Ritonavir is the best alternative to ketoconazole as an index inhibitor of cytochrome P450‐3A in drug–drug interaction studies

Aims The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug–drug interaction (DDI) studies has compelled consideration of alternative inhibitors. Methods The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibi...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of clinical pharmacology Vol. 80; no. 3; pp. 342 - 350
Main Authors Greenblatt, David J., Harmatz, Jerold S.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Ltd 01.09.2015
Subjects
Online AccessGet full text
ISSN0306-5251
1365-2125
1365-2125
DOI10.1111/bcp.12668

Cover

Abstract Aims The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug–drug interaction (DDI) studies has compelled consideration of alternative inhibitors. Methods The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor. Results Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre‐exposure prior to administration of MDZ. Conclusions Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well.
AbstractList The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug-drug interaction (DDI) studies has compelled consideration of alternative inhibitors.AIMSThe regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug-drug interaction (DDI) studies has compelled consideration of alternative inhibitors.The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC ) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor.METHODSThe biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC ) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor.Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre-exposure prior to administration of MDZ.RESULTSMean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre-exposure prior to administration of MDZ.Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well.CONCLUSIONSRitonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well.
The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug-drug interaction (DDI) studies has compelled consideration of alternative inhibitors. The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC ) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor. Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre-exposure prior to administration of MDZ. Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well.
Aims The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug–drug interaction (DDI) studies has compelled consideration of alternative inhibitors. Methods The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor. Results Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre‐exposure prior to administration of MDZ. Conclusions Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well.
Author Harmatz, Jerold S.
Greenblatt, David J.
Author_xml – sequence: 1
  givenname: David J.
  surname: Greenblatt
  fullname: Greenblatt, David J.
  organization: Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences
– sequence: 2
  givenname: Jerold S.
  surname: Harmatz
  fullname: Harmatz, Jerold S.
  organization: Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25923589$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1uEzEQgC1URNPCgRdAPsJhW9u73vVekNqIP6kSFYKz5bXHjWFjB9sbCKeKJ0DiDfskOCRFgMAHj0b-5htr5ggd-OABoYeUnNByTge9OqGsbcUdNKN1yytGGT9AM1KTtuKM00N0lNJ7QmhNW34PHTLes5qLfoa-vnE5eLV2EbuE8wLwACljNWaIXmW3BpwD_gA56IJ9CSNglbDy2HkDn8u9cEMxRBws1ptCLWJYAr5sOLm5_lafFQKbOF3dXH_fhpIWsdLZBY9TnoyDdB_dtWpM8GAfj9G758_ezl9WF69fvJqfXVS6EVxUzDZm0G35dqdaW1tBqGYKoCFEKNH1XAvbN3ZorG2paTpquOkMMYYTTnra1cfo6c67moYlGA0-RzXKVXRLFTcyKCf_fPFuIa_CWja8awQjRfB4L4jh41TGJJcuaRhH5SFMSdKOdJx3omUFffR7r19NbgdfgNMdoGNIKYKV2mW1HUtp7UZJidyuVpbVyp-rLRVP_qq4lf6L3ds_uRE2_wfl-fxyV_ED9xK3Mw
CitedBy_id crossref_primary_10_1002_cpdd_934
crossref_primary_10_1002_cpdd_339
crossref_primary_10_1002_jcph_609
crossref_primary_10_1007_s40262_017_0589_2
crossref_primary_10_3851_IMP3343
crossref_primary_10_1002_cpdd_652
crossref_primary_10_3238_arztebl_m2022_0152
crossref_primary_10_1111_bcp_15835
crossref_primary_10_1016_j_ejca_2023_113346
crossref_primary_10_1002_cpdd_1404
crossref_primary_10_1016_j_jpba_2024_116162
crossref_primary_10_1111_pcn_13205
crossref_primary_10_1124_dmd_121_000765
crossref_primary_10_1002_cpdd_1049
crossref_primary_10_1016_j_ejps_2025_107010
crossref_primary_10_1002_cpdd_1046
crossref_primary_10_1002_jcph_562
crossref_primary_10_1002_jmr_2830
crossref_primary_10_1016_j_pharmthera_2023_108459
crossref_primary_10_1002_cpdd_1082
crossref_primary_10_1080_17460441_2022_2052847
crossref_primary_10_1002_jcph_1622
crossref_primary_10_1002_cpdd_822
crossref_primary_10_1002_jcph_1427
crossref_primary_10_1016_j_bmc_2020_115349
crossref_primary_10_1016_j_ejps_2021_105810
crossref_primary_10_1002_cpdd_785
crossref_primary_10_1002_cpdd_586
crossref_primary_10_1002_jcph_711
crossref_primary_10_1111_jphp_12663
crossref_primary_10_1111_bcp_15788
crossref_primary_10_1002_cpdd_1259
crossref_primary_10_1111_jphp_12820
crossref_primary_10_3390_ijms22020852
crossref_primary_10_1080_00498254_2020_1867928
crossref_primary_10_1111_bcp_13517
crossref_primary_10_1002_jcph_795
crossref_primary_10_1002_cpdd_1491
crossref_primary_10_1128_aac_01450_24
crossref_primary_10_1002_jcph_1747
crossref_primary_10_1016_j_clinthera_2017_08_021
crossref_primary_10_1002_cpt_2610
crossref_primary_10_1111_bcp_14684
crossref_primary_10_1016_j_ejps_2023_106534
crossref_primary_10_1080_00498254_2024_2395557
crossref_primary_10_1016_j_clinthera_2020_09_015
crossref_primary_10_1007_s00228_017_2403_3
crossref_primary_10_1002_cpdd_1307
crossref_primary_10_1111_bcp_12745
crossref_primary_10_1111_bcp_15932
crossref_primary_10_1002_bdd_2122
crossref_primary_10_1080_17425255_2019_1685495
crossref_primary_10_1007_s40121_023_00830_0
crossref_primary_10_29413_ABS_2021_6_6_2_12
crossref_primary_10_1016_j_heliyon_2024_e24333
crossref_primary_10_3390_curroncol31100450
crossref_primary_10_1002_cpdd_1389
crossref_primary_10_1016_j_biopha_2023_114636
crossref_primary_10_1007_s12325_020_01491_y
crossref_primary_10_1124_dmd_115_067744
crossref_primary_10_2147_CPAA_S292746
crossref_primary_10_3390_pharmaceutics15122732
crossref_primary_10_1080_09546634_2020_1799919
crossref_primary_10_1002_cpdd_1140
crossref_primary_10_1016_j_omtm_2021_07_007
crossref_primary_10_1080_00498254_2017_1370655
crossref_primary_10_1097_JCP_0000000000000892
crossref_primary_10_1128_AAC_01686_19
crossref_primary_10_1002_cpdd_967
crossref_primary_10_4155_ipk_2017_0005
crossref_primary_10_1002_jcph_1640
crossref_primary_10_1002_cpdd_285
crossref_primary_10_1111_epi_17212
crossref_primary_10_2174_1389200221666200817113920
crossref_primary_10_3389_fgene_2020_00944
crossref_primary_10_3390_ijms23179866
crossref_primary_10_1002_cpdd_282
crossref_primary_10_1016_j_lungcan_2022_07_012
crossref_primary_10_1111_cts_12921
crossref_primary_10_1002_jcph_2060
crossref_primary_10_1002_cpdd_1110
crossref_primary_10_1002_cpdd_1198
crossref_primary_10_1002_cpdd_1392
crossref_primary_10_1002_cpdd_1074
crossref_primary_10_1080_17460441_2023_2239701
Cites_doi 10.1016/j.clinthera.2009.02.022
10.1067/mcp.2002.129068
10.1097/00004714-200208000-00006
10.1038/clpt.2010.119
10.1111/j.1742-7843.2012.00932.x
10.1038/clpt.1994.60
10.1124/dmd.112.046649
10.1038/clpt.2008.102
10.1007/s00228-012-1339-x
10.1038/clpt.2009.228
10.1002/j.1552-4604.1996.tb04251.x
10.2174/138920007780866861
10.1002/jps.1133
10.1124/dmd.113.054932
10.1038/clpt.2013.27
10.1111/j.1365-2125.2009.03545.x
10.2165/00003088-200038020-00002
10.1007/s00228-013-1529-1
10.1177/0091270008331133
10.1111/j.2042-7158.2010.01202.x
10.1111/j.2042-7158.1998.tb00727.x
10.1007/s00228-012-1388-1
10.1128/AAC.36.11.2447
10.1177/0091270007302562
10.1007/s00228-013-1530-8
10.2165/00003088-198814010-00002
10.1038/clpt.2008.293
10.1016/S0009-9236(98)90030-3
10.1007/s002280050420
10.1093/jac/dki220
10.1097/QAI.0b013e31818c7efe
10.1046/j.1365-2125.1997.00644.x
10.1177/00912709922012015
10.1124/dmd.104.000315
10.1111/j.1600-0773.1996.tb00273.x
10.1038/clpt.2011.164
10.1111/bcp.12425
10.1097/00007691-199712000-00001
10.1097/FTD.0b013e31815c16f5
10.2174/1568026614666140506120647
10.1016/j.clpt.2004.02.008
10.1097/00007691-200406000-00018
10.1016/j.clpt.2005.11.016
10.1038/sj.clpt.6100230
10.1016/S0009-9236(98)90057-1
10.1007/s00228-005-0091-x
10.1124/jpet.104.082826
10.1067/mcp.2000.112363
10.1124/dmd.31.7.945
10.2174/1389200043335450
10.1038/clpt.2014.41
10.1007/s40262-014-0139-0
10.1007/s00228-013-1556-y
10.1007/s00228-004-0762-z
10.1128/AAC.37.4.778
10.1177/0091270005284854
10.1592/phco.29.10.1175
10.1038/sj.clpt.6100452
10.1021/js980197h
10.1124/dmd.107.016089
10.1002/cpdd.100
10.1097/01.qai.0000219774.20174.64
10.1177/2160763X12448745
10.1124/dmd.105.006874
10.3109/00498254.2010.506224
10.1016/j.clpt.2005.11.009
10.1177/0091270003259216
10.1038/clpt.2008.168
10.1002/jcph.62
10.1111/j.1365-2125.2007.02970.x
10.4254/wjh.v6.i8.601
10.1177/0091270006288733
10.1124/dmd.108.026252
10.1124/dmd.111.042705
10.1016/S0009-9236(98)90146-1
10.1124/dmd.30.12.1441
10.1021/ml1000257
10.1007/s002280000125
10.1016/S0009-9236(99)70009-3
10.1016/j.ejps.2011.04.008
10.1111/j.1365-2125.2008.03116.x
10.1124/dmd.110.037523
10.1002/j.1552-4604.1998.tb04398.x
10.2133/dmpk.20.55
10.2174/1389200215666141125121511
10.1097/00126334-200006010-00007
10.1016/S0009-9236(98)90176-X
10.1124/mol.114.094862
10.1002/jcph.95
10.1128/AAC.01089-12
10.1007/s13318-011-0024-2
10.1016/j.clpt.2005.09.001
10.1053/ajkd.2001.21363
10.1177/0091270008331196
10.1124/dmd.111.038646
10.1002/jcph.400
10.1080/004982500237541
10.1111/j.1365-2125.1995.tb00001.x
10.1002/cpdd.159
10.1177/0091270006286981
10.1097/00000539-199603000-00015
10.1111/j.1365-2125.1991.tb03963.x
10.1177/0091270010365885
10.1007/s00228-014-1799-2
10.1517/17425255.2013.794785
10.2165/00003088-199937050-00003
10.2174/138920005774330639
10.1046/j.1365-2125.2003.01824.x
10.1007/978-1-4419-0840-7_24
ContentType Journal Article
Copyright 2015 The British Pharmacological Society
2015 The British Pharmacological Society.
2015 The British Pharmacological Society 2015
Copyright_xml – notice: 2015 The British Pharmacological Society
– notice: 2015 The British Pharmacological Society.
– notice: 2015 The British Pharmacological Society 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1111/bcp.12668
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1365-2125
EndPage 350
ExternalDocumentID PMC4574820
25923589
10_1111_bcp_12668
BCP12668
Genre reviewArticle
Journal Article
Review
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HYE
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
24P
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
ESX
FIJ
IPNFZ
NPM
RPM
WRC
7X8
5PM
ID FETCH-LOGICAL-c4858-2f4dbc63587a6f3f801c2aee4008a8795c8f94fb4ff61d471d5d7d0dd50509173
IEDL.DBID DR2
ISSN 0306-5251
1365-2125
IngestDate Thu Aug 21 14:08:42 EDT 2025
Fri Jul 11 03:42:14 EDT 2025
Wed Feb 19 02:32:33 EST 2025
Tue Jul 01 01:59:11 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Wed Aug 20 07:24:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cytochrome P450-3A
ketoconazole
drug-drug interactions
itraconazole
clarithromycin
ritonavir
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The British Pharmacological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4858-2f4dbc63587a6f3f801c2aee4008a8795c8f94fb4ff61d471d5d7d0dd50509173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4574820
PMID 25923589
PQID 1707557862
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4574820
proquest_miscellaneous_1707557862
pubmed_primary_25923589
crossref_citationtrail_10_1111_bcp_12668
crossref_primary_10_1111_bcp_12668
wiley_primary_10_1111_bcp_12668_BCP12668
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chichester, UK
PublicationTitle British journal of clinical pharmacology
PublicationTitleAlternate Br J Clin Pharmacol
PublicationYear 2015
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References 2009; 85
2013; 69
2004; 60
2001; 90
2006; 34
1997; 44
2015; 71
2006; 79
2004; 26
2005; 20
2004; 5
1996; 36
1996; 79
1998; 87
2012; 56
2009; 49
2007; 35
1996; 34
2013; 9
2003; 56
2004; 32
1993; 37
2004; 76
2007; 29
2014; 3
2010; 1
2006; 62
2000; 56
2013; 53
2013; 112
2007; 8
1997; 19
2014; 15
2011; 63
2014; 14
2008; 65
2014; 95
1998; 54
2014; 6
2003; 43
2005; 78
2014; 54
2014; 53
2009; 68
2002; 30
2010
2002; 72
1991; 32
2000; 24
2000; 68
1988; 14
2005; 314
1999; 66
2013; 93
1992; 36
2001; 29
2011; 36
2011; 39
1998; 64
2003; 31
2010; 40
2009; 29
2014; 86
2014; 42
1998; 38
2010; 88
1995; 40
2010; 87
2006; 42
2000; 38
2009; 31
2012; 1
2006; 46
2011; 90
1999; 39
2008; 49
1999; 37
2000; 30
2011; 51
2002; 22
1994; 55
1996; 82
2011; 43
2005; 6
2001; 37
2013
2008; 83
2008; 84
1998; 4
2014; 78
2009; 37
2005; 56
2007; 47
2012; 40
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
Hesse LM (e_1_2_7_86_1) 2001; 29
e_1_2_7_26_1
e_1_2_7_49_1
Yeh RF (e_1_2_7_30_1) 2006; 42
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Yeates RA (e_1_2_7_25_1) 1996; 34
e_1_2_7_38_1
References_xml – volume: 31
  start-page: 286
  year: 2009
  end-page: 98
  article-title: Effects of oral posaconazole on the pharmacokinetic properties of oral and intravenous midazolam: A Phase I, randomized, open‐label, crossover study in healthy volunteers
  publication-title: Clin Ther
– volume: 60
  start-page: 237
  year: 2004
  end-page: 46
  article-title: Oral administration of a low dose of midazolam (75 µg) as an probe for CYP3A activity
  publication-title: Eur J Clin Pharmacol
– volume: 86
  start-page: 665
  year: 2014
  end-page: 74
  article-title: Characterization of ritonavir‐mediated inactivation of cytochrome P450 3A4
  publication-title: Mol Pharmacol
– volume: 30
  start-page: 327
  year: 2000
  end-page: 43
  article-title: Assessment of specificity of eight chemical inhibitors using cDNA‐expressed cytochromes P450
  publication-title: Xenobiotica
– volume: 93
  start-page: 564
  year: 2013
  end-page: 71
  article-title: A nanogram dose of the CYP3A probe substrate midazolam to evaluate drug interactions
  publication-title: Clin Pharmacol Ther
– volume: 29
  start-page: 1175
  year: 2009
  end-page: 81
  article-title: Effect of saquinavir‐ritonavir on cytochrome P450 3A4 activity in healthy volunteers using midazolam as a probe
  publication-title: Pharmacotherapy
– volume: 36
  start-page: 783
  year: 1996
  end-page: 91
  article-title: Midazolam hydroxylation by human liver microsomes : Inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents
  publication-title: J Clin Pharmacol
– volume: 63
  start-page: 214
  year: 2011
  end-page: 21
  article-title: Mechanism of cytochrome P450‐3A inhibition by ketoconazole
  publication-title: J Pharm Pharmacol.
– volume: 76
  start-page: 73
  year: 2004
  end-page: 84
  article-title: Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers
  publication-title: Clin Pharmacol Ther
– volume: 3
  start-page: 335
  year: 2014
  end-page: 7
  article-title: Antiretroviral boosting by cobicistat, a structural analog of ritonavir
  publication-title: Clinical Pharmacology in Drug Development
– volume: 42
  start-page: 52
  year: 2006
  end-page: 60
  article-title: ritonavir induces /ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers
  publication-title: J Acquir Immune Defic Syndr
– volume: 26
  start-page: 322
  year: 2004
  end-page: 30
  article-title: Ritonavir decreases the nonrenal clearance of digoxin in healthy volunteers with known MDR1 genotypes
  publication-title: Ther Drug Monit
– volume: 29
  start-page: 687
  year: 2007
  end-page: 710
  article-title: Clinically important drug interactions potentially involving mechanism‐based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring
  publication-title: Ther Drug Monit
– volume: 65
  start-page: 98
  year: 2008
  end-page: 109
  article-title: Interaction between midazolam and clarithromycin in the elderly
  publication-title: Br J Clin Pharmacol
– volume: 69
  start-page: 439
  year: 2013
  end-page: 48
  article-title: Rate of onset of inhibition of gut‐wall and hepatic CYP3A by clarithromycin
  publication-title: Eur J Clin Pharmacol
– volume: 39
  start-page: 2329
  year: 2011
  end-page: 37
  article-title: Complex drug interactions of HIV protease inhibitors 2: induction and to correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir
  publication-title: Drug Metab Dispos
– volume: 68
  start-page: 637
  year: 2000
  end-page: 46
  article-title: Effect of ketoconazole on ritonavir and saquinavir concentrations in plasma and cerebrospinal fluid from patients infected with human immunodeficiency virus
  publication-title: Clinical Pharmacology & Therapeutics
– volume: 79
  start-page: 350
  year: 2006
  end-page: 61
  article-title: Comparison of midazolam and simvastatin as cytochrome P450 3A probes
  publication-title: Clin Pharmacol Ther
– volume: 68
  start-page: 920
  year: 2009
  end-page: 7
  article-title: Inhibition of oral midazolam clearance by boosting doses of ritonavir, and by 4,4‐dimethyl‐benziso‐(2H)‐selenazine (ALT‐2074), an experimental catalytic mimic of glutathione oxidase
  publication-title: Br J Clin Pharmacol.
– volume: 8
  start-page: 449
  year: 2007
  end-page: 62
  article-title: Drug‐drug interactions via mechanism‐based cytochrome P450 inactivation: points to consider for risk assessment from data and clinical pharmacologic evaluation
  publication-title: Curr Drug Metab
– volume: 24
  start-page: 129
  year: 2000
  end-page: 36
  article-title: Differential impairment of triazolam and zolpidem clearance by ritonavir
  publication-title: J Acquir Immune Defic Syndr
– volume: 53
  start-page: 429
  year: 2014
  end-page: 54
  article-title: Pharmacokinetics and pharmacodynamics of antifungals in children and their clinical implications
  publication-title: Clin Pharmacokinet
– volume: 84
  start-page: 506
  year: 2008
  end-page: 12
  article-title: Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: II. Ritonavir effects on CYP3A and P‐glycoprotein activities
  publication-title: Clin Pharmacol Ther
– volume: 43
  start-page: 160
  year: 2011
  end-page: 73
  article-title: Prediction of time‐dependent CYP3A4 drug‐drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover
  publication-title: Eur J Pharm Sci
– volume: 88
  start-page: 499
  year: 2010
  end-page: 505
  article-title: Accurate prediction of dose‐dependent CYP3A4 inhibition by itraconazole and its metabolites from inhibition data
  publication-title: Clin Pharmacol Ther.
– volume: 37
  start-page: 1658
  year: 2009
  end-page: 66
  article-title: Comparison of different algorithms for predicting clinical drug‐drug interactions, based on the use of CYP3A4 data: Predictions of compounds as precipitants of interaction
  publication-title: Drug Metab Dispos
– volume: 55
  start-page: 481
  year: 1994
  end-page: 5
  article-title: Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole
  publication-title: Clin Pharmacol Ther
– volume: 56
  start-page: 17
  year: 2005
  end-page: 22
  article-title: Making sense of itraconazole pharmacokinetics
  publication-title: J Antimicrob Chemother
– volume: 49
  start-page: 351
  year: 2009
  end-page: 9
  article-title: Quantitative evaluation of pharmacokinetic inhibition of CYP3A substrates by ketoconazole: A simulation study
  publication-title: J Clin Pharmacol
– volume: 42
  start-page: 441
  year: 2014
  end-page: 7
  article-title: Cytochrome P450 inhibitory properties of common efflux transporter inhibitors
  publication-title: Drug Metab Dispos
– volume: 85
  start-page: 644
  year: 2009
  end-page: 50
  article-title: Short‐term clarithromycin administration impairs clearance and enhances pharmacodynamic effects of trazodone but not of zolpidem
  publication-title: Clin Pharmacol Ther
– volume: 78
  start-page: 1122
  year: 2014
  end-page: 34
  article-title: Validation of 4β‐hydroxycholesterol and evaluation of other endogenous biomarkers for the assessment of CYP3A activity in healthy subjects
  publication-title: Br J Clin Pharmacol
– volume: 31
  start-page: 945
  year: 2003
  end-page: 54
  article-title: Prediction of the interaction between midazolam and macrolides based on studies using human liver microsomes
  publication-title: Drug Metab Dispos
– volume: 46
  start-page: 567
  year: 2006
  end-page: 76
  article-title: Ritonavir has minimal impact on the pharmacokinetic disposition of a single dose of bupropion administered to human volunteers
  publication-title: J Clin Pharmacol
– volume: 69
  start-page: 1795
  year: 2013
  end-page: 800
  article-title: Concentration effect relationship of CYP3A inhibition by ritonavir in humans
  publication-title: Eur J Clin Pharmacol
– volume: 53
  start-page: 654
  year: 2013
  end-page: 61
  article-title: Mechanisms of pharmacokinetic enhancement between ritonavir and saquinavir; Micro/small dosing tests using midazolam (CYP3A4), fexofenadine (P‐glycoprotein), and pravastatin (OATP1B1) as probe drugs
  publication-title: J Clin Pharmacol
– volume: 36
  start-page: 1
  year: 2011
  end-page: 16
  article-title: Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re‐evaluation of P450 isoform selectivity
  publication-title: Eur J Drug Metab Pharmacokinet
– volume: 37
  year: 2001
  article-title: Coadministration of digoxin with itraconazole in renal transplant recipients
  publication-title: Am J Kidney Dis
– volume: 49
  start-page: 358
  year: 2008
  end-page: 68
  article-title: Ritonavir greatly impairs CYP3A activity in HIV infection with chronic viral hepatitis
  publication-title: JAIDS
– volume: 49
  start-page: 398
  year: 2009
  end-page: 406
  article-title: Effect of different durations of ketoconazole dosing on the single‐dose pharmacokinetics of midazolam: Shortening the paradigm
  publication-title: J Clin Pharmacol
– volume: 82
  start-page: 511
  year: 1996
  end-page: 6
  article-title: The effect of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam
  publication-title: Anesthesthesia and Analgesia
– volume: 1
  start-page: 83
  year: 2012
  end-page: 4
  article-title: Drug interaction studies with CYP3A substrates: How much inhibitor pre‐exposure is needed?
  publication-title: Clinical Pharmacology in Drug Development
– volume: 72
  start-page: 718
  year: 2002
  end-page: 28
  article-title: Application of semisimultaneous midazolam administration for hepatic and intestinal cytochrome P450 3A phenotyping
  publication-title: Clin Pharmacol Ther
– volume: 64
  start-page: 661
  year: 1998
  end-page: 71
  article-title: Kinetic and dynamic interaction study of zolpidem with ketoconazole, itraconazole, and fluconazole
  publication-title: Clin Pharmacol Ther
– volume: 29
  start-page: 100
  year: 2001
  end-page: 2
  article-title: Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity : Potential drug interactions with bupropion
  publication-title: Drug Metab Dispos
– volume: 32
  start-page: 624
  year: 1991
  end-page: 6
  article-title: Comparative effects of the antimycotic drugs ketoconazole, fluconazole, itraconazole and terbinafine on the metabolism of cyclosporin by human liver microsomes
  publication-title: Br J Clin Pharmacol
– volume: 35
  start-page: 1853
  year: 2007
  end-page: 9
  article-title: Cytochrome P450 enzymes and transporters induced by anti‐human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions
  publication-title: Drug Metab Dispos
– volume: 6
  start-page: 413
  year: 2005
  end-page: 54
  article-title: Cytochrome P450 enzymes mechanism based inhibitors: common sub‐structures and reactivity
  publication-title: Curr Drug Metab
– volume: 3
  start-page: 1
  year: 2014
  end-page: 3
  article-title: The ketoconazole legacy
  publication-title: Clinical Pharmacology in Drug Development
– volume: 78
  start-page: 664
  year: 2005
  end-page: 74
  article-title: Effect of low‐dose ritonavir (100 mg twice daily) on the activity of cytochrome P450 2D6 in healthy volunteers
  publication-title: Clin Pharmacol Ther
– volume: 71
  start-page: 321
  year: 2015
  end-page: 7
  article-title: Effects of terbinafine and itraconazole on the pharmacokinetics of orally administered tramadol
  publication-title: Eur J Clin Pharmacol
– volume: 37
  start-page: 385
  year: 1999
  end-page: 98
  article-title: Clinical pharmacokinetics of clarithromycin
  publication-title: Clin Pharmacokinet
– year: 2013
– volume: 43
  start-page: 1274
  year: 2003
  end-page: 82
  article-title: Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone
  publication-title: J Clin Pharmacol
– volume: 83
  start-page: 77
  year: 2008
  end-page: 85
  article-title: Contribution of itraconazole metabolites to inhibition of CYP3A4
  publication-title: Clin Pharmacol Ther
– volume: 39
  start-page: 1070
  year: 2011
  end-page: 8
  article-title: Complex drug interactions of HIV protease inhibitors 1: Inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir
  publication-title: Drug Metab Dispos
– volume: 314
  start-page: 180
  year: 2005
  end-page: 90
  article-title: CYP3A4 substrate selection and substitution in the prediction of potential drug‐drug interactions
  publication-title: J Pharmacol Exp Ther
– volume: 14
  start-page: 1348
  year: 2014
  end-page: 55
  article-title: Ritonavir analogues as a probe for deciphering the cytochrome P450 3A4 inhibitory mechanism
  publication-title: Curr Top Med Chem
– volume: 65
  start-page: 693
  year: 2008
  end-page: 700
  article-title: The different effects of itraconazole on the pharmacokinetics of fexofenadine enantiomers
  publication-title: Br J Clin Pharmacol
– volume: 30
  start-page: 1441
  year: 2002
  end-page: 5
  article-title: Microsomal protein concentration modifies the apparent inhibitory potency of CYP3A inhibitors
  publication-title: Drug Metab Dispos
– volume: 32
  start-page: 1121
  year: 2004
  end-page: 31
  article-title: Role of itraconazole metabolites in CYP3A4 inhibition
  publication-title: Drug Metab Dispos
– volume: 47
  start-page: 871
  year: 2007
  end-page: 6
  article-title: Effect of the treatment period with erythromycin on cytochrome P450 3A activity in humans
  publication-title: J Clin Pharmacol
– volume: 6
  start-page: 601
  year: 2014
  end-page: 12
  article-title: Assessing liver injury associated with antimycotics: Concise literature review and clues from data mining of the FAERS database
  publication-title: World Journal of Hepatology
– volume: 20
  start-page: 55
  year: 2005
  end-page: 64
  article-title: Influence of itraconazole co‐administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic aripiprazole
  publication-title: Drug Metab Pharmacokinet
– volume: 36
  start-page: 2447
  year: 1992
  end-page: 53
  article-title: Pharmacokinetics of clarithromycin, a new macrolide, after single ascending oral doses
  publication-title: Antimicrob Agents Chemother
– volume: 40
  start-page: 270
  year: 1995
  end-page: 2
  article-title: Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers
  publication-title: Br J Clin Pharmacol
– volume: 40
  start-page: 610
  year: 2012
  end-page: 6
  article-title: Complex drug interactions of the HIV protease inhibitors 3: Effect of simultaneous or staggered dosing of digoxin and ritonavir, nelfinavir, rifampin, or bupropion
  publication-title: Drug Metab Dispos
– volume: 54
  start-page: 1321
  year: 2014
  end-page: 9
  article-title: Liver injury associated with ketoconazole: Review of the published evidence
  publication-title: J Clin Pharmacol
– volume: 56
  start-page: 32
  year: 2003
  end-page: 8
  article-title: Contribution of increased oral bioavailability and reduced non‐glomerular renal clearance of digoxin to the digoxin‐clarithromycin interaction
  publication-title: Br J Clin Pharmacol
– volume: 112
  start-page: 132
  year: 2013
  end-page: 7
  article-title: Pharmacokinetic interaction between prasugrel and ritonavir in healthy volunteers
  publication-title: Basic Clin Pharmacol Toxicol
– volume: 37
  start-page: 778
  year: 1993
  end-page: 84
  article-title: Food interaction and steady‐state pharmacokinetics of itraconazole capsules in healthy male volunteers
  publication-title: Antimicrob Agents Chemother
– volume: 15
  start-page: 651
  year: 2014
  end-page: 79
  article-title: Drug interactions between nine antifungal agents and drugs metabolized by human Cytochromes P450
  publication-title: Curr Drug Metab
– volume: 38
  start-page: 106
  year: 1998
  end-page: 11
  article-title: Protease inhibitors as inhibitors of human cytochromes P450: High risk associated with ritonavir
  publication-title: J Clin Pharmacol
– volume: 64
  start-page: 133
  year: 1998
  end-page: 43
  article-title: The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithormycin
  publication-title: Clin Pharmacol Ther
– volume: 64
  start-page: 278
  year: 1998
  end-page: 85
  article-title: Inhibition of triazolam clearance by macrolide antimicrobial agents: correlates and dynamic consequences
  publication-title: Clin Pharmacol Ther
– volume: 19
  start-page: 609
  year: 1997
  end-page: 13
  article-title: Itraconazole decreases renal clearance of digoxin
  publication-title: Ther Drug Monit
– volume: 46
  start-page: 201
  year: 2006
  end-page: 13
  article-title: Assessing the clinical significance of botanical supplementation on human cytochrome P450 3A activity: Comparison of a milk thistle and black cohosh product to rifampin and clarithromycin
  publication-title: J Clin Pharmacol
– volume: 87
  start-page: 322
  year: 2010
  end-page: 9
  article-title: Pharmacokinetics and pharmacodynamics of GS‐9350: A novel pharmacokinetic enhancer without anti‐HIV activity
  publication-title: Clin Pharmacol Ther
– volume: 66
  start-page: 461
  year: 1999
  end-page: 71
  article-title: Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an probe: effect of ketoconazole
  publication-title: Clin Pharmacol Ther
– volume: 79
  start-page: 274
  year: 1996
  end-page: 6
  article-title: Itraconazole increases serum digoxin concentration
  publication-title: Pharmacol Toxicol
– volume: 46
  start-page: 758
  year: 2006
  end-page: 67
  article-title: Time‐dependent interaction between ritonavir induces/ritonavir and fexofenadine
  publication-title: J Clin Pharmacol
– volume: 44
  start-page: 190
  year: 1997
  end-page: 4
  article-title: Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir
  publication-title: Br J Clin Pharmacol
– volume: 14
  start-page: 13
  year: 1988
  end-page: 34
  article-title: Clinical pharmacokinetics of ketoconazole
  publication-title: Clin Pharmacokinet
– volume: 69
  start-page: 507
  year: 2013
  end-page: 13
  article-title: Effect of the CYP3A inhibitor ketoconazole on the PXR‐mediated induction of CYP3A activity
  publication-title: Eur J Clin Pharmacol
– volume: 38
  start-page: 111
  year: 2000
  end-page: 80
  article-title: Effects of the antifungal agents on oxidative drug metabolism in humans: clinical relevance
  publication-title: Clin Pharmacokinet
– start-page: 625
  year: 2010
  end-page: 49
– volume: 9
  start-page: 911
  year: 2013
  end-page: 26
  article-title: Itraconazole: an update on pharmacology and clinical use for treatment of invasive and allergic fungal infections
  publication-title: Expert Opin Drug Metab Toxicol
– volume: 22
  start-page: 366
  year: 2002
  end-page: 70
  article-title: Influence of ritonavir on olanzapine pharmacokinetics in healthy volunteers
  publication-title: J Clin Psychopharmacol
– volume: 53
  start-page: 738
  year: 2013
  end-page: 45
  article-title: Pharmacokinetic and pharmacodynamic interaction of nadolol with itraconazole, rifampicin and grapefruit juice in healthy volunteers
  publication-title: J Clin Pharmacol
– volume: 51
  start-page: 359
  year: 2011
  end-page: 67
  article-title: Itraconazole, a P‐glycoprotein and CYP3A4 inhibitor, markedly raises the plasma concentrations and enhances the renin‐inhibiting effect of aliskiren
  publication-title: J Clin Pharmacol
– volume: 90
  start-page: 1829
  year: 2001
  end-page: 37
  article-title: Ritonavir induces P‐glycoprotein expression, multidrug resistance‐associated protein (MRP1) expression, and drug transporter‐mediated activity in a human intestinal cell line
  publication-title: J Pharm Sci
– volume: 87
  start-page: 1184
  year: 1998
  end-page: 9
  article-title: Inhibition of desipramine hydroxylation (cytochrome P450‐2D6) by quinidine and by viral protease inhibitors: Relation to drug interactions
  publication-title: J Pharm Sci
– volume: 84
  start-page: 75
  year: 2008
  end-page: 82
  article-title: Effect of an antiretroviral regimen containing ritonavir boosted ritonavir induces on intestinal and hepatic CYP3A, CYP2D6 and P‐glycoprotein in HIV‐infected patients
  publication-title: Clin Pharmacol Ther
– volume: 95
  start-page: 473
  year: 2014
  end-page: 6
  article-title: Itraconazole and clarithromycin as ketoconazole alternatives for clinical CYP3A inhibition studies
  publication-title: Clin Pharmacol Ther
– volume: 69
  start-page: 1785
  year: 2013
  end-page: 93
  article-title: Interaction of ambrisentan with clarithromycin and its modulation by polymorphic SLCO1B1
  publication-title: Eur J Clin Pharmacol
– volume: 1
  start-page: 209
  year: 2010
  end-page: 13
  article-title: Cobicistat (GS‐9350): A potent and selective inhibitor of human CYP3A as a novel pharmacoenhancer
  publication-title: ACS Medicinal Chemistry Letters
– volume: 40
  start-page: 1653
  year: 2012
  end-page: 7
  article-title: Risk assessment of mechanism‐based inactivation in drug‐drug interactions
  publication-title: Drug Metab Dispos
– volume: 85
  start-page: 64
  year: 2009
  end-page: 70
  article-title: Dose–response of ritonavir on hepatic CYP3A activity and elvitegravir oral exposure
  publication-title: Clin Pharmacol Ther
– volume: 64
  start-page: 123
  year: 1998
  end-page: 8
  article-title: Effect of clarithromycin on renal excretion of digoxin: Interaction with P‐glycoprotein
  publication-title: Clin Pharmacol Ther
– volume: 69
  start-page: 1939
  year: 2013
  end-page: 49
  article-title: A randomised study of the effect of danoprevir/ritonavir or ritonavir on substrates of cytochrome P450(CYP)3A and 2C9 in chronic hepatitis C patients using a drug cocktail
  publication-title: Eur J Clin Pharmacol
– volume: 4
  start-page: 443
  year: 1998
  end-page: 5
  article-title: Inhibition of triazolam hydroxylation by ketoconazole, itraconazole, hydroxyitraconazole and fluconazole in vitro
  publication-title: Pharmacy and Pharmacology Communications
– volume: 54
  start-page: 53
  year: 1998
  end-page: 8
  article-title: The area under the plasma concentration‐time curve for oral midazolam is 400‐fold larger during treatment with itraconazole than with rifampicin
  publication-title: Eur J Clin Pharmacol
– volume: 90
  start-page: 666
  year: 2011
  end-page: 73
  article-title: Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using a limited sampling strategy
  publication-title: Clin Pharmacol Ther
– volume: 34
  start-page: 166
  year: 2006
  end-page: 75
  article-title: Prediction of time‐dependent CYP3A4 drug‐drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition
  publication-title: Drug Metab Dispos
– volume: 40
  start-page: 713
  year: 2010
  end-page: 20
  article-title: Sources of variability in ketoconazole inhibition of human cytochrome P450‐3A
  publication-title: Xenobiotica
– volume: 79
  start-page: 243
  year: 2006
  end-page: 54
  article-title: Effect of extended exposure to grapefruit juice on cytochrome P450 3A activity in humans: Comparison with ritonavir
  publication-title: Clin Pharmacol Ther
– volume: 34
  start-page: 400
  year: 1996
  end-page: 5
  article-title: Interaction between midazolam and clarithromycin: comparison with azithromycin
  publication-title: Int J Clin Pharmacol Ther
– volume: 62
  start-page: 203
  year: 2006
  end-page: 8
  article-title: Quantitative prediction of macrolide drug‐drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate
  publication-title: Eur J Clin Pharmacol
– volume: 5
  start-page: 415
  year: 2004
  end-page: 42
  article-title: Therapeutic drugs that behave as mechanism‐based inhibitors of cytochrome P450 3A4
  publication-title: Curr Drug Metab
– volume: 56
  start-page: 5409
  year: 2012
  end-page: 13
  article-title: Cobicistat boosts the intestinal absorption of transport substrates, including HIV protease inhibitors and GS‐7340,
  publication-title: Antimicrob Agents Chemother
– volume: 56
  start-page: 259
  year: 2000
  end-page: 61
  article-title: Potent mechanism‐based inhibition of human CYP3A in vitro by amprenavir and ritonavir: comparison with ketoconazole
  publication-title: Eur J Clin Pharmacol
– volume: 39
  start-page: 1212
  year: 1999
  end-page: 20
  article-title: Concurrent administration of the erythromycin breath test (EBT) and oral midazolam as probes for CYP3A activity
  publication-title: J Clin Pharmacol
– ident: e_1_2_7_19_1
  doi: 10.1016/j.clinthera.2009.02.022
– ident: e_1_2_7_13_1
  doi: 10.1067/mcp.2002.129068
– ident: e_1_2_7_97_1
  doi: 10.1097/00004714-200208000-00006
– ident: e_1_2_7_24_1
  doi: 10.1038/clpt.2010.119
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1742-7843.2012.00932.x
– ident: e_1_2_7_10_1
  doi: 10.1038/clpt.1994.60
– ident: e_1_2_7_67_1
  doi: 10.1124/dmd.112.046649
– ident: e_1_2_7_110_1
  doi: 10.1038/clpt.2008.102
– ident: e_1_2_7_76_1
  doi: 10.1007/s00228-012-1339-x
– ident: e_1_2_7_41_1
  doi: 10.1038/clpt.2009.228
– ident: e_1_2_7_56_1
  doi: 10.1002/j.1552-4604.1996.tb04251.x
– ident: e_1_2_7_74_1
  doi: 10.2174/138920007780866861
– ident: e_1_2_7_94_1
  doi: 10.1002/jps.1133
– ident: e_1_2_7_89_1
  doi: 10.1124/dmd.113.054932
– ident: e_1_2_7_17_1
  doi: 10.1038/clpt.2013.27
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1365-2125.2009.03545.x
– ident: e_1_2_7_42_1
  doi: 10.2165/00003088-200038020-00002
– ident: e_1_2_7_29_1
  doi: 10.1007/s00228-013-1529-1
– ident: e_1_2_7_18_1
  doi: 10.1177/0091270008331133
– ident: e_1_2_7_47_1
  doi: 10.1111/j.2042-7158.2010.01202.x
– ident: e_1_2_7_54_1
  doi: 10.1111/j.2042-7158.1998.tb00727.x
– ident: e_1_2_7_52_1
  doi: 10.1007/s00228-012-1388-1
– ident: e_1_2_7_70_1
  doi: 10.1128/AAC.36.11.2447
– ident: e_1_2_7_77_1
  doi: 10.1177/0091270007302562
– ident: e_1_2_7_39_1
  doi: 10.1007/s00228-013-1530-8
– ident: e_1_2_7_49_1
  doi: 10.2165/00003088-198814010-00002
– ident: e_1_2_7_71_1
  doi: 10.1038/clpt.2008.293
– ident: e_1_2_7_105_1
  doi: 10.1016/S0009-9236(98)90030-3
– ident: e_1_2_7_23_1
  doi: 10.1007/s002280050420
– ident: e_1_2_7_60_1
  doi: 10.1093/jac/dki220
– ident: e_1_2_7_33_1
  doi: 10.1097/QAI.0b013e31818c7efe
– ident: e_1_2_7_78_1
  doi: 10.1046/j.1365-2125.1997.00644.x
– ident: e_1_2_7_12_1
  doi: 10.1177/00912709922012015
– ident: e_1_2_7_57_1
  doi: 10.1124/dmd.104.000315
– ident: e_1_2_7_99_1
  doi: 10.1111/j.1600-0773.1996.tb00273.x
– volume: 29
  start-page: 100
  year: 2001
  ident: e_1_2_7_86_1
  article-title: Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity in vitro: Potential drug interactions with bupropion
  publication-title: Drug Metab Dispos
– ident: e_1_2_7_36_1
  doi: 10.1038/clpt.2011.164
– ident: e_1_2_7_20_1
  doi: 10.1111/bcp.12425
– ident: e_1_2_7_100_1
  doi: 10.1097/00007691-199712000-00001
– ident: e_1_2_7_75_1
  doi: 10.1097/FTD.0b013e31815c16f5
– ident: e_1_2_7_114_1
  doi: 10.2174/1568026614666140506120647
– ident: e_1_2_7_108_1
  doi: 10.1016/j.clpt.2004.02.008
– ident: e_1_2_7_107_1
  doi: 10.1097/00007691-200406000-00018
– ident: e_1_2_7_16_1
  doi: 10.1016/j.clpt.2005.11.016
– ident: e_1_2_7_58_1
  doi: 10.1038/sj.clpt.6100230
– ident: e_1_2_7_50_1
  doi: 10.1016/S0009-9236(98)90057-1
– ident: e_1_2_7_65_1
  doi: 10.1007/s00228-005-0091-x
– ident: e_1_2_7_44_1
  doi: 10.1124/jpet.104.082826
– ident: e_1_2_7_98_1
  doi: 10.1067/mcp.2000.112363
– ident: e_1_2_7_63_1
  doi: 10.1124/dmd.31.7.945
– ident: e_1_2_7_72_1
  doi: 10.2174/1389200043335450
– ident: e_1_2_7_9_1
  doi: 10.1038/clpt.2014.41
– ident: e_1_2_7_62_1
  doi: 10.1007/s40262-014-0139-0
– ident: e_1_2_7_40_1
  doi: 10.1007/s00228-013-1556-y
– ident: e_1_2_7_15_1
  doi: 10.1007/s00228-004-0762-z
– ident: e_1_2_7_59_1
  doi: 10.1128/AAC.37.4.778
– ident: e_1_2_7_27_1
  doi: 10.1177/0091270005284854
– ident: e_1_2_7_34_1
  doi: 10.1592/phco.29.10.1175
– ident: e_1_2_7_31_1
  doi: 10.1038/sj.clpt.6100452
– ident: e_1_2_7_85_1
  doi: 10.1021/js980197h
– ident: e_1_2_7_95_1
  doi: 10.1124/dmd.107.016089
– ident: e_1_2_7_7_1
  doi: 10.1002/cpdd.100
– volume: 42
  start-page: 52
  year: 2006
  ident: e_1_2_7_30_1
  article-title: ritonavir induces /ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers
  publication-title: J Acquir Immune Defic Syndr
  doi: 10.1097/01.qai.0000219774.20174.64
– ident: e_1_2_7_51_1
  doi: 10.1177/2160763X12448745
– ident: e_1_2_7_64_1
  doi: 10.1124/dmd.105.006874
– ident: e_1_2_7_48_1
  doi: 10.3109/00498254.2010.506224
– ident: e_1_2_7_83_1
  doi: 10.1016/j.clpt.2005.11.009
– ident: e_1_2_7_14_1
  doi: 10.1177/0091270003259216
– ident: e_1_2_7_82_1
  doi: 10.1038/clpt.2008.168
– ident: e_1_2_7_3_1
– ident: e_1_2_7_37_1
  doi: 10.1002/jcph.62
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1365-2125.2007.02970.x
– ident: e_1_2_7_6_1
  doi: 10.4254/wjh.v6.i8.601
– ident: e_1_2_7_4_1
– ident: e_1_2_7_109_1
  doi: 10.1177/0091270006288733
– ident: e_1_2_7_45_1
  doi: 10.1124/dmd.108.026252
– ident: e_1_2_7_111_1
  doi: 10.1124/dmd.111.042705
– ident: e_1_2_7_2_1
– ident: e_1_2_7_26_1
  doi: 10.1016/S0009-9236(98)90146-1
– ident: e_1_2_7_55_1
  doi: 10.1124/dmd.30.12.1441
– ident: e_1_2_7_113_1
  doi: 10.1021/ml1000257
– ident: e_1_2_7_80_1
  doi: 10.1007/s002280000125
– ident: e_1_2_7_11_1
  doi: 10.1016/S0009-9236(99)70009-3
– ident: e_1_2_7_66_1
  doi: 10.1016/j.ejps.2011.04.008
– ident: e_1_2_7_102_1
  doi: 10.1111/j.1365-2125.2008.03116.x
– ident: e_1_2_7_35_1
  doi: 10.1124/dmd.110.037523
– ident: e_1_2_7_79_1
  doi: 10.1002/j.1552-4604.1998.tb04398.x
– ident: e_1_2_7_90_1
  doi: 10.2133/dmpk.20.55
– ident: e_1_2_7_43_1
  doi: 10.2174/1389200215666141125121511
– ident: e_1_2_7_84_1
  doi: 10.1097/00126334-200006010-00007
– ident: e_1_2_7_68_1
  doi: 10.1016/S0009-9236(98)90176-X
– ident: e_1_2_7_81_1
  doi: 10.1124/mol.114.094862
– ident: e_1_2_7_104_1
  doi: 10.1002/jcph.95
– ident: e_1_2_7_115_1
  doi: 10.1128/AAC.01089-12
– ident: e_1_2_7_88_1
  doi: 10.1007/s13318-011-0024-2
– ident: e_1_2_7_92_1
  doi: 10.1016/j.clpt.2005.09.001
– ident: e_1_2_7_101_1
  doi: 10.1053/ajkd.2001.21363
– ident: e_1_2_7_46_1
  doi: 10.1177/0091270008331196
– ident: e_1_2_7_96_1
  doi: 10.1124/dmd.111.038646
– ident: e_1_2_7_5_1
  doi: 10.1002/jcph.400
– ident: e_1_2_7_87_1
  doi: 10.1080/004982500237541
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-2125.1995.tb00001.x
– ident: e_1_2_7_112_1
  doi: 10.1002/cpdd.159
– ident: e_1_2_7_93_1
  doi: 10.1177/0091270006286981
– ident: e_1_2_7_21_1
  doi: 10.1097/00000539-199603000-00015
– volume: 34
  start-page: 400
  year: 1996
  ident: e_1_2_7_25_1
  article-title: Interaction between midazolam and clarithromycin: comparison with azithromycin
  publication-title: Int J Clin Pharmacol Ther
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1365-2125.1991.tb03963.x
– ident: e_1_2_7_103_1
  doi: 10.1177/0091270010365885
– ident: e_1_2_7_91_1
  doi: 10.1007/s00228-014-1799-2
– ident: e_1_2_7_61_1
  doi: 10.1517/17425255.2013.794785
– ident: e_1_2_7_69_1
  doi: 10.2165/00003088-199937050-00003
– ident: e_1_2_7_73_1
  doi: 10.2174/138920005774330639
– ident: e_1_2_7_106_1
  doi: 10.1046/j.1365-2125.2003.01824.x
– ident: e_1_2_7_8_1
  doi: 10.1007/978-1-4419-0840-7_24
SSID ssj0013165
Score 2.461142
SecondaryResourceType review_article
Snippet Aims The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug–drug interaction (DDI) studies has compelled consideration of alternative...
The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug-drug interaction (DDI) studies has compelled consideration of alternative...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 342
SubjectTerms Area Under Curve
clarithromycin
Cytochrome P-450 CYP3A - metabolism
Cytochrome P-450 CYP3A Inhibitors - administration & dosage
Cytochrome P-450 CYP3A Inhibitors - adverse effects
Cytochrome P-450 CYP3A Inhibitors - pharmacology
cytochrome P450‐3A
Drug Design
Drug Interactions
drug–drug interactions
Humans
itraconazole
ketoconazole
Ketoconazole - administration & dosage
Ketoconazole - adverse effects
Ketoconazole - pharmacology
Midazolam - administration & dosage
Midazolam - pharmacokinetics
ritonavir
Ritonavir - administration & dosage
Ritonavir - adverse effects
Ritonavir - pharmacology
Systematic Reviews
United States
United States Food and Drug Administration
Title Ritonavir is the best alternative to ketoconazole as an index inhibitor of cytochrome P450‐3A in drug–drug interaction studies
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbcp.12668
https://www.ncbi.nlm.nih.gov/pubmed/25923589
https://www.proquest.com/docview/1707557862
https://pubmed.ncbi.nlm.nih.gov/PMC4574820
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CTr30lT7cR5iWEnqIjR4rrURPSdoQCi0mJJBDQewzNglSkOSCcwr9BYX-w_ySzO5acty0UHqxLTwWWnke32hnviHknYgyEeWGDqVADaaC5cPc5BEeopWjQ9SBm0P25Wt6cEw_nyQna-RD1wvj-SH6B27WMpy_tgbORXPLyIW8GIUYXmyjbxinljf_42G03EEI3RhJC4kx2UrCBauQreLpf7kai-4AzLt1krfxqwtA-w_It-7Sfd3J2WjWipG8_I3V8T_X9pDcXwBT2PGa9Iis6fIx2Rp7Zuv5NhwtG7WabdiC8ZLzer5BfhyiZyj592kN0wYQVILANYLbiy8dtzi0FZzptsL8m19W5xp4A7wEx9aIr5OpwDPUUBmQc5SaWBoFGNMkuL76Ge-gBKh6dnp99cu-gWW5qH1PBjS-FPIJOd7_dLR3MFyMdxhKmiVon4YqIRHwZIynJjYYK2XEtUavknE7A11mJqdGUGPSUGEQVYliKlAqsZw1IYufkvWyKvVzAnGeJqhxKVeY3gWGiYyL1KiYBVQjXgoH5H33RxdywX1uR3CcF10OhHe8cHd8QN72ohee8ONPQm86bSnQHO0eCy91NWuKkCEGQy-YRgPyzGtPfxrMNG1jcj4gbEWvegFL9b36TTmdOMpvmjCKWA3X4dTm71dW7O6N3YcX_y76ktxDGJj4yrlXZL2tZ_o1Qq1WbDqbugEh_inu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7S9NBe-n64z2kpoYfY6LF6QS9paHDbJJjgQC5F7Gp3a5MgBUkuOKfQX1DoP8wv6ezKkuOmhdKLZaGR0Erz-EY7-w3AG-HFwks062eCNJiJKOknOvFol6ycHKJybB-yvf1weMg-HQVHa_CuXQvT8EN0H9yMZVh_bQzcfJC-ZOUiOx24FF_ia3Ddzs8ZSHTgLecQXNtI0oBiSrcCd8ErZOp4ulNXo9EViHm1UvIygrUhaOc2fGlvvqk8OR7MajHIzn7jdfzf0d2BWwtsiluNMt2FNZXfg41RQ24938Txcq1WtYkbOFrSXs_vw_cDcg45_zYtcVoh4UoUNEi00_G5pRfHusBjVReUgvOz4kQhr5DnaAkb6XcyFXSFEguN2ZykJoZJAUcscC7Of_hbJIGynH29OP9pNmiILspmWQZWTTXkAzjc-TDeHvYXHR76GYsDMlHNpMgI88QRD7WvKVxmHleKHEvMTRv0LNYJ04JpHbqS4qgMZCQdKQNDW-NG_kNYz4tcPQb0kzAgpQu5pAzP0ZGIuQi19COHKYJMbg_etm86zRb056YLx0napkH0xFP7xHvwuhM9bTg__iT0qlWXlCzSTLPwXBWzKnUjgmHkCEOvB48a9ekuQ8mmWZuc9CBaUaxOwLB9rx7JpxPL-s2CiBFco3FYvfn7naXvt0f2z5N_F30JN4bjvd109-P-56dwk1Bh0BTSPYP1upyp54S8avHCGtgvmJQuDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEB7SFEpfejd1z2kpoQ-x0bG66FOa1qRXMCGBPBTErna3NgmSkeSC8xT6Cwr9h_klnV1Zcty0UPoiS3i8aOU5vtHOfgPwUnix8BLN-pkgDWYiSvqJTjy6JCsnh6gc24fs8164e8g-HAVHa_C63QvT8EN0L9yMZVh_bQx8KvUFIxfZdOBSeImvwFUWUpg0iGjfWy4huLaPpMHElG0F7oJWyJTxdD9dDUaXEOblQsmLANZGoOFN-NLee1N4cjyY1WKQnf5G6_ifk7sFNxbIFLcbVboNayq_A5ujhtp6voUHy51a1RZu4mhJej2_C9_3yTXk_NukxEmFhCpR0BzRLsbnllwc6wKPVV1QAs5PixOFvEKeo6VrpON4ImiEEguN2ZykxoZHAUcscM7PfvjbJIGynH09P_tpPtDQXJTNpgysmlrIe3A4fHews9tf9HfoZywOyEA1kyIjxBNHPNS-pmCZeVwpcisxN03Qs1gnTAumdehKiqIykJF0pAwMaY0b-fdhPS9y9QDQT8KAVC7kkvI7R0ci5iLU0o8cpggwuT141f7RabYgPzc9OE7SNgmiJ57aJ96DF53otGH8-JPQ81ZbUrJHs8jCc1XMqtSNCISRGwy9Hmw02tMNQ6mm2Zmc9CBa0atOwHB9r36TT8aW85sFESOwRvOwavP3O0vf7IzsycN_F30G10Zvh-mn93sfH8F1goRBU0X3GNbrcqaeEOyqxVNrXr8A_Xwsuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ritonavir+is+the+best+alternative+to+ketoconazole+as+an+index+inhibitor+of+cytochrome+P450-3A+in+drug%E2%80%93drug+interaction+studies&rft.jtitle=British+journal+of+clinical+pharmacology&rft.au=Greenblatt%2C+David+J&rft.au=Harmatz%2C+Jerold+S&rft.date=2015-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0306-5251&rft.eissn=1365-2125&rft.volume=80&rft.issue=3&rft.spage=342&rft.epage=350&rft_id=info:doi/10.1111%2Fbcp.12668&rft_id=info%3Apmid%2F25923589&rft.externalDocID=PMC4574820
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-5251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-5251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-5251&client=summon