi: 10.1148/radiol.210948
– ident: 51725_CR29
  doi: 10.24963/ijcai.2020/212
– volume: 577
  start-page: 89
  year: 2020
  ident: 51725_CR6
  publication-title: Nature
  doi: 10.1038/s41586-019-1799-6
– ident: 51725_CR41
– ident: 51725_CR37
  doi: 10.1007/978-3-031-16437-8_1
– ident: 51725_CR30
  doi: 10.1109/CVPR.2016.90
SSID ssj0000391844
Score 2.5324168
Snippet Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform...
Abstract Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7525
SubjectTerms 631/114/1305
692/308/575
692/4028/67/1347
692/700/1421/1770
692/700/478/2772
Aged
Artificial Intelligence
Automation
Bias
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - diagnostic imaging
Collaboration
Cooperation
Datasets
Early Detection of Cancer - methods
Female
Human performance
Humanities and Social Sciences
Humans
Mammography
Mammography - methods
Mass Screening - methods
Middle Aged
multidisciplinary
Performance degradation
Retrospective Studies
Science
Science (multidisciplinary)
Sensitivity and Specificity
Victoria - epidemiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyI9XO1SgRvGrqbSXaT47NYWg-eLPQWkkkCgr5X3gfS_95Jdt-24tfF27KZXZL8JvORSWYYeyNLMAxsFBkGFGqALKwcsgCErJWPqk31gOyn_uxCfbzUl7dKfZUzYWN64HHijiWSikKdjZJRYe6Dihpib3vpW-MNFunb2vaWM1VlMFhyXdR0S6YFc7xRVSaQShKalLYW5idNVBP2_87K_CVCWhXP6QN2f7IY-WLs6SG7k5YP2d2xhuT1I7Y7mSsJ8lXmi3MxZ4CIvNQb_u6vN7xst_Jaj08sznmhWI83GuiZX81FvPg3T3xZk1h_QU4Shbxc6hQny5aHcnx9y7Gwyfoxuzj98PnkTEy1FAQqo7ei8zpZjMqixBhjiY6aLkeAgDj0XQe5CzkTPgPZWxIiBsKwHZKK1pvgMzxhB8vVMj1jHFMBRAcCMirfdz4NIeioEwAoBX3Duv28OpwSjZd6F19dDXiDcSMWjrBwFQtnGvZ2_uZqTLPxV-r3Ba6ZsqTIri-IcdzEOO5fjNOwoz3Yblq3GwetNbakB9ANez0304orYRS_TKtdpbGGLDMrG_Z0ZJK5J2RtkstpqOXdnmtufv7nAT3_HwN6we7Jwt5lw7s9Ygfb9S69JItpG17VxfEDE7sQeg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxUxEA71FMEX8e5qlQi-aehuLrvZB5HT0tL6cBCx0LeQqxT07PFckP57Z7KXImrflt3ZJZtvMpnMJPMR8pZjMky0gSXReCYbkVjLm8SEF0lJG2QZ8wbZRX12IT9dqss9shjPwuC2ytEmZkMdOo8x8kNRtrrFg9vq4-onQ9YozK6OFBp2oFYIH3KJsTtkH0yyKmdk_-hk8fnLFHXBeuhayuH0TCn04UZmWwFTFVMwmSum_5ihciH_f3mff2VO84R0-oDcHzxJOu-hf0j24vIRudtzS14_JrvjiWGQdonOz9lUGSJQ5CH-Za83FMOwNPP0sfk5RYl1f9IBrulqIveiPyx0QC5ufeUpWBpY_UKjKHi81OG29i31qD7rJ-Ti9OTr8RkbOBaYl1ptWWVVbH2Qrec-hIBZU12lIITzvqmrSqTKpQS4NeCHcRG8A2zLJsrQWu1sEk_JbNkt43NCfSwrr5QDgIO0dWVj45wKKgohpBR1QaqxX40fCpAjD8Z3kxPhQpseCwNYmIyF0QV5N72z6stv3Cp9hHBNklg6O9_o1t_MMBIN9xzbmbTkQfpUOxmUCHVbc1tqq31BDkawzTCeN-ZG-wryZnoMIxHTK3YZu12WaTV4bC0vyLNeSaaWgBcKS1ENT96PWnPz8f__0Ivb2_KS3OOouBjiLg_IbLvexVfgI23d60HxfwPS3w6D
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals Open Access
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1RfAi1apdWyVCb21wN5PsJsfXh6X10JOF3kI-RdD3yvtA-t87yX6IWAvelt3JMrszk5lkJr8h5ITnZBjowBJ0nokOEtO8Sww8JClsEHUsBbLX7eWN-Hwrb3cIH8_ClKL9AmlZpumxOuzjWhSTRo_CJPpcydQTsqc6kFmr5-182lfJiOdKiOF8TA3qgaF_-KAC1f9QfPlXbrS4nIt98nyIFems5-4F2YmLl-Rp3z3y_oBs51MPQbpMdHbFJuyHQHOn4Z_2fk3zRistnfjY7IpmilV_lgGv6d3Uvov-sKiRBb76m6c4l-D6FpmiGNNSlwvXN9RnBVm9IjcXn77ML9nQRYF5oeSGNVZG7YPQnvsQQs6LqiYFAOd91zYNpMalhJLpMNLiELxD6dVdFEFb5WyC12R3sVzEQ0J9rBsvpUMRBmHbxsbOORlkBAAhoK1IM_5X4weI8dzp4rspqW5QppeFQVmYIgujKnI6jbnrATYepT7P4pooMzh2ubFcfTWDshjueeYzKcGD8Kl1IkgIrW65rZVVviLHo7DNYLFrA7VWOgMDyIp8mB6jreUEil3E5bbQaIUxmeYVedMrycQJxpm42FT45GzUmt8v__cHvf0_8iPyjGdFzpva9THZ3ay28R1GRRv3vpjBL98dBcA
  priority: 102
  providerName: Springer Nature
Title Comparison of AI-integrated pathways with human-AI interaction in population mammographic screening for breast cancer
URI https://link.springer.com/article/10.1038/s41467-024-51725-8
https://www.ncbi.nlm.nih.gov/pubmed/39214982
https://www.proquest.com/docview/3098954315
https://www.proquest.com/docview/3099807192
https://doaj.org/article/2c201c5f842d4cf6b4d53d6962a08a8c
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB71IVAviHcDZWUkbmBI_EjsA0LbVZd2DxUCVtpb5NgxQiq77T4E--8ZOw-E2HJJIsexHM-MZ8ZjzwfwioVgGNeOel5YKgruqWaFp9xyL4VxIq3jBtnL_HwqJjM524MO7qgdwNVO1y7gSU2XV29_3Ww_oMC_b46Mq3crEcUdtQ2VqI8lVftwGONFYStfa-7HmZlrdGhEe3Zm96dHcBdNBvQbFPtLVcWM_rvM0H9CqFEzje_DvdakJMOGBx7AXj1_CHcakMntI9iMeqhBsvBkeEH7FBGOBEDin2a7ImE9lkTAPjq8IKHGsjnygM_kukf5Ij8MMm7Mcv3dEpxy0A3GThE0fUkV9reviQ18tHwM0_HZ19E5bcEWqBVKrmlmZK2tE9oy65wL4VOVecd5ZW2RZxn3WeU9ErBAg4xxZyskclrUwmmjKuP5EziYL-b1MRBbp5mVskJKO2HyzNRFVUkna865EDxPIOvGtbRtJvIAiHFVxog4V2VDlhLJUkaylCqB1_03100ejv_WPg3k6muGHNqxYLH8VrYiWTLLQj-9EswJ6_NKOMldrnNmUmWUTeCkI3bZ8WXJU610yB8gE3jZv0aRDHEWM68Xm1hHKzTdNEvgacMkfU863krgTcc1fxq__Yee3drQczhigX3DMnd6Agfr5aZ-gXbSuhrAfjEr8KrGHwdwOBxOvkzwfnp2-ekzlo7y0SCuQAyikPwGS6ARvQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE1hN_EicQ4W2pdUuLSuEWqk31_EDVSqbZR-q9s_x2xg7jwoBvfUWJY419ozH4xnPfAi9pSEYxkpLPCsM4QXzpKSFJ8wwL7i2PHXxguwkH53wz6fidAP96nJhwrXKTidGRW1rE3zk2ywtZRkSt8XH2U8SUKNCdLWD0NAttILdiSXG2sSOQ7e-hCPcYmf8Cfj9jtKD_eO9EWlRBojhUixJpoUrjeWlocZaG-KGMvOWscoYOONnzGeV90B5AZYIZdZUMLq0cNyWWlbaM-j3FtrkwYEyQJu7-5Ov33ovT6i_Ljlvs3VSJrcXPOom2BqJAONBEPnHjhiBA_5l7f4VqY0b4MF9dK-1XPGwEbUHaMNNH6LbDZbl-hFa7fWIhrj2eDgmfSUKiwPu8aVeL3Bw--KIC0iGYxxazJvMCnjGsx5MDP_QMOGxmPa5waDZ4LQNRGGwsHEVrtEvsQniOn-MTm5ktp-gwbSeumcIG5dmRogKBMpynWfaFVUlrHCMMc5ZnqCsm1dl2oLnAXfjQsXAO5Oq4YUCXqjICyUT9L7_Z9aU-7i29W5gV98ylOqOL-r5d9WufEUNDXR6yanlxucVt4LZvMypTqWWJkFbHbNVqz8W6kraE_Sm_wwrP4Rz9NTVq9imlGAhljRBTxsh6SkBqxeOvhK-fOik5qrz_w_o-fW0vEZ3RsdfjtTReHL4At2lQYiDez3dQoPlfOVegn22rF61iwCjs5ted78BDfhMsA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEagXxLsLBYwEJ7A28SNxDggtLasuRRUHKu3NOH4gJNhd9qFq_xq_jhnnUSGgt96ixLHGnodnPPZ8hLzgmAwTlWdRlI7JUkRW8TIy4URU0nqZhXRA9rQ4PpMfpmq6Q351d2HwWGVnE5Oh9nOHe-RDkVW6wovbahjbYxGfjsZvFz8ZIkhhprWD02hE5CRszyF8W72ZHAGvX3I-fv_58Ji1CAPMSa3WLLcqVM7LynHnvcecoc6jF6J2DuL7XMS8jhGoLsEL4cK7GkaWlUH6yuraRgH9XiPXSyElwkaU07Lf38HK61rK9p5OJvRwJZNVgkWRKXAbFNN_rIUJMuBffu5fOdq09I1vk1utz0pHjZDdITthdpfcaFAst_fI5rDHMqTzSEcT1teg8BQRj8_tdkVxw5cmREA2mlBssWzuVMAzXfQwYvSHhelNZbS_OQo2DeJsIIqCb01rPEC_pg4FdXmfnF3JXD8gu7P5LOwT6kKWO6VqECUvbZHbUNa18ioIAZwQxYDk3bwa15Y6R8SN7yal3IU2DS8M8MIkXhg9IK_6fxZNoY9LW79DdvUtsUh3ejFffjWtzhvuONIZteReuljU0ivhi6rgNtNWuwE56JhtWsuxMhdyPiDP-8-g85jIsbMw36Q2lQbfsOID8rARkp4S8Hch6NXw5XUnNRed_39Ajy6n5Rm5CdpmPk5OTx6TPY4yjPvq2QHZXS834Qk4Zuv6adIASr5ctcr9BvlNSkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+AI-integrated+pathways+with+human-AI+interaction+in+population+mammographic+screening+for+breast+cancer&rft.jtitle=Nature+communications&rft.au=Frazer%2C+Helen+M+L&rft.au=Pe%C3%B1a-Solorzano%2C+Carlos+A&rft.au=Kwok%2C+Chun+Fung&rft.au=Elliott%2C+Michael+S&rft.date=2024-08-30&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=7525&rft_id=info:doi/10.1038%2Fs41467-024-51725-8&rft_id=info%3Apmid%2F39214982&rft.externalDocID=39214982
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon