EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study
The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation o...
Saved in:
Published in | Atherosclerosis Vol. 316; pp. 90 - 98 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9150 1879-1484 1879-1484 |
DOI | 10.1016/j.atherosclerosis.2020.11.018 |
Cover
Abstract | The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome.
After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50–75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout.
Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression.
EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.
[Display omitted]
•eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differently modulate the ex vivo inflammatory response of human monocytes.•DHA affects a wider range of plasma polyunsaturated fatty acids (PUFA) pro-resolving lipid mediators (SPM) lipidome than EPA.•Different subgroups of PUFA derivatives mediate anti-inflammatory effects of EPA and DHA. |
---|---|
AbstractList | Background and aims: The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. Methods After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50–75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. Results: Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. Conclusions: EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates. The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates. The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome.BACKGROUND AND AIMSThe independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome.After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout.METHODSAfter a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout.Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression.RESULTSCompared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression.EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.CONCLUSIONSEPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates. The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50–75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates. [Display omitted] •eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differently modulate the ex vivo inflammatory response of human monocytes.•DHA affects a wider range of plasma polyunsaturated fatty acids (PUFA) pro-resolving lipid mediators (SPM) lipidome than EPA.•Different subgroups of PUFA derivatives mediate anti-inflammatory effects of EPA and DHA. |
Author | Matthan, Nirupa R. Maddipati, Krishna Rao So, Jisun Wu, Dayong Lichtenstein, Alice H. Lamon-Fava, Stefania Tai, Albert K. |
Author_xml | – sequence: 1 givenname: Jisun surname: So fullname: So, Jisun organization: Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA – sequence: 2 givenname: Dayong orcidid: 0000-0003-0525-6374 surname: Wu fullname: Wu, Dayong organization: Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA – sequence: 3 givenname: Alice H. orcidid: 0000-0002-1053-9478 surname: Lichtenstein fullname: Lichtenstein, Alice H. organization: Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA – sequence: 4 givenname: Albert K. surname: Tai fullname: Tai, Albert K. organization: Department of Immunology, Tufts University School of Medicine, Boston, MA, USA – sequence: 5 givenname: Nirupa R. surname: Matthan fullname: Matthan, Nirupa R. organization: Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA – sequence: 6 givenname: Krishna Rao orcidid: 0000-0003-1445-791X surname: Maddipati fullname: Maddipati, Krishna Rao organization: Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI, USA – sequence: 7 givenname: Stefania orcidid: 0000-0002-8675-8159 surname: Lamon-Fava fullname: Lamon-Fava, Stefania email: stefania.lamon-fava@tufts.edu organization: Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33303222$$D View this record in MEDLINE/PubMed |
BookMark | eNqVks1uEzEUhS1URNPCKyBvkFh0gu3x_CGxiEJokSrBAtaWx3OHOHjswfYEhcfkifA0BaRsKBv_fj62zz0X6Mw6Cwi9oGRJCS1f7ZYybsG7oMzc6rBkhKU9uiS0foQWtK6ajPKan6EFIYxmDS3IOboIYUcI4RWtn6DzPM9JzhhboJ-bjyssbYff3qxwp_sePNiopTEHPLhuMjJCGlinDmmgbW_kMMjo_AF7CKOzYV7FYWp3oGLA33XcYrX1zmr1F9fOztQofcR7LfFoZBgkDiOodJX-AR0evcuSojN7bb9go0fd4QE6Pd8VXuMV9umVbpjZK9y5qTWQtUbbNFPJh-D24HGIU3d4ih730gR4dt9fos_vNp_WN9nth-v369VtppI7MVM1pUz1khd1BTmtSM6LsmhoI-seCgaKUgDaln3fN3WyviUlJNdUXXddI4s2v0Qvj7rp6d8mCFEMOigwRlpwUxCszEteVJxV_0Z5lXPCOWMJfX6PTm36vxi9HqQ_iN8lS8CbI3D3bQ_9H4QSMUdE7MRJRMQcEUGpSBFJ59cn55WOdyWKXmrzYJXrowokh_cavAhKg1WpYj4FQXROP1hpc6KkUlm1kuYrHP5D5xdFcwMy |
CitedBy_id | crossref_primary_10_1016_j_ultsonch_2021_105720 crossref_primary_10_1038_s44319_024_00271_x crossref_primary_10_1016_j_isci_2021_102909 crossref_primary_10_3390_molecules28093943 crossref_primary_10_1002_osp4_626 crossref_primary_10_3390_molecules30010071 crossref_primary_10_1016_j_ynstr_2024_100646 crossref_primary_10_4062_biomolther_2021_107 crossref_primary_10_1016_j_clnu_2021_10_005 crossref_primary_10_1093_ajcn_nqac131 crossref_primary_10_1093_eurjpc_zwae315 crossref_primary_10_1016_j_jacl_2022_10_002 crossref_primary_10_3389_fcvm_2022_1031168 crossref_primary_10_3389_fnut_2022_1003627 crossref_primary_10_3390_nu15224787 crossref_primary_10_1016_j_prostaglandins_2025_106948 crossref_primary_10_3389_fnut_2024_1423228 crossref_primary_10_1186_s12970_021_00461_1 crossref_primary_10_1016_j_jlr_2024_100682 crossref_primary_10_1016_j_ctim_2021_102662 crossref_primary_10_1016_j_intimp_2024_112316 crossref_primary_10_1186_s12944_024_02139_4 crossref_primary_10_1007_s12403_022_00503_2 crossref_primary_10_1093_eurheartj_ehab841 crossref_primary_10_1016_j_jff_2024_106164 crossref_primary_10_3390_ijms241512196 crossref_primary_10_1038_s41598_023_32710_5 crossref_primary_10_3390_ijms24087072 crossref_primary_10_3390_ijms242317000 crossref_primary_10_3390_nu17050885 crossref_primary_10_1016_j_atherosclerosis_2023_117407 crossref_primary_10_1055_a_2480_5329 crossref_primary_10_3390_ijms23063133 crossref_primary_10_1038_s42003_023_05147_9 crossref_primary_10_1007_s00520_023_08274_5 crossref_primary_10_1093_ehjcvp_pvab010 crossref_primary_10_3390_nu14163362 crossref_primary_10_3389_fnut_2021_750292 crossref_primary_10_1063_5_0105187 crossref_primary_10_3390_ijms23094808 crossref_primary_10_1016_j_tjnut_2024_11_006 crossref_primary_10_1016_j_freeradbiomed_2022_02_010 crossref_primary_10_1093_eurheartj_ehab875 crossref_primary_10_1007_s00592_022_02003_w crossref_primary_10_3390_biom12030353 crossref_primary_10_1016_j_lfs_2022_120489 crossref_primary_10_3389_fimmu_2024_1459297 crossref_primary_10_1007_s11886_022_01831_0 crossref_primary_10_3390_nu16091354 crossref_primary_10_3233_NHA_220184 crossref_primary_10_3389_fnut_2022_960409 crossref_primary_10_1016_j_smim_2022_101597 crossref_primary_10_3389_fnut_2022_1051418 crossref_primary_10_3390_foods11131883 crossref_primary_10_33667_2078_5631_2024_16_25_30 crossref_primary_10_1016_j_plefa_2023_102570 crossref_primary_10_1590_fst_62622 crossref_primary_10_1016_j_jff_2024_106439 crossref_primary_10_1016_j_plefa_2024_102655 crossref_primary_10_1093_jn_nxab412 crossref_primary_10_1039_D1FO03551G crossref_primary_10_3390_ijms23169136 crossref_primary_10_1016_j_eclinm_2021_100997 crossref_primary_10_1186_s13293_021_00387_y crossref_primary_10_3389_fnut_2024_1288886 crossref_primary_10_1016_j_jacc_2021_06_011 crossref_primary_10_3389_fimmu_2023_1274147 crossref_primary_10_3390_md21070399 crossref_primary_10_1017_S0007114522000575 crossref_primary_10_17925_HI_2022_16_1_2 crossref_primary_10_3390_ijms25189904 crossref_primary_10_1007_s11356_021_16786_y crossref_primary_10_1016_j_ultsonch_2024_106945 crossref_primary_10_1038_s41398_024_02932_w crossref_primary_10_1016_j_freeradbiomed_2022_11_017 crossref_primary_10_1016_j_clnu_2021_04_006 crossref_primary_10_1016_j_plipres_2022_101165 crossref_primary_10_1038_s41598_021_95590_7 crossref_primary_10_1002_lipd_12318 crossref_primary_10_1016_j_ijbiomac_2025_139628 crossref_primary_10_3390_ijms25074099 crossref_primary_10_1038_s41380_023_02051_w crossref_primary_10_33667_2078_5631_2022_4_8_12 crossref_primary_10_1016_j_plipres_2024_101289 |
Cites_doi | 10.3945/ajcn.115.116384 10.1177/147323000903700619 10.1080/07315724.2002.10719248 10.1038/srep01940 10.3389/fimmu.2019.01788 10.2337/dc12-0269 10.2337/db12-0828 10.1073/pnas.94.9.4312 10.1016/j.bbalip.2014.08.010 10.1161/JAHA.113.000764 10.3945/jn.111.149633 10.1016/S0140-6736(05)67402-8 10.1016/j.atherosclerosis.2015.05.015 10.1006/jsre.1998.5524 10.1038/nature13479 10.1186/1743-7075-8-5 10.1007/s00394-012-0396-3 10.1016/j.mrfmmm.2009.09.009 10.1007/s00011-010-0302-5 10.3945/ajcn.110.003871 10.1016/j.ahj.2011.02.011 10.1093/carcin/bgr049 10.1161/JAHA.115.002034 10.1152/ajpheart.00260.2007 10.1096/fj.201600360R 10.4049/jimmunol.1103483 10.1001/jamacardio.2017.5205 10.1084/jem.20132011 10.1016/S0140-6736(71)91658-8 10.1016/j.jnutbio.2006.04.003 10.1037/0022-3514.51.6.1173 10.1056/NEJMoa1812792 10.1016/j.plipres.2007.12.004 10.1016/j.atherosclerosis.2017.01.025 10.1093/ajcn/63.2.234 10.1093/ajcn/71.1.213S 10.1017/S0029665107005472 10.1093/ajcn/nqz097 10.1007/s11883-011-0210-3 10.1016/j.jnutbio.2010.06.009 10.1021/jo2002243 10.1096/fj.08-112201 10.1002/eji.201545629 10.2174/156720512803251147 10.1017/S0007114512001559 10.1155/2013/697972 10.1161/01.ATV.0000147534.69062.dc 10.1016/j.cell.2010.07.041 10.1016/S0140-6736(07)60527-3 10.3945/ajcn.116.131896 10.1017/S0007114517002914 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.atherosclerosis.2020.11.018 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-1484 |
EndPage | 98 |
ExternalDocumentID | 33303222 10_1016_j_atherosclerosis_2020_11_018 S0021915020315276 |
Genre | Randomized Controlled Trial Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AEXQZ AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B M27 M41 MO0 N9A O-L O9- OAUVE OA~ OK1 OL0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K WUQ X7M Z5R ZGI ZXP ~G- ~KM 0SF AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR NCXOZ RIG ZA5 AAYXX ACLOT CITATION ~HD AGRNS CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c484t-c8112cfa4587e317034565919a8fe52ec11ee1b6fff98101b06e303c88dd9a5b3 |
IEDL.DBID | AIKHN |
ISSN | 0021-9150 1879-1484 |
IngestDate | Sun Sep 28 08:39:25 EDT 2025 Sun Sep 28 10:56:21 EDT 2025 Mon Jul 21 06:06:12 EDT 2025 Thu Sep 25 01:08:11 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Fri Feb 23 02:48:45 EST 2024 Tue Aug 26 19:31:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Randomized crossover trial Monocytes Inflammation DHA Specialized pro-resolving lipid mediators EPA |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c484t-c8112cfa4587e317034565919a8fe52ec11ee1b6fff98101b06e303c88dd9a5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-1053-9478 0000-0003-1445-791X 0000-0002-8675-8159 0000-0003-0525-6374 |
PMID | 33303222 |
PQID | 2473404422 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2636457427 proquest_miscellaneous_2473404422 pubmed_primary_33303222 crossref_primary_10_1016_j_atherosclerosis_2020_11_018 crossref_citationtrail_10_1016_j_atherosclerosis_2020_11_018 elsevier_sciencedirect_doi_10_1016_j_atherosclerosis_2020_11_018 elsevier_clinicalkey_doi_10_1016_j_atherosclerosis_2020_11_018 |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Atherosclerosis |
PublicationTitleAlternate | Atherosclerosis |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Aung, Halsey, Kromhout, Gerstein, Marchioli, Tavazzi, Geleijnse, Rauch, Ness, Galan, Chew, Bosch, Collins, Lewington, Armitage, Clarke (bib10) 2018; 3 Serini, Bizzarro, Piccioni, Fasano, Rossi, Lauria, Cittadini, Masullo, Calviello (bib36) 2012; 9 Schaefer, Lichtenstein, Lamon-Fava, Contois, Li, Goldin, Rasmussen, McNamara, Ordovas (bib19) 1996; 63 Moertl, Hammer, Steiner, Hutuleac, Vonbank, Berger (bib20) 2011; 161 See, Mas, Prescott, Beilin, Burrows, Barden, Huang, Mori (bib46) 2017; 118 Mozaffarian, Wu (bib13) 2012; 142 Tsunoda, Lamon-Fava, Asztalos, Iyer, Richardson, Schaefer (bib17) 2015; 241 Shrout, Bolger (bib30) 2002 Lo, Chiu, Fu, Lo, Helton (bib5) 1999; 82 Alberti, Zimmet, Shaw (bib31) 2005; 366 Myhrstad, Retterstøl, Telle-Hansen, Ottestad, Halvorsen, Holven, Ulven (bib33) 2011; 60 Satoh-Asahara, Shimatsu, Sasaki, Nakaoka, Himeno, Tochiya, Kono, Takaya, Ono, Wada, Suganami, Hasegawa, Ogawa (bib38) 2012 Baron, Kenny (bib29) 1986; 51 Miller, Kaur, Larsen, Loh, Linderborg, Weisinger, Turchini, Cameron-Smith, Sinclair (bib43) 2013; 52 Yokoyama, Origasa, Matsuzaki, Matsuzawa, Saito, Ishikawa, Oikawa, Sasaki, Hishida, Itakura, Kita, Kitabatake, Nakaya, Sakata, Shimada, Shirato (bib11) 2007; 369 Grenon, Owens, V Nosova, Hughes-Fulford, Alley, Chong, Perez, Yen, Boscardin, Hellmann, Spite, Conte (bib40) 2015; 4 Wen, Gu, Vandenhoff, Liu, Nadler (bib52) 2008; 294 Rangel-Huerta, Aguilera, Mesa, Gil (bib34) 2012; 107 Skulas-Ray, Kris-Etherton, Harris, Vanden Heuvel, Wagner, West (bib21) 2011; 93 Vors, Allaire, Marin, Lépine, Charest, Tchernof, Couture, Lamarche (bib18) 2017; 257 Barden, Mas, Croft, Phillips, Mori (bib45) 2015; 102 Forman, Chen, Evans (bib7) 1997; 94 Markworth, Kaur, Miller, Larsen, Sinclair, Maddipati, Cameron-Smith (bib25) 2016; 30 Ernst, Glucksam-Galnoy, Bhatta, Athamna, Ben-Dror, Glick, Gerber, Zor (bib28) 2019; 10 Dalli, Colas, Serhan (bib32) 2013; 3 Wei, Jacobson (bib23) 2011; 13 Bhatt, Steg, Miller, Brinton, Jacobson, Ketchum, Doyle, Juliano, Jiao, Granowitz, Tardif, Ballantyne (bib12) 2019; 380 Serhan (bib9) 2014; 510 Ramon, Gao, Serhan, Phipps (bib51) 2012; 189 Martin (bib8) 2010; 690 Allaire, Couture, Leclerc, Charest, Marin, Lépine, Talbot, Tchernof, Lamarche (bib16) 2016; 104 Bang, Dyerberg, Nielsen (bib1) 1971; 297 Calder (bib4) 2015; 1851 Draper, Reynolds, Canavan, Mills, Loscher, Roche (bib37) 2011; 22 Schmitz, Ecker (bib39) 2008; 47 Merched, Ko, Gotlinger, Serhan, Chan (bib41) 2008; 22 Neuhofer, Zeyda, Mascher, Itariu, Murano, Leitner, Hochbrugger, Fraisl, Cinti, Serhan, Stulnig (bib50) 2013; 62 Calder (bib3) 2013; 16 Schildberger, Rossmanith, Eichhorn, Strassl, Weber (bib27) 2013 Zhao, Shao, Teng, Hu, Luo, Yu, Zhang, Zhang (bib22) 2009; 37 Weylandt, Krause, Gomolka, Chiu, Bilal, Nadolny, Waechter, Fischer, Rothe, Kang (bib47) 2011; 32 De Caterina, Liao, Libby (bib14) 2000; 71 Matthan, Ooi, Van Horn, Neuhouser, Woodman, Lichtenstein (bib24) 2014; 3 Stoll, Denning, Weintraub (bib26) 2004; 24 Plourde, Chouinard-Watkins, Vandal, Zhang, Lawrence, Brenna, Cunnane (bib42) 2011; 8 Osma-Garcia, Punzón, Fresno, Díaz-Muñoz (bib53) 2016; 46 Oh, Talukdar, Bae, Imamura, Morinaga, Fan, Li, Lu, Watkins, Olefsky (bib6) 2010; 142 Simopoulos (bib2) 2002; 21 Sijben, Calder (bib35) 2007; 66 Metherel, Irfan, Klingel, Mutch, Bazinet (bib44) 2019; 110 Krishnamurthy, Dougherty, Haller, Chaikof (bib48) 2011; 76 Weldon, Mullen, Loscher, Hurley, Roche (bib15) 2007; 18 Endo, Sano, Isobe, Fukuda, Kang, Arai, Arita (bib49) 2014; 211 Grenon (10.1016/j.atherosclerosis.2020.11.018_bib40) 2015; 4 Schildberger (10.1016/j.atherosclerosis.2020.11.018_bib27) 2013 Neuhofer (10.1016/j.atherosclerosis.2020.11.018_bib50) 2013; 62 Dalli (10.1016/j.atherosclerosis.2020.11.018_bib32) 2013; 3 Zhao (10.1016/j.atherosclerosis.2020.11.018_bib22) 2009; 37 Simopoulos (10.1016/j.atherosclerosis.2020.11.018_bib2) 2002; 21 Bang (10.1016/j.atherosclerosis.2020.11.018_bib1) 1971; 297 Aung (10.1016/j.atherosclerosis.2020.11.018_bib10) 2018; 3 Metherel (10.1016/j.atherosclerosis.2020.11.018_bib44) 2019; 110 Wen (10.1016/j.atherosclerosis.2020.11.018_bib52) 2008; 294 Ernst (10.1016/j.atherosclerosis.2020.11.018_bib28) 2019; 10 Yokoyama (10.1016/j.atherosclerosis.2020.11.018_bib11) 2007; 369 Mozaffarian (10.1016/j.atherosclerosis.2020.11.018_bib13) 2012; 142 Schaefer (10.1016/j.atherosclerosis.2020.11.018_bib19) 1996; 63 Satoh-Asahara (10.1016/j.atherosclerosis.2020.11.018_bib38) 2012 Merched (10.1016/j.atherosclerosis.2020.11.018_bib41) 2008; 22 Rangel-Huerta (10.1016/j.atherosclerosis.2020.11.018_bib34) 2012; 107 Myhrstad (10.1016/j.atherosclerosis.2020.11.018_bib33) 2011; 60 De Caterina (10.1016/j.atherosclerosis.2020.11.018_bib14) 2000; 71 Ramon (10.1016/j.atherosclerosis.2020.11.018_bib51) 2012; 189 Matthan (10.1016/j.atherosclerosis.2020.11.018_bib24) 2014; 3 Forman (10.1016/j.atherosclerosis.2020.11.018_bib7) 1997; 94 Plourde (10.1016/j.atherosclerosis.2020.11.018_bib42) 2011; 8 Stoll (10.1016/j.atherosclerosis.2020.11.018_bib26) 2004; 24 Tsunoda (10.1016/j.atherosclerosis.2020.11.018_bib17) 2015; 241 Alberti (10.1016/j.atherosclerosis.2020.11.018_bib31) 2005; 366 Calder (10.1016/j.atherosclerosis.2020.11.018_bib3) 2013; 16 Schmitz (10.1016/j.atherosclerosis.2020.11.018_bib39) 2008; 47 Allaire (10.1016/j.atherosclerosis.2020.11.018_bib16) 2016; 104 Miller (10.1016/j.atherosclerosis.2020.11.018_bib43) 2013; 52 Weylandt (10.1016/j.atherosclerosis.2020.11.018_bib47) 2011; 32 Martin (10.1016/j.atherosclerosis.2020.11.018_bib8) 2010; 690 Markworth (10.1016/j.atherosclerosis.2020.11.018_bib25) 2016; 30 Endo (10.1016/j.atherosclerosis.2020.11.018_bib49) 2014; 211 Osma-Garcia (10.1016/j.atherosclerosis.2020.11.018_bib53) 2016; 46 Bhatt (10.1016/j.atherosclerosis.2020.11.018_bib12) 2019; 380 Draper (10.1016/j.atherosclerosis.2020.11.018_bib37) 2011; 22 Calder (10.1016/j.atherosclerosis.2020.11.018_bib4) 2015; 1851 Serhan (10.1016/j.atherosclerosis.2020.11.018_bib9) 2014; 510 Vors (10.1016/j.atherosclerosis.2020.11.018_bib18) 2017; 257 Lo (10.1016/j.atherosclerosis.2020.11.018_bib5) 1999; 82 Barden (10.1016/j.atherosclerosis.2020.11.018_bib45) 2015; 102 See (10.1016/j.atherosclerosis.2020.11.018_bib46) 2017; 118 Serini (10.1016/j.atherosclerosis.2020.11.018_bib36) 2012; 9 Krishnamurthy (10.1016/j.atherosclerosis.2020.11.018_bib48) 2011; 76 Shrout (10.1016/j.atherosclerosis.2020.11.018_bib30) Wei (10.1016/j.atherosclerosis.2020.11.018_bib23) 2011; 13 Sijben (10.1016/j.atherosclerosis.2020.11.018_bib35) 2007; 66 Oh (10.1016/j.atherosclerosis.2020.11.018_bib6) 2010; 142 Baron (10.1016/j.atherosclerosis.2020.11.018_bib29) 1986; 51 Moertl (10.1016/j.atherosclerosis.2020.11.018_bib20) 2011; 161 Skulas-Ray (10.1016/j.atherosclerosis.2020.11.018_bib21) 2011; 93 Weldon (10.1016/j.atherosclerosis.2020.11.018_bib15) 2007; 18 |
References_xml | – volume: 76 start-page: 5433 year: 2011 end-page: 5437 ident: bib48 article-title: Total synthesis and bioactivity of 18( R )-Hydroxyeicosapentaenoic acid publication-title: J. Org. Chem. – volume: 63 start-page: 234 year: 1996 end-page: 241 ident: bib19 article-title: Effects of National Cholesterol Education Program Step 2 diets relatively high or relatively low in fish-derived fatty acids on plasma lipoproteins in middle-aged and elderly subjects publication-title: Am. J. Clin. Nutr. – volume: 380 start-page: 11 year: 2019 end-page: 22 ident: bib12 article-title: Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia publication-title: N. Engl. J. Med. – volume: 93 start-page: 243 year: 2011 ident: bib21 article-title: Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia publication-title: Am. J. Clin. Nutr. – volume: 52 start-page: 895 year: 2013 end-page: 904 ident: bib43 article-title: A short-term n-3 DPA supplementation study in humans publication-title: Eur. J. Nutr. – volume: 47 start-page: 147 year: 2008 end-page: 155 ident: bib39 article-title: The opposing effects of n-3 and n-6 fatty acids publication-title: Prog. Lipid Res. – volume: 62 year: 2013 ident: bib50 article-title: Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation publication-title: Diabetes – volume: 189 start-page: 1036 year: 2012 end-page: 1042 ident: bib51 article-title: Specialized proresolving mediators enhance human B cell differentiation to antibody-secreting cells publication-title: J. Immunol. – volume: 3 start-page: 225 year: 2018 end-page: 234 ident: bib10 article-title: Associations of omega-3 fatty acid supplement use with cardiovascular disease risks meta-analysis of 10 trials involving 77 917 individuals publication-title: JAMA Cardiol – volume: 24 start-page: 2227 year: 2004 end-page: 2236 ident: bib26 article-title: Potential role of endotoxin as a proinflammatory mediator of atherosclerosis publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 82 start-page: 216 year: 1999 end-page: 221 ident: bib5 article-title: Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NFκB activity publication-title: J. Surg. Res. – volume: 18 start-page: 250 year: 2007 end-page: 258 ident: bib15 article-title: Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid publication-title: J. Nutr. Biochem. – volume: 21 start-page: 495 year: 2002 end-page: 505 ident: bib2 article-title: Omega-3 fatty acids in inflammation and autoimmune diseases publication-title: J. Am. Coll. Nutr. – volume: 51 start-page: 1173 year: 1986 end-page: 1182 ident: bib29 article-title: The moderator-mediator variable distinction in social psychological research. Conceptual, strategic, and statistical considerations publication-title: J. Pers. Soc. Psychol. – volume: 102 start-page: 1357 year: 2015 end-page: 1364 ident: bib45 article-title: Specialized proresolving lipid mediators in humans with the metabolic syndrome after n–3 fatty acids and aspirin publication-title: Am. J. Clin. Nutr. – volume: 366 start-page: 1059 year: 2005 end-page: 1062 ident: bib31 article-title: The metabolic syndrome - a new worldwide definition publication-title: Lancet – year: 2013 ident: bib27 article-title: Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide publication-title: Mediat. Inflamm. – volume: 4 year: 2015 ident: bib40 article-title: Short-Term, high-dose fish oil supplementation increases the production of omega-3 fatty acid-derived mediators in patients with peripheral artery disease (the OMEGA-PAD I trial) publication-title: J. Am. Heart Assoc. – volume: 66 start-page: 237 year: 2007 end-page: 259 ident: bib35 article-title: Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease publication-title: Proc. Nutr. Soc. – volume: 94 start-page: 4312 year: 1997 end-page: 4317 ident: bib7 article-title: Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 510 start-page: 92 year: 2014 end-page: 101 ident: bib9 article-title: Pro-resolving lipid mediators are leads for resolution physiology publication-title: Nature – volume: 161 year: 2011 ident: bib20 article-title: Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study publication-title: Am. Heart J. – volume: 13 start-page: 474 year: 2011 end-page: 483 ident: bib23 article-title: Effects of eicosapentaenoic acid publication-title: Curr. Atherosclerosis Rep. – volume: 107 year: 2012 ident: bib34 article-title: Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: a systematic review of randomised clinical trials publication-title: Br. J. Nutr. – volume: 110 start-page: 823 year: 2019 end-page: 831 ident: bib44 article-title: Compound-specific isotope analysis reveals no retroconversion of DHA to EPA but substantial conversion of EPA to DHA following supplementation: a randomized control trial publication-title: Am. J. Clin. Nutr. – volume: 32 start-page: 897 year: 2011 end-page: 903 ident: bib47 article-title: Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-α publication-title: Carcinogenesis – volume: 241 start-page: 400 year: 2015 end-page: 408 ident: bib17 article-title: Effects of oral eicosapentaenoic acid publication-title: Atherosclerosis – volume: 297 start-page: 1143 year: 1971 end-page: 1146 ident: bib1 article-title: Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos publication-title: Lancet – volume: 46 start-page: 677 year: 2016 end-page: 688 ident: bib53 article-title: Dose-dependent effects of prostaglandin E2 in macrophage adhesion and migration publication-title: Eur. J. Immunol. – year: 2002 ident: bib30 article-title: Mediation in experimental and nonexperimental studies: new procedures and recommendations – volume: 104 start-page: 280 year: 2016 end-page: 287 ident: bib16 article-title: A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study publication-title: Am. J. Clin. Nutr. – volume: 60 start-page: 309 year: 2011 end-page: 319 ident: bib33 article-title: Effect of marine n-3 fatty acids on circulating inflammatory markers in healthy subjects and subjects with cardiovascular risk factors publication-title: Inflamm. Res. – volume: 1851 start-page: 469 year: 2015 end-page: 484 ident: bib4 article-title: Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids – volume: 3 year: 2013 ident: bib32 article-title: Novel n-3 immunoresolvents: structures and actions publication-title: Sci. Rep. – volume: 16 start-page: 425 year: 2013 end-page: 433 ident: bib3 article-title: Long chain fatty acids and gene expression in inflammation and immunity publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 118 start-page: 971 year: 2017 end-page: 980 ident: bib46 article-title: Effects of prenatal n -3 fatty acid supplementation on offspring resolvins at birth and 12 years of age: a double-blind, randomised controlled clinical trial publication-title: Br. J. Nutr. – volume: 142 start-page: 614S year: 2012 end-page: 625S ident: bib13 article-title: (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? publication-title: J. Nutr. – volume: 3 year: 2014 ident: bib24 article-title: Plasma phospholipid fatty acid biomarkers of dietary fat quality and endogenous metabolism predict coronary heart disease risk: a nested case-control study within the Women's Health Initiative observational study publication-title: J. Am. Heart Assoc. – volume: 257 start-page: 116 year: 2017 end-page: 122 ident: bib18 article-title: Inflammatory gene expression in whole blood cells after EPA vs. DHA supplementation: results from the ComparED study publication-title: Atherosclerosis – year: 2012 ident: bib38 article-title: Highly purified eicosapentaenoic acid increases interleukin-10 levels of peripheral blood monocytes in obese patients with dyslipidemia publication-title: Diabetes Care – volume: 10 start-page: 1788 year: 2019 ident: bib28 article-title: Exclusive temporal stimulation of IL-10 expression in LPS-stimulated mouse macrophages by cAMP inducers and type I interferons publication-title: Front. Immunol. – volume: 30 start-page: 3714 year: 2016 end-page: 3725 ident: bib25 article-title: Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid publication-title: Faseb. J. – volume: 71 year: 2000 ident: bib14 article-title: Fatty acid modulation of endothelial activation publication-title: Am. J. Clin. Nutr. – volume: 22 start-page: 784 year: 2011 end-page: 790 ident: bib37 article-title: Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ publication-title: J. Nutr. Biochem. – volume: 142 start-page: 687 year: 2010 end-page: 698 ident: bib6 article-title: GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects publication-title: Cell – volume: 211 start-page: 1673 year: 2014 end-page: 1687 ident: bib49 article-title: 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling publication-title: J. Exp. Med. – volume: 9 start-page: 913 year: 2012 end-page: 923 ident: bib36 article-title: EPA and DHA differentially affect in vitro inflammatory cytokine release by peripheral blood mononuclear cells from Alzheimer's patients publication-title: Curr. Alzheimer Res. – volume: 37 start-page: 1831 year: 2009 end-page: 1841 ident: bib22 article-title: Effects of n-3 polyunsaturated fatty acid therapy on plasma inflammatory markers and N-terminal pro-brain natriuretic peptide in elderly patients with chronic heart failure publication-title: J. Int. Med. Res. – volume: 294 year: 2008 ident: bib52 article-title: Role of 12/15-lipoxygenase in the expression of MCP-1 in mouse macrophages publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 22 start-page: 3595 year: 2008 end-page: 3606 ident: bib41 article-title: Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators publication-title: Faseb. J. – volume: 8 start-page: 5 year: 2011 ident: bib42 article-title: Plasma incorporation, apparent retroconversion and β-oxidation of 13C-docosahexaenoic acid in the elderly publication-title: Nutr. Metab. – volume: 690 start-page: 57 year: 2010 end-page: 63 ident: bib8 article-title: Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components publication-title: Mutat. Res. Fund Mol. Mech. Mutagen – volume: 369 start-page: 1090 year: 2007 end-page: 1098 ident: bib11 article-title: Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis publication-title: Lancet – volume: 102 start-page: 1357 year: 2015 ident: 10.1016/j.atherosclerosis.2020.11.018_bib45 article-title: Specialized proresolving lipid mediators in humans with the metabolic syndrome after n–3 fatty acids and aspirin publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.115.116384 – volume: 16 start-page: 425 year: 2013 ident: 10.1016/j.atherosclerosis.2020.11.018_bib3 article-title: Long chain fatty acids and gene expression in inflammation and immunity publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 37 start-page: 1831 year: 2009 ident: 10.1016/j.atherosclerosis.2020.11.018_bib22 article-title: Effects of n-3 polyunsaturated fatty acid therapy on plasma inflammatory markers and N-terminal pro-brain natriuretic peptide in elderly patients with chronic heart failure publication-title: J. Int. Med. Res. doi: 10.1177/147323000903700619 – volume: 21 start-page: 495 year: 2002 ident: 10.1016/j.atherosclerosis.2020.11.018_bib2 article-title: Omega-3 fatty acids in inflammation and autoimmune diseases publication-title: J. Am. Coll. Nutr. doi: 10.1080/07315724.2002.10719248 – volume: 3 year: 2013 ident: 10.1016/j.atherosclerosis.2020.11.018_bib32 article-title: Novel n-3 immunoresolvents: structures and actions publication-title: Sci. Rep. doi: 10.1038/srep01940 – volume: 10 start-page: 1788 year: 2019 ident: 10.1016/j.atherosclerosis.2020.11.018_bib28 article-title: Exclusive temporal stimulation of IL-10 expression in LPS-stimulated mouse macrophages by cAMP inducers and type I interferons publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01788 – year: 2012 ident: 10.1016/j.atherosclerosis.2020.11.018_bib38 article-title: Highly purified eicosapentaenoic acid increases interleukin-10 levels of peripheral blood monocytes in obese patients with dyslipidemia publication-title: Diabetes Care doi: 10.2337/dc12-0269 – volume: 62 year: 2013 ident: 10.1016/j.atherosclerosis.2020.11.018_bib50 article-title: Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation publication-title: Diabetes doi: 10.2337/db12-0828 – volume: 94 start-page: 4312 year: 1997 ident: 10.1016/j.atherosclerosis.2020.11.018_bib7 article-title: Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.9.4312 – volume: 1851 start-page: 469 year: 2015 ident: 10.1016/j.atherosclerosis.2020.11.018_bib4 article-title: Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2014.08.010 – volume: 3 year: 2014 ident: 10.1016/j.atherosclerosis.2020.11.018_bib24 article-title: Plasma phospholipid fatty acid biomarkers of dietary fat quality and endogenous metabolism predict coronary heart disease risk: a nested case-control study within the Women's Health Initiative observational study publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.113.000764 – volume: 142 start-page: 614S year: 2012 ident: 10.1016/j.atherosclerosis.2020.11.018_bib13 article-title: (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? publication-title: J. Nutr. doi: 10.3945/jn.111.149633 – volume: 366 start-page: 1059 year: 2005 ident: 10.1016/j.atherosclerosis.2020.11.018_bib31 article-title: The metabolic syndrome - a new worldwide definition publication-title: Lancet doi: 10.1016/S0140-6736(05)67402-8 – volume: 241 start-page: 400 year: 2015 ident: 10.1016/j.atherosclerosis.2020.11.018_bib17 article-title: Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2015.05.015 – volume: 82 start-page: 216 year: 1999 ident: 10.1016/j.atherosclerosis.2020.11.018_bib5 article-title: Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NFκB activity publication-title: J. Surg. Res. doi: 10.1006/jsre.1998.5524 – volume: 510 start-page: 92 year: 2014 ident: 10.1016/j.atherosclerosis.2020.11.018_bib9 article-title: Pro-resolving lipid mediators are leads for resolution physiology publication-title: Nature doi: 10.1038/nature13479 – volume: 8 start-page: 5 year: 2011 ident: 10.1016/j.atherosclerosis.2020.11.018_bib42 article-title: Plasma incorporation, apparent retroconversion and β-oxidation of 13C-docosahexaenoic acid in the elderly publication-title: Nutr. Metab. doi: 10.1186/1743-7075-8-5 – volume: 52 start-page: 895 year: 2013 ident: 10.1016/j.atherosclerosis.2020.11.018_bib43 article-title: A short-term n-3 DPA supplementation study in humans publication-title: Eur. J. Nutr. doi: 10.1007/s00394-012-0396-3 – volume: 690 start-page: 57 year: 2010 ident: 10.1016/j.atherosclerosis.2020.11.018_bib8 article-title: Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components publication-title: Mutat. Res. Fund Mol. Mech. Mutagen doi: 10.1016/j.mrfmmm.2009.09.009 – volume: 60 start-page: 309 year: 2011 ident: 10.1016/j.atherosclerosis.2020.11.018_bib33 article-title: Effect of marine n-3 fatty acids on circulating inflammatory markers in healthy subjects and subjects with cardiovascular risk factors publication-title: Inflamm. Res. doi: 10.1007/s00011-010-0302-5 – volume: 93 start-page: 243 year: 2011 ident: 10.1016/j.atherosclerosis.2020.11.018_bib21 article-title: Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.110.003871 – volume: 161 year: 2011 ident: 10.1016/j.atherosclerosis.2020.11.018_bib20 article-title: Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study publication-title: Am. Heart J. doi: 10.1016/j.ahj.2011.02.011 – volume: 32 start-page: 897 year: 2011 ident: 10.1016/j.atherosclerosis.2020.11.018_bib47 article-title: Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-α publication-title: Carcinogenesis doi: 10.1093/carcin/bgr049 – volume: 4 year: 2015 ident: 10.1016/j.atherosclerosis.2020.11.018_bib40 article-title: Short-Term, high-dose fish oil supplementation increases the production of omega-3 fatty acid-derived mediators in patients with peripheral artery disease (the OMEGA-PAD I trial) publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.115.002034 – ident: 10.1016/j.atherosclerosis.2020.11.018_bib30 – volume: 294 year: 2008 ident: 10.1016/j.atherosclerosis.2020.11.018_bib52 article-title: Role of 12/15-lipoxygenase in the expression of MCP-1 in mouse macrophages publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00260.2007 – volume: 30 start-page: 3714 year: 2016 ident: 10.1016/j.atherosclerosis.2020.11.018_bib25 article-title: Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid publication-title: Faseb. J. doi: 10.1096/fj.201600360R – volume: 189 start-page: 1036 year: 2012 ident: 10.1016/j.atherosclerosis.2020.11.018_bib51 article-title: Specialized proresolving mediators enhance human B cell differentiation to antibody-secreting cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1103483 – volume: 3 start-page: 225 year: 2018 ident: 10.1016/j.atherosclerosis.2020.11.018_bib10 article-title: Associations of omega-3 fatty acid supplement use with cardiovascular disease risks meta-analysis of 10 trials involving 77 917 individuals publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2017.5205 – volume: 211 start-page: 1673 year: 2014 ident: 10.1016/j.atherosclerosis.2020.11.018_bib49 article-title: 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling publication-title: J. Exp. Med. doi: 10.1084/jem.20132011 – volume: 297 start-page: 1143 year: 1971 ident: 10.1016/j.atherosclerosis.2020.11.018_bib1 article-title: Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos publication-title: Lancet doi: 10.1016/S0140-6736(71)91658-8 – volume: 18 start-page: 250 year: 2007 ident: 10.1016/j.atherosclerosis.2020.11.018_bib15 article-title: Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2006.04.003 – volume: 51 start-page: 1173 year: 1986 ident: 10.1016/j.atherosclerosis.2020.11.018_bib29 article-title: The moderator-mediator variable distinction in social psychological research. Conceptual, strategic, and statistical considerations publication-title: J. Pers. Soc. Psychol. doi: 10.1037/0022-3514.51.6.1173 – volume: 380 start-page: 11 year: 2019 ident: 10.1016/j.atherosclerosis.2020.11.018_bib12 article-title: Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1812792 – volume: 47 start-page: 147 year: 2008 ident: 10.1016/j.atherosclerosis.2020.11.018_bib39 article-title: The opposing effects of n-3 and n-6 fatty acids publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2007.12.004 – volume: 257 start-page: 116 year: 2017 ident: 10.1016/j.atherosclerosis.2020.11.018_bib18 article-title: Inflammatory gene expression in whole blood cells after EPA vs. DHA supplementation: results from the ComparED study publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2017.01.025 – volume: 63 start-page: 234 year: 1996 ident: 10.1016/j.atherosclerosis.2020.11.018_bib19 article-title: Effects of National Cholesterol Education Program Step 2 diets relatively high or relatively low in fish-derived fatty acids on plasma lipoproteins in middle-aged and elderly subjects publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/63.2.234 – volume: 71 year: 2000 ident: 10.1016/j.atherosclerosis.2020.11.018_bib14 article-title: Fatty acid modulation of endothelial activation publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/71.1.213S – volume: 66 start-page: 237 year: 2007 ident: 10.1016/j.atherosclerosis.2020.11.018_bib35 article-title: Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease publication-title: Proc. Nutr. Soc. doi: 10.1017/S0029665107005472 – volume: 110 start-page: 823 year: 2019 ident: 10.1016/j.atherosclerosis.2020.11.018_bib44 article-title: Compound-specific isotope analysis reveals no retroconversion of DHA to EPA but substantial conversion of EPA to DHA following supplementation: a randomized control trial publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/nqz097 – volume: 13 start-page: 474 year: 2011 ident: 10.1016/j.atherosclerosis.2020.11.018_bib23 article-title: Effects of eicosapentaenoic acid versus docosahexaenoic acid on serum lipids: a systematic review and meta-analysis publication-title: Curr. Atherosclerosis Rep. doi: 10.1007/s11883-011-0210-3 – volume: 22 start-page: 784 year: 2011 ident: 10.1016/j.atherosclerosis.2020.11.018_bib37 article-title: Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2010.06.009 – volume: 76 start-page: 5433 year: 2011 ident: 10.1016/j.atherosclerosis.2020.11.018_bib48 article-title: Total synthesis and bioactivity of 18( R )-Hydroxyeicosapentaenoic acid publication-title: J. Org. Chem. doi: 10.1021/jo2002243 – volume: 22 start-page: 3595 year: 2008 ident: 10.1016/j.atherosclerosis.2020.11.018_bib41 article-title: Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators publication-title: Faseb. J. doi: 10.1096/fj.08-112201 – volume: 46 start-page: 677 year: 2016 ident: 10.1016/j.atherosclerosis.2020.11.018_bib53 article-title: Dose-dependent effects of prostaglandin E2 in macrophage adhesion and migration publication-title: Eur. J. Immunol. doi: 10.1002/eji.201545629 – volume: 9 start-page: 913 year: 2012 ident: 10.1016/j.atherosclerosis.2020.11.018_bib36 article-title: EPA and DHA differentially affect in vitro inflammatory cytokine release by peripheral blood mononuclear cells from Alzheimer's patients publication-title: Curr. Alzheimer Res. doi: 10.2174/156720512803251147 – volume: 107 year: 2012 ident: 10.1016/j.atherosclerosis.2020.11.018_bib34 article-title: Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: a systematic review of randomised clinical trials publication-title: Br. J. Nutr. doi: 10.1017/S0007114512001559 – year: 2013 ident: 10.1016/j.atherosclerosis.2020.11.018_bib27 article-title: Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide publication-title: Mediat. Inflamm. doi: 10.1155/2013/697972 – volume: 24 start-page: 2227 year: 2004 ident: 10.1016/j.atherosclerosis.2020.11.018_bib26 article-title: Potential role of endotoxin as a proinflammatory mediator of atherosclerosis publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000147534.69062.dc – volume: 142 start-page: 687 year: 2010 ident: 10.1016/j.atherosclerosis.2020.11.018_bib6 article-title: GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects publication-title: Cell doi: 10.1016/j.cell.2010.07.041 – volume: 369 start-page: 1090 year: 2007 ident: 10.1016/j.atherosclerosis.2020.11.018_bib11 article-title: Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis publication-title: Lancet doi: 10.1016/S0140-6736(07)60527-3 – volume: 104 start-page: 280 year: 2016 ident: 10.1016/j.atherosclerosis.2020.11.018_bib16 article-title: A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.116.131896 – volume: 118 start-page: 971 year: 2017 ident: 10.1016/j.atherosclerosis.2020.11.018_bib46 article-title: Effects of prenatal n -3 fatty acid supplementation on offspring resolvins at birth and 12 years of age: a double-blind, randomised controlled clinical trial publication-title: Br. J. Nutr. doi: 10.1017/S0007114517002914 |
SSID | ssj0004718 |
Score | 2.6139905 |
Snippet | The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators,... Background and aims: The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 90 |
SubjectTerms | atherosclerosis Cross-Over Studies DHA Dietary Supplements docosahexaenoic acid Docosahexaenoic Acids Double-Blind Method Eicosapentaenoic Acid EPA Fatty Acids, Omega-3 Female Humans Inflammation interleukin-10 interleukin-6 Male Monocytes postmenopause Randomized crossover trial Specialized pro-resolving lipid mediators |
Title | EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021915020315276 https://dx.doi.org/10.1016/j.atherosclerosis.2020.11.018 https://www.ncbi.nlm.nih.gov/pubmed/33303222 https://www.proquest.com/docview/2473404422 https://www.proquest.com/docview/2636457427 |
Volume | 316 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF_aKxRfxO-eH2UEfTNtstlkExEx1JZTafHBQt_CfgUiuST07oT64B_pX-RMPu5QVCq-hCTsDsnO7Mxvd-eDsWdoo7XxberJJA49YZT1VJT4XhCZVPLIhoGl2OHTs3h2Lt5fRBdb7GiMhSG3ykH39zq909bDm8NhNA_bsqQYX5xtiGc4FSrgMt5mOxytfTJhO9m7D7OzTXikDHqFTN4I2GGXPd-4eXU4q1kgVbyWlMCbkx458KkMyO9N1Z-gaGeSTm6xmwOWhKz_3Ntsy9V32O7pcFp-l30__piBqi28nWUwVkLBGV1VVzBvLBXucnhTN-YKb1DUUDrm3ak7XPaus_QWFitNmzULoD1bMH023U1zZCy1anHU4EupoEU8Plew6Avbl1-dBfwTDyk2Fe1eQFW2pYUuZIVK_byEDNBg2mZObV-AbVa6cp5G_ItP3dCQmyl0iXDvsfOT409HM2-o4eAZkYilZxIEdKZQIkqkQ6zihwQh0yBVSeEi7kwQOBfouCiKlHKNaT92aFVNklibqkiH99mkbmq3xwDXZoYXKk0jpQV3VskUF0tOCJn4GmlO2auRXbkZEpxTnY0qHz3ZPue_cDsnbuMiKEduT1m87t72mT6u2_H1KBv5GM6KCjhHm3RdAm_WBH6S_X8h8XQUyhz1Ax36qNo1K2wkZCh8ITj_S5uYDqOl4HLKHvQSvR6CMER2IIh8-P8f-Yjd4DQHuw2sx2yyvFy5JwjplnqfbR98C_aHifsDrjZUbw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEF9qhdov4rNefY2g39w22WxeIuJRW07tFT-00G9hX4FILgm9O6F-8I_0L3ImjzsUlYpfjlyYDMnO7Mxvd-fB2HP00dp4NuVxEgVcGmW5ChOP-6FJYxHawLeUOzw9iSZn8sN5eL7BDoZcGAqr7G1_Z9Nba93f2e9Hc78pCsrxxdmGeEZQowIRR9fYdUltDlCp976t4zzI-nZxHj4n8i32Yh3k1aKseo488beg8t2CrMieR01Afu-o_gREW4d0dIvd7JEkjLuXvc02XHWHbU37s_K77PvhpzGoysK7yRiGPig4n8vyEma1pbZdDi-q2lziBSoa6sasPXOHiy5wlu7CfKlpq2YOtGMLpquluyZHsRJVg2MGXwoFDaLxmYJ519a--Oos4Jdw5FiXtHcBZdEUFtqEFWr08wrGgO7S1jOifQm2XurScY3oF_-1Q0NBptCWwb3Hzo4OTw8mvO_gwI1M5IKbBOGcyZUMk9ghUvECApCpn6okd6Fwxved83WU53lKlca0Fzn0qSZJrE1VqIP7bLOqK_eAAa7MjMhVmoZKS-GsilNcKjkp48TTyHPEXg_iykxf3py6bJTZEMf2OftF2hlJG5dAGUp7xKLV401X5-OqD74ZdCMbklnR_Gboka7K4O2KwU-a_y8sng1KmaF1oCMfVbl6iUQyDqQnpRB_oYnoKDqWIh6xnU6jV0MQBCgOhJC7__-ST9mNyen0ODt-f_LxIdsWNB_braxHbHNxsXSPEdwt9JN28v4Ai0hVMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EPA+and+DHA+differentially+modulate+monocyte+inflammatory+response+in+subjects+with+chronic+inflammation+in+part+via+plasma+specialized+pro-resolving+lipid+mediators%3A+A+randomized%2C+double-blind%2C+crossover+study&rft.jtitle=Atherosclerosis&rft.au=So%2C+Jisun&rft.au=Wu%2C+Dayong&rft.au=Lichtenstein%2C+Alice+H.&rft.au=Tai%2C+Albert+K.&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=0021-9150&rft.eissn=1879-1484&rft.volume=316&rft.spage=90&rft.epage=98&rft_id=info:doi/10.1016%2Fj.atherosclerosis.2020.11.018&rft.externalDocID=S0021915020315276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9150&client=summon |