EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study

The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation o...

Full description

Saved in:
Bibliographic Details
Published inAtherosclerosis Vol. 316; pp. 90 - 98
Main Authors So, Jisun, Wu, Dayong, Lichtenstein, Alice H., Tai, Albert K., Matthan, Nirupa R., Maddipati, Krishna Rao, Lamon-Fava, Stefania
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text
ISSN0021-9150
1879-1484
1879-1484
DOI10.1016/j.atherosclerosis.2020.11.018

Cover

Abstract The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50–75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates. [Display omitted] •eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differently modulate the ex vivo inflammatory response of human monocytes.•DHA affects a wider range of plasma polyunsaturated fatty acids (PUFA) pro-resolving lipid mediators (SPM) lipidome than EPA.•Different subgroups of PUFA derivatives mediate anti-inflammatory effects of EPA and DHA.
AbstractList Background and aims: The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. Methods After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50–75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. Results: Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. Conclusions: EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.
The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.
The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome.BACKGROUND AND AIMSThe independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome.After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout.METHODSAfter a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout.Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression.RESULTSCompared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression.EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.CONCLUSIONSEPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.
The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50–75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates. [Display omitted] •eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differently modulate the ex vivo inflammatory response of human monocytes.•DHA affects a wider range of plasma polyunsaturated fatty acids (PUFA) pro-resolving lipid mediators (SPM) lipidome than EPA.•Different subgroups of PUFA derivatives mediate anti-inflammatory effects of EPA and DHA.
Author Matthan, Nirupa R.
Maddipati, Krishna Rao
So, Jisun
Wu, Dayong
Lichtenstein, Alice H.
Lamon-Fava, Stefania
Tai, Albert K.
Author_xml – sequence: 1
  givenname: Jisun
  surname: So
  fullname: So, Jisun
  organization: Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
– sequence: 2
  givenname: Dayong
  orcidid: 0000-0003-0525-6374
  surname: Wu
  fullname: Wu, Dayong
  organization: Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
– sequence: 3
  givenname: Alice H.
  orcidid: 0000-0002-1053-9478
  surname: Lichtenstein
  fullname: Lichtenstein, Alice H.
  organization: Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
– sequence: 4
  givenname: Albert K.
  surname: Tai
  fullname: Tai, Albert K.
  organization: Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
– sequence: 5
  givenname: Nirupa R.
  surname: Matthan
  fullname: Matthan, Nirupa R.
  organization: Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
– sequence: 6
  givenname: Krishna Rao
  orcidid: 0000-0003-1445-791X
  surname: Maddipati
  fullname: Maddipati, Krishna Rao
  organization: Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI, USA
– sequence: 7
  givenname: Stefania
  orcidid: 0000-0002-8675-8159
  surname: Lamon-Fava
  fullname: Lamon-Fava, Stefania
  email: stefania.lamon-fava@tufts.edu
  organization: Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33303222$$D View this record in MEDLINE/PubMed
BookMark eNqVks1uEzEUhS1URNPCKyBvkFh0gu3x_CGxiEJokSrBAtaWx3OHOHjswfYEhcfkifA0BaRsKBv_fj62zz0X6Mw6Cwi9oGRJCS1f7ZYybsG7oMzc6rBkhKU9uiS0foQWtK6ajPKan6EFIYxmDS3IOboIYUcI4RWtn6DzPM9JzhhboJ-bjyssbYff3qxwp_sePNiopTEHPLhuMjJCGlinDmmgbW_kMMjo_AF7CKOzYV7FYWp3oGLA33XcYrX1zmr1F9fOztQofcR7LfFoZBgkDiOodJX-AR0evcuSojN7bb9go0fd4QE6Pd8VXuMV9umVbpjZK9y5qTWQtUbbNFPJh-D24HGIU3d4ih730gR4dt9fos_vNp_WN9nth-v369VtppI7MVM1pUz1khd1BTmtSM6LsmhoI-seCgaKUgDaln3fN3WyviUlJNdUXXddI4s2v0Qvj7rp6d8mCFEMOigwRlpwUxCszEteVJxV_0Z5lXPCOWMJfX6PTm36vxi9HqQ_iN8lS8CbI3D3bQ_9H4QSMUdE7MRJRMQcEUGpSBFJ59cn55WOdyWKXmrzYJXrowokh_cavAhKg1WpYj4FQXROP1hpc6KkUlm1kuYrHP5D5xdFcwMy
CitedBy_id crossref_primary_10_1016_j_ultsonch_2021_105720
crossref_primary_10_1038_s44319_024_00271_x
crossref_primary_10_1016_j_isci_2021_102909
crossref_primary_10_3390_molecules28093943
crossref_primary_10_1002_osp4_626
crossref_primary_10_3390_molecules30010071
crossref_primary_10_1016_j_ynstr_2024_100646
crossref_primary_10_4062_biomolther_2021_107
crossref_primary_10_1016_j_clnu_2021_10_005
crossref_primary_10_1093_ajcn_nqac131
crossref_primary_10_1093_eurjpc_zwae315
crossref_primary_10_1016_j_jacl_2022_10_002
crossref_primary_10_3389_fcvm_2022_1031168
crossref_primary_10_3389_fnut_2022_1003627
crossref_primary_10_3390_nu15224787
crossref_primary_10_1016_j_prostaglandins_2025_106948
crossref_primary_10_3389_fnut_2024_1423228
crossref_primary_10_1186_s12970_021_00461_1
crossref_primary_10_1016_j_jlr_2024_100682
crossref_primary_10_1016_j_ctim_2021_102662
crossref_primary_10_1016_j_intimp_2024_112316
crossref_primary_10_1186_s12944_024_02139_4
crossref_primary_10_1007_s12403_022_00503_2
crossref_primary_10_1093_eurheartj_ehab841
crossref_primary_10_1016_j_jff_2024_106164
crossref_primary_10_3390_ijms241512196
crossref_primary_10_1038_s41598_023_32710_5
crossref_primary_10_3390_ijms24087072
crossref_primary_10_3390_ijms242317000
crossref_primary_10_3390_nu17050885
crossref_primary_10_1016_j_atherosclerosis_2023_117407
crossref_primary_10_1055_a_2480_5329
crossref_primary_10_3390_ijms23063133
crossref_primary_10_1038_s42003_023_05147_9
crossref_primary_10_1007_s00520_023_08274_5
crossref_primary_10_1093_ehjcvp_pvab010
crossref_primary_10_3390_nu14163362
crossref_primary_10_3389_fnut_2021_750292
crossref_primary_10_1063_5_0105187
crossref_primary_10_3390_ijms23094808
crossref_primary_10_1016_j_tjnut_2024_11_006
crossref_primary_10_1016_j_freeradbiomed_2022_02_010
crossref_primary_10_1093_eurheartj_ehab875
crossref_primary_10_1007_s00592_022_02003_w
crossref_primary_10_3390_biom12030353
crossref_primary_10_1016_j_lfs_2022_120489
crossref_primary_10_3389_fimmu_2024_1459297
crossref_primary_10_1007_s11886_022_01831_0
crossref_primary_10_3390_nu16091354
crossref_primary_10_3233_NHA_220184
crossref_primary_10_3389_fnut_2022_960409
crossref_primary_10_1016_j_smim_2022_101597
crossref_primary_10_3389_fnut_2022_1051418
crossref_primary_10_3390_foods11131883
crossref_primary_10_33667_2078_5631_2024_16_25_30
crossref_primary_10_1016_j_plefa_2023_102570
crossref_primary_10_1590_fst_62622
crossref_primary_10_1016_j_jff_2024_106439
crossref_primary_10_1016_j_plefa_2024_102655
crossref_primary_10_1093_jn_nxab412
crossref_primary_10_1039_D1FO03551G
crossref_primary_10_3390_ijms23169136
crossref_primary_10_1016_j_eclinm_2021_100997
crossref_primary_10_1186_s13293_021_00387_y
crossref_primary_10_3389_fnut_2024_1288886
crossref_primary_10_1016_j_jacc_2021_06_011
crossref_primary_10_3389_fimmu_2023_1274147
crossref_primary_10_3390_md21070399
crossref_primary_10_1017_S0007114522000575
crossref_primary_10_17925_HI_2022_16_1_2
crossref_primary_10_3390_ijms25189904
crossref_primary_10_1007_s11356_021_16786_y
crossref_primary_10_1016_j_ultsonch_2024_106945
crossref_primary_10_1038_s41398_024_02932_w
crossref_primary_10_1016_j_freeradbiomed_2022_11_017
crossref_primary_10_1016_j_clnu_2021_04_006
crossref_primary_10_1016_j_plipres_2022_101165
crossref_primary_10_1038_s41598_021_95590_7
crossref_primary_10_1002_lipd_12318
crossref_primary_10_1016_j_ijbiomac_2025_139628
crossref_primary_10_3390_ijms25074099
crossref_primary_10_1038_s41380_023_02051_w
crossref_primary_10_33667_2078_5631_2022_4_8_12
crossref_primary_10_1016_j_plipres_2024_101289
Cites_doi 10.3945/ajcn.115.116384
10.1177/147323000903700619
10.1080/07315724.2002.10719248
10.1038/srep01940
10.3389/fimmu.2019.01788
10.2337/dc12-0269
10.2337/db12-0828
10.1073/pnas.94.9.4312
10.1016/j.bbalip.2014.08.010
10.1161/JAHA.113.000764
10.3945/jn.111.149633
10.1016/S0140-6736(05)67402-8
10.1016/j.atherosclerosis.2015.05.015
10.1006/jsre.1998.5524
10.1038/nature13479
10.1186/1743-7075-8-5
10.1007/s00394-012-0396-3
10.1016/j.mrfmmm.2009.09.009
10.1007/s00011-010-0302-5
10.3945/ajcn.110.003871
10.1016/j.ahj.2011.02.011
10.1093/carcin/bgr049
10.1161/JAHA.115.002034
10.1152/ajpheart.00260.2007
10.1096/fj.201600360R
10.4049/jimmunol.1103483
10.1001/jamacardio.2017.5205
10.1084/jem.20132011
10.1016/S0140-6736(71)91658-8
10.1016/j.jnutbio.2006.04.003
10.1037/0022-3514.51.6.1173
10.1056/NEJMoa1812792
10.1016/j.plipres.2007.12.004
10.1016/j.atherosclerosis.2017.01.025
10.1093/ajcn/63.2.234
10.1093/ajcn/71.1.213S
10.1017/S0029665107005472
10.1093/ajcn/nqz097
10.1007/s11883-011-0210-3
10.1016/j.jnutbio.2010.06.009
10.1021/jo2002243
10.1096/fj.08-112201
10.1002/eji.201545629
10.2174/156720512803251147
10.1017/S0007114512001559
10.1155/2013/697972
10.1161/01.ATV.0000147534.69062.dc
10.1016/j.cell.2010.07.041
10.1016/S0140-6736(07)60527-3
10.3945/ajcn.116.131896
10.1017/S0007114517002914
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.atherosclerosis.2020.11.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-1484
EndPage 98
ExternalDocumentID 33303222
10_1016_j_atherosclerosis_2020_11_018
S0021915020315276
Genre Randomized Controlled Trial
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M27
M41
MO0
N9A
O-L
O9-
OAUVE
OA~
OK1
OL0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
WUQ
X7M
Z5R
ZGI
ZXP
~G-
~KM
0SF
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
ACLOT
CITATION
~HD
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c484t-c8112cfa4587e317034565919a8fe52ec11ee1b6fff98101b06e303c88dd9a5b3
IEDL.DBID AIKHN
ISSN 0021-9150
1879-1484
IngestDate Sun Sep 28 08:39:25 EDT 2025
Sun Sep 28 10:56:21 EDT 2025
Mon Jul 21 06:06:12 EDT 2025
Thu Sep 25 01:08:11 EDT 2025
Thu Apr 24 22:50:42 EDT 2025
Fri Feb 23 02:48:45 EST 2024
Tue Aug 26 19:31:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Randomized crossover trial
Monocytes
Inflammation
DHA
Specialized pro-resolving lipid mediators
EPA
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-c8112cfa4587e317034565919a8fe52ec11ee1b6fff98101b06e303c88dd9a5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-1053-9478
0000-0003-1445-791X
0000-0002-8675-8159
0000-0003-0525-6374
PMID 33303222
PQID 2473404422
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2636457427
proquest_miscellaneous_2473404422
pubmed_primary_33303222
crossref_primary_10_1016_j_atherosclerosis_2020_11_018
crossref_citationtrail_10_1016_j_atherosclerosis_2020_11_018
elsevier_sciencedirect_doi_10_1016_j_atherosclerosis_2020_11_018
elsevier_clinicalkey_doi_10_1016_j_atherosclerosis_2020_11_018
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Atherosclerosis
PublicationTitleAlternate Atherosclerosis
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Aung, Halsey, Kromhout, Gerstein, Marchioli, Tavazzi, Geleijnse, Rauch, Ness, Galan, Chew, Bosch, Collins, Lewington, Armitage, Clarke (bib10) 2018; 3
Serini, Bizzarro, Piccioni, Fasano, Rossi, Lauria, Cittadini, Masullo, Calviello (bib36) 2012; 9
Schaefer, Lichtenstein, Lamon-Fava, Contois, Li, Goldin, Rasmussen, McNamara, Ordovas (bib19) 1996; 63
Moertl, Hammer, Steiner, Hutuleac, Vonbank, Berger (bib20) 2011; 161
See, Mas, Prescott, Beilin, Burrows, Barden, Huang, Mori (bib46) 2017; 118
Mozaffarian, Wu (bib13) 2012; 142
Tsunoda, Lamon-Fava, Asztalos, Iyer, Richardson, Schaefer (bib17) 2015; 241
Shrout, Bolger (bib30) 2002
Lo, Chiu, Fu, Lo, Helton (bib5) 1999; 82
Alberti, Zimmet, Shaw (bib31) 2005; 366
Myhrstad, Retterstøl, Telle-Hansen, Ottestad, Halvorsen, Holven, Ulven (bib33) 2011; 60
Satoh-Asahara, Shimatsu, Sasaki, Nakaoka, Himeno, Tochiya, Kono, Takaya, Ono, Wada, Suganami, Hasegawa, Ogawa (bib38) 2012
Baron, Kenny (bib29) 1986; 51
Miller, Kaur, Larsen, Loh, Linderborg, Weisinger, Turchini, Cameron-Smith, Sinclair (bib43) 2013; 52
Yokoyama, Origasa, Matsuzaki, Matsuzawa, Saito, Ishikawa, Oikawa, Sasaki, Hishida, Itakura, Kita, Kitabatake, Nakaya, Sakata, Shimada, Shirato (bib11) 2007; 369
Grenon, Owens, V Nosova, Hughes-Fulford, Alley, Chong, Perez, Yen, Boscardin, Hellmann, Spite, Conte (bib40) 2015; 4
Wen, Gu, Vandenhoff, Liu, Nadler (bib52) 2008; 294
Rangel-Huerta, Aguilera, Mesa, Gil (bib34) 2012; 107
Skulas-Ray, Kris-Etherton, Harris, Vanden Heuvel, Wagner, West (bib21) 2011; 93
Vors, Allaire, Marin, Lépine, Charest, Tchernof, Couture, Lamarche (bib18) 2017; 257
Barden, Mas, Croft, Phillips, Mori (bib45) 2015; 102
Forman, Chen, Evans (bib7) 1997; 94
Markworth, Kaur, Miller, Larsen, Sinclair, Maddipati, Cameron-Smith (bib25) 2016; 30
Ernst, Glucksam-Galnoy, Bhatta, Athamna, Ben-Dror, Glick, Gerber, Zor (bib28) 2019; 10
Dalli, Colas, Serhan (bib32) 2013; 3
Wei, Jacobson (bib23) 2011; 13
Bhatt, Steg, Miller, Brinton, Jacobson, Ketchum, Doyle, Juliano, Jiao, Granowitz, Tardif, Ballantyne (bib12) 2019; 380
Serhan (bib9) 2014; 510
Ramon, Gao, Serhan, Phipps (bib51) 2012; 189
Martin (bib8) 2010; 690
Allaire, Couture, Leclerc, Charest, Marin, Lépine, Talbot, Tchernof, Lamarche (bib16) 2016; 104
Bang, Dyerberg, Nielsen (bib1) 1971; 297
Calder (bib4) 2015; 1851
Draper, Reynolds, Canavan, Mills, Loscher, Roche (bib37) 2011; 22
Schmitz, Ecker (bib39) 2008; 47
Merched, Ko, Gotlinger, Serhan, Chan (bib41) 2008; 22
Neuhofer, Zeyda, Mascher, Itariu, Murano, Leitner, Hochbrugger, Fraisl, Cinti, Serhan, Stulnig (bib50) 2013; 62
Calder (bib3) 2013; 16
Schildberger, Rossmanith, Eichhorn, Strassl, Weber (bib27) 2013
Zhao, Shao, Teng, Hu, Luo, Yu, Zhang, Zhang (bib22) 2009; 37
Weylandt, Krause, Gomolka, Chiu, Bilal, Nadolny, Waechter, Fischer, Rothe, Kang (bib47) 2011; 32
De Caterina, Liao, Libby (bib14) 2000; 71
Matthan, Ooi, Van Horn, Neuhouser, Woodman, Lichtenstein (bib24) 2014; 3
Stoll, Denning, Weintraub (bib26) 2004; 24
Plourde, Chouinard-Watkins, Vandal, Zhang, Lawrence, Brenna, Cunnane (bib42) 2011; 8
Osma-Garcia, Punzón, Fresno, Díaz-Muñoz (bib53) 2016; 46
Oh, Talukdar, Bae, Imamura, Morinaga, Fan, Li, Lu, Watkins, Olefsky (bib6) 2010; 142
Simopoulos (bib2) 2002; 21
Sijben, Calder (bib35) 2007; 66
Metherel, Irfan, Klingel, Mutch, Bazinet (bib44) 2019; 110
Krishnamurthy, Dougherty, Haller, Chaikof (bib48) 2011; 76
Weldon, Mullen, Loscher, Hurley, Roche (bib15) 2007; 18
Endo, Sano, Isobe, Fukuda, Kang, Arai, Arita (bib49) 2014; 211
Grenon (10.1016/j.atherosclerosis.2020.11.018_bib40) 2015; 4
Schildberger (10.1016/j.atherosclerosis.2020.11.018_bib27) 2013
Neuhofer (10.1016/j.atherosclerosis.2020.11.018_bib50) 2013; 62
Dalli (10.1016/j.atherosclerosis.2020.11.018_bib32) 2013; 3
Zhao (10.1016/j.atherosclerosis.2020.11.018_bib22) 2009; 37
Simopoulos (10.1016/j.atherosclerosis.2020.11.018_bib2) 2002; 21
Bang (10.1016/j.atherosclerosis.2020.11.018_bib1) 1971; 297
Aung (10.1016/j.atherosclerosis.2020.11.018_bib10) 2018; 3
Metherel (10.1016/j.atherosclerosis.2020.11.018_bib44) 2019; 110
Wen (10.1016/j.atherosclerosis.2020.11.018_bib52) 2008; 294
Ernst (10.1016/j.atherosclerosis.2020.11.018_bib28) 2019; 10
Yokoyama (10.1016/j.atherosclerosis.2020.11.018_bib11) 2007; 369
Mozaffarian (10.1016/j.atherosclerosis.2020.11.018_bib13) 2012; 142
Schaefer (10.1016/j.atherosclerosis.2020.11.018_bib19) 1996; 63
Satoh-Asahara (10.1016/j.atherosclerosis.2020.11.018_bib38) 2012
Merched (10.1016/j.atherosclerosis.2020.11.018_bib41) 2008; 22
Rangel-Huerta (10.1016/j.atherosclerosis.2020.11.018_bib34) 2012; 107
Myhrstad (10.1016/j.atherosclerosis.2020.11.018_bib33) 2011; 60
De Caterina (10.1016/j.atherosclerosis.2020.11.018_bib14) 2000; 71
Ramon (10.1016/j.atherosclerosis.2020.11.018_bib51) 2012; 189
Matthan (10.1016/j.atherosclerosis.2020.11.018_bib24) 2014; 3
Forman (10.1016/j.atherosclerosis.2020.11.018_bib7) 1997; 94
Plourde (10.1016/j.atherosclerosis.2020.11.018_bib42) 2011; 8
Stoll (10.1016/j.atherosclerosis.2020.11.018_bib26) 2004; 24
Tsunoda (10.1016/j.atherosclerosis.2020.11.018_bib17) 2015; 241
Alberti (10.1016/j.atherosclerosis.2020.11.018_bib31) 2005; 366
Calder (10.1016/j.atherosclerosis.2020.11.018_bib3) 2013; 16
Schmitz (10.1016/j.atherosclerosis.2020.11.018_bib39) 2008; 47
Allaire (10.1016/j.atherosclerosis.2020.11.018_bib16) 2016; 104
Miller (10.1016/j.atherosclerosis.2020.11.018_bib43) 2013; 52
Weylandt (10.1016/j.atherosclerosis.2020.11.018_bib47) 2011; 32
Martin (10.1016/j.atherosclerosis.2020.11.018_bib8) 2010; 690
Markworth (10.1016/j.atherosclerosis.2020.11.018_bib25) 2016; 30
Endo (10.1016/j.atherosclerosis.2020.11.018_bib49) 2014; 211
Osma-Garcia (10.1016/j.atherosclerosis.2020.11.018_bib53) 2016; 46
Bhatt (10.1016/j.atherosclerosis.2020.11.018_bib12) 2019; 380
Draper (10.1016/j.atherosclerosis.2020.11.018_bib37) 2011; 22
Calder (10.1016/j.atherosclerosis.2020.11.018_bib4) 2015; 1851
Serhan (10.1016/j.atherosclerosis.2020.11.018_bib9) 2014; 510
Vors (10.1016/j.atherosclerosis.2020.11.018_bib18) 2017; 257
Lo (10.1016/j.atherosclerosis.2020.11.018_bib5) 1999; 82
Barden (10.1016/j.atherosclerosis.2020.11.018_bib45) 2015; 102
See (10.1016/j.atherosclerosis.2020.11.018_bib46) 2017; 118
Serini (10.1016/j.atherosclerosis.2020.11.018_bib36) 2012; 9
Krishnamurthy (10.1016/j.atherosclerosis.2020.11.018_bib48) 2011; 76
Shrout (10.1016/j.atherosclerosis.2020.11.018_bib30)
Wei (10.1016/j.atherosclerosis.2020.11.018_bib23) 2011; 13
Sijben (10.1016/j.atherosclerosis.2020.11.018_bib35) 2007; 66
Oh (10.1016/j.atherosclerosis.2020.11.018_bib6) 2010; 142
Baron (10.1016/j.atherosclerosis.2020.11.018_bib29) 1986; 51
Moertl (10.1016/j.atherosclerosis.2020.11.018_bib20) 2011; 161
Skulas-Ray (10.1016/j.atherosclerosis.2020.11.018_bib21) 2011; 93
Weldon (10.1016/j.atherosclerosis.2020.11.018_bib15) 2007; 18
References_xml – volume: 76
  start-page: 5433
  year: 2011
  end-page: 5437
  ident: bib48
  article-title: Total synthesis and bioactivity of 18( R )-Hydroxyeicosapentaenoic acid
  publication-title: J. Org. Chem.
– volume: 63
  start-page: 234
  year: 1996
  end-page: 241
  ident: bib19
  article-title: Effects of National Cholesterol Education Program Step 2 diets relatively high or relatively low in fish-derived fatty acids on plasma lipoproteins in middle-aged and elderly subjects
  publication-title: Am. J. Clin. Nutr.
– volume: 380
  start-page: 11
  year: 2019
  end-page: 22
  ident: bib12
  article-title: Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia
  publication-title: N. Engl. J. Med.
– volume: 93
  start-page: 243
  year: 2011
  ident: bib21
  article-title: Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia
  publication-title: Am. J. Clin. Nutr.
– volume: 52
  start-page: 895
  year: 2013
  end-page: 904
  ident: bib43
  article-title: A short-term n-3 DPA supplementation study in humans
  publication-title: Eur. J. Nutr.
– volume: 47
  start-page: 147
  year: 2008
  end-page: 155
  ident: bib39
  article-title: The opposing effects of n-3 and n-6 fatty acids
  publication-title: Prog. Lipid Res.
– volume: 62
  year: 2013
  ident: bib50
  article-title: Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation
  publication-title: Diabetes
– volume: 189
  start-page: 1036
  year: 2012
  end-page: 1042
  ident: bib51
  article-title: Specialized proresolving mediators enhance human B cell differentiation to antibody-secreting cells
  publication-title: J. Immunol.
– volume: 3
  start-page: 225
  year: 2018
  end-page: 234
  ident: bib10
  article-title: Associations of omega-3 fatty acid supplement use with cardiovascular disease risks meta-analysis of 10 trials involving 77 917 individuals
  publication-title: JAMA Cardiol
– volume: 24
  start-page: 2227
  year: 2004
  end-page: 2236
  ident: bib26
  article-title: Potential role of endotoxin as a proinflammatory mediator of atherosclerosis
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 82
  start-page: 216
  year: 1999
  end-page: 221
  ident: bib5
  article-title: Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NFκB activity
  publication-title: J. Surg. Res.
– volume: 18
  start-page: 250
  year: 2007
  end-page: 258
  ident: bib15
  article-title: Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid
  publication-title: J. Nutr. Biochem.
– volume: 21
  start-page: 495
  year: 2002
  end-page: 505
  ident: bib2
  article-title: Omega-3 fatty acids in inflammation and autoimmune diseases
  publication-title: J. Am. Coll. Nutr.
– volume: 51
  start-page: 1173
  year: 1986
  end-page: 1182
  ident: bib29
  article-title: The moderator-mediator variable distinction in social psychological research. Conceptual, strategic, and statistical considerations
  publication-title: J. Pers. Soc. Psychol.
– volume: 102
  start-page: 1357
  year: 2015
  end-page: 1364
  ident: bib45
  article-title: Specialized proresolving lipid mediators in humans with the metabolic syndrome after n–3 fatty acids and aspirin
  publication-title: Am. J. Clin. Nutr.
– volume: 366
  start-page: 1059
  year: 2005
  end-page: 1062
  ident: bib31
  article-title: The metabolic syndrome - a new worldwide definition
  publication-title: Lancet
– year: 2013
  ident: bib27
  article-title: Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide
  publication-title: Mediat. Inflamm.
– volume: 4
  year: 2015
  ident: bib40
  article-title: Short-Term, high-dose fish oil supplementation increases the production of omega-3 fatty acid-derived mediators in patients with peripheral artery disease (the OMEGA-PAD I trial)
  publication-title: J. Am. Heart Assoc.
– volume: 66
  start-page: 237
  year: 2007
  end-page: 259
  ident: bib35
  article-title: Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease
  publication-title: Proc. Nutr. Soc.
– volume: 94
  start-page: 4312
  year: 1997
  end-page: 4317
  ident: bib7
  article-title: Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 510
  start-page: 92
  year: 2014
  end-page: 101
  ident: bib9
  article-title: Pro-resolving lipid mediators are leads for resolution physiology
  publication-title: Nature
– volume: 161
  year: 2011
  ident: bib20
  article-title: Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study
  publication-title: Am. Heart J.
– volume: 13
  start-page: 474
  year: 2011
  end-page: 483
  ident: bib23
  article-title: Effects of eicosapentaenoic acid
  publication-title: Curr. Atherosclerosis Rep.
– volume: 107
  year: 2012
  ident: bib34
  article-title: Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: a systematic review of randomised clinical trials
  publication-title: Br. J. Nutr.
– volume: 110
  start-page: 823
  year: 2019
  end-page: 831
  ident: bib44
  article-title: Compound-specific isotope analysis reveals no retroconversion of DHA to EPA but substantial conversion of EPA to DHA following supplementation: a randomized control trial
  publication-title: Am. J. Clin. Nutr.
– volume: 32
  start-page: 897
  year: 2011
  end-page: 903
  ident: bib47
  article-title: Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-α
  publication-title: Carcinogenesis
– volume: 241
  start-page: 400
  year: 2015
  end-page: 408
  ident: bib17
  article-title: Effects of oral eicosapentaenoic acid
  publication-title: Atherosclerosis
– volume: 297
  start-page: 1143
  year: 1971
  end-page: 1146
  ident: bib1
  article-title: Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos
  publication-title: Lancet
– volume: 46
  start-page: 677
  year: 2016
  end-page: 688
  ident: bib53
  article-title: Dose-dependent effects of prostaglandin E2 in macrophage adhesion and migration
  publication-title: Eur. J. Immunol.
– year: 2002
  ident: bib30
  article-title: Mediation in experimental and nonexperimental studies: new procedures and recommendations
– volume: 104
  start-page: 280
  year: 2016
  end-page: 287
  ident: bib16
  article-title: A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study
  publication-title: Am. J. Clin. Nutr.
– volume: 60
  start-page: 309
  year: 2011
  end-page: 319
  ident: bib33
  article-title: Effect of marine n-3 fatty acids on circulating inflammatory markers in healthy subjects and subjects with cardiovascular risk factors
  publication-title: Inflamm. Res.
– volume: 1851
  start-page: 469
  year: 2015
  end-page: 484
  ident: bib4
  article-title: Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
– volume: 3
  year: 2013
  ident: bib32
  article-title: Novel n-3 immunoresolvents: structures and actions
  publication-title: Sci. Rep.
– volume: 16
  start-page: 425
  year: 2013
  end-page: 433
  ident: bib3
  article-title: Long chain fatty acids and gene expression in inflammation and immunity
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
– volume: 118
  start-page: 971
  year: 2017
  end-page: 980
  ident: bib46
  article-title: Effects of prenatal n -3 fatty acid supplementation on offspring resolvins at birth and 12 years of age: a double-blind, randomised controlled clinical trial
  publication-title: Br. J. Nutr.
– volume: 142
  start-page: 614S
  year: 2012
  end-page: 625S
  ident: bib13
  article-title: (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary?
  publication-title: J. Nutr.
– volume: 3
  year: 2014
  ident: bib24
  article-title: Plasma phospholipid fatty acid biomarkers of dietary fat quality and endogenous metabolism predict coronary heart disease risk: a nested case-control study within the Women's Health Initiative observational study
  publication-title: J. Am. Heart Assoc.
– volume: 257
  start-page: 116
  year: 2017
  end-page: 122
  ident: bib18
  article-title: Inflammatory gene expression in whole blood cells after EPA vs. DHA supplementation: results from the ComparED study
  publication-title: Atherosclerosis
– year: 2012
  ident: bib38
  article-title: Highly purified eicosapentaenoic acid increases interleukin-10 levels of peripheral blood monocytes in obese patients with dyslipidemia
  publication-title: Diabetes Care
– volume: 10
  start-page: 1788
  year: 2019
  ident: bib28
  article-title: Exclusive temporal stimulation of IL-10 expression in LPS-stimulated mouse macrophages by cAMP inducers and type I interferons
  publication-title: Front. Immunol.
– volume: 30
  start-page: 3714
  year: 2016
  end-page: 3725
  ident: bib25
  article-title: Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid
  publication-title: Faseb. J.
– volume: 71
  year: 2000
  ident: bib14
  article-title: Fatty acid modulation of endothelial activation
  publication-title: Am. J. Clin. Nutr.
– volume: 22
  start-page: 784
  year: 2011
  end-page: 790
  ident: bib37
  article-title: Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ
  publication-title: J. Nutr. Biochem.
– volume: 142
  start-page: 687
  year: 2010
  end-page: 698
  ident: bib6
  article-title: GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects
  publication-title: Cell
– volume: 211
  start-page: 1673
  year: 2014
  end-page: 1687
  ident: bib49
  article-title: 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling
  publication-title: J. Exp. Med.
– volume: 9
  start-page: 913
  year: 2012
  end-page: 923
  ident: bib36
  article-title: EPA and DHA differentially affect in vitro inflammatory cytokine release by peripheral blood mononuclear cells from Alzheimer's patients
  publication-title: Curr. Alzheimer Res.
– volume: 37
  start-page: 1831
  year: 2009
  end-page: 1841
  ident: bib22
  article-title: Effects of n-3 polyunsaturated fatty acid therapy on plasma inflammatory markers and N-terminal pro-brain natriuretic peptide in elderly patients with chronic heart failure
  publication-title: J. Int. Med. Res.
– volume: 294
  year: 2008
  ident: bib52
  article-title: Role of 12/15-lipoxygenase in the expression of MCP-1 in mouse macrophages
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 22
  start-page: 3595
  year: 2008
  end-page: 3606
  ident: bib41
  article-title: Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators
  publication-title: Faseb. J.
– volume: 8
  start-page: 5
  year: 2011
  ident: bib42
  article-title: Plasma incorporation, apparent retroconversion and β-oxidation of 13C-docosahexaenoic acid in the elderly
  publication-title: Nutr. Metab.
– volume: 690
  start-page: 57
  year: 2010
  end-page: 63
  ident: bib8
  article-title: Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components
  publication-title: Mutat. Res. Fund Mol. Mech. Mutagen
– volume: 369
  start-page: 1090
  year: 2007
  end-page: 1098
  ident: bib11
  article-title: Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis
  publication-title: Lancet
– volume: 102
  start-page: 1357
  year: 2015
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib45
  article-title: Specialized proresolving lipid mediators in humans with the metabolic syndrome after n–3 fatty acids and aspirin
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.115.116384
– volume: 16
  start-page: 425
  year: 2013
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib3
  article-title: Long chain fatty acids and gene expression in inflammation and immunity
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
– volume: 37
  start-page: 1831
  year: 2009
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib22
  article-title: Effects of n-3 polyunsaturated fatty acid therapy on plasma inflammatory markers and N-terminal pro-brain natriuretic peptide in elderly patients with chronic heart failure
  publication-title: J. Int. Med. Res.
  doi: 10.1177/147323000903700619
– volume: 21
  start-page: 495
  year: 2002
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib2
  article-title: Omega-3 fatty acids in inflammation and autoimmune diseases
  publication-title: J. Am. Coll. Nutr.
  doi: 10.1080/07315724.2002.10719248
– volume: 3
  year: 2013
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib32
  article-title: Novel n-3 immunoresolvents: structures and actions
  publication-title: Sci. Rep.
  doi: 10.1038/srep01940
– volume: 10
  start-page: 1788
  year: 2019
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib28
  article-title: Exclusive temporal stimulation of IL-10 expression in LPS-stimulated mouse macrophages by cAMP inducers and type I interferons
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01788
– year: 2012
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib38
  article-title: Highly purified eicosapentaenoic acid increases interleukin-10 levels of peripheral blood monocytes in obese patients with dyslipidemia
  publication-title: Diabetes Care
  doi: 10.2337/dc12-0269
– volume: 62
  year: 2013
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib50
  article-title: Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation
  publication-title: Diabetes
  doi: 10.2337/db12-0828
– volume: 94
  start-page: 4312
  year: 1997
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib7
  article-title: Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.94.9.4312
– volume: 1851
  start-page: 469
  year: 2015
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib4
  article-title: Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
  doi: 10.1016/j.bbalip.2014.08.010
– volume: 3
  year: 2014
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib24
  article-title: Plasma phospholipid fatty acid biomarkers of dietary fat quality and endogenous metabolism predict coronary heart disease risk: a nested case-control study within the Women's Health Initiative observational study
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.113.000764
– volume: 142
  start-page: 614S
  year: 2012
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib13
  article-title: (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary?
  publication-title: J. Nutr.
  doi: 10.3945/jn.111.149633
– volume: 366
  start-page: 1059
  year: 2005
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib31
  article-title: The metabolic syndrome - a new worldwide definition
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67402-8
– volume: 241
  start-page: 400
  year: 2015
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib17
  article-title: Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2015.05.015
– volume: 82
  start-page: 216
  year: 1999
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib5
  article-title: Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NFκB activity
  publication-title: J. Surg. Res.
  doi: 10.1006/jsre.1998.5524
– volume: 510
  start-page: 92
  year: 2014
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib9
  article-title: Pro-resolving lipid mediators are leads for resolution physiology
  publication-title: Nature
  doi: 10.1038/nature13479
– volume: 8
  start-page: 5
  year: 2011
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib42
  article-title: Plasma incorporation, apparent retroconversion and β-oxidation of 13C-docosahexaenoic acid in the elderly
  publication-title: Nutr. Metab.
  doi: 10.1186/1743-7075-8-5
– volume: 52
  start-page: 895
  year: 2013
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib43
  article-title: A short-term n-3 DPA supplementation study in humans
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-012-0396-3
– volume: 690
  start-page: 57
  year: 2010
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib8
  article-title: Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components
  publication-title: Mutat. Res. Fund Mol. Mech. Mutagen
  doi: 10.1016/j.mrfmmm.2009.09.009
– volume: 60
  start-page: 309
  year: 2011
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib33
  article-title: Effect of marine n-3 fatty acids on circulating inflammatory markers in healthy subjects and subjects with cardiovascular risk factors
  publication-title: Inflamm. Res.
  doi: 10.1007/s00011-010-0302-5
– volume: 93
  start-page: 243
  year: 2011
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib21
  article-title: Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.110.003871
– volume: 161
  year: 2011
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib20
  article-title: Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study
  publication-title: Am. Heart J.
  doi: 10.1016/j.ahj.2011.02.011
– volume: 32
  start-page: 897
  year: 2011
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib47
  article-title: Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-α
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgr049
– volume: 4
  year: 2015
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib40
  article-title: Short-Term, high-dose fish oil supplementation increases the production of omega-3 fatty acid-derived mediators in patients with peripheral artery disease (the OMEGA-PAD I trial)
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.115.002034
– ident: 10.1016/j.atherosclerosis.2020.11.018_bib30
– volume: 294
  year: 2008
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib52
  article-title: Role of 12/15-lipoxygenase in the expression of MCP-1 in mouse macrophages
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00260.2007
– volume: 30
  start-page: 3714
  year: 2016
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib25
  article-title: Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid
  publication-title: Faseb. J.
  doi: 10.1096/fj.201600360R
– volume: 189
  start-page: 1036
  year: 2012
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib51
  article-title: Specialized proresolving mediators enhance human B cell differentiation to antibody-secreting cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1103483
– volume: 3
  start-page: 225
  year: 2018
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib10
  article-title: Associations of omega-3 fatty acid supplement use with cardiovascular disease risks meta-analysis of 10 trials involving 77 917 individuals
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2017.5205
– volume: 211
  start-page: 1673
  year: 2014
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib49
  article-title: 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20132011
– volume: 297
  start-page: 1143
  year: 1971
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib1
  article-title: Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos
  publication-title: Lancet
  doi: 10.1016/S0140-6736(71)91658-8
– volume: 18
  start-page: 250
  year: 2007
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib15
  article-title: Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2006.04.003
– volume: 51
  start-page: 1173
  year: 1986
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib29
  article-title: The moderator-mediator variable distinction in social psychological research. Conceptual, strategic, and statistical considerations
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/0022-3514.51.6.1173
– volume: 380
  start-page: 11
  year: 2019
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib12
  article-title: Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1812792
– volume: 47
  start-page: 147
  year: 2008
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib39
  article-title: The opposing effects of n-3 and n-6 fatty acids
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2007.12.004
– volume: 257
  start-page: 116
  year: 2017
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib18
  article-title: Inflammatory gene expression in whole blood cells after EPA vs. DHA supplementation: results from the ComparED study
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2017.01.025
– volume: 63
  start-page: 234
  year: 1996
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib19
  article-title: Effects of National Cholesterol Education Program Step 2 diets relatively high or relatively low in fish-derived fatty acids on plasma lipoproteins in middle-aged and elderly subjects
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/63.2.234
– volume: 71
  year: 2000
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib14
  article-title: Fatty acid modulation of endothelial activation
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/71.1.213S
– volume: 66
  start-page: 237
  year: 2007
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib35
  article-title: Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease
  publication-title: Proc. Nutr. Soc.
  doi: 10.1017/S0029665107005472
– volume: 110
  start-page: 823
  year: 2019
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib44
  article-title: Compound-specific isotope analysis reveals no retroconversion of DHA to EPA but substantial conversion of EPA to DHA following supplementation: a randomized control trial
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/nqz097
– volume: 13
  start-page: 474
  year: 2011
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib23
  article-title: Effects of eicosapentaenoic acid versus docosahexaenoic acid on serum lipids: a systematic review and meta-analysis
  publication-title: Curr. Atherosclerosis Rep.
  doi: 10.1007/s11883-011-0210-3
– volume: 22
  start-page: 784
  year: 2011
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib37
  article-title: Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2010.06.009
– volume: 76
  start-page: 5433
  year: 2011
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib48
  article-title: Total synthesis and bioactivity of 18( R )-Hydroxyeicosapentaenoic acid
  publication-title: J. Org. Chem.
  doi: 10.1021/jo2002243
– volume: 22
  start-page: 3595
  year: 2008
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib41
  article-title: Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators
  publication-title: Faseb. J.
  doi: 10.1096/fj.08-112201
– volume: 46
  start-page: 677
  year: 2016
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib53
  article-title: Dose-dependent effects of prostaglandin E2 in macrophage adhesion and migration
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201545629
– volume: 9
  start-page: 913
  year: 2012
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib36
  article-title: EPA and DHA differentially affect in vitro inflammatory cytokine release by peripheral blood mononuclear cells from Alzheimer's patients
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720512803251147
– volume: 107
  year: 2012
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib34
  article-title: Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: a systematic review of randomised clinical trials
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114512001559
– year: 2013
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib27
  article-title: Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide
  publication-title: Mediat. Inflamm.
  doi: 10.1155/2013/697972
– volume: 24
  start-page: 2227
  year: 2004
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib26
  article-title: Potential role of endotoxin as a proinflammatory mediator of atherosclerosis
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000147534.69062.dc
– volume: 142
  start-page: 687
  year: 2010
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib6
  article-title: GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.041
– volume: 369
  start-page: 1090
  year: 2007
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib11
  article-title: Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60527-3
– volume: 104
  start-page: 280
  year: 2016
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib16
  article-title: A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.116.131896
– volume: 118
  start-page: 971
  year: 2017
  ident: 10.1016/j.atherosclerosis.2020.11.018_bib46
  article-title: Effects of prenatal n -3 fatty acid supplementation on offspring resolvins at birth and 12 years of age: a double-blind, randomised controlled clinical trial
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114517002914
SSID ssj0004718
Score 2.6139905
Snippet The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators,...
Background and aims: The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 90
SubjectTerms atherosclerosis
Cross-Over Studies
DHA
Dietary Supplements
docosahexaenoic acid
Docosahexaenoic Acids
Double-Blind Method
Eicosapentaenoic Acid
EPA
Fatty Acids, Omega-3
Female
Humans
Inflammation
interleukin-10
interleukin-6
Male
Monocytes
postmenopause
Randomized crossover trial
Specialized pro-resolving lipid mediators
Title EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021915020315276
https://dx.doi.org/10.1016/j.atherosclerosis.2020.11.018
https://www.ncbi.nlm.nih.gov/pubmed/33303222
https://www.proquest.com/docview/2473404422
https://www.proquest.com/docview/2636457427
Volume 316
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF_aKxRfxO-eH2UEfTNtstlkExEx1JZTafHBQt_CfgUiuST07oT64B_pX-RMPu5QVCq-hCTsDsnO7Mxvd-eDsWdoo7XxberJJA49YZT1VJT4XhCZVPLIhoGl2OHTs3h2Lt5fRBdb7GiMhSG3ykH39zq909bDm8NhNA_bsqQYX5xtiGc4FSrgMt5mOxytfTJhO9m7D7OzTXikDHqFTN4I2GGXPd-4eXU4q1kgVbyWlMCbkx458KkMyO9N1Z-gaGeSTm6xmwOWhKz_3Ntsy9V32O7pcFp-l30__piBqi28nWUwVkLBGV1VVzBvLBXucnhTN-YKb1DUUDrm3ak7XPaus_QWFitNmzULoD1bMH023U1zZCy1anHU4EupoEU8Plew6Avbl1-dBfwTDyk2Fe1eQFW2pYUuZIVK_byEDNBg2mZObV-AbVa6cp5G_ItP3dCQmyl0iXDvsfOT409HM2-o4eAZkYilZxIEdKZQIkqkQ6zihwQh0yBVSeEi7kwQOBfouCiKlHKNaT92aFVNklibqkiH99mkbmq3xwDXZoYXKk0jpQV3VskUF0tOCJn4GmlO2auRXbkZEpxTnY0qHz3ZPue_cDsnbuMiKEduT1m87t72mT6u2_H1KBv5GM6KCjhHm3RdAm_WBH6S_X8h8XQUyhz1Ax36qNo1K2wkZCh8ITj_S5uYDqOl4HLKHvQSvR6CMER2IIh8-P8f-Yjd4DQHuw2sx2yyvFy5JwjplnqfbR98C_aHifsDrjZUbw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEF9qhdov4rNefY2g39w22WxeIuJRW07tFT-00G9hX4FILgm9O6F-8I_0L3ImjzsUlYpfjlyYDMnO7Mxvd-fB2HP00dp4NuVxEgVcGmW5ChOP-6FJYxHawLeUOzw9iSZn8sN5eL7BDoZcGAqr7G1_Z9Nba93f2e9Hc78pCsrxxdmGeEZQowIRR9fYdUltDlCp976t4zzI-nZxHj4n8i32Yh3k1aKseo488beg8t2CrMieR01Afu-o_gREW4d0dIvd7JEkjLuXvc02XHWHbU37s_K77PvhpzGoysK7yRiGPig4n8vyEma1pbZdDi-q2lziBSoa6sasPXOHiy5wlu7CfKlpq2YOtGMLpquluyZHsRJVg2MGXwoFDaLxmYJ519a--Oos4Jdw5FiXtHcBZdEUFtqEFWr08wrGgO7S1jOifQm2XurScY3oF_-1Q0NBptCWwb3Hzo4OTw8mvO_gwI1M5IKbBOGcyZUMk9ghUvECApCpn6okd6Fwxved83WU53lKlca0Fzn0qSZJrE1VqIP7bLOqK_eAAa7MjMhVmoZKS-GsilNcKjkp48TTyHPEXg_iykxf3py6bJTZEMf2OftF2hlJG5dAGUp7xKLV401X5-OqD74ZdCMbklnR_Gboka7K4O2KwU-a_y8sng1KmaF1oCMfVbl6iUQyDqQnpRB_oYnoKDqWIh6xnU6jV0MQBCgOhJC7__-ST9mNyen0ODt-f_LxIdsWNB_braxHbHNxsXSPEdwt9JN28v4Ai0hVMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EPA+and+DHA+differentially+modulate+monocyte+inflammatory+response+in+subjects+with+chronic+inflammation+in+part+via+plasma+specialized+pro-resolving+lipid+mediators%3A+A+randomized%2C+double-blind%2C+crossover+study&rft.jtitle=Atherosclerosis&rft.au=So%2C+Jisun&rft.au=Wu%2C+Dayong&rft.au=Lichtenstein%2C+Alice+H.&rft.au=Tai%2C+Albert+K.&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=0021-9150&rft.eissn=1879-1484&rft.volume=316&rft.spage=90&rft.epage=98&rft_id=info:doi/10.1016%2Fj.atherosclerosis.2020.11.018&rft.externalDocID=S0021915020315276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9150&client=summon