Renal Pathological Image Classification Based on Contrastive and Transfer Learning
Following recent advancements in medical laboratory technology, the analysis of high-resolution renal pathological images has become increasingly important in the diagnosis and prognosis prediction of chronic nephritis. In particular, deep learning has been widely applied to computer-aided diagnosis...
Saved in:
| Published in | Electronics Vol. 13; no. 7; p. 1403 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.04.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics13071403 |
Cover
| Abstract | Following recent advancements in medical laboratory technology, the analysis of high-resolution renal pathological images has become increasingly important in the diagnosis and prognosis prediction of chronic nephritis. In particular, deep learning has been widely applied to computer-aided diagnosis, with an increasing number of models being used for the analysis of renal pathological images. The diversity of renal pathological images and the imbalance between data acquisition and annotation have placed a significant burden on pathologists trying to perform reliable and timely analysis. Transfer learning based on contrastive pretraining is emerging as a viable solution to this dilemma. By incorporating unlabeled positive pretraining images and a small number of labeled target images, a transfer learning model is proposed for high-accuracy renal pathological image classification tasks. The pretraining dataset used in this study includes 5000 mouse kidney pathological images from the Open TG-GATEs pathological image dataset (produced by the Toxicogenomics Informatics Project of the National Institutes of Biomedical Innovation, Health, and Nutrition in Japan). The transfer training dataset comprises 313 human immunoglobulin A (IgA) chronic nephritis images collected at Fukushima Medical University Hospital. The self-supervised contrastive learning algorithm “Bootstrap Your Own Latent” was adopted for pretraining a residual-network (ResNet)-50 backbone network to extract glomerulus feature expressions from the mouse kidney pathological images. The self-supervised pretrained weights were then used for transfer training on the labeled images of human IgA chronic nephritis pathology, culminating in a binary classification model for supervised learning. In four cross-validation experiments, the proposed model achieved an average classification accuracy of 92.2%, surpassing the 86.8% accuracy of the original RenNet-50 model. In conclusion, this approach successfully applied transfer learning through mouse renal pathological images to achieve high classification performance with human IgA renal pathological images. |
|---|---|
| AbstractList | Following recent advancements in medical laboratory technology, the analysis of high-resolution renal pathological images has become increasingly important in the diagnosis and prognosis prediction of chronic nephritis. In particular, deep learning has been widely applied to computer-aided diagnosis, with an increasing number of models being used for the analysis of renal pathological images. The diversity of renal pathological images and the imbalance between data acquisition and annotation have placed a significant burden on pathologists trying to perform reliable and timely analysis. Transfer learning based on contrastive pretraining is emerging as a viable solution to this dilemma. By incorporating unlabeled positive pretraining images and a small number of labeled target images, a transfer learning model is proposed for high-accuracy renal pathological image classification tasks. The pretraining dataset used in this study includes 5000 mouse kidney pathological images from the Open TG-GATEs pathological image dataset (produced by the Toxicogenomics Informatics Project of the National Institutes of Biomedical Innovation, Health, and Nutrition in Japan). The transfer training dataset comprises 313 human immunoglobulin A (IgA) chronic nephritis images collected at Fukushima Medical University Hospital. The self-supervised contrastive learning algorithm “Bootstrap Your Own Latent” was adopted for pretraining a residual-network (ResNet)-50 backbone network to extract glomerulus feature expressions from the mouse kidney pathological images. The self-supervised pretrained weights were then used for transfer training on the labeled images of human IgA chronic nephritis pathology, culminating in a binary classification model for supervised learning. In four cross-validation experiments, the proposed model achieved an average classification accuracy of 92.2%, surpassing the 86.8% accuracy of the original RenNet-50 model. In conclusion, this approach successfully applied transfer learning through mouse renal pathological images to achieve high classification performance with human IgA renal pathological images. |
| Audience | Academic |
| Author | Xingjian Tian Tsuyoshi Iwasaki Xin Zhu Atsuya Sato Xinkai Liu Junichiro James Kazama |
| Author_xml | – sequence: 1 givenname: Xinkai surname: Liu fullname: Liu, Xinkai – sequence: 2 givenname: Xin orcidid: 0000-0002-4376-0806 surname: Zhu fullname: Zhu, Xin – sequence: 3 givenname: Xingjian surname: Tian fullname: Tian, Xingjian – sequence: 4 givenname: Tsuyoshi surname: Iwasaki fullname: Iwasaki, Tsuyoshi – sequence: 5 givenname: Atsuya surname: Sato fullname: Sato, Atsuya – sequence: 6 givenname: Junichiro James surname: Kazama fullname: Kazama, Junichiro James |
| BackLink | https://cir.nii.ac.jp/crid/1873961342755945856$$DView record in CiNii |
| BookMark | eNqNkd9rHCEQx6Wk0DTNX5CXhfb1El11XR_Toz8CBy0heZZZHa8WT6-615D_vl4vD0kItAg6jvMZZ77zlhylnJCQM0bPOdf0AiPaueQUbGWcKiYof0WOe6r0Qve6P3pkvyGntYaJCsnZqEZxTK6vMUHsvsP8I8e8DrZdrjawxm4ZocX65plDTt1HqOi6ZixzmgvUOfzGDpLrbgqk6rF0K4SSQlq_I689xIqnD-cJuf386Wb5dbH69uVqeblaWDGKeQF28lpSD8xNDgbN-hHGyckBpZeK4YSivSqK6C04mJTXg7XcagbOTVzyEyIOeXdpC_d3EKPZlrCBcm8YNXtpzAvSNOz9AduW_GuHdTY_8640EarhlCuhmzaPotYQ0YTkc2vabkK15lJpStnI-n0J5y9EteVwE2wbkw_N_wTQB8CWXGtBb2yY_wrcwBD_UTh_xv5fux8OVAqhfbbf2-i5HhgXvZJSCznKgf8BPl-1JA |
| CitedBy_id | crossref_primary_10_3390_electronics13163211 |
| Cites_doi | 10.3390/diagnostics13101738 10.3390/cancers13071590 10.1016/j.semnephrol.2018.05.013 10.1053/snep.2002.31713 10.1038/s41581-020-0321-6 10.3390/rs15061713 10.1007/978-3-7908-2604-3_16 10.1109/CVPR.2016.90 10.1136/emermed-2017-206735 10.21203/rs.3.rs-798207/v1 10.3390/diagnostics13071363 10.1007/978-3-319-46493-0_38 10.1007/978-1-4939-1450-0 10.3390/jimaging4010020 10.1109/ACCESS.2021.3074051 10.1016/j.patrec.2005.10.010 10.1146/annurev-pathol-011811-120902 10.1038/s41598-022-24936-6 10.3389/fenvs.2022.1043843 10.1016/j.ins.2015.02.024 10.1145/3606367 10.1371/journal.pone.0092209 10.1007/s13369-022-06608-9 10.1016/j.artmed.2020.101808 10.1109/ICIP42928.2021.9506533 10.1038/nrneph.2014.92 10.2307/2531595 10.1109/ICCV.2017.74 10.1016/j.ajkd.2003.08.001 10.1038/ki.1995.50 10.1097/MNH.0000000000000360 10.1093/nar/gku955 10.3390/math10111934 10.1016/0090-1229(81)90148-3 10.1016/j.ijmedinf.2020.104231 10.1109/JPROC.2020.3004555 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RYH AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics13071403 |
| DatabaseName | CiNii Complete CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics13071403 A790018125 10_3390_electronics13071403 |
| GeographicLocations | Germany Taiwan |
| GeographicLocations_xml | – name: Taiwan – name: Germany |
| GroupedDBID | 5VS 8FE 8FG ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC RYH AAYXX CITATION 7SP 8FD ABUWG AZQEC COVID DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c484t-acbf950fa1dbda69128a8bd56e5f571ebe450f70eefcadab7f96cc3c91addb353 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-9292 |
| IngestDate | Tue Aug 19 23:21:57 EDT 2025 Sat Jul 26 00:13:01 EDT 2025 Mon Oct 20 22:56:59 EDT 2025 Mon Oct 20 17:07:36 EDT 2025 Thu Oct 16 04:40:30 EDT 2025 Thu Apr 24 22:56:02 EDT 2025 Tue Aug 12 03:00:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c484t-acbf950fa1dbda69128a8bd56e5f571ebe450f70eefcadab7f96cc3c91addb353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4376-0806 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/13/7/1403/pdf?version=1712579296 |
| PQID | 3037495313 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics13071403 proquest_journals_3037495313 gale_infotracmisc_A790018125 gale_infotracacademiconefile_A790018125 crossref_citationtrail_10_3390_electronics13071403 crossref_primary_10_3390_electronics13071403 nii_cinii_1873961342755945856 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Uchino (ref_13) 2020; 141 ref_12 ref_10 ref_51 ref_18 DeLong (ref_48) 1988; 44 ref_15 Hong (ref_45) 2021; 28 Grill (ref_23) 2020; 33 ref_25 Gu (ref_16) 2022; 47 ref_22 ref_21 Xia (ref_37) 2015; 307 Schena (ref_3) 2018; 38 Barisoni (ref_11) 2017; 26 ref_29 ref_28 Igarashi (ref_24) 2015; 43 ref_27 Davidson (ref_6) 2002; 2 Fawcett (ref_46) 2006; 27 Barisoni (ref_7) 2020; 16 Masoudi (ref_26) 2021; 9 Ghaznavi (ref_8) 2013; 8 Wu (ref_20) 2022; 10 ref_36 Stachura (ref_2) 1981; 20 ref_35 ref_34 Hoo (ref_47) 2017; 34 ref_33 Galla (ref_1) 1995; 47 ref_32 ref_31 ref_30 ref_39 ref_38 Roberts (ref_9) 2014; 10 Chagas (ref_14) 2020; 103 Fogo (ref_5) 2003; 42 Christen (ref_43) 2023; 56 ref_44 Korbet (ref_4) 2002; 22 ref_41 ref_40 Zhuang (ref_17) 2020; 109 ref_49 Kato (ref_19) 2022; 12 (ref_42) 2017; 382 |
| References_xml | – volume: 28 start-page: 161 year: 2021 ident: ref_45 article-title: TPR-TNR plot for confusion matrix publication-title: Commun. Stat. Appl. Methods – ident: ref_32 – ident: ref_25 doi: 10.3390/diagnostics13101738 – ident: ref_51 – ident: ref_21 doi: 10.3390/cancers13071590 – volume: 382 start-page: 60 year: 2017 ident: ref_42 article-title: A two dimensional accuracy-based measure for classification performance publication-title: Inf. Sci. – volume: 38 start-page: 435 year: 2018 ident: ref_3 article-title: Epidemiology of IgA nephropathy: A global perspective publication-title: Semin. Nephrol. doi: 10.1016/j.semnephrol.2018.05.013 – volume: 22 start-page: 254 year: 2002 ident: ref_4 article-title: Percutaneous renal biopsy publication-title: Semin. Nephrol. doi: 10.1053/snep.2002.31713 – ident: ref_39 – volume: 16 start-page: 669 year: 2020 ident: ref_7 article-title: Digital pathology and computational image analysis in nephropathology publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-020-0321-6 – ident: ref_35 – ident: ref_31 doi: 10.3390/rs15061713 – ident: ref_33 doi: 10.1007/978-3-7908-2604-3_16 – volume: 2 start-page: 120 year: 2002 ident: ref_6 article-title: Optical microscopy publication-title: Encycl. Imaging Sci. Technol. – ident: ref_22 doi: 10.1109/CVPR.2016.90 – volume: 34 start-page: 357 year: 2017 ident: ref_47 article-title: What is an ROC curve? publication-title: Emerg. Med. J. doi: 10.1136/emermed-2017-206735 – ident: ref_50 doi: 10.21203/rs.3.rs-798207/v1 – ident: ref_27 doi: 10.3390/diagnostics13071363 – volume: 33 start-page: 21271 year: 2020 ident: ref_23 article-title: Bootstrap your own latent-a new approach to self-supervised learning publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_41 – ident: ref_28 doi: 10.1007/978-3-319-46493-0_38 – ident: ref_38 – ident: ref_10 doi: 10.1007/978-1-4939-1450-0 – ident: ref_12 doi: 10.3390/jimaging4010020 – volume: 9 start-page: 87531 year: 2021 ident: ref_26 article-title: Deep learning based staging of bone lesions from computed tomography scans publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3074051 – volume: 27 start-page: 861 year: 2006 ident: ref_46 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 8 start-page: 331 year: 2013 ident: ref_8 article-title: Digital imaging in pathology: Whole-slide imaging and beyond publication-title: Annu. Rev. Pathol. Mech. Dis. doi: 10.1146/annurev-pathol-011811-120902 – ident: ref_30 – volume: 12 start-page: 20840 year: 2022 ident: ref_19 article-title: Classification and visual explanation for COVID-19 pneumonia from ct images using triple learning publication-title: Sci. Rep. doi: 10.1038/s41598-022-24936-6 – ident: ref_34 – volume: 10 start-page: 1043843 year: 2022 ident: ref_20 article-title: Effect of transfer learning on the performance of vggnet-16 and resnet-50 for the classification of organic and residual waste publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2022.1043843 – volume: 307 start-page: 39 year: 2015 ident: ref_37 article-title: Learning similarity with cosine similarity ensemble publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.02.024 – volume: 56 start-page: 1 year: 2023 ident: ref_43 article-title: A review of the F-measure: Its History, Properties, Criticism, and Alternatives publication-title: ACM Comput. Surv. doi: 10.1145/3606367 – ident: ref_44 doi: 10.1371/journal.pone.0092209 – volume: 47 start-page: 14013 year: 2022 ident: ref_16 article-title: Glomerulus Semantic Segmentation Using Ensemble of Deep Learning Models publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-06608-9 – volume: 103 start-page: 101808 year: 2020 ident: ref_14 article-title: Classification of glomerular hypercellularity using convolutional features and support vector machine publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101808 – ident: ref_40 – ident: ref_18 doi: 10.1109/ICIP42928.2021.9506533 – volume: 10 start-page: 445 year: 2014 ident: ref_9 article-title: Pathology of IgA nephropathy publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2014.92 – volume: 44 start-page: 837 year: 1988 ident: ref_48 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – ident: ref_49 doi: 10.1109/ICCV.2017.74 – volume: 42 start-page: 826 year: 2003 ident: ref_5 article-title: Approach to renal biopsy publication-title: Am. J. Kidney Dis. doi: 10.1016/j.ajkd.2003.08.001 – ident: ref_29 – volume: 47 start-page: 377 year: 1995 ident: ref_1 article-title: IgA nephropathy publication-title: Kidney Int. doi: 10.1038/ki.1995.50 – volume: 26 start-page: 450 year: 2017 ident: ref_11 article-title: Digital pathology in nephrology clinical trials, research, and pathology practice publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0000000000000360 – ident: ref_36 – volume: 43 start-page: D921 year: 2015 ident: ref_24 article-title: Open TG-GATEs: A large-scale toxicogenomics database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku955 – ident: ref_15 doi: 10.3390/math10111934 – volume: 20 start-page: 373 year: 1981 ident: ref_2 article-title: Immune abnormalities in IgA nephropathy (Berger’s disease) publication-title: Clin. Immunol. Immunopathol. doi: 10.1016/0090-1229(81)90148-3 – volume: 141 start-page: 104231 year: 2020 ident: ref_13 article-title: Classification of glomerular pathological findings using deep learning and nephrologist–AI collective intelligence approach publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2020.104231 – volume: 109 start-page: 43 year: 2020 ident: ref_17 article-title: A comprehensive survey on transfer learning publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.3004555 |
| SSID | ssib045318784 ssib045318794 ssj0000913830 ssib030194728 |
| Score | 2.2958748 |
| Snippet | Following recent advancements in medical laboratory technology, the analysis of high-resolution renal pathological images has become increasingly important in... |
| SourceID | unpaywall proquest gale crossref nii |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1403 |
| SubjectTerms | Accuracy Algorithms Annotations Classification Computer networks Data acquisition Data mining Datasets Deep learning Diagnosis Digitization Efficiency Glomerulus Image acquisition Image classification Image resolution Immunoglobulin A Inflammation Kidney diseases Kidneys Machine learning Medical colleges Medical imaging Medical laboratories Nephritis Neural networks Pathology Supervised learning Technology assessment Workloads |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SzaHtofSTbpsUHQq91ES2ZNk6lJKUhLTQJSwN5GbG-iiBrbPd3VD67zvjlTdZKKEXY7AkhJ7mzUiW3gC8I_vyNeZtVnjETNesAem8ybyRbUDWgPO8of9tYs4u9NfL8nIHJsNdGD5WOXBiT9T-2vEe-aFioRRLM0Z9mv_KOGsU_10dUmhgSq3gP_YSY7uwV7Ay1gj2jk8m59PNrgurYNZKruWHFK33D2-zzSyJznv5ui0XlYh6t7u62gpCH9x0c_zzG2ezO_7o9Ak8ToGkOFoj_xR2QvcMHt2RF3wO02ngIue42lCc-PKTCET0qTD5kFCPizgmV-YFvbBW1QKXTIECOy96TxbDQiQZ1h8v4OL05PvnsyzlUMicrvUqQ9dGW8qIuW89GkvuCOvWlyaUsaxyglDT10qGEB16bKtojXPK2ZyIr1Wlegmj7roLr0DIOjqptI_GSK3bEmUVqhgsoVlYLf0YimHYGpcExjnPxayhhQaPdfOPsR7Dh02l-Vpf4_7i7xmPhq2P2naYLhFQD1nHqjmqrOwlyMox7G-VJKtxW58PCFHqJz_zulKW4hpdVLTA0rSCMlR9wLpJVr1sbufgGLIN_v_T79f3N_cGHhYULK1PBO3DaLW4CQcU7Kzat2kG_wU8pP83 priority: 102 providerName: ProQuest |
| Title | Renal Pathological Image Classification Based on Contrastive and Transfer Learning |
| URI | https://cir.nii.ac.jp/crid/1873961342755945856 https://www.proquest.com/docview/3037495313 https://www.mdpi.com/2079-9292/13/7/1403/pdf?version=1712579296 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZoewAOvFcUdqsckLiQjZP4EZ9QF7YsiK2qQqXlFPxEFSVUbQqCX884ccsWIQTikkTyOJpoxt_MWM43CD2C9WUKmao4M1LGpPAckNqw2DCsrPQccMZv6J-P2dmMvLqgF6HP6Tocq4RSfN6AdIY5TM1ElqR5whNPLZcsjXv6JWwlpRzCMwcB1kE9RiEZ76LebDwZvvMt5baTW66hHIr75GdrmTVgd8NVtxePAip3qvl8L-O8uqmW8ttXuVhcCj6jm-j9Vu32zMnH402tjvX3Xxgd_-O7bqEbITGNhq0n3UZXbHUHXb9EV3gXTafWi0xkvYPM6OUnAKSoaa3pDx01do5OIDSaCB4899VKrj2kRrIyURMZnV1Fgdb1wz00G52-fXYWh54MsSYFqWOplRMUO5kaZSQTEN5koQxlljrKU3AJAqMcW-u0NFJxJ5jWuRYpAKnKaX6AutXnyt5HES6cxjkxjjFMiKISc8udFeAdmSDY9FG2tUypA2G575uxKKFw8eYsf2POPnqym7Rs-Tr-LP7Ym7z0qxnerWX4KQE09LxY5ZAL3FCa0T463JOEVaj3ho_AaUBPf00LngvIk0jGoWAjUJExmL51pzKgxLrMPfmPABQEPeKdi_2N3g_-Uf4hupZBNtYeOTpE3Xq1sUeQTdVqgDrF6MUA9YbPz1-_gfvJ6XgyHYR19AORQh5U |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFLYoHGgPFd3EtEB9aNVLI5zYceIDqlg1U2CERiBxS71WSNMwnRmE-HP9bX0v4wyMVKFeuESRvMh5-3Ps7xHyCfTLlTo1Sea0TkSJGJDWycRJZrxGDDiHG_qnfdm9EN8v88sl8qe9C4PHKlub2Bhqd21xj3ybI1CKAonh30a_E6wahX9X2xIaOpZWcDsNxFi82HHs724hhZvs9A6A35-z7OjwfL-bxCoDiRWlmCbamqByFnTqjNNSgcHWpXG59HnIixQ-UkBrwbwPVjttiqCktdyqFEyDaapGgAtYEVwoSP5W9g77Z4P5Lg-ibpaczeCOOFds-766zQTcRwOXt-ASo2N4Vl9dLQS9qzf1SN_d6uHwgf87WiMvY-BKd2eS9oos-fo1efEAzvANGQw8djnT07lJpb1fYLBoU3oTDyU1ckD3wHU6Ci-IjTXWEzS5VNeONp4z-DGNsK8_35KLJ6HmO7JcX9d-nVBWBsu4cEFKJoTJNSt8EbwC6cmUYK5DspZslY2A5lhXY1hBYoO0rv5B6w75Oh80muF5PN79C_KjQm2Hua2OlxZghYibVe0WijWQZ3mHbCz0BC21C82bwFFYJz7TsuAK4iiRFZDQCcjYJAxveV1FKzKp7mW-Q5I5__9n3e8fn-4jWe2en55UJ73-8QfyPINAbXYaaYMsT8c3fhMCranZitJMyY-nVqC_2rhAIg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IJ5ioQUfQFyI1kkcOz4gVChLl0JVVVTqLfiJKi3psrtV1b_Gr2Mmj21XQhWXXqJIfsjxzHwzduxvAF6hffnSpDbJvDGJKIkD0nmZeMltMMQB52lD_9ue3DkUX46KozX409-FoWOVPSY2QO1PHO2RD3MiStGoMfkwdsci9rdH76e_E8ogRX9a-3QarYrshvMzXL7N3423Udavs2z06fvHnaTLMJA4UYpFYpyNuuDRpN56IzWCtSmtL2QoYqFS_ECBpYqHEJ3xxqqopXO50ynCgm0yRiD831TE4k631Eefl_s7xLdZ5rwlOspzzYcXeW3m6DgaorwVZ9i5hBv18fFKuHv7tJ6a8zMzmVzyfKP7cK8LWdlWq2MPYC3UD-HuJSLDR3BwEKjKvlkswZSNfyFUsSbpJh1HajSAfUCn6Rm-ECvWzMwJbJmpPWt8Zgwz1hG-_nwMh9cyl09gvT6pw1NgvIyO58JHKbkQtjBcBRWDRr3JtOB-AFk_bZXrqMwpo8akwiUNzXX1j7kewNtlo2nL5HF19Tckj4rsHPt2pruugCMkxqxqS2nekJ0VA9hYqYn26VaKN1GiOE56pqXKNUZQIlO4lBO4VpPYvJd11eHHvLrQ9gEkS_n_z7ifXd3dS7iFZlN9He_tPoc7GUZo7TGkDVhfzE7DJkZYC_uiUWUGP67bdv4CL7A9vA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF_q-dD6UPuJ16rsQ6Evjdkk-5F9KldRtFAR6YF9SvdTjp7xuMsp7V_f2WTv9EqRFl9CILNhwsz-ZmaZ_Aahd7C_bKkyneRWqYSWgQPSWJ5YTrRTgQPOhgP9Lyf8aEg_n7PzOOd0FtsqoRQftSCdEwFLc5mnWZGKNFDLpRPrP17Ho6RMQHgWIMDX0DpnkIz30Prw5HTwLYyUWyzuuIYKKO7T29EyM8DulqtuJR5FVF6rR6OVjPPxvJ6onzdqPL4TfA430feF2l3PyY-9eaP3zK8_GB0f8F3P0NOYmOJB50nP0SNXv0Abd-gKX6KzMxdETlWzhEx8fAmAhNvRmqHpqLUz_gSh0WK4CdxXUzULkIpVbXEbGb2b4kjrevEKDQ8Pvu4fJXEmQ2JoSZtEGe0lI15lVlvFJYQ3VWrLuGOeiQxcgsJTQZzzRlmlhZfcmMLIDIBUF6x4jXr1Ve22ECalN6Sg1nNOKNVMEeGEdxK8I5eU2D7KF5apTCQsD3MzxhUULsGc1V_M2UcflosmHV_H_eLvg8mrsJvh3UbFnxJAw8CLVQ2EJC2lGeuj7RVJ2IVm5fEOOA3oGa5ZKQoJeRLNBRRsFCoyDssX7lRFlJhVRSD_kYCCoEeydLF_0fvNf8q_RU9yyMa6lqNt1Gumc7cD2VSjd-OO-Q0sbBpA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renal+Pathological+Image+Classification+Based+on+Contrastive+and+Transfer+Learning&rft.jtitle=Electronics+%28Basel%29&rft.au=Liu%2C+Xinkai&rft.au=Zhu%2C+Xin&rft.au=Tian%2C+Xingjian&rft.au=Iwasaki%2C+Tsuyoshi&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=7&rft_id=info:doi/10.3390%2Felectronics13071403&rft.externalDocID=A790018125 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |