Renal Pathological Image Classification Based on Contrastive and Transfer Learning

Following recent advancements in medical laboratory technology, the analysis of high-resolution renal pathological images has become increasingly important in the diagnosis and prognosis prediction of chronic nephritis. In particular, deep learning has been widely applied to computer-aided diagnosis...

Full description

Saved in:
Bibliographic Details
Published inElectronics Vol. 13; no. 7; p. 1403
Main Authors Liu, Xinkai, Zhu, Xin, Tian, Xingjian, Iwasaki, Tsuyoshi, Sato, Atsuya, Kazama, Junichiro James
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics13071403

Cover

Abstract Following recent advancements in medical laboratory technology, the analysis of high-resolution renal pathological images has become increasingly important in the diagnosis and prognosis prediction of chronic nephritis. In particular, deep learning has been widely applied to computer-aided diagnosis, with an increasing number of models being used for the analysis of renal pathological images. The diversity of renal pathological images and the imbalance between data acquisition and annotation have placed a significant burden on pathologists trying to perform reliable and timely analysis. Transfer learning based on contrastive pretraining is emerging as a viable solution to this dilemma. By incorporating unlabeled positive pretraining images and a small number of labeled target images, a transfer learning model is proposed for high-accuracy renal pathological image classification tasks. The pretraining dataset used in this study includes 5000 mouse kidney pathological images from the Open TG-GATEs pathological image dataset (produced by the Toxicogenomics Informatics Project of the National Institutes of Biomedical Innovation, Health, and Nutrition in Japan). The transfer training dataset comprises 313 human immunoglobulin A (IgA) chronic nephritis images collected at Fukushima Medical University Hospital. The self-supervised contrastive learning algorithm “Bootstrap Your Own Latent” was adopted for pretraining a residual-network (ResNet)-50 backbone network to extract glomerulus feature expressions from the mouse kidney pathological images. The self-supervised pretrained weights were then used for transfer training on the labeled images of human IgA chronic nephritis pathology, culminating in a binary classification model for supervised learning. In four cross-validation experiments, the proposed model achieved an average classification accuracy of 92.2%, surpassing the 86.8% accuracy of the original RenNet-50 model. In conclusion, this approach successfully applied transfer learning through mouse renal pathological images to achieve high classification performance with human IgA renal pathological images.
AbstractList Following recent advancements in medical laboratory technology, the analysis of high-resolution renal pathological images has become increasingly important in the diagnosis and prognosis prediction of chronic nephritis. In particular, deep learning has been widely applied to computer-aided diagnosis, with an increasing number of models being used for the analysis of renal pathological images. The diversity of renal pathological images and the imbalance between data acquisition and annotation have placed a significant burden on pathologists trying to perform reliable and timely analysis. Transfer learning based on contrastive pretraining is emerging as a viable solution to this dilemma. By incorporating unlabeled positive pretraining images and a small number of labeled target images, a transfer learning model is proposed for high-accuracy renal pathological image classification tasks. The pretraining dataset used in this study includes 5000 mouse kidney pathological images from the Open TG-GATEs pathological image dataset (produced by the Toxicogenomics Informatics Project of the National Institutes of Biomedical Innovation, Health, and Nutrition in Japan). The transfer training dataset comprises 313 human immunoglobulin A (IgA) chronic nephritis images collected at Fukushima Medical University Hospital. The self-supervised contrastive learning algorithm “Bootstrap Your Own Latent” was adopted for pretraining a residual-network (ResNet)-50 backbone network to extract glomerulus feature expressions from the mouse kidney pathological images. The self-supervised pretrained weights were then used for transfer training on the labeled images of human IgA chronic nephritis pathology, culminating in a binary classification model for supervised learning. In four cross-validation experiments, the proposed model achieved an average classification accuracy of 92.2%, surpassing the 86.8% accuracy of the original RenNet-50 model. In conclusion, this approach successfully applied transfer learning through mouse renal pathological images to achieve high classification performance with human IgA renal pathological images.
Audience Academic
Author Xingjian Tian
Tsuyoshi Iwasaki
Xin Zhu
Atsuya Sato
Xinkai Liu
Junichiro James Kazama
Author_xml – sequence: 1
  givenname: Xinkai
  surname: Liu
  fullname: Liu, Xinkai
– sequence: 2
  givenname: Xin
  orcidid: 0000-0002-4376-0806
  surname: Zhu
  fullname: Zhu, Xin
– sequence: 3
  givenname: Xingjian
  surname: Tian
  fullname: Tian, Xingjian
– sequence: 4
  givenname: Tsuyoshi
  surname: Iwasaki
  fullname: Iwasaki, Tsuyoshi
– sequence: 5
  givenname: Atsuya
  surname: Sato
  fullname: Sato, Atsuya
– sequence: 6
  givenname: Junichiro James
  surname: Kazama
  fullname: Kazama, Junichiro James
BackLink https://cir.nii.ac.jp/crid/1873961342755945856$$DView record in CiNii
BookMark eNqNkd9rHCEQx6Wk0DTNX5CXhfb1El11XR_Toz8CBy0heZZZHa8WT6-615D_vl4vD0kItAg6jvMZZ77zlhylnJCQM0bPOdf0AiPaueQUbGWcKiYof0WOe6r0Qve6P3pkvyGntYaJCsnZqEZxTK6vMUHsvsP8I8e8DrZdrjawxm4ZocX65plDTt1HqOi6ZixzmgvUOfzGDpLrbgqk6rF0K4SSQlq_I689xIqnD-cJuf386Wb5dbH69uVqeblaWDGKeQF28lpSD8xNDgbN-hHGyckBpZeK4YSivSqK6C04mJTXg7XcagbOTVzyEyIOeXdpC_d3EKPZlrCBcm8YNXtpzAvSNOz9AduW_GuHdTY_8640EarhlCuhmzaPotYQ0YTkc2vabkK15lJpStnI-n0J5y9EteVwE2wbkw_N_wTQB8CWXGtBb2yY_wrcwBD_UTh_xv5fux8OVAqhfbbf2-i5HhgXvZJSCznKgf8BPl-1JA
CitedBy_id crossref_primary_10_3390_electronics13163211
Cites_doi 10.3390/diagnostics13101738
10.3390/cancers13071590
10.1016/j.semnephrol.2018.05.013
10.1053/snep.2002.31713
10.1038/s41581-020-0321-6
10.3390/rs15061713
10.1007/978-3-7908-2604-3_16
10.1109/CVPR.2016.90
10.1136/emermed-2017-206735
10.21203/rs.3.rs-798207/v1
10.3390/diagnostics13071363
10.1007/978-3-319-46493-0_38
10.1007/978-1-4939-1450-0
10.3390/jimaging4010020
10.1109/ACCESS.2021.3074051
10.1016/j.patrec.2005.10.010
10.1146/annurev-pathol-011811-120902
10.1038/s41598-022-24936-6
10.3389/fenvs.2022.1043843
10.1016/j.ins.2015.02.024
10.1145/3606367
10.1371/journal.pone.0092209
10.1007/s13369-022-06608-9
10.1016/j.artmed.2020.101808
10.1109/ICIP42928.2021.9506533
10.1038/nrneph.2014.92
10.2307/2531595
10.1109/ICCV.2017.74
10.1016/j.ajkd.2003.08.001
10.1038/ki.1995.50
10.1097/MNH.0000000000000360
10.1093/nar/gku955
10.3390/math10111934
10.1016/0090-1229(81)90148-3
10.1016/j.ijmedinf.2020.104231
10.1109/JPROC.2020.3004555
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics13071403
DatabaseName CiNii Complete
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics13071403
A790018125
10_3390_electronics13071403
GeographicLocations Germany
Taiwan
GeographicLocations_xml – name: Taiwan
– name: Germany
GroupedDBID 5VS
8FE
8FG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RYH
AAYXX
CITATION
7SP
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c484t-acbf950fa1dbda69128a8bd56e5f571ebe450f70eefcadab7f96cc3c91addb353
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Tue Aug 19 23:21:57 EDT 2025
Sat Jul 26 00:13:01 EDT 2025
Mon Oct 20 22:56:59 EDT 2025
Mon Oct 20 17:07:36 EDT 2025
Thu Oct 16 04:40:30 EDT 2025
Thu Apr 24 22:56:02 EDT 2025
Tue Aug 12 03:00:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-acbf950fa1dbda69128a8bd56e5f571ebe450f70eefcadab7f96cc3c91addb353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4376-0806
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/13/7/1403/pdf?version=1712579296
PQID 3037495313
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics13071403
proquest_journals_3037495313
gale_infotracmisc_A790018125
gale_infotracacademiconefile_A790018125
crossref_citationtrail_10_3390_electronics13071403
crossref_primary_10_3390_electronics13071403
nii_cinii_1873961342755945856
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Uchino (ref_13) 2020; 141
ref_12
ref_10
ref_51
ref_18
DeLong (ref_48) 1988; 44
ref_15
Hong (ref_45) 2021; 28
Grill (ref_23) 2020; 33
ref_25
Gu (ref_16) 2022; 47
ref_22
ref_21
Xia (ref_37) 2015; 307
Schena (ref_3) 2018; 38
Barisoni (ref_11) 2017; 26
ref_29
ref_28
Igarashi (ref_24) 2015; 43
ref_27
Davidson (ref_6) 2002; 2
Fawcett (ref_46) 2006; 27
Barisoni (ref_7) 2020; 16
Masoudi (ref_26) 2021; 9
Ghaznavi (ref_8) 2013; 8
Wu (ref_20) 2022; 10
ref_36
Stachura (ref_2) 1981; 20
ref_35
ref_34
Hoo (ref_47) 2017; 34
ref_33
Galla (ref_1) 1995; 47
ref_32
ref_31
ref_30
ref_39
ref_38
Roberts (ref_9) 2014; 10
Chagas (ref_14) 2020; 103
Fogo (ref_5) 2003; 42
Christen (ref_43) 2023; 56
ref_44
Korbet (ref_4) 2002; 22
ref_41
ref_40
Zhuang (ref_17) 2020; 109
ref_49
Kato (ref_19) 2022; 12
(ref_42) 2017; 382
References_xml – volume: 28
  start-page: 161
  year: 2021
  ident: ref_45
  article-title: TPR-TNR plot for confusion matrix
  publication-title: Commun. Stat. Appl. Methods
– ident: ref_32
– ident: ref_25
  doi: 10.3390/diagnostics13101738
– ident: ref_51
– ident: ref_21
  doi: 10.3390/cancers13071590
– volume: 382
  start-page: 60
  year: 2017
  ident: ref_42
  article-title: A two dimensional accuracy-based measure for classification performance
  publication-title: Inf. Sci.
– volume: 38
  start-page: 435
  year: 2018
  ident: ref_3
  article-title: Epidemiology of IgA nephropathy: A global perspective
  publication-title: Semin. Nephrol.
  doi: 10.1016/j.semnephrol.2018.05.013
– volume: 22
  start-page: 254
  year: 2002
  ident: ref_4
  article-title: Percutaneous renal biopsy
  publication-title: Semin. Nephrol.
  doi: 10.1053/snep.2002.31713
– ident: ref_39
– volume: 16
  start-page: 669
  year: 2020
  ident: ref_7
  article-title: Digital pathology and computational image analysis in nephropathology
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-020-0321-6
– ident: ref_35
– ident: ref_31
  doi: 10.3390/rs15061713
– ident: ref_33
  doi: 10.1007/978-3-7908-2604-3_16
– volume: 2
  start-page: 120
  year: 2002
  ident: ref_6
  article-title: Optical microscopy
  publication-title: Encycl. Imaging Sci. Technol.
– ident: ref_22
  doi: 10.1109/CVPR.2016.90
– volume: 34
  start-page: 357
  year: 2017
  ident: ref_47
  article-title: What is an ROC curve?
  publication-title: Emerg. Med. J.
  doi: 10.1136/emermed-2017-206735
– ident: ref_50
  doi: 10.21203/rs.3.rs-798207/v1
– ident: ref_27
  doi: 10.3390/diagnostics13071363
– volume: 33
  start-page: 21271
  year: 2020
  ident: ref_23
  article-title: Bootstrap your own latent-a new approach to self-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_41
– ident: ref_28
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref_38
– ident: ref_10
  doi: 10.1007/978-1-4939-1450-0
– ident: ref_12
  doi: 10.3390/jimaging4010020
– volume: 9
  start-page: 87531
  year: 2021
  ident: ref_26
  article-title: Deep learning based staging of bone lesions from computed tomography scans
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3074051
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_46
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 8
  start-page: 331
  year: 2013
  ident: ref_8
  article-title: Digital imaging in pathology: Whole-slide imaging and beyond
  publication-title: Annu. Rev. Pathol. Mech. Dis.
  doi: 10.1146/annurev-pathol-011811-120902
– ident: ref_30
– volume: 12
  start-page: 20840
  year: 2022
  ident: ref_19
  article-title: Classification and visual explanation for COVID-19 pneumonia from ct images using triple learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-24936-6
– ident: ref_34
– volume: 10
  start-page: 1043843
  year: 2022
  ident: ref_20
  article-title: Effect of transfer learning on the performance of vggnet-16 and resnet-50 for the classification of organic and residual waste
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2022.1043843
– volume: 307
  start-page: 39
  year: 2015
  ident: ref_37
  article-title: Learning similarity with cosine similarity ensemble
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.02.024
– volume: 56
  start-page: 1
  year: 2023
  ident: ref_43
  article-title: A review of the F-measure: Its History, Properties, Criticism, and Alternatives
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3606367
– ident: ref_44
  doi: 10.1371/journal.pone.0092209
– volume: 47
  start-page: 14013
  year: 2022
  ident: ref_16
  article-title: Glomerulus Semantic Segmentation Using Ensemble of Deep Learning Models
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-06608-9
– volume: 103
  start-page: 101808
  year: 2020
  ident: ref_14
  article-title: Classification of glomerular hypercellularity using convolutional features and support vector machine
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101808
– ident: ref_40
– ident: ref_18
  doi: 10.1109/ICIP42928.2021.9506533
– volume: 10
  start-page: 445
  year: 2014
  ident: ref_9
  article-title: Pathology of IgA nephropathy
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2014.92
– volume: 44
  start-page: 837
  year: 1988
  ident: ref_48
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– ident: ref_49
  doi: 10.1109/ICCV.2017.74
– volume: 42
  start-page: 826
  year: 2003
  ident: ref_5
  article-title: Approach to renal biopsy
  publication-title: Am. J. Kidney Dis.
  doi: 10.1016/j.ajkd.2003.08.001
– ident: ref_29
– volume: 47
  start-page: 377
  year: 1995
  ident: ref_1
  article-title: IgA nephropathy
  publication-title: Kidney Int.
  doi: 10.1038/ki.1995.50
– volume: 26
  start-page: 450
  year: 2017
  ident: ref_11
  article-title: Digital pathology in nephrology clinical trials, research, and pathology practice
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/MNH.0000000000000360
– ident: ref_36
– volume: 43
  start-page: D921
  year: 2015
  ident: ref_24
  article-title: Open TG-GATEs: A large-scale toxicogenomics database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku955
– ident: ref_15
  doi: 10.3390/math10111934
– volume: 20
  start-page: 373
  year: 1981
  ident: ref_2
  article-title: Immune abnormalities in IgA nephropathy (Berger’s disease)
  publication-title: Clin. Immunol. Immunopathol.
  doi: 10.1016/0090-1229(81)90148-3
– volume: 141
  start-page: 104231
  year: 2020
  ident: ref_13
  article-title: Classification of glomerular pathological findings using deep learning and nephrologist–AI collective intelligence approach
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2020.104231
– volume: 109
  start-page: 43
  year: 2020
  ident: ref_17
  article-title: A comprehensive survey on transfer learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
SSID ssib045318784
ssib045318794
ssj0000913830
ssib030194728
Score 2.2958748
Snippet Following recent advancements in medical laboratory technology, the analysis of high-resolution renal pathological images has become increasingly important in...
SourceID unpaywall
proquest
gale
crossref
nii
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1403
SubjectTerms Accuracy
Algorithms
Annotations
Classification
Computer networks
Data acquisition
Data mining
Datasets
Deep learning
Diagnosis
Digitization
Efficiency
Glomerulus
Image acquisition
Image classification
Image resolution
Immunoglobulin A
Inflammation
Kidney diseases
Kidneys
Machine learning
Medical colleges
Medical imaging
Medical laboratories
Nephritis
Neural networks
Pathology
Supervised learning
Technology assessment
Workloads
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SzaHtofSTbpsUHQq91ES2ZNk6lJKUhLTQJSwN5GbG-iiBrbPd3VD67zvjlTdZKKEXY7AkhJ7mzUiW3gC8I_vyNeZtVnjETNesAem8ybyRbUDWgPO8of9tYs4u9NfL8nIHJsNdGD5WOXBiT9T-2vEe-aFioRRLM0Z9mv_KOGsU_10dUmhgSq3gP_YSY7uwV7Ay1gj2jk8m59PNrgurYNZKruWHFK33D2-zzSyJznv5ui0XlYh6t7u62gpCH9x0c_zzG2ezO_7o9Ak8ToGkOFoj_xR2QvcMHt2RF3wO02ngIue42lCc-PKTCET0qTD5kFCPizgmV-YFvbBW1QKXTIECOy96TxbDQiQZ1h8v4OL05PvnsyzlUMicrvUqQ9dGW8qIuW89GkvuCOvWlyaUsaxyglDT10qGEB16bKtojXPK2ZyIr1Wlegmj7roLr0DIOjqptI_GSK3bEmUVqhgsoVlYLf0YimHYGpcExjnPxayhhQaPdfOPsR7Dh02l-Vpf4_7i7xmPhq2P2naYLhFQD1nHqjmqrOwlyMox7G-VJKtxW58PCFHqJz_zulKW4hpdVLTA0rSCMlR9wLpJVr1sbufgGLIN_v_T79f3N_cGHhYULK1PBO3DaLW4CQcU7Kzat2kG_wU8pP83
  priority: 102
  providerName: ProQuest
Title Renal Pathological Image Classification Based on Contrastive and Transfer Learning
URI https://cir.nii.ac.jp/crid/1873961342755945856
https://www.proquest.com/docview/3037495313
https://www.mdpi.com/2079-9292/13/7/1403/pdf?version=1712579296
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZoewAOvFcUdqsckLiQjZP4EZ9QF7YsiK2qQqXlFPxEFSVUbQqCX884ccsWIQTikkTyOJpoxt_MWM43CD2C9WUKmao4M1LGpPAckNqw2DCsrPQccMZv6J-P2dmMvLqgF6HP6Tocq4RSfN6AdIY5TM1ElqR5whNPLZcsjXv6JWwlpRzCMwcB1kE9RiEZ76LebDwZvvMt5baTW66hHIr75GdrmTVgd8NVtxePAip3qvl8L-O8uqmW8ttXuVhcCj6jm-j9Vu32zMnH402tjvX3Xxgd_-O7bqEbITGNhq0n3UZXbHUHXb9EV3gXTafWi0xkvYPM6OUnAKSoaa3pDx01do5OIDSaCB4899VKrj2kRrIyURMZnV1Fgdb1wz00G52-fXYWh54MsSYFqWOplRMUO5kaZSQTEN5koQxlljrKU3AJAqMcW-u0NFJxJ5jWuRYpAKnKaX6AutXnyt5HES6cxjkxjjFMiKISc8udFeAdmSDY9FG2tUypA2G575uxKKFw8eYsf2POPnqym7Rs-Tr-LP7Ym7z0qxnerWX4KQE09LxY5ZAL3FCa0T463JOEVaj3ho_AaUBPf00LngvIk0jGoWAjUJExmL51pzKgxLrMPfmPABQEPeKdi_2N3g_-Uf4hupZBNtYeOTpE3Xq1sUeQTdVqgDrF6MUA9YbPz1-_gfvJ6XgyHYR19AORQh5U
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFLYoHGgPFd3EtEB9aNVLI5zYceIDqlg1U2CERiBxS71WSNMwnRmE-HP9bX0v4wyMVKFeuESRvMh5-3Ps7xHyCfTLlTo1Sea0TkSJGJDWycRJZrxGDDiHG_qnfdm9EN8v88sl8qe9C4PHKlub2Bhqd21xj3ybI1CKAonh30a_E6wahX9X2xIaOpZWcDsNxFi82HHs724hhZvs9A6A35-z7OjwfL-bxCoDiRWlmCbamqByFnTqjNNSgcHWpXG59HnIixQ-UkBrwbwPVjttiqCktdyqFEyDaapGgAtYEVwoSP5W9g77Z4P5Lg-ibpaczeCOOFds-766zQTcRwOXt-ASo2N4Vl9dLQS9qzf1SN_d6uHwgf87WiMvY-BKd2eS9oos-fo1efEAzvANGQw8djnT07lJpb1fYLBoU3oTDyU1ckD3wHU6Ci-IjTXWEzS5VNeONp4z-DGNsK8_35KLJ6HmO7JcX9d-nVBWBsu4cEFKJoTJNSt8EbwC6cmUYK5DspZslY2A5lhXY1hBYoO0rv5B6w75Oh80muF5PN79C_KjQm2Hua2OlxZghYibVe0WijWQZ3mHbCz0BC21C82bwFFYJz7TsuAK4iiRFZDQCcjYJAxveV1FKzKp7mW-Q5I5__9n3e8fn-4jWe2en55UJ73-8QfyPINAbXYaaYMsT8c3fhMCranZitJMyY-nVqC_2rhAIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IJ5ioQUfQFyI1kkcOz4gVChLl0JVVVTqLfiJKi3psrtV1b_Gr2Mmj21XQhWXXqJIfsjxzHwzduxvAF6hffnSpDbJvDGJKIkD0nmZeMltMMQB52lD_9ue3DkUX46KozX409-FoWOVPSY2QO1PHO2RD3MiStGoMfkwdsci9rdH76e_E8ogRX9a-3QarYrshvMzXL7N3423Udavs2z06fvHnaTLMJA4UYpFYpyNuuDRpN56IzWCtSmtL2QoYqFS_ECBpYqHEJ3xxqqopXO50ynCgm0yRiD831TE4k631Eefl_s7xLdZ5rwlOspzzYcXeW3m6DgaorwVZ9i5hBv18fFKuHv7tJ6a8zMzmVzyfKP7cK8LWdlWq2MPYC3UD-HuJSLDR3BwEKjKvlkswZSNfyFUsSbpJh1HajSAfUCn6Rm-ECvWzMwJbJmpPWt8Zgwz1hG-_nwMh9cyl09gvT6pw1NgvIyO58JHKbkQtjBcBRWDRr3JtOB-AFk_bZXrqMwpo8akwiUNzXX1j7kewNtlo2nL5HF19Tckj4rsHPt2pruugCMkxqxqS2nekJ0VA9hYqYn26VaKN1GiOE56pqXKNUZQIlO4lBO4VpPYvJd11eHHvLrQ9gEkS_n_z7ifXd3dS7iFZlN9He_tPoc7GUZo7TGkDVhfzE7DJkZYC_uiUWUGP67bdv4CL7A9vA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF_q-dD6UPuJ16rsQ6Evjdkk-5F9KldRtFAR6YF9SvdTjp7xuMsp7V_f2WTv9EqRFl9CILNhwsz-ZmaZ_Aahd7C_bKkyneRWqYSWgQPSWJ5YTrRTgQPOhgP9Lyf8aEg_n7PzOOd0FtsqoRQftSCdEwFLc5mnWZGKNFDLpRPrP17Ho6RMQHgWIMDX0DpnkIz30Prw5HTwLYyUWyzuuIYKKO7T29EyM8DulqtuJR5FVF6rR6OVjPPxvJ6onzdqPL4TfA430feF2l3PyY-9eaP3zK8_GB0f8F3P0NOYmOJB50nP0SNXv0Abd-gKX6KzMxdETlWzhEx8fAmAhNvRmqHpqLUz_gSh0WK4CdxXUzULkIpVbXEbGb2b4kjrevEKDQ8Pvu4fJXEmQ2JoSZtEGe0lI15lVlvFJYQ3VWrLuGOeiQxcgsJTQZzzRlmlhZfcmMLIDIBUF6x4jXr1Ve22ECalN6Sg1nNOKNVMEeGEdxK8I5eU2D7KF5apTCQsD3MzxhUULsGc1V_M2UcflosmHV_H_eLvg8mrsJvh3UbFnxJAw8CLVQ2EJC2lGeuj7RVJ2IVm5fEOOA3oGa5ZKQoJeRLNBRRsFCoyDssX7lRFlJhVRSD_kYCCoEeydLF_0fvNf8q_RU9yyMa6lqNt1Gumc7cD2VSjd-OO-Q0sbBpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renal+Pathological+Image+Classification+Based+on+Contrastive+and+Transfer+Learning&rft.jtitle=Electronics+%28Basel%29&rft.au=Liu%2C+Xinkai&rft.au=Zhu%2C+Xin&rft.au=Tian%2C+Xingjian&rft.au=Iwasaki%2C+Tsuyoshi&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=7&rft_id=info:doi/10.3390%2Felectronics13071403&rft.externalDocID=A790018125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon