Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model

The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and clinical arenas. Increasing numbers of patient scans have led to an urgent need for efficient data handling and the development of new image anal...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 34; no. 2; pp. 722 - 736
Main Authors Montgomery, David W. G., Amira, Abbes, Zaidi, Habib
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.02.2007
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
DOI10.1118/1.2432404

Cover

Abstract The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and clinical arenas. Increasing numbers of patient scans have led to an urgent need for efficient data handling and the development of new image analysis techniques to aid clinicians in the diagnosis of disease and planning of treatment. Automatic quantitative assessment of metabolic PET data is attractive and will certainly revolutionize the practice of functional imaging since it can lower variability across institutions and may enhance the consistency of image interpretation independent of reader experience. In this paper, a novel automated system for the segmentation of oncological PET data aiming at providing an accurate quantitative analysis tool is proposed. The initial step involves expectation maximization (EM)-based mixture modeling using a k -means clustering procedure, which varies voxel order for initialization. A multiscale Markov model is then used to refine this segmentation by modeling spatial correlations between neighboring image voxels. An experimental study using an anthropomorphic thorax phantom was conducted for quantitative evaluation of the performance of the proposed segmentation algorithm. The comparison of actual tumor volumes to the volumes calculated using different segmentation methodologies including standard k -means, spatial domain Markov Random Field Model (MRFM), and the new multiscale MRFM proposed in this paper showed that the latter dramatically reduces the relative error to less than 8% for small lesions ( 7 mm radii) and less than 3.5% for larger lesions ( 9 mm radii). The analysis of the resulting segmentations of clinical oncologic PET data seems to confirm that this methodology shows promise and can successfully segment patient lesions. For problematic images, this technique enables the identification of tumors situated very close to nearby high normal physiologic uptake. The use of this technique to estimate tumor volumes for assessment of response to therapy and to delineate treatment volumes for the purpose of combined PET/CT-based radiation therapy treatment planning is also discussed.
AbstractList The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and clinical arenas. Increasing numbers of patient scans have led to an urgent need for efficient data handling and the development of new image analysis techniques to aid clinicians in the diagnosis of disease and planning of treatment. Automatic quantitative assessment of metabolic PET data is attractive and will certainly revolutionize the practice of functional imaging since it can lower variability across institutions and may enhance the consistency of image interpretation independent of reader experience. In this paper, a novel automated system for the segmentation of oncological PET data aiming at providing an accurate quantitative analysis tool is proposed. The initial step involves expectation maximization (EM)‐based mixture modeling using a ‐means clustering procedure, which varies voxel order for initialization. A multiscale Markov model is then used to refine this segmentation by modeling spatial correlations between neighboring image voxels. An experimental study using an anthropomorphic thorax phantom was conducted for quantitative evaluation of the performance of the proposed segmentation algorithm. The comparison of actual tumor volumes to the volumes calculated using different segmentation methodologies including standard ‐means, spatial domain Markov Random Field Model (MRFM), and the new multiscale MRFM proposed in this paper showed that the latter dramatically reduces the relative error to less than 8% for small lesions ( radii) and less than 3.5% for larger lesions ( radii). The analysis of the resulting segmentations of clinical oncologic PET data seems to confirm that this methodology shows promise and can successfully segment patient lesions. For problematic images, this technique enables the identification of tumors situated very close to nearby high normal physiologic uptake. The use of this technique to estimate tumor volumes for assessment of response to therapy and to delineate treatment volumes for the purpose of combined PET/CT‐based radiation therapy treatment planning is also discussed.
The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and clinical arenas. Increasing numbers of patient scans have led to an urgent need for efficient data handling and the development of new image analysis techniques to aid clinicians in the diagnosis of disease and planning of treatment. Automatic quantitative assessment of metabolic PET data is attractive and will certainly revolutionize the practice of functional imaging since it can lower variability across institutions and may enhance the consistency of image interpretation independent of reader experience. In this paper, a novel automated system for the segmentation of oncological PET data aiming at providing an accurate quantitative analysis tool is proposed. The initial step involves expectation maximization (EM)-based mixture modeling using a k-means clustering procedure, which varies voxel order for initialization. A multiscale Markov model is then used to refine this segmentation by modeling spatial correlations between neighboring image voxels. An experimental study using an anthropomorphic thorax phantom was conducted for quantitative evaluation of the performance of the proposed segmentation algorithm. The comparison of actual tumor volumes to the volumes calculated using different segmentation methodologies including standard k-means, spatial domain Markov Random Field Model (MRFM), and the new multiscale MRFM proposed in this paper showed that the latter dramatically reduces the relative error to less than 8% for small lesions (7 mm radii) and less than 3.5% for larger lesions (9 mm radii). The analysis of the resulting segmentations of clinical oncologic PET data seems to confirm that this methodology shows promise and can successfully segment patient lesions. For problematic images, this technique enables the identification of tumors situated very close to nearby high normal physiologic uptake. The use of this technique to estimate tumor volumes for assessment of response to therapy and to delineate treatment volumes for the purpose of combined PET/CT-based radiation therapy treatment planning is also discussed.The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and clinical arenas. Increasing numbers of patient scans have led to an urgent need for efficient data handling and the development of new image analysis techniques to aid clinicians in the diagnosis of disease and planning of treatment. Automatic quantitative assessment of metabolic PET data is attractive and will certainly revolutionize the practice of functional imaging since it can lower variability across institutions and may enhance the consistency of image interpretation independent of reader experience. In this paper, a novel automated system for the segmentation of oncological PET data aiming at providing an accurate quantitative analysis tool is proposed. The initial step involves expectation maximization (EM)-based mixture modeling using a k-means clustering procedure, which varies voxel order for initialization. A multiscale Markov model is then used to refine this segmentation by modeling spatial correlations between neighboring image voxels. An experimental study using an anthropomorphic thorax phantom was conducted for quantitative evaluation of the performance of the proposed segmentation algorithm. The comparison of actual tumor volumes to the volumes calculated using different segmentation methodologies including standard k-means, spatial domain Markov Random Field Model (MRFM), and the new multiscale MRFM proposed in this paper showed that the latter dramatically reduces the relative error to less than 8% for small lesions (7 mm radii) and less than 3.5% for larger lesions (9 mm radii). The analysis of the resulting segmentations of clinical oncologic PET data seems to confirm that this methodology shows promise and can successfully segment patient lesions. For problematic images, this technique enables the identification of tumors situated very close to nearby high normal physiologic uptake. The use of this technique to estimate tumor volumes for assessment of response to therapy and to delineate treatment volumes for the purpose of combined PET/CT-based radiation therapy treatment planning is also discussed.
The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and clinical arenas. Increasing numbers of patient scans have led to an urgent need for efficient data handling and the development of new image analysis techniques to aid clinicians in the diagnosis of disease and planning of treatment. Automatic quantitative assessment of metabolic PET data is attractive and will certainly revolutionize the practice of functional imaging since it can lower variability across institutions and may enhance the consistency of image interpretation independent of reader experience. In this paper, a novel automated system for the segmentation of oncological PET data aiming at providing an accurate quantitative analysis tool is proposed. The initial step involves expectation maximization (EM)-based mixture modeling using a k-means clustering procedure, which varies voxel order for initialization. A multiscale Markov model is then used to refine this segmentation by modeling spatial correlations between neighboring image voxels. An experimental study using an anthropomorphic thorax phantom was conducted for quantitative evaluation of the performance of the proposed segmentation algorithm. The comparison of actual tumor volumes to the volumes calculated using different segmentation methodologies including standard k-means, spatial domain Markov Random Field Model (MRFM), and the new multiscale MRFM proposed in this paper showed that the latter dramatically reduces the relative error to less than 8% for small lesions (7 mm radii) and less than 3.5% for larger lesions (9 mm radii). The analysis of the resulting segmentations of clinical oncologic PET data seems to confirm that this methodology shows promise and can successfully segment patient lesions. For problematic images, this technique enables the identification of tumors situated very close to nearby high normal physiologic uptake. The use of this technique to estimate tumor volumes for assessment of response to therapy and to delineate treatment volumes for the purpose of combined PET/CT-based radiation therapy treatment planning is also discussed.
The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and clinical arenas. Increasing numbers of patient scans have led to an urgent need for efficient data handling and the development of new image analysis techniques to aid clinicians in the diagnosis of disease and planning of treatment. Automatic quantitative assessment of metabolic PET data is attractive and will certainly revolutionize the practice of functional imaging since it can lower variability across institutions and may enhance the consistency of image interpretation independent of reader experience. In this paper, a novel automated system for the segmentation of oncological PET data aiming at providing an accurate quantitative analysis tool is proposed. The initial step involves expectation maximization (EM)-based mixture modeling using a k -means clustering procedure, which varies voxel order for initialization. A multiscale Markov model is then used to refine this segmentation by modeling spatial correlations between neighboring image voxels. An experimental study using an anthropomorphic thorax phantom was conducted for quantitative evaluation of the performance of the proposed segmentation algorithm. The comparison of actual tumor volumes to the volumes calculated using different segmentation methodologies including standard k -means, spatial domain Markov Random Field Model (MRFM), and the new multiscale MRFM proposed in this paper showed that the latter dramatically reduces the relative error to less than 8% for small lesions ( 7 mm radii) and less than 3.5% for larger lesions ( 9 mm radii). The analysis of the resulting segmentations of clinical oncologic PET data seems to confirm that this methodology shows promise and can successfully segment patient lesions. For problematic images, this technique enables the identification of tumors situated very close to nearby high normal physiologic uptake. The use of this technique to estimate tumor volumes for assessment of response to therapy and to delineate treatment volumes for the purpose of combined PET/CT-based radiation therapy treatment planning is also discussed.
The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and clinical arenas. Increasing numbers of patient scans have led to an urgent need for efficient data handling and the development of new image analysis techniques to aid clinicians in the diagnosis of disease and planning of treatment. Automatic quantitative assessment of metabolic PET data is attractive and will certainly revolutionize the practice of functional imaging since it can lower variability across institutions and may enhance the consistency of image interpretation independent of reader experience. In this paper, a novel automated system for the segmentation of oncological PET data aiming at providing an accurate quantitative analysis tool is proposed. The initial step involves expectation maximization (EM)‐based mixture modeling using a k‐means clustering procedure, which varies voxel order for initialization. A multiscale Markov model is then used to refine this segmentation by modeling spatial correlations between neighboring image voxels. An experimental study using an anthropomorphic thorax phantom was conducted for quantitative evaluation of the performance of the proposed segmentation algorithm. The comparison of actual tumor volumes to the volumes calculated using different segmentation methodologies including standard k‐means, spatial domain Markov Random Field Model (MRFM), and the new multiscale MRFM proposed in this paper showed that the latter dramatically reduces the relative error to less than 8% for small lesions (7mm radii) and less than 3.5% for larger lesions (9mm radii). The analysis of the resulting segmentations of clinical oncologic PET data seems to confirm that this methodology shows promise and can successfully segment patient lesions. For problematic images, this technique enables the identification of tumors situated very close to nearby high normal physiologic uptake. The use of this technique to estimate tumor volumes for assessment of response to therapy and to delineate treatment volumes for the purpose of combined PET/CT‐based radiation therapy treatment planning is also discussed.
Author Zaidi, Habib
Montgomery, David W. G.
Amira, Abbes
Author_xml – sequence: 1
  givenname: David W. G.
  surname: Montgomery
  fullname: Montgomery, David W. G.
  organization: School of Electronics, Electrical Engineering and Computer Science, ECIT, The Queen’s University of Belfast, Belfast, Northern Ireland
– sequence: 2
  givenname: Abbes
  surname: Amira
  fullname: Amira, Abbes
  organization: School of Engineering and Design, Brunel University, London, Uxbridge, United Kingdom
– sequence: 3
  givenname: Habib
  surname: Zaidi
  fullname: Zaidi, Habib
  organization: Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17388190$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/20951062$$D View this record in Osti.gov
BookMark eNp9kV1rFDEYhYNU7LZ64R-QgCAoTJtkkp2dy1L6IVTsRb0OmeTNGsnHOslU9t-b7WyL-HWVEJ5z3pPzHqGDmCIg9JqSE0rp6pSeMN4yTvgztGC8axvOSH-AFoT0vKnv4hAd5fyNELJsBXmBDmnXrla0JwvkLifvt1hNJQVVwOAM6wCxqOJSxMniFHXyae208vj24g7fJz8FyHjKLq6xwjqFwcUqDJMvLlcMsIrVZ2eRy4MuJAP-JXpulc_wan8eoy-XF3fn183N56uP52c3jeYrwZuOGKZaZSnv7VC_ZDvBh34YuAbRgTWaaWPNkhrSWcO0tkoPSihab4MWom-P0dvZN9XpMmtXQH_VKUbQRdZeBCVLVql3M7UZ0_cJcpGhhgfvVYQ0ZdmRlhHW7sA3e3AaAhi5GV1Q41Y-VliB0xnQY8p5BCvryIf6yqicl5TI3ZIklfslVcX73xRPpn9hm5n94Txs_w3KT7d7_sPM58cUT5r7NP7Cb4z9H_xnkp9867xH
CODEN MPHYA6
CitedBy_id crossref_primary_10_1016_j_acra_2009_02_014
crossref_primary_10_2967_jnumed_111_092767
crossref_primary_10_1007_s00259_011_2053_0
crossref_primary_10_1088_0031_9155_58_11_3517
crossref_primary_10_1097_RLU_0000000000003789
crossref_primary_10_1016_j_ejrad_2012_01_001
crossref_primary_10_1371_journal_pone_0178411
crossref_primary_10_1118_1_3160108
crossref_primary_10_2967_jnumed_110_078501
crossref_primary_10_1016_j_compbiomed_2014_04_014
crossref_primary_10_1016_j_compbiomed_2013_07_027
crossref_primary_10_1016_j_ijrobp_2009_08_018
crossref_primary_10_1186_s41824_020_00094_8
crossref_primary_10_1590_S1516_89132007000600010
crossref_primary_10_1016_j_irbm_2009_05_004
crossref_primary_10_1109_TITB_2011_2159307
crossref_primary_10_1118_1_2977537
crossref_primary_10_1088_1361_6560_abf201
crossref_primary_10_1053_j_semnuclmed_2007_01_005
crossref_primary_10_1118_1_3301610
crossref_primary_10_1118_1_4863480
crossref_primary_10_1155_2015_571473
crossref_primary_10_1007_s00259_012_2332_4
crossref_primary_10_1177_153303461000900303
crossref_primary_10_1016_j_mednuc_2010_03_005
crossref_primary_10_1155_2013_942353
crossref_primary_10_1118_1_3590359
crossref_primary_10_1109_TIP_2015_2488902
crossref_primary_10_1118_1_3130019
crossref_primary_10_1109_TBME_2013_2288258
crossref_primary_10_4028_www_scientific_net_AMR_143_144_358
crossref_primary_10_1371_journal_pone_0057105
crossref_primary_10_1007_s11548_013_0910_y
crossref_primary_10_1016_j_cmpb_2012_10_009
crossref_primary_10_1016_j_ijrobp_2010_08_002
crossref_primary_10_1016_j_canrad_2011_07_243
crossref_primary_10_1155_2010_520427
crossref_primary_10_1016_j_cpet_2007_10_001
crossref_primary_10_1002_mp_12531
crossref_primary_10_1118_1_4813302
crossref_primary_10_1007_s00259_010_1688_6
crossref_primary_10_1109_TIP_2018_2872908
crossref_primary_10_1007_s11307_007_0112_5
crossref_primary_10_1088_0031_9155_54_22_010
crossref_primary_10_1118_1_4736812
crossref_primary_10_1088_0031_9155_55_4_013
crossref_primary_10_1118_1_4828836
crossref_primary_10_1155_2010_105610
crossref_primary_10_2967_jnumed_115_162511
crossref_primary_10_2967_jnumed_110_084897
crossref_primary_10_1007_s00259_008_0943_6
crossref_primary_10_2967_jnumed_109_068411
crossref_primary_10_1186_s40658_015_0110_7
crossref_primary_10_1118_1_4947123
crossref_primary_10_1120_jacmp_v13i5_3875
crossref_primary_10_1002_mp_12124
crossref_primary_10_1007_s00259_010_1423_3
crossref_primary_10_1016_j_ijrobp_2010_12_060
crossref_primary_10_1016_j_ejrad_2012_03_031
crossref_primary_10_1007_s00330_011_2311_3
crossref_primary_10_2967_jnumed_109_066241
crossref_primary_10_1118_1_2938518
Cites_doi 10.1109/ICPR.1988.28329
10.1016/S0167-8140(03)00270-6
10.1117/12.431071
10.1118/1.1569270
10.1109/NSSMIC.1998.774398
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TPAMI.2002.1046170
10.1109/ISCAS.2005.1465455
10.1016/0895-6111(96)00025-0
10.1136/jamia.1997.0040327
10.1016/j.ijrobp.2004.12.089
10.1109/23.502313
10.1016/j.imavis.2005.02.002
10.1007/0-387-25444-7_10
10.1111/j.2517-6161.1986.tb01412.x
10.1053/snuc.2003.127313
10.1109/42.811270
10.1088/0031-9155/47/7/310
10.1002/(SICI)1097-0142(19971215)80:12 <2505::AID-CNCR24>3.0.CO;2-F
10.1109/42.650883
10.1118/1.2361076
10.1109/INMIC.2003.1416612
10.1088/0031-9155/50/24/014
10.1109/TSMC.1979.4310076
10.1109/NSSMIC.2001.1009268
10.1017/CBO9780511564352
10.1109/TPAMI.1984.4767596
10.1016/S0031-3203(04)00190-6
10.1007/978-3-642-56702-5
10.1118/1.596837
10.1109/TPAMI.2004.1262334
10.1007/0-387-25444-7_16
10.1016/0734-189X(88)90022-9
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2007 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2007 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
DOI 10.1118/1.2432404
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 736
ExternalDocumentID 20951062
17388190
10_1118_1_2432404
MP2404
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NSF-CH
  grantid: SNSF 3152A0-102143
– fundername: NSF‐CH
  funderid: SNSF 3152A0‐102143
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAJUZ
AAPBV
ABCVL
ABPTK
ADDAD
AEUQT
OTOTI
ID FETCH-LOGICAL-c4854-70d2a3af149fb404f754b9bb4ce57efdc2cdfd61d07fd2ccfacba5a1ccfbc5593
ISSN 0094-2405
IngestDate Thu May 18 22:35:13 EDT 2023
Thu Oct 02 11:08:50 EDT 2025
Wed Feb 19 01:42:14 EST 2025
Thu Apr 24 22:53:09 EDT 2025
Wed Oct 01 03:41:44 EDT 2025
Wed Jan 22 17:07:37 EST 2025
Fri Jun 21 00:29:05 EDT 2024
Sun Jul 14 10:05:19 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords wavelet
Gaussian mixture modeling
positron emission tomography
medical image segmentation
multiscale Markov modeling
Language English
License 0094-2405/2007/34(2)/722/15/$23.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4854-70d2a3af149fb404f754b9bb4ce57efdc2cdfd61d07fd2ccfacba5a1ccfbc5593
Notes habib.zaidi@hcuge.ch
Author to whom correspondence should be addressed. Electronic mail
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 17388190
PQID 70320232
PQPubID 23479
PageCount 15
ParticipantIDs scitation_primary_10_1118_1_2432404
crossref_citationtrail_10_1118_1_2432404
osti_scitechconnect_20951062
crossref_primary_10_1118_1_2432404
wiley_primary_10_1118_1_2432404_MP2404
proquest_miscellaneous_70320232
pubmed_primary_17388190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2007
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: February 2007
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2007
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Zaidi, Montandon, Slosman (c4) 2003; 30
Dempster, Laird, Rubin (c24) 1977; 39
Greenspan, Goldberger, Mayer (c28) 2004; 26
Van Leemput, Maes, Vandermeulen, Suetens (c22) 1999; 18
Keyes (c2) 1995; 36
Stanford, Raftery (c31) 2002; 24
Kalet, Austin-Seymour (c6) 1997; 4
Long, King, Sheehan (c16) 1992; 19
Geman, Geman (c21) 1984; 6
Erdi (c14) 1997; 80
Otsu (c12) 1979; 9
Ford (c9) 2006; 33
Besag (c33) 1986; 48
Boudraa (c5) 1996; 20
Murtagh, Raftery, Starck (c32) 2005; 23
Bijaoui, Starck, Murtagh (c37) 1994; 3
Paulino, Thorstad, Fox (c8) 2003; 33
Sahoo, Soltani, Wong (c11) 1988; 41
Held (c20) 1997; 16
Collet, Murtagh (c34) 2004; 37
Zaidi, Diaz-Gomez, Boudraa, Slosman (c3) 2002; 47
Daisne (c17) 2003; 69
Ciernik, Huser, Burger, Davis, Szekely (c7) 2005; 62
Yaremko (c15) 2005; 50
Zaidi (c18) 1996; 43
1997; 80
1995; 36
2006; 33
2004; 26
2005; 62
1998
1997
1992; 19
2007
2006
2005
2003; 30
1997; 4
2005; 23
2003; 33
1999
2002; 47
4322
2001
1977; 39
1999; 18
2001; 4
2002; 24
2004; 37
1984; 6
1986; 48
2003; 69
1997; 16
1998; 2
1988; 41
2005; 50
1994; 3
1996; 43
1996; 20
1979; 9
1988
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
McLachlan G. (e_1_2_7_27_1) 1997
e_1_2_7_28_1
e_1_2_7_29_1
Wishart D. (e_1_2_7_30_1) 2006
Keyes J. (e_1_2_7_3_1) 1995; 36
Congdon P. (e_1_2_7_26_1) 2007
e_1_2_7_25_1
e_1_2_7_31_1
Li S. (e_1_2_7_20_1) 2001
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_39_1
Bijaoui A. (e_1_2_7_38_1) 1994; 3
References_xml – volume: 16
  start-page: 878
  issn: 0278-0062
  year: 1997
  ident: c20
  article-title: Markov random field segmentation of brain MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 62
  issn: 0018-9472
  year: 1979
  ident: c12
  article-title: A thresholding selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 37
  start-page: 2337
  issn: 0031-3203
  year: 2004
  ident: c34
  article-title: Multiband segmentation based on a hierarchical Markov model
  publication-title: Pattern Recogn.
– volume: 33
  start-page: 4280
  issn: 0094-2405
  year: 2006
  ident: c9
  article-title: Tumor delineation using PET in head and neck cancers: Threshold contouring and lesion volumes
  publication-title: Med. Phys.
– volume: 30
  start-page: 937
  issn: 0094-2405
  year: 2003
  ident: c4
  article-title: Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography
  publication-title: Med. Phys.
– volume: 48
  start-page: 259
  issn: 0035-9246
  year: 1986
  ident: c33
  article-title: On the statistical analysis of dirty pictures
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– volume: 69
  start-page: 247
  issn: 0167-8140
  year: 2003
  ident: c17
  article-title: Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms
  publication-title: Radiother. Oncol.
– volume: 47
  start-page: 1143
  issn: 0031-9155
  year: 2002
  ident: c3
  article-title: Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging
  publication-title: Phys. Med. Biol.
– volume: 18
  start-page: 897
  issn: 0278-0062
  year: 1999
  ident: c22
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  start-page: 31
  issn: 0895-6111
  year: 1996
  ident: c5
  article-title: Delineation and quantitation of brain lesions by fuzzy clustering in positron emission tomography
  publication-title: Comput. Med. Imaging Graph.
– volume: 39
  start-page: 1
  issn: 0035-9246
  year: 1977
  ident: c24
  article-title: Maximum likelihood estimation from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– volume: 80
  start-page: 2505
  issn: 0008-543X
  year: 1997
  ident: c14
  article-title: Segmentation of lung lesion volume by adaptive positrone mission tomography image thresholding
  publication-title: Cancer
– volume: 62
  start-page: 893
  issn: 0360-3016
  year: 2005
  ident: c7
  article-title: Automated functional image-guided radiation treatment planning for rectal cancer
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 4
  start-page: 327
  issn: 1067-5027
  year: 1997
  ident: c6
  article-title: The use of medical images in planning and delivery of radiation therapy
  publication-title: J. Am. Med. Inform Assoc.
– volume: 23
  start-page: 587
  issn: 0262-8856
  year: 2005
  ident: c32
  article-title: Bayesian inference for multiband image segmentation via model-based cluster trees
  publication-title: Image Vis. Comput.
– volume: 3
  start-page: 229
  issn: 0765-0019
  year: 1994
  ident: c37
  article-title: Restauration des images multi-échelles par l’algorithme á trous
  publication-title: Trait. Signal
– volume: 36
  start-page: 1836
  issn: 0161-5505
  year: 1995
  ident: c2
  article-title: SUV: Standard uptake value or silly useless value?
  publication-title: J. Nucl. Med.
– volume: 50
  start-page: 5969
  issn: 0031-9155
  year: 2005
  ident: c15
  article-title: Thresholding in PET images of static and moving targets
  publication-title: Phys. Med. Biol.
– volume: 26
  start-page: 384
  issn: 0162-8828
  year: 2004
  ident: c28
  article-title: Probabilistic space-time video modeling via piecewise GMM
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 721
  issn: 0162-8828
  year: 1984
  ident: c21
  article-title: Stochastic relaxation, gibbs distributions and the bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 238
  issn: 0001-2998
  year: 2003
  ident: c8
  article-title: Role of fusion in radiotherapy treatment planning
  publication-title: Semin Nucl. Med.
– volume: 43
  start-page: 2174
  issn: 0018-9499
  year: 1996
  ident: c18
  article-title: Organ volume estimation using SPECT
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 19
  start-page: 483
  issn: 0094-2405
  year: 1992
  ident: c16
  article-title: Comparative evaluation of image segmentation methods for volume quantitation in SPECT
  publication-title: Med. Phys.
– volume: 24
  start-page: 1517
  issn: 0162-8828
  year: 2002
  ident: c31
  article-title: Approximate Bayes factors for image segmentation: The pseudolikelihood information criterion (PLIC)
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 41
  start-page: 233
  issn: 0734-189X
  year: 1988
  ident: c11
  article-title: A survey of thresholding techniques
  publication-title: Comput. Vis. Graph. Image Process.
– volume: 6
  start-page: 721
  year: 1984
  end-page: 741
  article-title: Stochastic relaxation, gibbs distributions and the bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 4280
  year: 2006
  end-page: 4288
  article-title: Tumor delineation using PET in head and neck cancers: Threshold contouring and lesion volumes
  publication-title: Med. Phys.
– volume: 50
  start-page: 5969
  year: 2005
  end-page: 5982
  article-title: Thresholding in PET images of static and moving targets
  publication-title: Phys. Med. Biol.
– volume: 36
  start-page: 1836
  year: 1995
  end-page: 1839
  article-title: SUV: Standard uptake value or silly useless value?
  publication-title: J. Nucl. Med.
– volume: 69
  start-page: 247
  year: 2003
  end-page: 250
  article-title: Tri‐dimensional automatic segmentation of PET volumes based on measured source‐to‐background ratios: influence of reconstruction algorithms
  publication-title: Radiother. Oncol.
– volume: 18
  start-page: 897
  year: 1999
  end-page: 908
  article-title: Automated model‐based tissue classification of MR images of the brain
  publication-title: IEEE Trans. Med. Imaging
– start-page: 38
  end-page: 43
– year: 2005
– volume: 2
  start-page: 1323
  year: 1998
  end-page: 1329
– volume: 47
  start-page: 1143
  year: 2002
  end-page: 1160
  article-title: Fuzzy clustering‐based segmented attenuation correction in whole‐body PET imaging
  publication-title: Phys. Med. Biol.
– year: 2001
– year: 2007
– volume: 16
  start-page: 878
  year: 1997
  end-page: 886
  article-title: Markov random field segmentation of brain MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 19
  start-page: 483
  year: 1992
  end-page: 489
  article-title: Comparative evaluation of image segmentation methods for volume quantitation in SPECT
  publication-title: Med. Phys.
– volume: 43
  start-page: 2174
  year: 1996
  end-page: 2182
  article-title: Organ volume estimation using SPECT
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 4
  start-page: 327
  year: 1997
  end-page: 339
  article-title: The use of medical images in planning and delivery of radiation therapy
  publication-title: J. Am. Med. Inform Assoc.
– volume: 62
  start-page: 893
  year: 2005
  end-page: 900
  article-title: Automated functional image‐guided radiation treatment planning for rectal cancer
  publication-title: Int. J. Radiat. Oncol., Biol., Phys.
– volume: 41
  start-page: 233
  year: 1988
  end-page: 260
  article-title: A survey of thresholding techniques
  publication-title: Comput. Vis. Graph. Image Process.
– year: 1998
– volume: 26
  start-page: 384
  year: 2004
  end-page: 396
  article-title: Probabilistic space‐time video modeling via piecewise GMM
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 4
  start-page: 2234
  year: 2001
  end-page: 2237
– volume: 30
  start-page: 937
  year: 2003
  end-page: 948
  article-title: Magnetic resonance imaging‐guided attenuation and scatter corrections in three‐dimensional brain positron emission tomography
  publication-title: Med. Phys.
– start-page: 308
  year: 2006
  end-page: 357
– volume: 48
  start-page: 259
  year: 1986
  end-page: 302
  article-title: On the statistical analysis of dirty pictures
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– volume: 20
  start-page: 31
  year: 1996
  end-page: 41
  article-title: Delineation and quantitation of brain lesions by fuzzy clustering in positron emission tomography
  publication-title: Comput. Med. Imaging Graph.
– start-page: 3789
  end-page: 3792
– volume: 80
  start-page: 2505
  year: 1997
  end-page: 2509
  article-title: Segmentation of lung lesion volume by adaptive positrone mission tomography image thresholding
  publication-title: Cancer
– volume: 24
  start-page: 1517
  year: 2002
  end-page: 1520
  article-title: Approximate Bayes factors for image segmentation: The pseudolikelihood information criterion (PLIC)
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 2337
  year: 2004
  end-page: 2347
  article-title: Multiband segmentation based on a hierarchical Markov model
  publication-title: Pattern Recogn.
– volume: 3
  start-page: 229
  year: 1994
  end-page: 243
  article-title: Restauration des images multi‐échelles par l'algorithme á trous
  publication-title: Trait. Signal
– year: 2006
– year: 1997
– start-page: 494
  year: 2006
  end-page: 536
– start-page: 689
  year: 1988
  end-page: 692
– volume: 4322
  start-page: 184
  end-page: 193
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood estimation from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  article-title: A thresholding selection method from gray‐level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 23
  start-page: 587
  year: 2005
  end-page: 596
  article-title: Bayesian inference for multiband image segmentation via model‐based cluster trees
  publication-title: Image Vis. Comput.
– volume: 33
  start-page: 238
  year: 2003
  end-page: 243
  article-title: Role of fusion in radiotherapy treatment planning
  publication-title: Semin Nucl. Med.
– year: 1999
– ident: e_1_2_7_14_1
  doi: 10.1109/ICPR.1988.28329
– ident: e_1_2_7_18_1
  doi: 10.1016/S0167-8140(03)00270-6
– ident: e_1_2_7_24_1
  doi: 10.1117/12.431071
– ident: e_1_2_7_5_1
  doi: 10.1118/1.1569270
– ident: e_1_2_7_42_1
  doi: 10.1109/NSSMIC.1998.774398
– ident: e_1_2_7_25_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_7_32_1
  doi: 10.1109/TPAMI.2002.1046170
– ident: e_1_2_7_40_1
  doi: 10.1109/ISCAS.2005.1465455
– volume: 36
  start-page: 1836
  year: 1995
  ident: e_1_2_7_3_1
  article-title: SUV: Standard uptake value or silly useless value?
  publication-title: J. Nucl. Med.
– ident: e_1_2_7_6_1
  doi: 10.1016/0895-6111(96)00025-0
– ident: e_1_2_7_7_1
  doi: 10.1136/jamia.1997.0040327
– ident: e_1_2_7_8_1
  doi: 10.1016/j.ijrobp.2004.12.089
– ident: e_1_2_7_19_1
  doi: 10.1109/23.502313
– ident: e_1_2_7_28_1
– ident: e_1_2_7_33_1
  doi: 10.1016/j.imavis.2005.02.002
– ident: e_1_2_7_11_1
  doi: 10.1007/0-387-25444-7_10
– ident: e_1_2_7_34_1
  doi: 10.1111/j.2517-6161.1986.tb01412.x
– volume: 3
  start-page: 229
  year: 1994
  ident: e_1_2_7_38_1
  article-title: Restauration des images multi‐échelles par l'algorithme á trous
  publication-title: Trait. Signal
– ident: e_1_2_7_9_1
  doi: 10.1053/snuc.2003.127313
– ident: e_1_2_7_23_1
  doi: 10.1109/42.811270
– ident: e_1_2_7_41_1
– ident: e_1_2_7_4_1
  doi: 10.1088/0031-9155/47/7/310
– ident: e_1_2_7_15_1
  doi: 10.1002/(SICI)1097-0142(19971215)80:12 <2505::AID-CNCR24>3.0.CO;2-F
– volume-title: The EM Algorithm and Extensions
  year: 1997
  ident: e_1_2_7_27_1
– ident: e_1_2_7_21_1
  doi: 10.1109/42.650883
– ident: e_1_2_7_10_1
  doi: 10.1118/1.2361076
– ident: e_1_2_7_36_1
  doi: 10.1109/INMIC.2003.1416612
– volume-title: Bayesian Statistical Modelling
  year: 2007
  ident: e_1_2_7_26_1
– ident: e_1_2_7_16_1
  doi: 10.1088/0031-9155/50/24/014
– ident: e_1_2_7_13_1
  doi: 10.1109/TSMC.1979.4310076
– ident: e_1_2_7_43_1
  doi: 10.1109/NSSMIC.2001.1009268
– ident: e_1_2_7_37_1
  doi: 10.1017/CBO9780511564352
– volume-title: Markov Random Field Modeling in Computer Vision
  year: 2001
  ident: e_1_2_7_20_1
– ident: e_1_2_7_22_1
  doi: 10.1109/TPAMI.1984.4767596
– ident: e_1_2_7_35_1
  doi: 10.1016/S0031-3203(04)00190-6
– ident: e_1_2_7_39_1
  doi: 10.1007/978-3-642-56702-5
– ident: e_1_2_7_17_1
  doi: 10.1118/1.596837
– ident: e_1_2_7_29_1
  doi: 10.1109/TPAMI.2004.1262334
– ident: e_1_2_7_2_1
  doi: 10.1007/0-387-25444-7_16
– ident: e_1_2_7_12_1
  doi: 10.1016/0734-189X(88)90022-9
– volume-title: Clustan Graphics Primer: A Guide to Cluster Analysis
  year: 2006
  ident: e_1_2_7_30_1
– ident: e_1_2_7_31_1
SSID ssj0006350
Score 2.1916664
Snippet The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and...
SourceID osti
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 722
SubjectTerms ALGORITHMS
Algorithms for functional approximation
Artificial Intelligence
Biomedical modeling
cancer
CHEST
Cluster analysis
Computer Simulation
Data Interpretation, Statistical
DIAGNOSIS
Diseases
ERRORS
expectation‐maximisation algorithm
Gaussian mixture modeling
Humans
Image analysis
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
IMAGE PROCESSING
image segmentation
Imaging, Three-Dimensional - methods
MARKOV PROCESS
Markov processes
medical image processing
medical image segmentation
Medical imaging
Models, Biological
Models, Statistical
multiscale Markov modeling
Multiscale methods
NEOPLASMS
Neoplasms - diagnostic imaging
PATIENTS
pattern clustering
Pattern Recognition, Automated - methods
PHANTOMS
Phantoms, Imaging
PLANNING
POSITRON COMPUTED TOMOGRAPHY
positron emission tomography
Positron emission tomography (PET)
Positron-Emission Tomography - instrumentation
Positron-Emission Tomography - methods
radiation therapy
RADIOLOGY AND NUCLEAR MEDICINE
RADIOTHERAPY
Reproducibility of Results
Sensitivity and Specificity
SIMULATION
Spatial analysis
STATISTICAL MODELS
tumours
wavelet
Wavelets
Title Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model
URI http://dx.doi.org/10.1118/1.2432404
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.2432404
https://www.ncbi.nlm.nih.gov/pubmed/17388190
https://www.proquest.com/docview/70320232
https://www.osti.gov/biblio/20951062
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB60i7cH0fUWXXVQEaFE20nSNI9FVxaxUrCLiy_DXNeATUqbCvrrPXPJpZAV9aUN6WkS8n05Od-Zc2YQemGChIRlHJ5v0CYgICZhlkYyJFEqFJBaJLFpFJ5_mpycxh_OkrO2hcB2l1T8tfjV21fyP6jCPsDVdMn-A7LNQWEHbAO-8AkIw-dfYWz0488h21UlxJ0QOW7V-cr3EtkosCxE49sWx8uhc0Xb4c4mCJipJwdhDH-0ZYVbMHODCabLyE7gbFpLzFI53RC2HtpxORGbtDWN1Mwt8dHkFcBZVOflSvlhelM6P_zSruQ1W-Ubl9LlvC1j_Mpy6ZbRZjznexmJtC5ibr1sFptRm6TrZX3KMu-IXecyU9eX3OPKTXsCSHg7Z2DctQEU1iuL6TiNpiamad9mTY1h_dNldEDA448G6GD2bv7xc_OehlDLNSj5q_XzTsF53zRnNXPK-uPsBS6DEkDoEyU30DUIXRzQ-3rHBizLW-imVxp45mhzG11SxSG6Ove1FIfoysIBeAfllke44RHu8giXGnd4hIFH2PMIWx5hhmse4ZZHGHiEOzzClkd30en74-Xbk9AvwRGKeJrEYTqShEVMg47WHO6HTpOYZ5zHQiWp0lIQIbWcjOUo1ZIIoZngLGFj2OICxGp0Dw2KslAPEOYyI4kiksVaxCQlPMqEhuhSc83AM6gAvarvL63voFkm5Tt1OnVKx9SjEqBnjenaTcrSZ3RkQKIGDiW-CVM3JipKrKaYkAA9rcGj4FHNMBkrVLnbUngHEohkweK-w7Q9h6dCgJ43IP_pAnqsfpSb1oKupQ7QS0uSi49D5wvz9fDCy3mErreP4REaVJudegyhcsWfeM7_Bjtqu4A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+automated+segmentation+of+oncological+PET+volumes+using+a+combined+multiscale+and+statistical+model&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Montgomery%2C+David+W+G&rft.au=Amira%2C+Abbes&rft.au=Zaidi%2C+Habib&rft.date=2007-02-01&rft.issn=0094-2405&rft.volume=34&rft.issue=2&rft.spage=722&rft_id=info:doi/10.1118%2F1.2432404&rft_id=info%3Apmid%2F17388190&rft.externalDocID=17388190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon