Ritonavir is the best alternative to ketoconazole as an index inhibitor of cytochrome P450‐3A in drug–drug interaction studies
Aims The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug–drug interaction (DDI) studies has compelled consideration of alternative inhibitors. Methods The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibi...
Saved in:
Published in | British journal of clinical pharmacology Vol. 80; no. 3; pp. 342 - 350 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Ltd
01.09.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-5251 1365-2125 1365-2125 |
DOI | 10.1111/bcp.12668 |
Cover
Abstract | Aims
The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug–drug interaction (DDI) studies has compelled consideration of alternative inhibitors.
Methods
The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor.
Results
Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre‐exposure prior to administration of MDZ.
Conclusions
Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well. |
---|---|
AbstractList | The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug-drug interaction (DDI) studies has compelled consideration of alternative inhibitors.AIMSThe regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug-drug interaction (DDI) studies has compelled consideration of alternative inhibitors.The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC ) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor.METHODSThe biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC ) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor.Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre-exposure prior to administration of MDZ.RESULTSMean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre-exposure prior to administration of MDZ.Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well.CONCLUSIONSRitonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well. The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug-drug interaction (DDI) studies has compelled consideration of alternative inhibitors. The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC ) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor. Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre-exposure prior to administration of MDZ. Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well. Aims The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug–drug interaction (DDI) studies has compelled consideration of alternative inhibitors. Methods The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC) of total area under the curve (AUC) for MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor. Results Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0); clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre‐exposure prior to administration of MDZ. Conclusions Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have other significant disadvantages as well. |
Author | Harmatz, Jerold S. Greenblatt, David J. |
Author_xml | – sequence: 1 givenname: David J. surname: Greenblatt fullname: Greenblatt, David J. organization: Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences – sequence: 2 givenname: Jerold S. surname: Harmatz fullname: Harmatz, Jerold S. organization: Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25923589$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1uEzEQgC1URNPCgRdAPsJhW9u73vVekNqIP6kSFYKz5bXHjWFjB9sbCKeKJ0DiDfskOCRFgMAHj0b-5htr5ggd-OABoYeUnNByTge9OqGsbcUdNKN1yytGGT9AM1KTtuKM00N0lNJ7QmhNW34PHTLes5qLfoa-vnE5eLV2EbuE8wLwACljNWaIXmW3BpwD_gA56IJ9CSNglbDy2HkDn8u9cEMxRBws1ptCLWJYAr5sOLm5_lafFQKbOF3dXH_fhpIWsdLZBY9TnoyDdB_dtWpM8GAfj9G758_ezl9WF69fvJqfXVS6EVxUzDZm0G35dqdaW1tBqGYKoCFEKNH1XAvbN3ZorG2paTpquOkMMYYTTnra1cfo6c67moYlGA0-RzXKVXRLFTcyKCf_fPFuIa_CWja8awQjRfB4L4jh41TGJJcuaRhH5SFMSdKOdJx3omUFffR7r19NbgdfgNMdoGNIKYKV2mW1HUtp7UZJidyuVpbVyp-rLRVP_qq4lf6L3ds_uRE2_wfl-fxyV_ED9xK3Mw |
CitedBy_id | crossref_primary_10_1002_cpdd_934 crossref_primary_10_1002_cpdd_339 crossref_primary_10_1002_jcph_609 crossref_primary_10_1007_s40262_017_0589_2 crossref_primary_10_3851_IMP3343 crossref_primary_10_1002_cpdd_652 crossref_primary_10_3238_arztebl_m2022_0152 crossref_primary_10_1111_bcp_15835 crossref_primary_10_1016_j_ejca_2023_113346 crossref_primary_10_1002_cpdd_1404 crossref_primary_10_1016_j_jpba_2024_116162 crossref_primary_10_1111_pcn_13205 crossref_primary_10_1124_dmd_121_000765 crossref_primary_10_1002_cpdd_1049 crossref_primary_10_1016_j_ejps_2025_107010 crossref_primary_10_1002_cpdd_1046 crossref_primary_10_1002_jcph_562 crossref_primary_10_1002_jmr_2830 crossref_primary_10_1016_j_pharmthera_2023_108459 crossref_primary_10_1002_cpdd_1082 crossref_primary_10_1080_17460441_2022_2052847 crossref_primary_10_1002_jcph_1622 crossref_primary_10_1002_cpdd_822 crossref_primary_10_1002_jcph_1427 crossref_primary_10_1016_j_bmc_2020_115349 crossref_primary_10_1016_j_ejps_2021_105810 crossref_primary_10_1002_cpdd_785 crossref_primary_10_1002_cpdd_586 crossref_primary_10_1002_jcph_711 crossref_primary_10_1111_jphp_12663 crossref_primary_10_1111_bcp_15788 crossref_primary_10_1002_cpdd_1259 crossref_primary_10_1111_jphp_12820 crossref_primary_10_3390_ijms22020852 crossref_primary_10_1080_00498254_2020_1867928 crossref_primary_10_1111_bcp_13517 crossref_primary_10_1002_jcph_795 crossref_primary_10_1002_cpdd_1491 crossref_primary_10_1128_aac_01450_24 crossref_primary_10_1002_jcph_1747 crossref_primary_10_1016_j_clinthera_2017_08_021 crossref_primary_10_1002_cpt_2610 crossref_primary_10_1111_bcp_14684 crossref_primary_10_1016_j_ejps_2023_106534 crossref_primary_10_1080_00498254_2024_2395557 crossref_primary_10_1016_j_clinthera_2020_09_015 crossref_primary_10_1007_s00228_017_2403_3 crossref_primary_10_1002_cpdd_1307 crossref_primary_10_1111_bcp_12745 crossref_primary_10_1111_bcp_15932 crossref_primary_10_1002_bdd_2122 crossref_primary_10_1080_17425255_2019_1685495 crossref_primary_10_1007_s40121_023_00830_0 crossref_primary_10_29413_ABS_2021_6_6_2_12 crossref_primary_10_1016_j_heliyon_2024_e24333 crossref_primary_10_3390_curroncol31100450 crossref_primary_10_1002_cpdd_1389 crossref_primary_10_1016_j_biopha_2023_114636 crossref_primary_10_1007_s12325_020_01491_y crossref_primary_10_1124_dmd_115_067744 crossref_primary_10_2147_CPAA_S292746 crossref_primary_10_3390_pharmaceutics15122732 crossref_primary_10_1080_09546634_2020_1799919 crossref_primary_10_1002_cpdd_1140 crossref_primary_10_1016_j_omtm_2021_07_007 crossref_primary_10_1080_00498254_2017_1370655 crossref_primary_10_1097_JCP_0000000000000892 crossref_primary_10_1128_AAC_01686_19 crossref_primary_10_1002_cpdd_967 crossref_primary_10_4155_ipk_2017_0005 crossref_primary_10_1002_jcph_1640 crossref_primary_10_1002_cpdd_285 crossref_primary_10_1111_epi_17212 crossref_primary_10_2174_1389200221666200817113920 crossref_primary_10_3389_fgene_2020_00944 crossref_primary_10_3390_ijms23179866 crossref_primary_10_1002_cpdd_282 crossref_primary_10_1016_j_lungcan_2022_07_012 crossref_primary_10_1111_cts_12921 crossref_primary_10_1002_jcph_2060 crossref_primary_10_1002_cpdd_1110 crossref_primary_10_1002_cpdd_1198 crossref_primary_10_1002_cpdd_1392 crossref_primary_10_1002_cpdd_1074 crossref_primary_10_1080_17460441_2023_2239701 |
Cites_doi | 10.1016/j.clinthera.2009.02.022 10.1067/mcp.2002.129068 10.1097/00004714-200208000-00006 10.1038/clpt.2010.119 10.1111/j.1742-7843.2012.00932.x 10.1038/clpt.1994.60 10.1124/dmd.112.046649 10.1038/clpt.2008.102 10.1007/s00228-012-1339-x 10.1038/clpt.2009.228 10.1002/j.1552-4604.1996.tb04251.x 10.2174/138920007780866861 10.1002/jps.1133 10.1124/dmd.113.054932 10.1038/clpt.2013.27 10.1111/j.1365-2125.2009.03545.x 10.2165/00003088-200038020-00002 10.1007/s00228-013-1529-1 10.1177/0091270008331133 10.1111/j.2042-7158.2010.01202.x 10.1111/j.2042-7158.1998.tb00727.x 10.1007/s00228-012-1388-1 10.1128/AAC.36.11.2447 10.1177/0091270007302562 10.1007/s00228-013-1530-8 10.2165/00003088-198814010-00002 10.1038/clpt.2008.293 10.1016/S0009-9236(98)90030-3 10.1007/s002280050420 10.1093/jac/dki220 10.1097/QAI.0b013e31818c7efe 10.1046/j.1365-2125.1997.00644.x 10.1177/00912709922012015 10.1124/dmd.104.000315 10.1111/j.1600-0773.1996.tb00273.x 10.1038/clpt.2011.164 10.1111/bcp.12425 10.1097/00007691-199712000-00001 10.1097/FTD.0b013e31815c16f5 10.2174/1568026614666140506120647 10.1016/j.clpt.2004.02.008 10.1097/00007691-200406000-00018 10.1016/j.clpt.2005.11.016 10.1038/sj.clpt.6100230 10.1016/S0009-9236(98)90057-1 10.1007/s00228-005-0091-x 10.1124/jpet.104.082826 10.1067/mcp.2000.112363 10.1124/dmd.31.7.945 10.2174/1389200043335450 10.1038/clpt.2014.41 10.1007/s40262-014-0139-0 10.1007/s00228-013-1556-y 10.1007/s00228-004-0762-z 10.1128/AAC.37.4.778 10.1177/0091270005284854 10.1592/phco.29.10.1175 10.1038/sj.clpt.6100452 10.1021/js980197h 10.1124/dmd.107.016089 10.1002/cpdd.100 10.1097/01.qai.0000219774.20174.64 10.1177/2160763X12448745 10.1124/dmd.105.006874 10.3109/00498254.2010.506224 10.1016/j.clpt.2005.11.009 10.1177/0091270003259216 10.1038/clpt.2008.168 10.1002/jcph.62 10.1111/j.1365-2125.2007.02970.x 10.4254/wjh.v6.i8.601 10.1177/0091270006288733 10.1124/dmd.108.026252 10.1124/dmd.111.042705 10.1016/S0009-9236(98)90146-1 10.1124/dmd.30.12.1441 10.1021/ml1000257 10.1007/s002280000125 10.1016/S0009-9236(99)70009-3 10.1016/j.ejps.2011.04.008 10.1111/j.1365-2125.2008.03116.x 10.1124/dmd.110.037523 10.1002/j.1552-4604.1998.tb04398.x 10.2133/dmpk.20.55 10.2174/1389200215666141125121511 10.1097/00126334-200006010-00007 10.1016/S0009-9236(98)90176-X 10.1124/mol.114.094862 10.1002/jcph.95 10.1128/AAC.01089-12 10.1007/s13318-011-0024-2 10.1016/j.clpt.2005.09.001 10.1053/ajkd.2001.21363 10.1177/0091270008331196 10.1124/dmd.111.038646 10.1002/jcph.400 10.1080/004982500237541 10.1111/j.1365-2125.1995.tb00001.x 10.1002/cpdd.159 10.1177/0091270006286981 10.1097/00000539-199603000-00015 10.1111/j.1365-2125.1991.tb03963.x 10.1177/0091270010365885 10.1007/s00228-014-1799-2 10.1517/17425255.2013.794785 10.2165/00003088-199937050-00003 10.2174/138920005774330639 10.1046/j.1365-2125.2003.01824.x 10.1007/978-1-4419-0840-7_24 |
ContentType | Journal Article |
Copyright | 2015 The British Pharmacological Society 2015 The British Pharmacological Society. 2015 The British Pharmacological Society 2015 |
Copyright_xml | – notice: 2015 The British Pharmacological Society – notice: 2015 The British Pharmacological Society. – notice: 2015 The British Pharmacological Society 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1111/bcp.12668 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1365-2125 |
EndPage | 350 |
ExternalDocumentID | PMC4574820 25923589 10_1111_bcp_12668 BCP12668 |
Genre | reviewArticle Journal Article Review |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABOCM ABPVW ABQWH ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HYE HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 24P AEUQT AFPWT CGR CUY CVF ECM EIF ESX FIJ IPNFZ NPM RPM WRC 7X8 5PM |
ID | FETCH-LOGICAL-c4858-2f4dbc63587a6f3f801c2aee4008a8795c8f94fb4ff61d471d5d7d0dd50509173 |
IEDL.DBID | DR2 |
ISSN | 0306-5251 1365-2125 |
IngestDate | Thu Aug 21 14:08:42 EDT 2025 Fri Jul 11 03:42:14 EDT 2025 Wed Feb 19 02:32:33 EST 2025 Tue Jul 01 01:59:11 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Wed Aug 20 07:24:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cytochrome P450-3A ketoconazole drug-drug interactions itraconazole clarithromycin ritonavir |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 The British Pharmacological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4858-2f4dbc63587a6f3f801c2aee4008a8795c8f94fb4ff61d471d5d7d0dd50509173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4574820 |
PMID | 25923589 |
PQID | 1707557862 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4574820 proquest_miscellaneous_1707557862 pubmed_primary_25923589 crossref_citationtrail_10_1111_bcp_12668 crossref_primary_10_1111_bcp_12668 wiley_primary_10_1111_bcp_12668_BCP12668 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2015 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Chichester, UK |
PublicationTitle | British journal of clinical pharmacology |
PublicationTitleAlternate | Br J Clin Pharmacol |
PublicationYear | 2015 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | 2009; 85 2013; 69 2004; 60 2001; 90 2006; 34 1997; 44 2015; 71 2006; 79 2004; 26 2005; 20 2004; 5 1996; 36 1996; 79 1998; 87 2012; 56 2009; 49 2007; 35 1996; 34 2013; 9 2003; 56 2004; 32 1993; 37 2004; 76 2007; 29 2014; 3 2010; 1 2006; 62 2000; 56 2013; 53 2013; 112 2007; 8 1997; 19 2014; 15 2011; 63 2014; 14 2008; 65 2014; 95 1998; 54 2014; 6 2003; 43 2005; 78 2014; 54 2014; 53 2009; 68 2002; 30 2010 2002; 72 1991; 32 2000; 24 2000; 68 1988; 14 2005; 314 1999; 66 2013; 93 1992; 36 2001; 29 2011; 36 2011; 39 1998; 64 2003; 31 2010; 40 2009; 29 2014; 86 2014; 42 1998; 38 2010; 88 1995; 40 2010; 87 2006; 42 2000; 38 2009; 31 2012; 1 2006; 46 2011; 90 1999; 39 2008; 49 1999; 37 2000; 30 2011; 51 2002; 22 1994; 55 1996; 82 2011; 43 2005; 6 2001; 37 2013 2008; 83 2008; 84 1998; 4 2014; 78 2009; 37 2005; 56 2007; 47 2012; 40 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 Hesse LM (e_1_2_7_86_1) 2001; 29 e_1_2_7_26_1 e_1_2_7_49_1 Yeh RF (e_1_2_7_30_1) 2006; 42 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Yeates RA (e_1_2_7_25_1) 1996; 34 e_1_2_7_38_1 |
References_xml | – volume: 31 start-page: 286 year: 2009 end-page: 98 article-title: Effects of oral posaconazole on the pharmacokinetic properties of oral and intravenous midazolam: A Phase I, randomized, open‐label, crossover study in healthy volunteers publication-title: Clin Ther – volume: 60 start-page: 237 year: 2004 end-page: 46 article-title: Oral administration of a low dose of midazolam (75 µg) as an probe for CYP3A activity publication-title: Eur J Clin Pharmacol – volume: 86 start-page: 665 year: 2014 end-page: 74 article-title: Characterization of ritonavir‐mediated inactivation of cytochrome P450 3A4 publication-title: Mol Pharmacol – volume: 30 start-page: 327 year: 2000 end-page: 43 article-title: Assessment of specificity of eight chemical inhibitors using cDNA‐expressed cytochromes P450 publication-title: Xenobiotica – volume: 93 start-page: 564 year: 2013 end-page: 71 article-title: A nanogram dose of the CYP3A probe substrate midazolam to evaluate drug interactions publication-title: Clin Pharmacol Ther – volume: 29 start-page: 1175 year: 2009 end-page: 81 article-title: Effect of saquinavir‐ritonavir on cytochrome P450 3A4 activity in healthy volunteers using midazolam as a probe publication-title: Pharmacotherapy – volume: 36 start-page: 783 year: 1996 end-page: 91 article-title: Midazolam hydroxylation by human liver microsomes : Inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents publication-title: J Clin Pharmacol – volume: 63 start-page: 214 year: 2011 end-page: 21 article-title: Mechanism of cytochrome P450‐3A inhibition by ketoconazole publication-title: J Pharm Pharmacol. – volume: 76 start-page: 73 year: 2004 end-page: 84 article-title: Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers publication-title: Clin Pharmacol Ther – volume: 3 start-page: 335 year: 2014 end-page: 7 article-title: Antiretroviral boosting by cobicistat, a structural analog of ritonavir publication-title: Clinical Pharmacology in Drug Development – volume: 42 start-page: 52 year: 2006 end-page: 60 article-title: ritonavir induces /ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers publication-title: J Acquir Immune Defic Syndr – volume: 26 start-page: 322 year: 2004 end-page: 30 article-title: Ritonavir decreases the nonrenal clearance of digoxin in healthy volunteers with known MDR1 genotypes publication-title: Ther Drug Monit – volume: 29 start-page: 687 year: 2007 end-page: 710 article-title: Clinically important drug interactions potentially involving mechanism‐based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring publication-title: Ther Drug Monit – volume: 65 start-page: 98 year: 2008 end-page: 109 article-title: Interaction between midazolam and clarithromycin in the elderly publication-title: Br J Clin Pharmacol – volume: 69 start-page: 439 year: 2013 end-page: 48 article-title: Rate of onset of inhibition of gut‐wall and hepatic CYP3A by clarithromycin publication-title: Eur J Clin Pharmacol – volume: 39 start-page: 2329 year: 2011 end-page: 37 article-title: Complex drug interactions of HIV protease inhibitors 2: induction and to correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir publication-title: Drug Metab Dispos – volume: 68 start-page: 637 year: 2000 end-page: 46 article-title: Effect of ketoconazole on ritonavir and saquinavir concentrations in plasma and cerebrospinal fluid from patients infected with human immunodeficiency virus publication-title: Clinical Pharmacology & Therapeutics – volume: 79 start-page: 350 year: 2006 end-page: 61 article-title: Comparison of midazolam and simvastatin as cytochrome P450 3A probes publication-title: Clin Pharmacol Ther – volume: 68 start-page: 920 year: 2009 end-page: 7 article-title: Inhibition of oral midazolam clearance by boosting doses of ritonavir, and by 4,4‐dimethyl‐benziso‐(2H)‐selenazine (ALT‐2074), an experimental catalytic mimic of glutathione oxidase publication-title: Br J Clin Pharmacol. – volume: 8 start-page: 449 year: 2007 end-page: 62 article-title: Drug‐drug interactions via mechanism‐based cytochrome P450 inactivation: points to consider for risk assessment from data and clinical pharmacologic evaluation publication-title: Curr Drug Metab – volume: 24 start-page: 129 year: 2000 end-page: 36 article-title: Differential impairment of triazolam and zolpidem clearance by ritonavir publication-title: J Acquir Immune Defic Syndr – volume: 53 start-page: 429 year: 2014 end-page: 54 article-title: Pharmacokinetics and pharmacodynamics of antifungals in children and their clinical implications publication-title: Clin Pharmacokinet – volume: 84 start-page: 506 year: 2008 end-page: 12 article-title: Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: II. Ritonavir effects on CYP3A and P‐glycoprotein activities publication-title: Clin Pharmacol Ther – volume: 43 start-page: 160 year: 2011 end-page: 73 article-title: Prediction of time‐dependent CYP3A4 drug‐drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover publication-title: Eur J Pharm Sci – volume: 88 start-page: 499 year: 2010 end-page: 505 article-title: Accurate prediction of dose‐dependent CYP3A4 inhibition by itraconazole and its metabolites from inhibition data publication-title: Clin Pharmacol Ther. – volume: 37 start-page: 1658 year: 2009 end-page: 66 article-title: Comparison of different algorithms for predicting clinical drug‐drug interactions, based on the use of CYP3A4 data: Predictions of compounds as precipitants of interaction publication-title: Drug Metab Dispos – volume: 55 start-page: 481 year: 1994 end-page: 5 article-title: Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole publication-title: Clin Pharmacol Ther – volume: 56 start-page: 17 year: 2005 end-page: 22 article-title: Making sense of itraconazole pharmacokinetics publication-title: J Antimicrob Chemother – volume: 49 start-page: 351 year: 2009 end-page: 9 article-title: Quantitative evaluation of pharmacokinetic inhibition of CYP3A substrates by ketoconazole: A simulation study publication-title: J Clin Pharmacol – volume: 42 start-page: 441 year: 2014 end-page: 7 article-title: Cytochrome P450 inhibitory properties of common efflux transporter inhibitors publication-title: Drug Metab Dispos – volume: 85 start-page: 644 year: 2009 end-page: 50 article-title: Short‐term clarithromycin administration impairs clearance and enhances pharmacodynamic effects of trazodone but not of zolpidem publication-title: Clin Pharmacol Ther – volume: 78 start-page: 1122 year: 2014 end-page: 34 article-title: Validation of 4β‐hydroxycholesterol and evaluation of other endogenous biomarkers for the assessment of CYP3A activity in healthy subjects publication-title: Br J Clin Pharmacol – volume: 31 start-page: 945 year: 2003 end-page: 54 article-title: Prediction of the interaction between midazolam and macrolides based on studies using human liver microsomes publication-title: Drug Metab Dispos – volume: 46 start-page: 567 year: 2006 end-page: 76 article-title: Ritonavir has minimal impact on the pharmacokinetic disposition of a single dose of bupropion administered to human volunteers publication-title: J Clin Pharmacol – volume: 69 start-page: 1795 year: 2013 end-page: 800 article-title: Concentration effect relationship of CYP3A inhibition by ritonavir in humans publication-title: Eur J Clin Pharmacol – volume: 53 start-page: 654 year: 2013 end-page: 61 article-title: Mechanisms of pharmacokinetic enhancement between ritonavir and saquinavir; Micro/small dosing tests using midazolam (CYP3A4), fexofenadine (P‐glycoprotein), and pravastatin (OATP1B1) as probe drugs publication-title: J Clin Pharmacol – volume: 36 start-page: 1 year: 2011 end-page: 16 article-title: Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re‐evaluation of P450 isoform selectivity publication-title: Eur J Drug Metab Pharmacokinet – volume: 37 year: 2001 article-title: Coadministration of digoxin with itraconazole in renal transplant recipients publication-title: Am J Kidney Dis – volume: 49 start-page: 358 year: 2008 end-page: 68 article-title: Ritonavir greatly impairs CYP3A activity in HIV infection with chronic viral hepatitis publication-title: JAIDS – volume: 49 start-page: 398 year: 2009 end-page: 406 article-title: Effect of different durations of ketoconazole dosing on the single‐dose pharmacokinetics of midazolam: Shortening the paradigm publication-title: J Clin Pharmacol – volume: 82 start-page: 511 year: 1996 end-page: 6 article-title: The effect of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam publication-title: Anesthesthesia and Analgesia – volume: 1 start-page: 83 year: 2012 end-page: 4 article-title: Drug interaction studies with CYP3A substrates: How much inhibitor pre‐exposure is needed? publication-title: Clinical Pharmacology in Drug Development – volume: 72 start-page: 718 year: 2002 end-page: 28 article-title: Application of semisimultaneous midazolam administration for hepatic and intestinal cytochrome P450 3A phenotyping publication-title: Clin Pharmacol Ther – volume: 64 start-page: 661 year: 1998 end-page: 71 article-title: Kinetic and dynamic interaction study of zolpidem with ketoconazole, itraconazole, and fluconazole publication-title: Clin Pharmacol Ther – volume: 29 start-page: 100 year: 2001 end-page: 2 article-title: Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity : Potential drug interactions with bupropion publication-title: Drug Metab Dispos – volume: 32 start-page: 624 year: 1991 end-page: 6 article-title: Comparative effects of the antimycotic drugs ketoconazole, fluconazole, itraconazole and terbinafine on the metabolism of cyclosporin by human liver microsomes publication-title: Br J Clin Pharmacol – volume: 35 start-page: 1853 year: 2007 end-page: 9 article-title: Cytochrome P450 enzymes and transporters induced by anti‐human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions publication-title: Drug Metab Dispos – volume: 6 start-page: 413 year: 2005 end-page: 54 article-title: Cytochrome P450 enzymes mechanism based inhibitors: common sub‐structures and reactivity publication-title: Curr Drug Metab – volume: 3 start-page: 1 year: 2014 end-page: 3 article-title: The ketoconazole legacy publication-title: Clinical Pharmacology in Drug Development – volume: 78 start-page: 664 year: 2005 end-page: 74 article-title: Effect of low‐dose ritonavir (100 mg twice daily) on the activity of cytochrome P450 2D6 in healthy volunteers publication-title: Clin Pharmacol Ther – volume: 71 start-page: 321 year: 2015 end-page: 7 article-title: Effects of terbinafine and itraconazole on the pharmacokinetics of orally administered tramadol publication-title: Eur J Clin Pharmacol – volume: 37 start-page: 385 year: 1999 end-page: 98 article-title: Clinical pharmacokinetics of clarithromycin publication-title: Clin Pharmacokinet – year: 2013 – volume: 43 start-page: 1274 year: 2003 end-page: 82 article-title: Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone publication-title: J Clin Pharmacol – volume: 83 start-page: 77 year: 2008 end-page: 85 article-title: Contribution of itraconazole metabolites to inhibition of CYP3A4 publication-title: Clin Pharmacol Ther – volume: 39 start-page: 1070 year: 2011 end-page: 8 article-title: Complex drug interactions of HIV protease inhibitors 1: Inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir publication-title: Drug Metab Dispos – volume: 314 start-page: 180 year: 2005 end-page: 90 article-title: CYP3A4 substrate selection and substitution in the prediction of potential drug‐drug interactions publication-title: J Pharmacol Exp Ther – volume: 14 start-page: 1348 year: 2014 end-page: 55 article-title: Ritonavir analogues as a probe for deciphering the cytochrome P450 3A4 inhibitory mechanism publication-title: Curr Top Med Chem – volume: 65 start-page: 693 year: 2008 end-page: 700 article-title: The different effects of itraconazole on the pharmacokinetics of fexofenadine enantiomers publication-title: Br J Clin Pharmacol – volume: 30 start-page: 1441 year: 2002 end-page: 5 article-title: Microsomal protein concentration modifies the apparent inhibitory potency of CYP3A inhibitors publication-title: Drug Metab Dispos – volume: 32 start-page: 1121 year: 2004 end-page: 31 article-title: Role of itraconazole metabolites in CYP3A4 inhibition publication-title: Drug Metab Dispos – volume: 47 start-page: 871 year: 2007 end-page: 6 article-title: Effect of the treatment period with erythromycin on cytochrome P450 3A activity in humans publication-title: J Clin Pharmacol – volume: 6 start-page: 601 year: 2014 end-page: 12 article-title: Assessing liver injury associated with antimycotics: Concise literature review and clues from data mining of the FAERS database publication-title: World Journal of Hepatology – volume: 20 start-page: 55 year: 2005 end-page: 64 article-title: Influence of itraconazole co‐administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic aripiprazole publication-title: Drug Metab Pharmacokinet – volume: 36 start-page: 2447 year: 1992 end-page: 53 article-title: Pharmacokinetics of clarithromycin, a new macrolide, after single ascending oral doses publication-title: Antimicrob Agents Chemother – volume: 40 start-page: 270 year: 1995 end-page: 2 article-title: Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers publication-title: Br J Clin Pharmacol – volume: 40 start-page: 610 year: 2012 end-page: 6 article-title: Complex drug interactions of the HIV protease inhibitors 3: Effect of simultaneous or staggered dosing of digoxin and ritonavir, nelfinavir, rifampin, or bupropion publication-title: Drug Metab Dispos – volume: 54 start-page: 1321 year: 2014 end-page: 9 article-title: Liver injury associated with ketoconazole: Review of the published evidence publication-title: J Clin Pharmacol – volume: 56 start-page: 32 year: 2003 end-page: 8 article-title: Contribution of increased oral bioavailability and reduced non‐glomerular renal clearance of digoxin to the digoxin‐clarithromycin interaction publication-title: Br J Clin Pharmacol – volume: 112 start-page: 132 year: 2013 end-page: 7 article-title: Pharmacokinetic interaction between prasugrel and ritonavir in healthy volunteers publication-title: Basic Clin Pharmacol Toxicol – volume: 37 start-page: 778 year: 1993 end-page: 84 article-title: Food interaction and steady‐state pharmacokinetics of itraconazole capsules in healthy male volunteers publication-title: Antimicrob Agents Chemother – volume: 15 start-page: 651 year: 2014 end-page: 79 article-title: Drug interactions between nine antifungal agents and drugs metabolized by human Cytochromes P450 publication-title: Curr Drug Metab – volume: 38 start-page: 106 year: 1998 end-page: 11 article-title: Protease inhibitors as inhibitors of human cytochromes P450: High risk associated with ritonavir publication-title: J Clin Pharmacol – volume: 64 start-page: 133 year: 1998 end-page: 43 article-title: The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithormycin publication-title: Clin Pharmacol Ther – volume: 64 start-page: 278 year: 1998 end-page: 85 article-title: Inhibition of triazolam clearance by macrolide antimicrobial agents: correlates and dynamic consequences publication-title: Clin Pharmacol Ther – volume: 19 start-page: 609 year: 1997 end-page: 13 article-title: Itraconazole decreases renal clearance of digoxin publication-title: Ther Drug Monit – volume: 46 start-page: 201 year: 2006 end-page: 13 article-title: Assessing the clinical significance of botanical supplementation on human cytochrome P450 3A activity: Comparison of a milk thistle and black cohosh product to rifampin and clarithromycin publication-title: J Clin Pharmacol – volume: 87 start-page: 322 year: 2010 end-page: 9 article-title: Pharmacokinetics and pharmacodynamics of GS‐9350: A novel pharmacokinetic enhancer without anti‐HIV activity publication-title: Clin Pharmacol Ther – volume: 66 start-page: 461 year: 1999 end-page: 71 article-title: Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an probe: effect of ketoconazole publication-title: Clin Pharmacol Ther – volume: 79 start-page: 274 year: 1996 end-page: 6 article-title: Itraconazole increases serum digoxin concentration publication-title: Pharmacol Toxicol – volume: 46 start-page: 758 year: 2006 end-page: 67 article-title: Time‐dependent interaction between ritonavir induces/ritonavir and fexofenadine publication-title: J Clin Pharmacol – volume: 44 start-page: 190 year: 1997 end-page: 4 article-title: Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir publication-title: Br J Clin Pharmacol – volume: 14 start-page: 13 year: 1988 end-page: 34 article-title: Clinical pharmacokinetics of ketoconazole publication-title: Clin Pharmacokinet – volume: 69 start-page: 507 year: 2013 end-page: 13 article-title: Effect of the CYP3A inhibitor ketoconazole on the PXR‐mediated induction of CYP3A activity publication-title: Eur J Clin Pharmacol – volume: 38 start-page: 111 year: 2000 end-page: 80 article-title: Effects of the antifungal agents on oxidative drug metabolism in humans: clinical relevance publication-title: Clin Pharmacokinet – start-page: 625 year: 2010 end-page: 49 – volume: 9 start-page: 911 year: 2013 end-page: 26 article-title: Itraconazole: an update on pharmacology and clinical use for treatment of invasive and allergic fungal infections publication-title: Expert Opin Drug Metab Toxicol – volume: 22 start-page: 366 year: 2002 end-page: 70 article-title: Influence of ritonavir on olanzapine pharmacokinetics in healthy volunteers publication-title: J Clin Psychopharmacol – volume: 53 start-page: 738 year: 2013 end-page: 45 article-title: Pharmacokinetic and pharmacodynamic interaction of nadolol with itraconazole, rifampicin and grapefruit juice in healthy volunteers publication-title: J Clin Pharmacol – volume: 51 start-page: 359 year: 2011 end-page: 67 article-title: Itraconazole, a P‐glycoprotein and CYP3A4 inhibitor, markedly raises the plasma concentrations and enhances the renin‐inhibiting effect of aliskiren publication-title: J Clin Pharmacol – volume: 90 start-page: 1829 year: 2001 end-page: 37 article-title: Ritonavir induces P‐glycoprotein expression, multidrug resistance‐associated protein (MRP1) expression, and drug transporter‐mediated activity in a human intestinal cell line publication-title: J Pharm Sci – volume: 87 start-page: 1184 year: 1998 end-page: 9 article-title: Inhibition of desipramine hydroxylation (cytochrome P450‐2D6) by quinidine and by viral protease inhibitors: Relation to drug interactions publication-title: J Pharm Sci – volume: 84 start-page: 75 year: 2008 end-page: 82 article-title: Effect of an antiretroviral regimen containing ritonavir boosted ritonavir induces on intestinal and hepatic CYP3A, CYP2D6 and P‐glycoprotein in HIV‐infected patients publication-title: Clin Pharmacol Ther – volume: 95 start-page: 473 year: 2014 end-page: 6 article-title: Itraconazole and clarithromycin as ketoconazole alternatives for clinical CYP3A inhibition studies publication-title: Clin Pharmacol Ther – volume: 69 start-page: 1785 year: 2013 end-page: 93 article-title: Interaction of ambrisentan with clarithromycin and its modulation by polymorphic SLCO1B1 publication-title: Eur J Clin Pharmacol – volume: 1 start-page: 209 year: 2010 end-page: 13 article-title: Cobicistat (GS‐9350): A potent and selective inhibitor of human CYP3A as a novel pharmacoenhancer publication-title: ACS Medicinal Chemistry Letters – volume: 40 start-page: 1653 year: 2012 end-page: 7 article-title: Risk assessment of mechanism‐based inactivation in drug‐drug interactions publication-title: Drug Metab Dispos – volume: 85 start-page: 64 year: 2009 end-page: 70 article-title: Dose–response of ritonavir on hepatic CYP3A activity and elvitegravir oral exposure publication-title: Clin Pharmacol Ther – volume: 64 start-page: 123 year: 1998 end-page: 8 article-title: Effect of clarithromycin on renal excretion of digoxin: Interaction with P‐glycoprotein publication-title: Clin Pharmacol Ther – volume: 69 start-page: 1939 year: 2013 end-page: 49 article-title: A randomised study of the effect of danoprevir/ritonavir or ritonavir on substrates of cytochrome P450(CYP)3A and 2C9 in chronic hepatitis C patients using a drug cocktail publication-title: Eur J Clin Pharmacol – volume: 4 start-page: 443 year: 1998 end-page: 5 article-title: Inhibition of triazolam hydroxylation by ketoconazole, itraconazole, hydroxyitraconazole and fluconazole in vitro publication-title: Pharmacy and Pharmacology Communications – volume: 54 start-page: 53 year: 1998 end-page: 8 article-title: The area under the plasma concentration‐time curve for oral midazolam is 400‐fold larger during treatment with itraconazole than with rifampicin publication-title: Eur J Clin Pharmacol – volume: 90 start-page: 666 year: 2011 end-page: 73 article-title: Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using a limited sampling strategy publication-title: Clin Pharmacol Ther – volume: 34 start-page: 166 year: 2006 end-page: 75 article-title: Prediction of time‐dependent CYP3A4 drug‐drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition publication-title: Drug Metab Dispos – volume: 40 start-page: 713 year: 2010 end-page: 20 article-title: Sources of variability in ketoconazole inhibition of human cytochrome P450‐3A publication-title: Xenobiotica – volume: 79 start-page: 243 year: 2006 end-page: 54 article-title: Effect of extended exposure to grapefruit juice on cytochrome P450 3A activity in humans: Comparison with ritonavir publication-title: Clin Pharmacol Ther – volume: 34 start-page: 400 year: 1996 end-page: 5 article-title: Interaction between midazolam and clarithromycin: comparison with azithromycin publication-title: Int J Clin Pharmacol Ther – volume: 62 start-page: 203 year: 2006 end-page: 8 article-title: Quantitative prediction of macrolide drug‐drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate publication-title: Eur J Clin Pharmacol – volume: 5 start-page: 415 year: 2004 end-page: 42 article-title: Therapeutic drugs that behave as mechanism‐based inhibitors of cytochrome P450 3A4 publication-title: Curr Drug Metab – volume: 56 start-page: 5409 year: 2012 end-page: 13 article-title: Cobicistat boosts the intestinal absorption of transport substrates, including HIV protease inhibitors and GS‐7340, publication-title: Antimicrob Agents Chemother – volume: 56 start-page: 259 year: 2000 end-page: 61 article-title: Potent mechanism‐based inhibition of human CYP3A in vitro by amprenavir and ritonavir: comparison with ketoconazole publication-title: Eur J Clin Pharmacol – volume: 39 start-page: 1212 year: 1999 end-page: 20 article-title: Concurrent administration of the erythromycin breath test (EBT) and oral midazolam as probes for CYP3A activity publication-title: J Clin Pharmacol – ident: e_1_2_7_19_1 doi: 10.1016/j.clinthera.2009.02.022 – ident: e_1_2_7_13_1 doi: 10.1067/mcp.2002.129068 – ident: e_1_2_7_97_1 doi: 10.1097/00004714-200208000-00006 – ident: e_1_2_7_24_1 doi: 10.1038/clpt.2010.119 – ident: e_1_2_7_38_1 doi: 10.1111/j.1742-7843.2012.00932.x – ident: e_1_2_7_10_1 doi: 10.1038/clpt.1994.60 – ident: e_1_2_7_67_1 doi: 10.1124/dmd.112.046649 – ident: e_1_2_7_110_1 doi: 10.1038/clpt.2008.102 – ident: e_1_2_7_76_1 doi: 10.1007/s00228-012-1339-x – ident: e_1_2_7_41_1 doi: 10.1038/clpt.2009.228 – ident: e_1_2_7_56_1 doi: 10.1002/j.1552-4604.1996.tb04251.x – ident: e_1_2_7_74_1 doi: 10.2174/138920007780866861 – ident: e_1_2_7_94_1 doi: 10.1002/jps.1133 – ident: e_1_2_7_89_1 doi: 10.1124/dmd.113.054932 – ident: e_1_2_7_17_1 doi: 10.1038/clpt.2013.27 – ident: e_1_2_7_32_1 doi: 10.1111/j.1365-2125.2009.03545.x – ident: e_1_2_7_42_1 doi: 10.2165/00003088-200038020-00002 – ident: e_1_2_7_29_1 doi: 10.1007/s00228-013-1529-1 – ident: e_1_2_7_18_1 doi: 10.1177/0091270008331133 – ident: e_1_2_7_47_1 doi: 10.1111/j.2042-7158.2010.01202.x – ident: e_1_2_7_54_1 doi: 10.1111/j.2042-7158.1998.tb00727.x – ident: e_1_2_7_52_1 doi: 10.1007/s00228-012-1388-1 – ident: e_1_2_7_70_1 doi: 10.1128/AAC.36.11.2447 – ident: e_1_2_7_77_1 doi: 10.1177/0091270007302562 – ident: e_1_2_7_39_1 doi: 10.1007/s00228-013-1530-8 – ident: e_1_2_7_49_1 doi: 10.2165/00003088-198814010-00002 – ident: e_1_2_7_71_1 doi: 10.1038/clpt.2008.293 – ident: e_1_2_7_105_1 doi: 10.1016/S0009-9236(98)90030-3 – ident: e_1_2_7_23_1 doi: 10.1007/s002280050420 – ident: e_1_2_7_60_1 doi: 10.1093/jac/dki220 – ident: e_1_2_7_33_1 doi: 10.1097/QAI.0b013e31818c7efe – ident: e_1_2_7_78_1 doi: 10.1046/j.1365-2125.1997.00644.x – ident: e_1_2_7_12_1 doi: 10.1177/00912709922012015 – ident: e_1_2_7_57_1 doi: 10.1124/dmd.104.000315 – ident: e_1_2_7_99_1 doi: 10.1111/j.1600-0773.1996.tb00273.x – volume: 29 start-page: 100 year: 2001 ident: e_1_2_7_86_1 article-title: Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity in vitro: Potential drug interactions with bupropion publication-title: Drug Metab Dispos – ident: e_1_2_7_36_1 doi: 10.1038/clpt.2011.164 – ident: e_1_2_7_20_1 doi: 10.1111/bcp.12425 – ident: e_1_2_7_100_1 doi: 10.1097/00007691-199712000-00001 – ident: e_1_2_7_75_1 doi: 10.1097/FTD.0b013e31815c16f5 – ident: e_1_2_7_114_1 doi: 10.2174/1568026614666140506120647 – ident: e_1_2_7_108_1 doi: 10.1016/j.clpt.2004.02.008 – ident: e_1_2_7_107_1 doi: 10.1097/00007691-200406000-00018 – ident: e_1_2_7_16_1 doi: 10.1016/j.clpt.2005.11.016 – ident: e_1_2_7_58_1 doi: 10.1038/sj.clpt.6100230 – ident: e_1_2_7_50_1 doi: 10.1016/S0009-9236(98)90057-1 – ident: e_1_2_7_65_1 doi: 10.1007/s00228-005-0091-x – ident: e_1_2_7_44_1 doi: 10.1124/jpet.104.082826 – ident: e_1_2_7_98_1 doi: 10.1067/mcp.2000.112363 – ident: e_1_2_7_63_1 doi: 10.1124/dmd.31.7.945 – ident: e_1_2_7_72_1 doi: 10.2174/1389200043335450 – ident: e_1_2_7_9_1 doi: 10.1038/clpt.2014.41 – ident: e_1_2_7_62_1 doi: 10.1007/s40262-014-0139-0 – ident: e_1_2_7_40_1 doi: 10.1007/s00228-013-1556-y – ident: e_1_2_7_15_1 doi: 10.1007/s00228-004-0762-z – ident: e_1_2_7_59_1 doi: 10.1128/AAC.37.4.778 – ident: e_1_2_7_27_1 doi: 10.1177/0091270005284854 – ident: e_1_2_7_34_1 doi: 10.1592/phco.29.10.1175 – ident: e_1_2_7_31_1 doi: 10.1038/sj.clpt.6100452 – ident: e_1_2_7_85_1 doi: 10.1021/js980197h – ident: e_1_2_7_95_1 doi: 10.1124/dmd.107.016089 – ident: e_1_2_7_7_1 doi: 10.1002/cpdd.100 – volume: 42 start-page: 52 year: 2006 ident: e_1_2_7_30_1 article-title: ritonavir induces /ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers publication-title: J Acquir Immune Defic Syndr doi: 10.1097/01.qai.0000219774.20174.64 – ident: e_1_2_7_51_1 doi: 10.1177/2160763X12448745 – ident: e_1_2_7_64_1 doi: 10.1124/dmd.105.006874 – ident: e_1_2_7_48_1 doi: 10.3109/00498254.2010.506224 – ident: e_1_2_7_83_1 doi: 10.1016/j.clpt.2005.11.009 – ident: e_1_2_7_14_1 doi: 10.1177/0091270003259216 – ident: e_1_2_7_82_1 doi: 10.1038/clpt.2008.168 – ident: e_1_2_7_3_1 – ident: e_1_2_7_37_1 doi: 10.1002/jcph.62 – ident: e_1_2_7_28_1 doi: 10.1111/j.1365-2125.2007.02970.x – ident: e_1_2_7_6_1 doi: 10.4254/wjh.v6.i8.601 – ident: e_1_2_7_4_1 – ident: e_1_2_7_109_1 doi: 10.1177/0091270006288733 – ident: e_1_2_7_45_1 doi: 10.1124/dmd.108.026252 – ident: e_1_2_7_111_1 doi: 10.1124/dmd.111.042705 – ident: e_1_2_7_2_1 – ident: e_1_2_7_26_1 doi: 10.1016/S0009-9236(98)90146-1 – ident: e_1_2_7_55_1 doi: 10.1124/dmd.30.12.1441 – ident: e_1_2_7_113_1 doi: 10.1021/ml1000257 – ident: e_1_2_7_80_1 doi: 10.1007/s002280000125 – ident: e_1_2_7_11_1 doi: 10.1016/S0009-9236(99)70009-3 – ident: e_1_2_7_66_1 doi: 10.1016/j.ejps.2011.04.008 – ident: e_1_2_7_102_1 doi: 10.1111/j.1365-2125.2008.03116.x – ident: e_1_2_7_35_1 doi: 10.1124/dmd.110.037523 – ident: e_1_2_7_79_1 doi: 10.1002/j.1552-4604.1998.tb04398.x – ident: e_1_2_7_90_1 doi: 10.2133/dmpk.20.55 – ident: e_1_2_7_43_1 doi: 10.2174/1389200215666141125121511 – ident: e_1_2_7_84_1 doi: 10.1097/00126334-200006010-00007 – ident: e_1_2_7_68_1 doi: 10.1016/S0009-9236(98)90176-X – ident: e_1_2_7_81_1 doi: 10.1124/mol.114.094862 – ident: e_1_2_7_104_1 doi: 10.1002/jcph.95 – ident: e_1_2_7_115_1 doi: 10.1128/AAC.01089-12 – ident: e_1_2_7_88_1 doi: 10.1007/s13318-011-0024-2 – ident: e_1_2_7_92_1 doi: 10.1016/j.clpt.2005.09.001 – ident: e_1_2_7_101_1 doi: 10.1053/ajkd.2001.21363 – ident: e_1_2_7_46_1 doi: 10.1177/0091270008331196 – ident: e_1_2_7_96_1 doi: 10.1124/dmd.111.038646 – ident: e_1_2_7_5_1 doi: 10.1002/jcph.400 – ident: e_1_2_7_87_1 doi: 10.1080/004982500237541 – ident: e_1_2_7_22_1 doi: 10.1111/j.1365-2125.1995.tb00001.x – ident: e_1_2_7_112_1 doi: 10.1002/cpdd.159 – ident: e_1_2_7_93_1 doi: 10.1177/0091270006286981 – ident: e_1_2_7_21_1 doi: 10.1097/00000539-199603000-00015 – volume: 34 start-page: 400 year: 1996 ident: e_1_2_7_25_1 article-title: Interaction between midazolam and clarithromycin: comparison with azithromycin publication-title: Int J Clin Pharmacol Ther – ident: e_1_2_7_53_1 doi: 10.1111/j.1365-2125.1991.tb03963.x – ident: e_1_2_7_103_1 doi: 10.1177/0091270010365885 – ident: e_1_2_7_91_1 doi: 10.1007/s00228-014-1799-2 – ident: e_1_2_7_61_1 doi: 10.1517/17425255.2013.794785 – ident: e_1_2_7_69_1 doi: 10.2165/00003088-199937050-00003 – ident: e_1_2_7_73_1 doi: 10.2174/138920005774330639 – ident: e_1_2_7_106_1 doi: 10.1046/j.1365-2125.2003.01824.x – ident: e_1_2_7_8_1 doi: 10.1007/978-1-4419-0840-7_24 |
SSID | ssj0013165 |
Score | 2.461142 |
SecondaryResourceType | review_article |
Snippet | Aims
The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug–drug interaction (DDI) studies has compelled consideration of alternative... The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug-drug interaction (DDI) studies has compelled consideration of alternative... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 342 |
SubjectTerms | Area Under Curve clarithromycin Cytochrome P-450 CYP3A - metabolism Cytochrome P-450 CYP3A Inhibitors - administration & dosage Cytochrome P-450 CYP3A Inhibitors - adverse effects Cytochrome P-450 CYP3A Inhibitors - pharmacology cytochrome P450‐3A Drug Design Drug Interactions drug–drug interactions Humans itraconazole ketoconazole Ketoconazole - administration & dosage Ketoconazole - adverse effects Ketoconazole - pharmacology Midazolam - administration & dosage Midazolam - pharmacokinetics ritonavir Ritonavir - administration & dosage Ritonavir - adverse effects Ritonavir - pharmacology Systematic Reviews United States United States Food and Drug Administration |
Title | Ritonavir is the best alternative to ketoconazole as an index inhibitor of cytochrome P450‐3A in drug–drug interaction studies |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbcp.12668 https://www.ncbi.nlm.nih.gov/pubmed/25923589 https://www.proquest.com/docview/1707557862 https://pubmed.ncbi.nlm.nih.gov/PMC4574820 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CTr30lT7cR5iWEnqIjR4rrURPSdoQCi0mJJBDQewzNglSkOSCcwr9BYX-w_ySzO5acty0UHqxLTwWWnke32hnviHknYgyEeWGDqVADaaC5cPc5BEeopWjQ9SBm0P25Wt6cEw_nyQna-RD1wvj-SH6B27WMpy_tgbORXPLyIW8GIUYXmyjbxinljf_42G03EEI3RhJC4kx2UrCBauQreLpf7kai-4AzLt1krfxqwtA-w_It-7Sfd3J2WjWipG8_I3V8T_X9pDcXwBT2PGa9Iis6fIx2Rp7Zuv5NhwtG7WabdiC8ZLzer5BfhyiZyj592kN0wYQVILANYLbiy8dtzi0FZzptsL8m19W5xp4A7wEx9aIr5OpwDPUUBmQc5SaWBoFGNMkuL76Ge-gBKh6dnp99cu-gWW5qH1PBjS-FPIJOd7_dLR3MFyMdxhKmiVon4YqIRHwZIynJjYYK2XEtUavknE7A11mJqdGUGPSUGEQVYliKlAqsZw1IYufkvWyKvVzAnGeJqhxKVeY3gWGiYyL1KiYBVQjXgoH5H33RxdywX1uR3CcF10OhHe8cHd8QN72ohee8ONPQm86bSnQHO0eCy91NWuKkCEGQy-YRgPyzGtPfxrMNG1jcj4gbEWvegFL9b36TTmdOMpvmjCKWA3X4dTm71dW7O6N3YcX_y76ktxDGJj4yrlXZL2tZ_o1Qq1WbDqbugEh_inu |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7S9NBe-n64z2kpoYfY6LF6QS9paHDbJJjgQC5F7Gp3a5MgBUkuOKfQX1DoP8wv6ezKkuOmhdKLZaGR0Erz-EY7-w3AG-HFwks062eCNJiJKOknOvFol6ycHKJybB-yvf1weMg-HQVHa_CuXQvT8EN0H9yMZVh_bQzcfJC-ZOUiOx24FF_ia3Ddzs8ZSHTgLecQXNtI0oBiSrcCd8ErZOp4ulNXo9EViHm1UvIygrUhaOc2fGlvvqk8OR7MajHIzn7jdfzf0d2BWwtsiluNMt2FNZXfg41RQ24938Txcq1WtYkbOFrSXs_vw_cDcg45_zYtcVoh4UoUNEi00_G5pRfHusBjVReUgvOz4kQhr5DnaAkb6XcyFXSFEguN2ZykJoZJAUcscC7Of_hbJIGynH29OP9pNmiILspmWQZWTTXkAzjc-TDeHvYXHR76GYsDMlHNpMgI88QRD7WvKVxmHleKHEvMTRv0LNYJ04JpHbqS4qgMZCQdKQNDW-NG_kNYz4tcPQb0kzAgpQu5pAzP0ZGIuQi19COHKYJMbg_etm86zRb056YLx0napkH0xFP7xHvwuhM9bTg__iT0qlWXlCzSTLPwXBWzKnUjgmHkCEOvB48a9ekuQ8mmWZuc9CBaUaxOwLB9rx7JpxPL-s2CiBFco3FYvfn7naXvt0f2z5N_F30JN4bjvd109-P-56dwk1Bh0BTSPYP1upyp54S8avHCGtgvmJQuDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEB7SFEpfejd1z2kpoQ-x0bG66FOa1qRXMCGBPBTErna3NgmSkeSC8xT6Cwr9h_klnV1Zcty0UPoiS3i8aOU5vtHOfgPwUnix8BLN-pkgDWYiSvqJTjy6JCsnh6gc24fs8164e8g-HAVHa_C63QvT8EN0L9yMZVh_bQx8KvUFIxfZdOBSeImvwFUWUpg0iGjfWy4huLaPpMHElG0F7oJWyJTxdD9dDUaXEOblQsmLANZGoOFN-NLee1N4cjyY1WKQnf5G6_ifk7sFNxbIFLcbVboNayq_A5ujhtp6voUHy51a1RZu4mhJej2_C9_3yTXk_NukxEmFhCpR0BzRLsbnllwc6wKPVV1QAs5PixOFvEKeo6VrpON4ImiEEguN2ZykxoZHAUcscM7PfvjbJIGynH09P_tpPtDQXJTNpgysmlrIe3A4fHews9tf9HfoZywOyEA1kyIjxBNHPNS-pmCZeVwpcisxN03Qs1gnTAumdehKiqIykJF0pAwMaY0b-fdhPS9y9QDQT8KAVC7kkvI7R0ci5iLU0o8cpggwuT141f7RabYgPzc9OE7SNgmiJ57aJ96DF53otGH8-JPQ81ZbUrJHs8jCc1XMqtSNCISRGwy9Hmw02tMNQ6mm2Zmc9CBa0atOwHB9r36TT8aW85sFESOwRvOwavP3O0vf7IzsycN_F30G10Zvh-mn93sfH8F1goRBU0X3GNbrcqaeEOyqxVNrXr8A_Xwsuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ritonavir+is+the+best+alternative+to+ketoconazole+as+an+index+inhibitor+of+cytochrome+P450-3A+in+drug%E2%80%93drug+interaction+studies&rft.jtitle=British+journal+of+clinical+pharmacology&rft.au=Greenblatt%2C+David+J&rft.au=Harmatz%2C+Jerold+S&rft.date=2015-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0306-5251&rft.eissn=1365-2125&rft.volume=80&rft.issue=3&rft.spage=342&rft.epage=350&rft_id=info:doi/10.1111%2Fbcp.12668&rft_id=info%3Apmid%2F25923589&rft.externalDocID=PMC4574820 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-5251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-5251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-5251&client=summon |